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Abstract. This is the first part of an investigation of infinite horizon optimal control problems
subject to semi-linear parabolic equations. A discount fact on the state variable is introduced in
the cost. This allows the treatment of infinite horizon problems without stabilizability assumptions.
The nonlinearities can be of polynomial type thus covering reaction diffusion equations which are
important for applications. The control to state mapping and its regularity are analysed in details.
This involves the relation between the type of the nonlinearity and the discount factor.
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1. Introduction. This is the first part of our work in which we continue our
efforts on infinite horizon optimal control problems for semi-linear parabolic differen-
tial equations. The specificity of the present contribution lies in the introduction of a
discount factor on the state variable in the cost functional. This leads to important
differences to our earlier work [8] and [9] with respect to the nature of the control prob-
lems and from the analytical perspective. Semi-linear parabolic equations appear in
a multitude of applications, frequently with nonlinearities of polynomial type. Cubic
polynomials arise for example in the Allen Cahn equation, modelling phase separation
in multi-component alloys, in the Schlögel model, arising in chemical reactions, or the
Newell-Whitehead equation, describing the evolution of self-organising systems. A
quadratic nonlinearity appears in the Fisher equation modelling population growth,
for example. In all this cases, when formulating optimal control problems of tracking
type, the choice a specific time horizon over which the optimization takes place can
be delicate and is to some extent ad hoc. The introduction of an infinite time hori-
zon then arises a natural alternative to formulate the optimal control problem under
consideration, unless it is conceived as infinite horizon problem from the start.

Let us mention some of the literature on infinite horizon optimal control. In the
monograph [7] the importance of the infinite time horizon for problems in mathemati-
cal biology and in economics is stressed and examples are provided. The mathematical
analysis of infinite horizon optimal control problems was likely started with the work
of Halkin, see [10]. We also point at recent contributions in [3, 1, 2, 4, 15]. Except
for one chapter in [7], which is devoted to partial differential equations, all of these
contributions are concerned with control problems for ordinary differential equations.
The case of partial differential equations has received significantly less attention. We
point, however, to one section in the classical monograph [12, Chapter III.6], which is
dedicated to infinite horizon problems, and to [5], [6], where bilinear optimal control
problems are investigated. In these papers, just as in our previous papers [8], [9] no
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discount factors are utilized. Thus the infinite horizon formulation relates to opti-
mal stabilization and with optimal trajectories typically asymptotically converging to
steady states. This is not the case once a discount factor is introduced in the cost
functional.

Our goal is the analysis of the optimal control problem

(P) min
u∈Uad

J(u) =
1

2

∫ ∞
0

e−σt‖yu−yd‖2L2(Ω) dt+
ν

2

∫ ∞
0

‖u‖2L2(ω) dt+γ

∫ ∞
0

‖u‖L2(ω) dt,

where Uad = {u ∈ L2(0,∞;L2(ω)) : ua ≤ u(x, t) ≤ ub for a.a. (x, t) ∈ ω × (0,∞)},
−∞ ≤ ua ≤ 0 ≤ ub ≤ +∞, σ > 0, ν > 0, and γ ≥ 0. Here yu denotes the solution of
the following parabolic equation:{

∂y

∂t
−∆y + ay + f(y) = g + uχω in Q = Ω× (0,∞),

∂ny = 0 on Σ = Γ× (0,∞), y(0) = y0 in Ω,
(1.1)

where Ω is a bounded domain in Rn, 1 ≤ n ≤ 3, with a Lipschitz boundary Γ, ω is
a subdomain of Ω, g ∈ L∞(0,∞;L2(Ω)), χω denotes the characteristic function of ω,
a ∈ L∞(Ω), 0 ≤ a 6≡ 0, and y0 ∈ H1(Ω). The symbol uχω is defined as follows:

(uχω)(x, t) =

{
u(x, t) if (x, t) ∈ Qω = ω × (0,∞),

0 otherwise.

The parameter σ is known as the discount factor. The last term in the cost
functional is included to promote sparsity in time of the optimal controls.

In Part I, we mainly concentrate on the analysis of the control to state mapping
u → yu. The fact that we need to consider this mapping over the half axis, leads
to many technical challenges for which we cannot refer back to the finite horizon
case, which has been intensely analyzed in the past, see for instance [16]. It is also
different from the analysis in [9] which did not involve a discount factor, and which,
as a consequence, did not allow us to analyze the differentiability properties of the
control to state mapping. In Part II the optimization theoretic aspects of (P) will be
investigated.

For the nonlinear term f : R −→ R in state equation we assume that f = f1 + f2,
such that f1 is a polynomial of odd degree 2m+ 1 with a positive leading coefficient,
0 ≤ m ≤ 1 if n = 3, and m ≥ 0 is an arbitrary integer if n≤2, and f2 : R −→ R is a
C2 function satisfying

f1(0) = f2(0) = 0 and ∃Lf > 0 : |f ′2(s)|+ |f ′′2 (s)| ≤ Lf ∀s ∈ R. (1.2)

Since f1 is a polynomial of odd order with positive leading coefficient we infer

∃Λ1 ≥ 0 such that f ′1(s) ≥ −Λ1 ∀s ∈ R. (1.3)

From (1.2) and (1.3) we deduce

f ′(s) ≥ −Λf = −(Λ1 + Lf ) ∀s ∈ R, (1.4)

If m > 0, then ∃Mf such that f ′(s) > 0 and f(s)s ≥ 0 ∀|s| ≥Mf . (1.5)

Remark 1.1. The assumption a 6≡ 0 has been introduced for simplicity of the
presentation, but it is not necessary. All the results of this paper remain valid if we
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take a ≡ 0. Indeed, if a ≡ 0 we redefine f2(s) as f2(s)− s and put a ≡ 1, and all the
above assumptions are fulfilled. Analogously, if the condition f1(0) = f2(0) = 0 does
not hold, we can replace fi by fi(s)− fi(0), i = 1, 2, and g by g − f1(0)− f2(0).

Of course f can be reduced to a polynomial if we take f2 = 0. Moreover, the case
f = f2 is included in the previous formulation. Indeed, it is enough to take f1(s) = s
and redefine again f2(s) as f2(s)− s. Then f satisfies the above assumptions.

This paper is structured as follows. Section 2 contains the existence theory for
(1.1) and apriori estimates in appropriately weighted functions spaces. The differ-
entiability properties of the control to state mapping are investigated in Section 3.
This involves a detailed analysis of the relations between the discount factor σ, the
nature of the nonlinearity f , and the weights characterizing the spaces in the which
the linearized state equation and the adjoint equation are well-posed.

We end the introduction by fixing some notation. Given real numbers α ∈ R and
p ∈ [1,∞], Lpα(Q) denotes the space of measurable functions φ : Q −→ R satisfying

‖φ‖Lpα(Q) =
(∫ ∞

0

e−αt‖φ(t)‖pLp(Ω) dt
) 1
p

<∞ if p <∞,

‖φ‖L∞α (Q) = ess sup
(x,t)∈Q

e−
α
2 t|φ(x, t)| <∞.

Let us observe that Lpα(Q) is continuously embedded in Lqα(Q) for 1 ≤ q < p ≤ ∞
and α > 0. The following well known inequality will be useful all along this paper

Ca‖z‖H1(Ω) ≤
(∫

Ω

(|∇z|2 + az2) dx

) 1
2

∀z ∈ H1(Ω); (1.6)

see, for instance, [13, Theorem 2.7.1].

2. Analysis of the State Equation. We shall denote by L2
loc(0,∞;H1(Ω)) the

space of functions y belonging to L2(0, T ;H1(Ω)) for every 0 < T <∞. Analogously
we define L2

loc(0,∞;L2(Ω)), H1
loc(0,∞;L2(Ω)), and Cloc([0,∞);L2(Ω)). Following [8]

we define the following solution concept.
Definition 2.1. We call y a solution to (1.1) if y ∈ L2

loc(0,∞;H1(Ω)) ∩
Cloc([0,∞);L2(Ω)), f(y) ∈ L2

loc(0,∞;L2(Ω)), and for every T > 0 the restriction
of y to QT = Ω× (0, T ) satisfies in the usual variational sense the equation{

∂y

∂t
−∆y + ay + f(y) = g + uχω in QT ,

∂ny = 0 on ΣT = Γ× (0, T ), y(0) = y0 in Ω;
(2.1)

see, for instance, [11, pages 136–137] or [14, page 108] for the definition of a varia-
tional solution (or generalized solution) of (2.1).

The following existence and uniqueness result can be proved as in [8, Theorem
2.2].

Theorem 2.2. For every u ∈ L2(Qω) equation (1.1) has a unique solution yu.
Moreover yu ∈ H1

loc(0,∞;L2(Ω)) ∩ L2
loc(0,∞;H1(Ω)) holds. Further, there exists a

constant Kf > 0 independent of u, g, y0, and T > 0 such that

‖yu‖C([0,T ];L2(Ω)) + ‖yu‖L2(0,T ;H1(Ω))

≤ Kf

(
‖y0‖L2(Ω) +

[
‖g‖L∞(0,∞;L2(Ω)) + 1

]√
T + ‖u‖L2(Qω)

)
. (2.2)
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Additionally, there exists a constant CT independent of u, g, and y0 such that

‖yu‖H1(QT ) + ‖yu‖C([0,T ];H1(Ω)) + ‖f(yu)‖L2(QT )

≤ CT
(
‖y0‖m+1

H1(Ω) + ‖g‖L∞(0,∞;L2(Ω)) + ‖uχω‖L2(Q) + 1
)
. (2.3)

Proof. For this proof we cannot rely on the usual techniques because u is in L2

rather than in Lp with p large enough and y0 is not assumed to be in L∞(Ω). As a
consequence, the corresponding state does not belong to L∞(QT ). Rather we follow
the proof of [8, Theorem 2.2] and provide the estimates (2.2) and (2.3). Introducing
z(x, t) = e−Λf tyu(x, t), where Λf was defined in (1.4), (1.1) is transformed to{

∂z

∂t
−∆z + az + f̃(t, z) = e−Λf t(g + uχω) in QT ,

∂nz = 0 on ΣT , z(0) = y0 in Ω,
(2.4)

where f̃(t, s) = e−Λf tf(eΛf ts) + Λfs ∀(t, s) ∈ R2. For any positive integer k setting

f̃k(t, s) = f̃(t,Proj[−k,+k](s)) we consider the equation{
∂zk
∂t
−∆zk + azk + f̃k(t, zk) = e−Λf t(g + uχω) in QT ,

∂nzk = 0 on ΣT , zk(0) = y0 in Ω.
(2.5)

As a consequence of (1.2) and (1.4), we get f̃k(t, 0) = 0 and ∂sf̃k(t, s) = f ′(eΛts) +
Λf ≥ 0 if |s| < k and ∂sf̃k(t, s) = 0 if |s| > k. By an application of Schauder’s
fixed point theorem we obtain the existence of a solution zk ∈ L2(0, T ;H1(Ω)) ∩
C([0, T ];L2(Ω)) of (2.5). The uniqueness of zk is a consequence of the monotonicity
of f̃k. Using that f̃k(t, zk)zk ≥ 0 and testing (2.5) with zk we deduce

‖zk‖L∞(0,T ;L2(Ω)) + ‖zk‖L2(0,T ;H1(Ω))

≤
√

2

Ca

(
‖g‖L2

Λf
(Q) + ‖u‖L2(Qω)

)
+
√

2‖y0‖L2(Ω). (2.6)

Next we prove that {f̃k(·, zk)}∞k=1 is a bounded sequence in L2(Q). Since f1 is a
polynomial of degree 2m+1 and leading positive coefficient, and f2

2 (s) ≤ Lfs2 due to
(1.2), elementary calculus leads to the existence of constants C1 > 0, C2 ≥ 0, C3 > 0,
and C4 ≤ 0 such that

f̃(t, s)2 ≤ C1f̃(t, s)s2m+1 +C2 and f̃(t, s)s2m+1 ≥ C3s
4m+2 +C4 ∀(t, s) ∈ [0, T ]×R.

Using these inequalities, the desired boundedness of {f̃k(·, zk)}∞k=1 is obtained as in the
proof of [8, Theorem 2.2]. Following that proof we get the existence and uniqueness
of a solution z of (2.4) which, in addition, belongs to H1(QT ) with f̃(·, z) ∈ L2(QT ).
Therefore, yu = eλf tz ∈ H1(QT ) is a solution of (2.1) for every T > 0. Hence yu is the
unique solution of (1.1). Additionally we have that f(yu) ∈ L2(QT ) and the estimate
(2.3) for f(yu) is satisfied. The estimate (2.3) for yu in H1(QT ) ∩C([0, T ];H1(Ω)) is
a well known consequence of the equation{

∂yu
∂t
−∆yu + ayu = g + uχω − f(yu) in QT

∂nyu = 0 on ΣT , yu(0) = y0 in Ω.



Infinite Horizon Control Problems 5

Now, we prove (2.2). For every t ∈ (0, T ) we set Ωt = {x ∈ Ω : |y(x, t)| ≤ Mf}
with Mf given by (1.5). Let us set CMf

= sup|s|≤Mf
|f(s)|. Multiplying (2.1) by y

and using (1.5) we infer

1

2

d

dt
‖y‖2L2(Ω) +

∫
Ω

[|∇y|2 + ay2] dx ≤
∫

Ω

(g + χωu)y dx+ CMf
Mf |Ωt|

Integrating in (0, t) and using (1.6) we deduce

1

2
‖y(t)‖2L2(Ω) + Ca

∫ t

0

‖y(s)‖2H1(Ω)dt

≤ 1

2
‖y0‖2L2(Ω) +

1

Ca

(
‖g‖2L∞(0,∞;L2(Ω))T + ‖u‖2L2(0,∞;L2(ω))

)
+
Ca
2

∫ t

0

‖y(s)‖2H1(Ω) dt+ CMf
Mf |Ω|T.

This yields (2.2).
In the next theorem we establish some infinite horizon regularity properties of

the solution of (1.1). First we introduce the following notation: for every α ∈ R
L2
α(0,∞;H1(Ω)) and Cα([0,∞);H1(Ω)) denote the Hilbert and Banach spaces of

measurable functions y : [0,∞) −→ H1(Ω) endowed with the norms

‖y‖L2
α(0,∞;H1(Ω)) =

(∫ ∞
0

e−αt‖y(t)‖2H1(Ω) dt
) 1

2

,

‖y‖Cα([0,∞);H1(Ω)) = sup
t∈[0,∞)

e−
α
2 t‖y(t)‖H1(Ω).

We also define H1
α(Q) as the space of functions y ∈ L2

α(0,∞;H1(Ω)) such that ∂y
∂t ∈

L2
α(Q). This is a Hilbert space for the norm

‖y‖H1
α(Q) =

(
‖y‖2L2

α(0,∞;H1(Ω)) +
∥∥∥∂y
∂t

∥∥∥2

L2
α(Q)

) 1
2

.

The next corollary is an immediate consequence of (2.2).
Corollary 2.3. For every α > 0 and all u ∈ L2(Qω) the solution yu of (1.1)

belongs to L2
α(Q) and

‖yu‖L2
α(Q) ≤ Kf

1√
α

(
‖y0‖L2(Ω) +

1√
α

[
‖g‖L∞(0,∞;L2(Ω)) + 1

]
+ ‖u‖L2(Qω)

)
,

where Kf is the constant introduced in (2.2)
Theorem 2.4. Let u ∈ L2(Qω) and let y be the solution of (1.1) corresponding

to u. Then the following properties hold for all α > 0:

f(y), y2m+1 ∈ L2
α(Q), (2.7)

y ∈ H1
α(Q) ∩ Cα([0,∞);H1(Ω)), (2.8)

lim
T→∞

e−αT ‖y(T )‖H1(Ω) = 0. (2.9)

Moreover, there exists a constant C independent of α, u, g, and y0 such that

‖f(y)‖L2
α(Q) + ‖y2m+1‖L2

α(Q) + ‖y‖H1
α(Q) + ‖y‖Cα([0,∞);H1(Ω))

≤ C

min{1, α}

(
‖g‖L∞(0,∞;L2(Ω)) + ‖u‖L2(Qω) + ‖y0‖m+1

H1(Ω) + 1
)
. (2.10)
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Proof. By Corollary 2.3, we know that y ∈ L2
α(Q). We divide the proof into three

parts.

Proof of (2.7). If m = 0, (2.7) is an immediate consequence of (1.2) and Corollary
2.3. Suppose m > 0. First we demonstrate that e−αtf(y)y2m+1 ∈ L1(Q). Let us write

f1(s) =

2m+1∑
j=1

ajs
j and Cf =

2m+1∑
j=1

|aj |+ Lf . (2.11)

Observe that f1(0) = 0 implies that a0 = 0. From here we infer

|f(s)s2m+1| ≤ Cfs4m+2 ∀|s| ≥ 1 and |f(s)s2m+1| ≤ Cfs2 ∀|s| ≤ 1. (2.12)

We set

M = max
{

1,Mf ,
2

a2m+1

( 2m∑
j=1

|aj |+ Lf

)}
,

where Mf was introduced in (1.5). Let us denote QM = {(x, t) ∈ Q : |y(x, t)| > M}
and CM = max1≤|s|≤M |f(s)|. Then, with (1.5) we get for every T > 0∫

Q

e−αt|f(y)y2m+1| dx dt ≤
∫
Q\QM

e−αt|f(y)y2m+1| dx dt

+

∫
QM

e−αt|f(y)y2m+1| dx dt

≤ CMM
2m+1|Ω|
α

+

∫
QM

e−αtf(y)y2m+1 dx dt. (2.13)

Thus we only need to prove the integrability of e−αtf(y)y2m+1 in QM . To this
end, for every integer k > M we define the projection yk = Proj[−k,+k](y) ∈ H1

loc(Q)

and we multiply (2.1) by e−αty2m+1
k :∫

QT

∂y

∂t
e−αty2m+1

k dx dt+

∫
QT

e−αt[∇y∇y2m+1
k + ayy2m+1

k ] dx dt

+

∫
QT∩QM

e−αtf(y)y2m+1
k dx dt

≤ CMM
2m+1|Ω|
α

+

∫
QT

e−αt(g + uχω)y2m+1
k dx dt. (2.14)

Using that yy2m+1
k ≥ y2m+2

k and yy2m
k

∂yk
∂t = 1

2m+2

∂y2m+2
k

∂t , and integrating by parts
twice we obtain∫ T

0

∫
Ω

∂y

∂t
e−αty2m+1

k dx dt

≥ 1

2m+ 2

(
e−αT

∫
Ω

y2m+2
k (T ) dx+ α

∫
QT

e−αty2m+2
k dx dt

)
−
∫

Ω

y2m+2
0 dx.
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Moreover, we have ∇y∇y2m+1
k = (2m + 1)y2m

k ∇y∇yk = (2m + 1)y2m
k |∇yk|2. Using

this in (2.14), and taking into account that (1.5) implies that f(y(x, t))yk(x, t) ≥ 0
for every (x, t) ∈ QM , we obtain∫

QT∩QM
e−αtf(y)y2m+1

k dx dt ≤
∫

Ω

y2m+2
0 dx+

CMM
2m+1|Ω|
α

+

∫
QT

e−αt(g + uχΩ)y2m+1
k dx dt ≤ C‖y0‖2m+2

H1(Ω) +
CMM

2m+1|Ω|
α

+
(
‖g‖L2

α(Q) + ‖u‖L2(Qω)

)( ∫
QT∩QM

e−αty4m+2
k dx dt

)1/2

≤ C‖y0‖2m+2
H1(Ω) +

CMM
2m+1|Ω|
α

+
1

a2m+1

(
‖g‖L2

α(Q) + ‖u‖L2(Qω)

)2
+
a2m+1

4

∫
Q∩QM

e−αty4m+2
k dx dt.

This implies∫
QT∩QM

e−αt|f(y)y2m+1
k | dx dt

≤ C
(
‖y0‖2m+2

H1(Ω) + ‖y‖2L2
α(Q) +

[
‖g‖L2

α(Q) + ‖u‖L2(Qω)

]2
+

1

α

)
∀T > 0 and ∀k > M,

where C only depends on f and M . Since yk(x, t)→ y(x, t) a.e. in Q, we deduce from
the above inequality, (2.13), and Fatou’s lemma that∫

Q

e−αt|f(y)||y2m+1| dx dt

≤ C
(
‖y0‖2m+2

H1(Ω) + ‖y‖2L2
α(Q) +

[
‖g‖L2

α(Q) + ‖u‖L2(Qω)

]2
+

1

α

)
(2.15)

for a new C only depending on f and M . Due to the choice of M we have for |s| ≥M

f(s)s2m+1 ≥ s4m+2
(
a2m+1 −

2m∑
j=1

|aj |
1

|s|2m+1−j − Lf
1

s2m

)

≥ s4m+2
(
a2m+1 −

1

M

[ 2m∑
j=1

|aj |+ Lf

])
≥ a2m+1

2
s4m+2.

Since f ′(s) > 0 for |s| ≥M , we get

f(y(x, t))y2m+1(x, t) ≥ f(yk(x, t))y2m+1(x, t) ≥ a2m+1

2
y4m+2(x, t), (x, t) ∈ QM .

Inserting this inequality in the left hand side of (2.15) we conclude that. Now we have∫
Q

e−αty4m+2 dx dt ≤M4m

∫
Q\QM

e−αty2 dx dt+

∫
QM

e−αty4m+2 dx dt

≤M4m‖y‖2L2
α(Q) +

2

a2m+1

∫
QM

e−αtf(y)y2m+1 dx dt <∞,
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which proves that y2m+1 ∈ L2
α(Q). Moreover, since |f(s)| ≤ Cf |s|2m+1 ∀|s| ≥ 1 and

|f(s)| ≤ Cf |s| ∀|s| ≤ 1, we deduce that

f(s)2 ≤ C2
f (s2 + s4m+2) ∀s ∈ R.

Therefore, the fact that y and y2m+1 belong to L2
α(Q) implies that f(y) ∈ L2

α(Q) and
the proof of (2.7) is complete. Additionally, these arguments and Corollary 2.3 lead
to the estimates for the first two terms of (2.10).

Proof of (2.8). First we observe that y ∈ C([0, T ];H1(Ω)) for every T > 0.
Indeed, this is a consequence of the fact that f(y) ∈ L2

α(Q) and y0 ∈ H1(Ω); see
[14, Proposition III-2.5]. Hence y : [0,∞) → H1(Ω) is continuous. To prove that
y ∈ L2

α(0,∞;H1(Ω)) it is enough to multiply (2.1) by e−αty and integrate in QT ,
T > 0 arbitrary, to get

e−αT

2
‖y(T )‖2L2(Ω) +

α

2

∫
QT

e−αty2 dx dt+

∫
QT

e−αt(|∇y|2 + ay2) dx dt

=

∫
QT

e−αt(g + uχω)y dx dt+
1

2
‖y0‖2L2(Ω) −

∫
QT

e−αtf(y)y dx dt

≤
(
‖g‖L2

α(Q) + ‖u‖L2(Qω)

)
‖y‖L2

α(Q) +
1

2
‖y0‖2L2(Ω)

+ ‖f(y)‖L2
α(Q)‖y‖L2

α(Q) <∞.

Above we have used that y ∈ L2
α(Q); see Corollary 2.3. Now it is enough to take

T →∞ to deduce that y ∈ L2
α(0,∞;H1(Ω)).

To prove that y ∈ Cα([0,∞);H1(Ω)) we take into account that by Theorem 2.2
y ∈ H1(QT ) for every T > 0. We can multiply (2.1) by e−αt ∂y∂t and integrate in QT
to get

∫ T

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt+

∫ T

0

e−αt
1

2

d

dt

∫
Ω

(|∇y|2 + ay2) dx dt+

∫
QT

e−αtf(y)
∂y

∂t
dx dt

=

∫
QT

e−αt(g + uχω)
∂y

∂t
dx dt. (2.16)

This implies

∫ T

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt

+
1

2
e−αT

∫
Ω

(|∇y(T )|2 + a0y
2(T )) dx+

α

2

∫ T

0

∫
Ω

e−αt[|∇y|2 + ay2] dx dt

≤
(
‖g‖L2

α(Q) + ‖u‖L2(Qω) + ‖f(y)‖L2
α(Q)

)∥∥∥∂y
∂t

∥∥∥
L2
α(Q)

+
1

2

∫
Ω

(|∇y0|2 + a0y
2
0) dx

≤ 1

2

(
‖g‖L2

α(Q) + ‖u‖L2(Qω) + ‖f(y)‖L2
α(Q)

)2
+

1

2

∫ T

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt

+
C

2
‖y0‖2H1(Ω),
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and hence, ∫ T

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt+ e−αT

∫
Ω

(|∇y(T )|2 + a0y
2(T )) dx

+
α

2

∫ T

0

e−αt[|∇y|2 + ay2] dx dt

≤
(
‖g‖L2

α(Q) + ‖u‖L2(Qω) + ‖f(y)‖L2
α(Q)

)2
+ C‖y0‖2H1(Ω)

)
. (2.17)

Since T > 0 is arbitrary, the above inequality concludes the proof of (2.8). Moreover,
from the obtained estimates and Corollary 2.3 the bounds for the last two terms in
(2.10) follow.

Proof of (2.9). From (2.16) we get

1

2
e−αT

∫
Ω

(|∇y(T )|2 + a0y
2(T )) dx =

∫ T

0

∫
Ω

e−αt(g + uχω)
∂y

∂t
dx dt

−
∫ T

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt− α

2

∫ T

0

e−αt[|∇y|2 + ay2] dx dt

−
∫
Q

e−αtf(y)
∂y

∂t
dx dt+

1

2

∫
Ω

[|∇y0|2 + ay2
0 ] dx.

Taking the limit in T we infer

1

2
lim
T→∞

e−αT
∫

Ω

(|∇y(T )|2 + a0y
2(T )) dx =

∫ ∞
0

∫
Ω

e−αt(g + uχω)
∂y

∂t
dx dt

−
∫ ∞

0

e−αt
∥∥∥∂y
∂t

∥∥∥2

L2(Ω)
dt− α

2

∫ ∞
0

e−αt[|∇y|2 + ay2] dx dt

−
∫
Q

e−αtf(y)
∂y

∂t
dx dt+

1

2

∫
Ω

[|∇y0|2 + ay2
0 ] dx.

We have proved that e−αT
∫

Ω
(|∇y(T )|2 + a0y

2(T )) dx → β as T → ∞ for a certain
real number β. But, we know that y ∈ L2

α(0,∞;H1(Ω)), hence there exists a se-
quence {Tk}∞k=1 converging to ∞ such that e−αTk

∫
Ω

(|∇y(Tk)|2 + a0y
2(Tk)) dx → 0.

Therefore, β = 0 and, since α > 0 is arbitrary, (2.9) holds with (1.6).
Corollary 2.5. For every u ∈ L2(Qω) the following identities hold∫
Q

e−αt
∂yu
∂t

z dx dt+

∫
Q

e−αt[∇yu∇z + ayuz] dx dt+

∫
Q

e−αtf(yu)z dx dt

=

∫
Q

e−αt(g + uχω)z dx dt ∀z ∈ H1
α(Q),

(2.18)

α

2

∫ ∞
0

e−αt‖yu(t)‖2L2(Ω) dt+

∫
Q

e−αt[|∇yu|2 + ay2
u] dx dt+

∫
Q

e−αtf(yu)yu dx dt

=

∫
Q

e−αt(g + uχω)yu dx dt+
1

2
‖y0‖2L2(Ω), (2.19)∫

Q

e−αt
∥∥∥∂yu
∂t

(t)
∥∥∥2

L2(Ω)
dt+

α

2

∫
Q

e−αt[|∇yu|2 + ay2
u] dx dt+

∫
Q

e−αtf(yu)
∂yu
∂t

dx dt∫
Q

e−αt(g + uχω)
∂yu
∂t

dx dt+
1

2

∫
Ω

[|∇y0|2 + ay2
0 ] dx. (2.20)
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The identity (2.18) is obtained multiplying (2.1) by e−αtz, performing integration
by parts, and passing to the limit as T → ∞ with the help of (2.7) and (2.8). To
prove (2.19) we set z = yu and integrate by parts in the first integral. The identity
(2.20) was established in the last part of the proof of Theorem 2.4.

Remark 2.6. In case of g ∈ L2(Q) and f ′(s) ≥ 0 for every s ∈ R, we can take
Mf = 0 in the last part of the proof of Theorem 2.2 and get

‖yu‖C([0,∞);L2(Ω)) + ‖yu‖L2(0,∞;H1(Ω)) ≤ Kf

(
‖y0‖L2(Ω) + ‖g‖L2(Q) + ‖u‖L2(Qω)

)
.

Further, relations (2.7)–(2.10) hold with α = 0, except on the right hand side of
(2.10) where α and ‖g‖L∞(0,∞;L2(Ω)) are replaced by 1 and ‖g‖L2(Q), respectively; see
[8, Theorem 2.4].

Theorem 2.7. Let {uk}∞k=1 ⊂ L2(Qω) be a sequence converging to u. Then, the
following convergences hold for every α > 0

lim
k→∞

‖yk − y‖H1
α(Q) = 0, (2.21)

lim
k→∞

‖yk − y‖L4m+2
α (Q) = 0, (2.22)

lim
k→∞

‖f(yk)− f(y)‖L2
α(Q) = 0, (2.23)

lim
k→∞

‖yk − y‖Cα([0,∞);H1(Ω)) = 0, (2.24)

where y = yu and yk = yuk . Moreover, we have for m ≥ 1

lim
k→∞

‖f ′(yk)− f ′(y)‖
L

2+ 1
m

α (Q)
= lim
k→∞

‖f ′′(yk)− f ′′(y)‖
L

2+ 4
2m−1

α (Q)
= 0, (2.25)

and for m = 0

lim
k→∞

‖f ′(yk)− f ′(y)‖Lpα(Q) = lim
k→∞

‖f ′′(yk)− f ′′(y)‖Lpα(Q) = 0 ∀p ∈ [1,∞). (2.26)

Proof. From (2.10) we deduce the existence of a subsequence, denoted in the
same way, such that yk ⇀ y in H1

α(Q) and f(yk) ⇀ φ in L2
α(Q). Let us prove that

the convergence of {yk}∞k=1 to y is strong in L2
α(Q). Given ε > 0, from (2.2) and the

boundedness of {uk}∞k=1 in L2(Qω) we infer the existence of Tε > 0 such that∫ ∞
Tε

e−αt‖yk(t)−y(t)‖2L2(Ω) dt ≤
∫ ∞
Tε

e−αt(C1+C2t) dt+2

∫ ∞
Tε

e−αt‖y(t)‖2L2(Ω) dt < ε.

Moreover, the compactness of the embedding H1(QTε) ⊂ L2(QTε) implies that yk → y
in L2(QTε). Combining these facts we deduce the strong convergence yk → y in L2

α(Q)
as k →∞. Furthermore, taking a new subsequence we assume that yk(x, t)→ y(x, t)
for almost every point (x, t) ∈ Q. Then, by the continuity of f we deduce that
φ = f(y) and, hence, f(yk) ⇀ f(y) in L2

α(Q). Now, we prove that y = yu. For this
purpose we have to check Definition 2.1. It is easy to pass to the limit weakly in the
state equation (2.1) satisfied by (yk, uk) and to deduce that (y, u) satisfies the equation
in the variational sense in QT for every T > 0. Moreover, from the continuity of the
embedding H1

α(Q) ⊂ Cα([0,∞);L2(Ω)) we have that y0 = yk(0) ⇀ y(0) in L2(Ω),
hence y = yu. Now, the uniqueness of the solution of (1.1) implies that the whole
sequence {yk}∞k=1 converges to y = yu.
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Taking u = uk in (2.19) we obtain obtain∫ ∞
0

e−αt
∫

Ω

[|∇yk|2 + ay2
k] dx dt =

∫ ∞
0

e−αt
∫

Ω

(g + ukχω)yk dx dt+
1

2
‖y0‖2L2(Ω)

− α

2

∫ ∞
0

e−αt‖yk‖2L2(Ω) dt−
∫ ∞

0

e−αt
∫

Ω

f(yk)yk dx dt.

Using that uk → u in L2(Qω), f(yk) ⇀ f(y) in L2
α(Q), and yk → y in L2

α(Q), we can
pass to the limit in the above identity and deduce from (2.19) with u = ū

lim
k→∞

∫ ∞
0

e−αt
∫

Ω

[|∇yk|2 + ay2
k] dx dt =

∫ ∞
0

e−αt
∫

Ω

(g + uχω)y dx dt+
1

2
‖y0‖2L2(Ω)

− α

2

∫ ∞
0

e−αt‖y‖2L2(Ω) dt−
∫ ∞

0

e−αt
∫

Ω

f(y)ydx dt =

∫ ∞
0

e−αt
∫

Ω

[|∇y|2 + ay2]dx dt.

This implies that limk→∞ ‖yk‖L2
α(0,∞;H1(Ω)) = ‖y‖L2

α(0,∞;H1(Ω)). Then, the continu-
ous inclusion H1

α(Q) ⊂ L2
α(0,∞;H1(Ω)) yields yk ⇀ y in L2

α(0,∞;H1(Ω)) for every
α > 0. Consequently, strong convergence yk → y in L2

α(0,∞;H1(Ω)) holds for every
α > 0.

Next we prove that ‖yk − y‖Lpα(Q) → 0 as k → ∞ for every p ∈ [1, 4m + 2]. Let
us take a subsequence, denoted in the same way, such that yk(x, t) → y(x, t) almost
everywhere in Q. From (2.10) we get the boundedness of {yk}∞k=1 in L4m+2

α (Q).
Therefore yk ⇀ y in L4m+2

α (Q) holds. Due to the continuous embedding L4m+2
α (Q) ⊂

Lpα(Q) for p < 4m + 2, we only need to prove the convergence of {yk}∞k=1 to y in
L4m+2
α (Q). Since this convergence is obvious for m = 0, let us consider the case m ≥ 1.

Setting β = α
4m , using the inclusion H1(Ω) ⊂ L4m+2(Ω), (2.10), the boundedness of

{uk}∞k=1 in L2(Qω), and the convergence yk → y in L2
α
2

(0,∞;H1(Ω)) we infer

∫ ∞
0

e−αt
∫

Ω

(yk − y)4m+2 dx dt ≤ C
∫ ∞

0

e−αt‖yk(t)− y(t)‖4m+2
H1(Ω) dt

= C

∫ ∞
0

e−
α
2 t‖yk − y‖2H1(Ω)[e

− β2 t‖yk(t)− y(t)‖H1(Ω)]
4m dt

≤ C‖yk − y‖4mCβ([0,∞);H1(Ω))‖yk − y‖
2
L2
α
2

(0,∞;H1(Ω)) → 0 as k →∞.

Since f1 is a polynomial of degree 2m+ 1, we conclude that f1(yk)→ f1(y) in L2
α(Q),

f ′1(yk) → f ′1(y) in L
2+ 1

m
α (Q), and f ′′1 (yk) → f ′′1 (y) in L

2+ 4
2m−1

α (Q). Moreover, the
inequality |f2(yk) − f2(y)| ≤ Lf |yk − y| also yields the convergence f2(yk) → f2(y)
in L2

α(Q). Hence, (2.23) holds. Using (1.2) and applying the Lebesgue’s dominated

convergence theorem we infer that f ′2(yk) → f ′2(y) in L
2+ 1

m
α (Q) and f ′′2 (yk) → f ′′2 (y)

in L
2+ 4

2m−1
α (Q). Therefore, (2.25) follows. If m = 0, then (2.26) follows again by the

Lebesgue’s dominated convergence theorem and the fact that f ′ and f ′′ are bounded.

Finally, let us prove the convergence of
{
∂yk
∂t

}∞
k=1

and (2.24). Setting wk = y − yk
and subtracting the equations satisfied by y and yk we get{

∂wk
∂t
−∆wk + awk = χω(u− uk) + [f(yk)− f(y)] in Q,

∂nwk = 0 on Σ, wk(0) = 0 in Ω.
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Testing this equation with e−αt ∂wk∂t and integrating by parts in Ω× (0, t) we obtain∫ t

0

e−αs‖∂wk
∂t
‖2L2(Ω) ds+

e−αt

2

∫
Ω

[|∇wk(t)|2 + awk(t)2] dx

+
α

2

∫ t

0

e−αs
∫

Ω

[|∇wk|2 + aw2
k] dx ds

=

∫ t

0

e−αs
∫

Ω

[χω(u− uk) + f(yk)− f(y)]
∂wk
∂t

dx ds

≤
(
‖u− uk‖L2(0,∞;L2(ω)) + ‖f(yk)− f(y)‖L2

α(Q)

)∥∥∥∂wk
∂t

∥∥∥
L2
α(Qt)

.

Using uk → u and (2.23) we deduce (2.21) and (2.24) from the above inequality.

3. Differentiability of the Control-to-State Mapping. In this section, we
prove that the mapping u → yu is of class C2 in appropriately chosen spaces. First
we analyze the linearized state equation. For every β ∈ R let us define the space
Yβ = H1

β(Q) ∩ Cβ([0,∞);H1(Ω)) endowed with the norm

‖y‖Yβ = ‖y‖H1
β(Q) + ‖y‖Cβ([0,∞);H1(Ω)).

If m ≥ 1, using the inclusion H1(Ω) ⊂ L4m+2(Ω) we infer with Young’s inequality

‖y‖L4m+2
β (Q) =

(∫
Q

e−βty4m+2 dx dt
) 1

4m+2 ≤ C
(∫ ∞

0

e−βt‖y(t)‖4m+2
H1(Ω) dt

) 1
4m+2

≤ C‖y‖
4m

4m+2

C β
4m

([0,∞);H1(Ω))‖y‖
1

2m+1

L2
β
2

(0,∞;H1(Ω))

≤ C
( 2m

2m+ 1
‖y‖C β

4m

([0,∞);H1(Ω)) +
1

2m+ 1
‖y‖L2

β
2

(0,∞;H1(Ω))

)
.

Then we have

‖y‖L4m+2
β (Q) ≤


2mC

2m+ 1
‖y‖Y β

4m

if β ≥ 0,

2mC

2m+ 1
‖y‖Y β

2

if β < 0.

(3.1)

Hence, Y β
4m

and Y β
2

are continuously embedded in L4m+2
β (Q) if β ≥ 0 respectively

β < 0.
Lemma 3.1. Assume that y ∈ Yβ for every β > 0 and take αf = 2Λf . Then, for

every h ∈ L2
αf

(Q) the linear equation{
∂z

∂t
−∆z + az + f ′(y)z = h in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(3.2)

has a unique solution z ∈ H1
loc(Q) ∩ Cloc([0,∞);H1(Ω)). Further, z ∈ Yα for all

α > αf and the estimates

‖z‖L2
α(0,∞;H1(Ω)) + ‖z‖Cα([0,∞);L2(Ω)) ≤ K1‖h‖L2

α(Q) ∀α ≥ αf , (3.3)

‖z‖Yα ≤ K2

(
‖y‖2mCα−α′

2m

([0,∞);H1(Ω)) + 1
)
‖h‖L2

α′ (Q) ∀α > α′ > αf , (3.4)
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hold with constants independent Ki, i = 1, 2, independent of y and h.

Proof. From our assumptions on f we deduce the existence of a constant C1

such that |f ′(s)| ≤ C1(s2m + 1). Then, from (2.7) we deduce that f ′(y) ∈ L2+ 1
m

β (Q)
for all β > 0. Therefore, from the classical theory of evolution partial differential
equations and (1.4), the existence and uniqueness of a solution of (3.2), zT ∈ H1(QT )∩
C([0, T ];H1(Ω)), follows for every 0 < T < ∞; see [11, Secs. III.1–III.4]. Hence,
defining z = zT in QT for every T we infer that z ∈ H1

loc(Q) ∩ Cloc([0,∞);H1(Ω)).
Testing equation (3.2) with e−αsz with α ≥ αf and integrating in Ω× (0, t) we obtain
after integration by parts

1

2
e−αt‖z(t)‖2L2(Ω) +

α

2

∫ t

0

e−αs‖z(s)‖2L2(Ω) ds+

∫ t

0

e−αs
∫

Ω

[|∇z|2 + az2] dx ds

+

∫ t

0

e−αs
∫

Ω

f ′(y)z2 dx ds =

∫ t

0

e−αs
∫

Ω

hz dx ds.

Using (1.4), (1.6), and the fact that α
2 ≥ Λf we infer

1

2
e−αt‖z(t)‖2L2(Ω) + C2

a

∫ t

0

e−αs‖z(s)‖2H1(Ω) ds

≤ 1

2C2
a

∫ t

0

e−αs‖h(s)‖2L2(Ω) ds+
C2
a

2

∫ t

0

e−αs‖z(s)‖2H1(Ω) ds.

Since t > 0 is arbitrary, the above inequality implies (3.3). To prove (3.4) we take
α > αf , and test equation (3.2) with e−αt ∂z∂t and get∫ t

0

e−αs
∥∥∥∂z
∂t

∥∥∥2

L2(Ω)
ds+

e−αt

2

∫
Ω

[|∇z(t)|2 + az2(t)] dx

+
α

2

∫ t

0

e−αs
∫

Ω

[|∇z|2 + az2] dx ds+

∫ t

0

e−αs
∫

Ω

f ′(y)z
∂z

∂t
dx ds

=

∫ t

0

e−αs
∫

Ω

h
∂z

∂t
dx ds.

Using (1.6), Hölder’s inequality with 4m+2
2m , 4m+ 2 and 2, and Schwarz’s and Young’s

inequalities, we infer from the above equality for ε = α − α′ and constants C2 > 0,
C3 > 0 ∫ t

0

e−αs
∥∥∥∂z
∂t

∥∥∥2

L2(Ω)
ds+

C2
ae−αt

2
‖z(t)‖2H1(Ω)

≤ C2

∫ t

0

e−αs
(
‖y‖2mL4m+2(Ω) + 1

)
‖z‖L4m+2(Ω)

∥∥∥∂z
∂t

∥∥∥
L2(Ω)

ds

+

∫ t

0

e−αs‖h‖L2(Ω)

∥∥∥∂z
∂t

∥∥∥
L2(Ω)

ds

≤ C3

(
‖y‖4mC ε

2m
([0,∞);H1(Ω)) + 1

) ∫ t

0

e(ε−α)s‖z‖2H1(Ω) ds

+

∫ t

0

e−αs‖h‖2L2(Ω) ds+
1

2

∫ t

0

e−αs
∥∥∥∂z
∂t

∥∥∥2

L2(Ω)
ds.
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This implies with the identity α− ε = α′∫ t

0

e−αs
∥∥∥∂z
∂t

∥∥∥2

L2(Ω)
ds+ C2

ae−αt‖z(t)‖2H1(Ω)

≤ 2C3

(
‖y‖4mCα−α′

2m

([0,∞);H1(Ω)) + 1
) ∫ t

0

e−α
′s‖z‖2H1(Ω) ds+ 2

∫ t

0

e−α
′s‖h‖2L2(Ω) ds.

Finally, (3.4) follows from the above estimate and (3.3).
Lemma 3.2. Let yk → y in Yβ for every β > 0. Given v ∈ L2(0,∞;L2(ω)) with

v 6≡ 0, we denote by zv and zk,v the solutions of the equations{
∂z

∂t
−∆z + az + f ′(y)z = vχω in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(3.5)

{
∂z

∂t
−∆z + az + f ′(yk)z = vχω in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.
(3.6)

Then, we have for every α > αf = 2Λf

lim
k→∞

1

‖v‖L2(Qω)
‖zv − zk,v‖Yα = 0. (3.7)

Proof. Let us set wk = zv − zk,v. Subtracting (3.5) and (3.6) we get{
∂wk
∂t
−∆wk + awk + f ′(y)wk = [f ′(yk)− f ′(y)]zk,v in Q,

∂nwk = 0 on Σ, wk(0) = 0 in Ω.

The identity (3.7) follows from (3.4) if the right hand side of the above equation
converges to zero in L2

α′(Q) as k →∞ for α′ ∈ (αf , α). To prove this we first consider
the case m > 0. Let us observe that due to the assumptions on f there exists a
constant C1 such that

(f ′(s2)−f ′(s1))2 = |f ′′(s1 +θ(s2−s1))|2(s2−s1)2 ≤ C1(s4m−2
1 +s4m−2

2 +1)(s2−s1)2.

for some θ ∈ (0, 1). We define β = α′ − αf . Then, applying Hölder’s inequality in Ω
with 4m+2

4m−2 , 4m+2
2 , and 4m+2

2 , we estimate

‖[f ′(yk)− f ′(y)]zk,v‖2L2
α′ (Q)

≤ C1

∫
Q

e−α
′t(|y|4m−2 + |yk|4m−2 + 1)(y − yk)2z2

k,v dx dt

≤ C2

∫ ∞
0

e−α
′t
(
‖y‖4m−2

L4m+2(Ω) + ‖yk‖4m−2
L4m+2(Ω) + 1

)
‖y − yk‖2L4m+2(Ω)‖zk,v‖

2
L4m+2(Ω) dt

≤ C3

∫ ∞
0

e−α
′t
(
‖y‖4m−2

H1(Ω) + ‖yk‖4m−2
H1(Ω) + 1

)
‖y − yk‖2H1(Ω)‖zk,v‖

2
H1(Ω) dt

≤ C4

(
‖y‖4m−2

C β
4m−2

([0,∞);H1(Ω)) + ‖yk‖4m−2
C β

4m−2

([0,∞);H1(Ω)) + 1
)

× ‖y − yk‖2C β
2

([0,∞);H1(Ω))‖zk,v‖
2
L2
αf

(0,∞;H1(Ω)).
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Taking into account that (3.3) yields the estimate ‖zk,v‖L2
αf

(0,∞;H1(Ω)) ≤ C‖v‖L2(Qω),

and using the assumption on {yk}∞k=1 the convergence (3.7) follows.
In the case m = 0, we have that (f ′(s2) − f ′(s1))2 ≤ L2

f (s2 − s1)2. Then, we

can argue similarly as above just dropping the term |y|4m−2 + |yk|4m−2 + 1 and using
Schwarz’s inequality instead of Hölder’s inequality.

Next, given α > 0 we denote by Gα : L2(Qω) −→ Yα the mapping Gα(u) = yu.

Theorem 3.3. Let us assume that α > 2αf with αf = 2Λf . Then, the mapping
Gα is of class C1 and for every u, v ∈ L2(Qω), zv = G′α(u)v is the solution of the
equation {

∂z

∂t
−∆z + az + f ′(yu)z = vχω in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.
(3.8)

If in addition α > 4αf , then Gα is of class C2 and for every u, v1, v2 ∈ L2(Qω),
zv1,v2

= G′′α(u)(v1, v2) is the solution of the equation{
∂z

∂t
−∆z + az + f ′(yu)z + f ′′(yu)zv1

zv2
= 0 in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(3.9)

where zvi = G′α(u)vi, i = 1, 2.
Proof. Given u, v ∈ L2

α(Qω) we set w = Gα(u+ v)−Gα(u)− zv = yu+v−yu− zv,
where zv is the solution of (3.8). Then, w satisfies the equation{

∂w

∂t
−∆w + aw + f ′(yu)w = [f ′(yu)− f ′(yu + θ(yu+v − yu))](yu+v − yu) in Q,

∂nw = 0 on Σ, w(0) = 0 in Ω,

with 0 ≤ θ(x, t) ≤ 1. Assume that m > 0. Let us select α′ ∈ (2αf , α) and ε > 0 such

that α′ − ε > 2αf . Set εm = ε1+ 1
2m and αm = (2m+ 1)(α′ − ε). Utilizing Lemma 3.1

and Hölder’s inequality with 1 + 1
2m and 2m+ 1, and (3.1) we infer

‖w‖Yα ≤ Ku‖[f ′(yu)− f ′(yu + θ(yu+v − yu)](yu+v − yu)‖L2
α′ (Q)

≤ Ku‖f ′(yu)− f ′(yu + θ(yu+v − yu)‖
L

2+ 1
m

εm (Q)
‖yu+v − yu‖L4m+2

αm (Q)

≤ 2mC

2m+ 1
Ku‖f ′(yu)− f ′(yu + θ(yu+v − yu)‖

L
2+ 1

m
εm (Q)

‖yu+v − yu‖Yαm
4m

, (3.10)

where Ku = K2

(
‖y‖2mCα−α′

2m

([0,∞);H1(Ω)) + 1
)
.

In the case m = 0 we have that f ′ = a1 + f ′2 is Lipschitz. The above estimate is
replaced by the following

‖w‖Yα ≤ Ku‖[f ′2(yu)− f ′2(yu + θ(yu+v − yu))](yu+v − yu)‖L2
α′ (Q)

≤ Ku‖f ′2(yu)− f ′2(yu + θ(yu+v − yu)‖L4
α′ (Q)‖yu+v − yu‖L4

α′ (Q)

Using that

‖y‖L4
α′ (Q) ≤ C

(∫ ∞
0

e−α
′t‖y(t)‖4H1(Ω) dt

) 1
4 ≤ C‖y‖

1
2

Cα′
2

([0,∞);H1(Ω))‖y‖
1
2

L2
α′
2

(0,∞;H1(Ω))

≤ 1

2
C
(
‖y‖Cα′

2

([0,∞);H1(Ω)) + ‖y‖L2
α′
2

(0,∞;H1(Ω))

)
≤ 1

2
C‖y‖Yα′

2

∀y ∈ Yα′
2
, (3.11)
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we obtain for m = 0

‖w‖Yα ≤
1

2
CKu‖f ′2(yu)− f ′2(yu + θ(yu+v − yu)‖L4

α′ (Q)‖yu+v − yu‖Yα′
2

. (3.12)

Let us estimate φ = yu+v − yu, that satisfies the equation{
∂φ

∂t
−∆φ+ aφ+ f ′(yu + θ(yu+v − yu))φ = vχω in Q,

∂nφ = 0 on Σ, φ(0) = 0 in Ω.

From (3.4) we infer for Ku,v = K2

(
‖yu + θ(yu+v − yu)‖mC β−αf

m

([0,∞);H1(Ω)) + 1
)

‖yu+v − yu‖Yβ = ‖φ‖Yβ ≤ Ku,v‖v‖L2(Qω) ∀β > αf . (3.13)

Then, applying (2.25) with β = αm
4m > αf , respectively (2.26) with β = α

2 > αf , and
(3.13) in (3.10), respectively in (3.12), we deduce that

lim
‖v‖L2(Qω)→0

‖Gα(u+ v)−Gα(u)− zv‖Yα
‖v‖L2(Qω)

= lim
‖v‖L2(Qω)→0

‖w‖Yα
‖v‖L2(Qω)

= 0.

This proves thatGα is Fréchet differentiable andG′α(u)v = zv. To prove the continuity
of G′α : L2(Qω) −→ L(L2(Qω), Yα) we take a sequence uk → u in L2(Qω). Setting
zk,v = G′α(uk)v and zv = G′α(u)v for arbitrary v ∈ L2(Qω) with ‖v‖L2(Qω) = 1 the
convergence

lim
k→∞

sup
‖v‖L2(Qω)=1

‖G′α(uk)v −G′α(u)v‖Yα = lim
k→∞

sup
‖v‖L2(Qω)=1

‖zk,v − zv‖Yα = 0.

follows from (3.7). Thus, Gα is of class C1 for every α > 2αf .
Now we consider the second derivative for α > 4αf . Let v1, v2 ∈ L2(Qω) with

‖v2‖L2(Qω) = 1. We denote yu+v1
= Gα(u+ v1), yu = Gα(u), zvi = G′α(u)vi, i = 1, 2,

and ηv1,v2 = G′α(u+ v1)v2. Let zv1,v2 be the solution of (3.9). Then, we will prove

lim
‖v1‖L2(Qω)→0

sup
‖v2‖L2(Qω)=1

‖ηv1,v2
− zv2

− zv1,v2
‖Yα

‖v1‖L2(Qω)
= 0 (3.14)

Taking w = ηv1,v2 − zv2 − zv1,v2 we have
∂w

∂t
−∆w + aw + f ′(yu)w

= f ′′(yu + θ(yu+v1 − yu))(yu − yu+v1)ηv1,v2 + f ′′(yu)zv1zv2 in Q,

∂nw = 0 on Σ, w(0) = 0 in Ω.

Let us denote yθ = yu + θ(yu+v1
− yu). Take α′ ∈ (4αf , α). From (3.4) we get for

K = K2

(
‖yu‖2mCα−α′

2m

([0,∞);H1(Ω)) + 1
)

‖w‖Yα ≤ K‖f ′′(yθ)(yu − yu+v1
)ηv1,v2

+ f ′′(yu)zv1
zv2
‖L2

α′ (Q)

≤ K‖f ′′(yθ)(yu − yu+v1
)(ηv1,v2

− zv2
)‖L2

α′ (Q)

+K‖f ′′(yθ)(yu + zv1 − yu+v1)zv2‖L2
α′ (Q)

+K|[f ′′(yu)− f ′′(yθ)]zv1zv2‖L2
α′ (Q) = K(I1 + I2 + I3). (3.15)
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Let us consider the case m ≥ 1. We select ε > 0 such that α′ − ε > 4αf . Denote

εm = ε
2m+1
2m−1 and αm = (2m + 1)(α′ − ε). To estimate I1 we use Hölder’s inequality

with 4m+2
4m−2 , 2m+ 1 and 2m+ 1, and (3.1)

I1 ≤ ‖f ′′(yθ)‖
L

2+ 4
2m−1

εm (Q)
‖yu+v1

− yu‖L4m+2
αm (Q)‖ηv1,v2

− zv2
‖L4m+2

αm (Q)

≤ 4m2C2

(2m+ 1)2
‖f ′′(yθ)‖

L
2+ 4

2m−1
εm (Q)

‖yu+v1
− yu‖Yαm

4m

‖ηv1,v2
− zv2

‖Yαm
4m

. (3.16)

The term ‖f ′′(yθ)‖
L

2+ 4
2m−1

εm (Q)
is bounded; see (2.25). Regarding the term ηv1,v2

− zv2

we have with (3.1)

‖ηv1,v2
− zv2

‖L4m+2
αm (Q) ≤

2mC

2m+ 1
‖ηv1,v2

− zv2
‖Yαm

4m

≤ ‖G′αm
4m

(u+ v1)−G′αm
4m

(u)‖L(L2(Qω),Yαm
4m

) → 0 as ‖v1‖L2(Qω) → 0.

The convergence to 0 follows form the fact that αm
4m > 2αf and, hence, the mapping

Gαm
4m

: L2(Qω) −→ Yαm
4m

is of class C1. Using this fact and the estimate (3.13) we

deduce from (3.16) that lim‖v1‖L2(Qω)→0
I1

‖v1‖L2(Qω)
= 0.

In the case m = 0, we have that f ′′ = f ′′2 is bounded by Lf ; see (1.2). Then,
using Schwarz’s inequality and (3.11) we obtain

I1 ≤ Lf‖yu+v1−yu‖L4
α(Q)‖ηv1,v2−zv2‖L4

α(Q) ≤ Lf
C2

2
‖yu+v1−yu‖Yα

2
‖ηv1,v2−zv2‖Yα

2
.

Now, we can continue similarly as above taking into account that α
2 > 2αf .

Let us estimate I2, first for m ≥ 1. We use Hölder’s inequality as for I1 and
obtain

I2 ≤
4m2C2

(2m+ 1)2
‖f ′′(yθ)‖

L
2+ 4

2m−1
εm (Q)

‖yu+v1 − yu − zv1‖Yαm
4m

‖zv2‖Yαm
4m

. (3.17)

Inequality (3.4) leads to

‖zv2‖Yαm
4m

≤ K2

(
‖yu‖2mCδ([0,∞);H1(Ω)) + 1

)
‖v2‖L2(Qω) = K2

(
‖yu‖2mCδ([0,∞);H1(Ω)) + 1

)
with δ =

αm
4m −αf

2m . Since αm
4m > 2αf , the mapping Gαm

4m
: L2(Qω) −→ Yαm

4m
is Fréchet

differentiable, and therefore

lim
‖v1‖L2(Qω)→0

‖yu+v1
− yu − zv1

‖Yαm
4m

‖v1‖L2(Qω)

= lim
‖v1‖L2(Qω)→0

‖Gαm
4m

(u+ v1)−Gαm
4m

(u)−G′αm
4m

(u)v1‖Yαm
4m

‖v1‖L2(Qω)
= 0.

Inserting these estimates in (3.17) we get that lim‖v1‖L2(Qω)→0
I2

‖v1‖L2(Qω)
= 0. If

m = 0 we proceed similarly as we did for I1.
To estimate I3 we use again Hölder’s inequality as for I1 and obtain for m ≥ 1

I3 ≤
4m2C2

(2m+ 1)2
‖f ′′(yu)− f ′′(yθ)‖

L
2+ 4

2m−1
εm (Q)

‖zv1
‖Yαm

4m

‖zv2
‖Yαm

4m

≤ K2
u

4m2C2

(2m+ 1)2
‖f ′′(yu)− f ′′(yθ)‖

L
2+ 4

2m−1
εm (Q)

‖v1‖L2(Qω)‖v2‖L2(Qω),
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where Ku = K2

(
‖yu‖2mCδ([0,∞);H1(Ω)) + 1

)
with δ as defined above. Since ‖v2‖L2(Qω) =

1, using (2.25) we deduce that lim‖v1‖L2(Qω)→0
I3

‖v1‖L2(Qω)
= 0. If m = 0 we proceed

similarly as we did for I1.
Finally, (3.14) follows from (3.15) and the established convergences for Ii, 1 ≤

i ≤ 3.
It remains to prove that G′′α : L2(Qω) −→ B(L2(Qω)2, Yα) is continuous, where

B(L2(Qω)2, Yα) denotes the space of continuous bilinear mappings from L2(Qω)2 to
Yα. If we take a sequence uk → u in L2(Qω) we have to prove that

lim
k→∞

sup
‖v1‖L2(Qω)=1,‖v2‖L2(Qω)=1

‖[G′′α(uk)−G′′α(u)](v1, v2)‖Yα = 0.

Denoting zkv1,v2
= G′′α(uk)(v1, v2) and zv1,v2

= G′′α(u)(v1, v2) and putting wk = zkv1,v2
−

zv1,v2
we obtain
∂wk
∂t
−∆wk + awk + f ′(yu)wk

= [f ′(yu)− f ′(yuk)]zkv1,v2
+ [f ′′(yu)zv1zv2 − f ′′(yuk)zkv1

zkv2
] in Q,

∂nwk = 0 on Σ, wk(0) = 0 in Ω,

where zvi = G′α(u)vi and zk,vi = G′α(uk)vi for i = 1, 2. From (3.4) we infer for
α′ ∈ (4αf , α)

‖wk‖Yα ≤ Kα−α′
(
‖[f ′(yu)− f ′(yuk)]zkv1,v2

‖L2
α′ (Q)

+ ‖f ′′(yu)zv1
zv2
− f ′′(yuk)zk,v1

zk,v2
‖L2

α′ (Q)

)
≤ Kα−α′

(
‖[f ′(yu)− f ′(yuk)]zkv1,v2

‖L2
α′ (Q) + ‖[f ′′(yu)− f ′′(yuk)]zv1

zv2
‖L2

α′ (Q)

+ ‖f ′′(yuk)(zv1
− zk,v1

)zv2
‖L2

α′ (Q) + ‖f ′′(yuk)zk,v1
(zv2
− zk,v2

)‖L2
α′ (Q)

)
= Kα−α′

4∑
i=1

Ik,i, (3.18)

where Kα−α′ = K2

(
‖yu‖2mCα−α′

2m

([0,∞);H1(Ω)) + 1
)
. We estimate wk for m ≥ 1, the

case m = 0 is obtained in a similar way just using the modifications considered
above. We first estimate zkv1,v2

. Take β > β′ > 2αf and ε > 0 such β′ − ε > 2αf .

We set Cβ−β′ = maxk≥1K2

(
‖yk‖2mC β−β′

2m

([0,∞);H1(Ω)) + 1
)
, εm = 4m+2

2m−1ε and βm =

(2m + 1)(β′ − ε). Looking at the equation satisfied by zkv1,v2
and using (3.4) we get

with Hölder’s inequality for 2m+1
2m−1 , 2m+1, and 2m+1, and (3.1) for a constant Cβ′,m

‖zkv1,v2
‖Yβ ≤ Cβ−β′‖f ′′(yuk)zk,v1

zk,v2
‖L2

β′ (Q)

≤ Cβ−β′‖f ′′(yuk)‖
L

2+ 4
2m−1

εm (Q)
‖zk,v1

‖L4m+2
βm

(Q)‖zk,v2
‖L4m+2

βm
(Q)

≤ 4m2C2

(2m+ 1)2
Cβ−β′‖f ′′(yuk)‖

L
2+ 4

2m−1
εm (Q)

‖zk,v1
‖Y βm

4m

‖zk,v2
‖Y βm

4m

≤ Cβ′,m <∞,

where we have used (2.25), βm4m > αf , (3.4), and ‖vi‖L2(Qω) = 1 for i = 1, 2. The same
estimate is obtained for zv1,v2

.
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Now, we estimate Ik,1. Selecting again ε > 0 such that α′ − ε > 4αf , putting

εm = ε1+ 1
2m and αm = (2m+ 1)(α′ − ε), and noting that β = αm

4m > 2αf we get with
the above estimate

Ik,1 ≤ ‖f ′(yu)− f ′(yuk)‖
L

2+ 1
m

εm (Q)
‖zkv1,v2

‖L4m+2
αm (Q)

≤ 2mC

2m+ 1
‖f ′(yu)− f ′(yuk)‖

L
2+ 1

m
εm (Q)

‖zkv1,v2
‖Yαm

4m

≤ C1‖f ′(yu)− f ′(yuk)‖
L

2+ 1
m

εm (Q)
.

The convergence Ik,1 → 0 as k →∞ follows from (2.25).

To deal with Ik,2 we set εm = ε1+ 2
2m−1 and αm = (2m + 1)(α′ − ε). Now, using

Hölder’s inequality with 2m+1
2m−1 , 2m+ 1, and 2m+ 1, (3.1), and (3.4) we obtain

Ik,2 ≤ ‖f ′′(yu)− f ′′(yuk)‖
L

2+ 4
2m−1

εm (Q)
‖zv1
‖L4m+2

αm (Q)‖zv2
‖L4m+2

αm (Q)

≤ 4m2C2

(2m+ 1)2
‖f ′′(yu)− f ′′(yuk)‖

L
2+ 4

2m−1
εm (Q)

‖zv1
‖Yαm

4m

‖zv2
‖Yαm

4m

≤ C2‖f ′′(yu)− f ′′(yuk)‖
L

2+ 4
2m−1

εm (Q)
.

Using again (2.25) the convergence Ik,2 → 0 as k →∞ follows.
Arguing as we did for Ik,2 we obtain

Ik,3 ≤
4m2C2

(2m+ 1)2
‖f ′′(yuk)‖

L
2+ 4

2m−1
εm (Q)

‖zv1
− zk,v1

‖Yαm
4m

‖zv2
‖Yαm

4m

≤ C3‖zv1
− zk,v1

‖Yαm
4m

.

Taking into account that αm
4m > 2αf , we know that Gαm

4m
: L2(Qω) −→ Yαm

4m
is of class

C1 and, consequently,

sup
‖v1‖L2(Qω)=1

‖zv1 − zk,v1‖Yαm
4m

= ‖G′αm
4m

(u)−G′αm
4m

(uk)‖L(L2(Qω),Yαm
4m

) → 0 as k →∞.

This proves the convergence to zero of Ik,3. The term Ik,4 is treated in an identical
way. Therefore, with (3.18) we conclude that wk → 0 as k →∞ and, hence, Gα is of
class C2.
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