
IMA Journal of Numerical Analysis (2021) Page 1 of 30
doi:10.1093/imanum/drnxxx

Error estimates for the numerical approximation of optimal control
problems with non-smooth pointwise-integral control constraints†
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The numerical approximation of an optimal control problem governed by a semilinear parabolic equa-
tion and constrained by a bound on the spatial L1-norm of the control at every instant of time is studied.
Spatial discretizations of the controls by piecewise constant and continuous piecewise linear functions
are investigated. Under finite element approximations the sparsity properties of the continuous solutions
are preserved in a natural way using piecewise constant approximations of the control, but suitable nu-
merical integration of the objective functional and of the constraint must be used to keep the sparsity
pattern when using spatial continuous piecewise linear approximations. We also obtain error estimates
and finally present some numerical examples.
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1. Introduction

In this paper, we study the numerical approximation of the optimal control problem

(P) inf
u∈Uad

J(u) :=
1
2

∫
Q
(yu(x, t)− yd(x, t))2 dxdt +

κ

2

∫
Q

u(x, t)2 dxdt,
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where κ > 0, Q = Ω × (0,T ), with Ω ⊂ Rn, n = 2 or 3, a convex polygonal/polyhedral domain with
boundary Γ and 0 < T <+∞ is fixed,

Uad = {u ∈ L∞(Q) : ‖u(t)‖L1(Ω) 6 γ for a.a. t ∈ (0,T )}

with 0 < γ <+∞. Further yu is the solution of the semilinear parabolic equation{
∂y
∂ t

+Ay+a(x, t,y) = u in Q = Ω × (0,T ),

y = 0 on Σ = Γ × (0,T ), y(0) = y0 in Ω .
(1.1)

with

Ay =−
n

∑
i, j=1

∂x j(ai j(x)∂xiy).

Precise assumptions on the operator A and the nonlinearity a are given below.
This problem was studied in Casas & Kunisch (2021), where the authors proved existence of a

solution, and obtained first and second order optimality conditions. As it is emphasized in that paper,
there are two special difficulties in the study of (P). The first one is given by the fact that, in order
to be able to deal with strong non-linear terms such as a(x, t,y) = a0(x, t)exp(y) with a0 ∈ L∞(Q), the
framework for the control space cannot be L2(Q), but should be Lq(Q) with q large enough. This implies
that the usual techniques to prove existence of a solution fail, rather, a truncation argument on a is used
for this purpose. The second difficulty is the non-differentiability of the constraint. First order optimality
conditions are obtained using the convexity of Uad . Second order optimality conditions require a careful
setting of the cone of critical directions in order to obtain sufficient conditions with a minimal gap with
respect to the necessary ones. With the aid of first order optimality conditions, sparsity properties of the
optimal control are derived.

There are numerous references regarding the numerical analysis of problems governed by partial
differential equations. Not trying to be exhaustive, and considering only distributed optimal control
problems governed by parabolic equations, we can cite Meidner & Vexler (2011) (linear equation, no
constraints), Chrysafinos & Karatzas (2012) (semilinear equation, but only dimension 2 and not strong
non-linear terms, no constraints), Akman et al. (2014) (discontinuous elements for linear convection-
difussion), Leykekhman & Vexler (2013); Gong et al. (2014); von Daniels et al. (2015) (linear, pointwise
control-constraints), Huang et al. (2018), (space-time spectral discretization), Casas et al. (2017b, 2018)
(semilinear, sparsity-promoting term in the functional, no constraints), Casas et al. (2019) (semilinear,
pointwise control-constraints, no Thikonov regularization), Christof & Vexler (2021) (linear, state con-
straints), Hoppe & Neitzel (2020) (quasilinear, pointwise state constraints).

The only reference that we have been able to find with a pointwise constraint in time on the norm of
the control is Gunzburger & Manservisi (1999). In that reference, the authors impose the differentiable
constraint ‖u(·, t)‖2

L2(Ω)
6 1. However, they do not address the obtention of error estimates for the

discrete problems.
Our objectives in this paper are to discretize (P) in such a way that the sparsity properties are pre-

served to prove convergence of the discrete solutions to the solutions of the continuous problem, and
to obtain error estimates. To discretize the state equation, we use a discontinuous Galerkin scheme,
computationally equivalent to the implicit Euler method. For the discretization in space of the state and
the adjoint state, continuous piecewise linear finite elements are used, while for the control we study
both piecewise constant and continuous piecewise linear approximations. The use of piecewise constant
elements leads in a natural way to sparsity properties of the discrete optimal control consistent with
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those obtained for the continuous problem, but a straightforward discretization of (P) using continuous
piecewise linear space-approximations of the control, may result in a loss of the sparsity properties due
to the use of a mass matrix. To overcome this difficulty, we discretize the norm in Lp(Ω), p = 1,2 with
the help of the lumped mass matrix and use Carstensen’s quasi interpolation operator. A similar tech-
nique for problems with sparsity-promoting terms in the functional was used in Casas et al. (2012) for a
problem governed by a semilinear elliptic equation and in Casas et al. (2018) for a problem governed by
a semilinear parabolic equation; this technique is also found in the thesis by Pieper (2015) and in Rösch
& Wachsmuth (2017).

The plan of this paper is as follows. In Section 2 we recall some results from Casas & Kunisch
(2021) concerned with the continuous problem. In Section 3 the problem is discretized and the sparsity
properties of the discrete solution are established. In Section 4 we prove convergence and obtain error
estimates. Finally, in Section 5, numerical examples are presented to illustrate the results obtained in
the paper.

2. Assumptions and preliminary results

We make the following assumptions along this paper.
Assumption 1- Ω ⊂Rn, n= 2 or 3, is a convex polygonal/polyhedral domain, and 0< T <∞ is fixed.

Γ denotes the boundary of Ω . The coefficients of the operator A satisfy: ai j are Lipschitz functions in
Ω̄ for every 16 i, j 6 n, and

ΛA|ξ |2 6
n

∑
i, j=1

ai j(x)ξiξ j ∀ξ ∈ Rn and for a.a. x ∈Ω (2.1)

for some ΛA > 0. For the initial state we suppose that y0 ∈ H1
0 (Ω)∩C0,α(Ω̄), where C0,α(Ω̄) denotes

the space of α-Hölder continuous functions in Ω̄ with α ∈ (0,1].
Assumption 2- We assume that a : Q×R→R is a Carathéodory function of class C2 with respect to

the last variable satisfying the following properties:

∃Ca ∈ R :
∂a
∂y

(x, t,y)>Ca ∀y ∈ R, (2.2)

a(·, ·,0) ∈ Lr̂(0,T ;L2(Ω)), with r̂ >
4

4−n
, (2.3)

∀M > 0 ∃Ca,M > 0 :
∣∣∣∣∂ ja
∂y j (x, t,y)

∣∣∣∣6Ca,M ∀|y|6M and j = 1,2, (2.4)

∀ρ > 0 and ∀M > 0 ∃ε > 0 such that∣∣∣∣∂ 2a
∂y2 (x, t,y1)−

∂ 2a
∂y2 (x, t,y2)

∣∣∣∣< ρ ∀|y1|, |y2|6M with |y1− y2|< ε,
(2.5)

for almost all (x, t) ∈ Q.
Assumption 3- In the control problem (P), we assume that κ > 0, γ > 0, and yd ∈ Lr̂(0,T ;L2(Ω)).
As usual we denote H2,1(Q) = L2(0,T ;H2(Ω)∩H1

0 (Ω))∩H1(0,T ;L2(Ω)). Then, we have the
following result.

THEOREM 2.1 Under under Assumptions 1 and 2, for every u ∈ Lr(0,T ;Lp(Ω)) with 1
r +

n
2p < 1 and

r, p > 2 there exists a unique solution yu ∈C0,β (Q̄)∩H2,1(Q) of (1.1) with β ∈ (0,α). Moreover, the
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following estimate holds ‖yu‖C0,β (Q̄)+‖yu‖H2,1(Q) 6 η
(
‖u‖Lr(0,T ;Lp(Ω))+Mr̂,0

)
,

‖yu‖L∞(0,T ;L2(Ω))+‖yu‖L2(0,T ;H1
0 (Ω)) 6C

(
‖u‖L2(Q)+M2,0

) (2.6)

for a constant C and a monotone non-decreasing function η : [0,∞)−→ [0,∞) with η(0)= 0 independent
of u, and

Mr̂,0 = ‖a(·, ·,0)‖Lr̂(0,T ;L2(Ω))+‖y0‖C0,α (Ω̄)+‖y0‖H1
0 (Ω),

M2,0 = ‖a(·, ·,0)‖L2(Q)+‖y0‖L2(Ω).

The existence of a unique solution of (1.1) in the space L2(0,T ;H1
0 (Ω))∩L∞(Q) as well as the es-

timates in L∞(0,T ;L2(Ω)) and L2(0,T ;H1
0 (Ω)) were proved in Casas & Kunisch (2021). The H2,1(Q)

regularity is a well known consequence of the convexity of Ω and the H1
0 (Ω) regularity of y0. The

reader is referred to Ladyzhenskaya et al. (1988, Chap. III-§10) or Di Benedetto (1986) for the C0,β (Q̄)
regularity.

Taking p = 2 and r ∈
( 4

4−n ,∞
]

we have that 1
r +

n
4 < 1 and r > 2. Then, from Theorem 2.1 we

deduce that the mapping G : Lr(0,T ;L2(Ω))−→ H2,1(Q)∩L∞(Q) given by G(u) = yu is well defined.
Further, we have the following differentiability properties.

THEOREM 2.2 The mapping G is of class C2. For u,v,v1,v2 ∈ Lr(0,T ;L2(Ω)) the derivatives zv =
G′(u)v and zv1,v2 = G′′(u)(v1,v2) are the solutions of the equations

∂ zv

∂ t
+Azv +

∂a
∂y

(x, t,yu)zv = v in Q,

zv = 0 on Σ , zv(0) = 0 in Ω ,
(2.7)

 ∂ zv1,v2

∂ t
+Azv1,v2 +

∂a
∂y

(x, t,yu)zv1,v2 +
∂ 2a
∂y2 (x, t,yu)zv1zv2 = 0 in Q,

zv1,v2 = 0 on Σ , zv1,v2(0) = 0 in Ω

(2.8)

where zvi = G′(u)vi, i = 1,2.

This theorem was proved in Casas & Kunisch (2021) with a change in the range of G, namely
G : Lr(0,T ;L2(Ω)) −→ L2(0,T ;H1

0 (Ω))∩H1(0,T ;H−1(Ω))∩ L∞(Q). The proof given there can be
adapted using the extra regularity of the data of the state equation and Theorem 2.1.

Theorem 2.2 along with the chain rule leads to the following differentiability properties of the cost
functional J.

COROLLARY 2.1 If r > 4
4−n , then J : Lr(0,T ;L2(Ω))−→ R is of class C2 and its derivatives are given

by the expressions

J′(u)v =
∫

Q
(ϕ +κu)vdxdt, (2.9)

J′′(u)(v1,v2) =
∫

Q

[(
1− ∂ 2a

∂y2 (x, t,yu)ϕ
)
zv1zv2 +κv1v2

]
dxdt, (2.10)
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where zvi = G′(u)vi, i = 1,2, and ϕ ∈C0,β (Q̄)∩H2,1(Q) is the solution of the adjoint state equation −
∂ϕ

∂ t
+A∗ϕ +

∂a
∂y

(x, t,yu)ϕ = yu− yd in Q,

ϕ = 0 on Σ , ϕ(T ) = 0 in Ω ,
(2.11)

with A∗ϕ =−
n

∑
i, j=1

∂x j(a ji(x)∂xiϕ) the adjoint operator of A

Concerning the control problem (P), the following theorem and corollaries follow from Casas &
Kunisch (2021).

THEOREM 2.3 There exists at least one solution of (P). Moreover, for every local minimizer ū in
the Lr(0,T ;L2(Ω)) sense with r > 4

4−n , there exist ȳ ∈ H2,1(Q)∩C0,θ (Q̄), ϕ̄ ∈ C(Q̄)∩H2,1(Q), and
µ̄ ∈ L∞(Q) such that

{
∂ ȳ
∂ t

+Aȳ+a(x, t, ȳ) = ū in Q,

ȳ = 0 on Σ , ȳ(0) = y0 in Ω ,
(2.12) −

∂ ϕ̄

∂ t
+A∗ϕ̄ +

∂a
∂y

(x, t, ȳ)ϕ̄ = ȳ− yd in Q,

ϕ̄ = 0 on Σ , ϕ̄(T ) = 0 in Ω ,
(2.13)

∫
Q

µ̄(u− ū)dxdt 6 0 ∀u ∈Uad , (2.14)

ϕ̄ +κ ū+ µ̄ = 0. (2.15)

Let us denote by ProjBγ
: L2(Ω) −→ Bγ ∩L2(Ω) the L2(Ω) projection, where Bγ = {v ∈ L1(Ω) :

‖v‖L1(Ω) 6 γ}.

COROLLARY 2.2 Let ū, ϕ̄ , and µ̄ satisfy (2.12)–(2.15) and assume that ū ∈Uad . Then, the following
properties hold

∫
Ω

µ̄(t)(v− ū(t))dx6 0 ∀v ∈ Bγ and for a.a. t ∈ (0,T ), (2.16)

ū(t) = ProjBγ

(
− 1

κ
ϕ̄(t)

)
for a.a. t ∈ (0,T ), (2.17)

ū(x, t)µ̄(x, t) = |ū(x, t)||µ̄(x, t)| for a.a. (x, t) ∈ Q,

if ‖ū(t)‖L1(Ω) < γ then µ̄(t)≡ 0 in Ω a.e. in (0,T ),

if ‖ū(t)‖L1(Ω) = γ and µ̄(t) 6≡ 0 in Ω ,

then supp(ū(t))⊂ {x ∈Ω : |µ̄(x, t)|= ‖µ̄(t)‖L∞(Ω)}.

(2.18)

COROLLARY 2.3 Let ū ∈ Uad ∩ L∞(Ω) satisfy (2.15) and (2.18). Then, the following identities are
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fulfilled

ū(x, t) =− 1
κ

sign(ϕ̄(x, t))
(
|ϕ̄(x, t)|−‖µ̄(t)‖L∞(Ω)

)+
=− 1

κ

{[
ϕ̄(x, t)+‖µ̄(t)‖L∞(Ω)

]−
+
[
ϕ̄(x, t)−‖µ̄(t)‖L∞(Ω)

]+}
. (2.19)

Moreover, the regularity ū ∈ H1(Q) and µ̄ ∈ H1(Q) hold.

We finish this section by considering the second order optimality conditions. To this end we intro-
duce some notation. We consider the Lipschitz continuous and convex mapping j : L1(Ω)−→R defined
by j(v) = ‖v‖L1(Ω). Its directional derivative is given by the expression

j′(u;v) =
∫

Ω
+
u

v(x)dx−
∫

Ω
−
u

v(x)dx+
∫

Ω 0
u

|v(x)|dx ∀u,v ∈ L1(Ω), (2.20)

where

Ω
+
u = {x ∈Ω : u(x)> 0}, Ω

−
u = {x ∈Ω : u(x)< 0} and Ω

0
u = Ω \ (Ω+

u ∪Ω
−
u ).

Given an element ū ∈Uad satisfying the first order optimality conditions (2.12)–(2.15), set

Iγ = {t ∈ (0,T ) : j(ū(t)) = γ} and I+γ = {t ∈ Iγ : µ̄(t) 6≡ 0 in Ω}.

Now, we define the cone of critical directions associated with ū

Cū =
{

v ∈ L2(Q) : J′(ū)v = 0 and j′(ū(t);v(t))
{

= 0 if t ∈ I+γ ,

6 0 if t ∈ Iγ \ I+γ ,

}
.

Then, we have the following theorem, whose proof can be found in Casas & Kunisch (2021).

THEOREM 2.4 Let ū be a local solution of (P) in the Lr(0,T ;L2(Ω)) sense with r > 4
4−n . Then, the

inequality J′′(ū)v2 > 0 holds for all v ∈Cū. Reciprocally, if ū ∈Uad satisfies the first order optimality
conditions and the second order condition J′′(ū)v2 > 0 ∀v ∈Cū \{0}, then there exist δ > 0 and ε > 0
such that

J(ū)+
δ

2
‖u− ū‖2

L2(Q) 6 J(u) ∀u ∈Uad ∩Bε(ū), (2.21)

where Bε(ū) = {u ∈ Lr(0,T ;L2(Ω)) : ‖u− ū‖Lr(0,T ;L2(Ω)) 6 ε}.

Given s > 0 we define the extended cone

Cs
ū =

{
v ∈ L2(Q) : |J′(ū)v|6 s‖v‖L2(Q) and

{ | j′(ū(t);v(t))|6 s‖v‖L2(Q) if t ∈ I+γ ,

j′(ū(t);v(t))6 s‖v‖L2(Q) if t ∈ Iγ \ I+γ ,

}
.

Then, we have the following result.

THEOREM 2.5 Let ū ∈ Uad satisfy the first order optimality conditions (2.12)–(2.15) and the second
order condition J′′(ū)v2 > 0 ∀v ∈ Cū \ {0}. Then, for every r ∈

( 4
4−n ,∞] there exist strictly positive

numbers ε,s,λ such that

J′′(u)v2 > λ‖v‖2
L2(Q) ∀v ∈Cs

ū and ∀u ∈ Bε(ū), (2.22)

where Bε(ū) denotes the Lr(0,T ;L2(Ω)) closed ball.
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3. Numerical approximation

In this section we study the numerical discretization of (P) by discontinuous Galerkin finite element
methods. To this end we consider a quasi-uniform family of triangulations {Kh}h>0 of Ω̄ , cf. Brenner
& Scott (2008, Definition (4.4.13)), and a quasi-uniform family of partitions of size τ of [0,T ], 0 =
t0 < t1 < · · · < tNτ

= T . We will denote by Nh and NI,h the number of nodes and interior nodes of the
triangulation Kh, I j = (t j−1, t j), τ j = t j− t j−1, τ = max16 j6Nτ

τ j, and σ = (h,τ). Following Meidner &
Vexler (2018) we make the following assumptions.

Assumption 4- The next properties hold

∃θ1,θ2 > 0 such that τ j > θ1τ
θ2 ∀ j = 1, . . .Nτ ,

∃ρ > 0 such that τ 6 ρτ j ∀ j = 1, . . .Nτ ,

∃θ3,θ4 > 0 and cΩ ,T ,CΩ ,T > 0 such that cΩ ,T hθ3 6 τ 6CΩ ,T hθ4 ,

τ|Ca|< 1, where Ca satisfies (2.2),

where the constants are independent of τ and h. Observe that θ3 and θ4 can be arbitrarily large and
small, respectively. Hence, it is not a strong restriction.

3.1 Approximation of the state equation.

Now we consider the finite dimensional spaces

Yh = {yh ∈C(Ω̄) : yh|K ∈ P1(K) ∀K ∈Kh and yh = 0 on Γ },

Yσ = {yσ ∈ L2(0,T ;Yh) : yσ |I j ∈ Yh ∀ j = 1, . . . ,Nτ}.

The elements of Yσ can be written as

yσ =
Nτ

∑
j=1

yh, jχ j =
Nτ

∑
j=1

NI,h

∑
i=1

yi, jeiχ j,

where yh, j ∈Yh for j = 1, . . . ,Nτ , yi, j ∈R for i = 1, . . . ,NI,h and j = 1, . . . ,Nτ , {ei}
NI,h
i=1 is the nodal basis

associated to the interior nodes {xi}
NI,h
i=1 of the triangulation, and χ j denotes the characteristic function

of the interval I j = (t j−1, t j).
For every u ∈ L2(Q), we define its associated discrete state as the unique element yσ (u) ∈ Yσ such

that for j = 1, . . . ,Nτ
∫

Ω

(yh, j− yh, j−1)zhdx+ τ jb(yh, j,zh)+
∫

I j

∫
Ω

a(x, t,yh, j)zhdxdt =
∫

I j

∫
Ω

uzhdxdt ∀zh ∈ Yh,

yh,0 = Phy0,
(3.1)

where Ph : L2(Ω) −→ Yh denotes the L2 projection operator, and b : H1(Ω)×H1(Ω) −→ R is the
bilinear form

b(y,z) =
∫

Ω

n

∑
i, j=1

ai j∂xiy∂x j zdx ∀y,z ∈ H1(Ω).

From a computational point of view, this scheme coincides with the implicit Euler discretization
of the system of ordinary differential equations obtained after spatial finite element discretization. The
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proof of existence and uniqueness of a solution of (3.1) is standard by using Brouwer’s fixed point
theorem and the assumption τ|Ca|< 1. Moreover, the system (3.1) realizes an approximation of (1.1) in
the following sense.

THEOREM 3.1 Let u ∈ Lr(0,T ;L2(Ω) hold with r > 4
4−n . Under the assumptions 1, 2, and 4, there

exist h0 > 0, τ0 > 0, δ0 > 0, C > 0, and a monotone non-decreasing function η1 : [0,∞) −→ [0,∞)
independent of u such that for every τ < τ0 and h < h0

‖yu− yσ (u)‖L2(Q) 6C
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
(τ +h2), (3.2)

‖yu− yσ (u)‖L∞(Q) 6 η1
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
| logh|3hδ0 , (3.3)

where Mr,0 is taken as in Theorem 2.1.

Proof. For the proof of (3.2) the reader is referred to (Meidner & Vexler, 2018, Corollary 6.2). To
prove (3.3) we use (Meidner & Vexler, 2018, Theorem 6.5) to deduce the existence of a constant C1
independent of u such that

‖yu− yσ (u)‖L∞(Q) 6C1| logh|
(

log
T
τ

)2
‖yu− zσ‖L∞(Q) ∀zσ ∈ Yσ .

Let us select a convenient zσ . We denote by Pτ the L2(0,T ) projection operator

Pτ w =
Nτ

∑
j=1

1
τ j

∫
I j

w(t)dtχ j ∀w ∈ L1(0,T ).

It is obvious that ‖Pτ z‖L∞(Q) 6 ‖z‖L∞(Q) for every z ∈ L∞(Q).

We also set Πh : C0(Ω̄) −→ Yh the interpolation operator Πhz =
NI,h

∑
i=1

z(xi)ei. Then, we take zσ =

Pτ Πhyu. From (2.6) we get

‖yu− zσ‖L∞(Q) 6 ‖yu−Pτ yu‖L∞(Q)+‖Pτ(yu−Πhyu)|L∞(Q)

6 ‖yu−Pτ yu‖L∞(Q)+‖yu−Πhyu‖L∞(Q)

6 (τβ +(n+1)hβ )‖yu‖C0,β (Q̄) 6 (τβ +(n+1)hβ )η
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
.

Using the assumption cΩ ,T hθ3 6 τ 6CΩ ,τ hθ4 and taking δ0 = min{1,θ4}β we deduce (3.3). �

3.2 Approximation of the control problem.

We will consider two different ways to discretize the space of controls:
I - Piecewise constant controls. We introduce the spaces and sets

Uh =Uh,0 = {uh ∈ L∞(Ω) : uh|K ≡ uK ∈ R ∀K ∈Kh},
Bh,γ = {uh = ∑

K∈Kh

uK χK ∈Uh,0 : ∑
K∈Kh

|K||uK |6 γ},

Uσ = Uσ ,0 = {uσ =
Nτ

∑
j=1

uh, jχ j : uh, j ∈Uh,0 for j = 1, . . . ,Nτ},

Uσ ,ad =
{

uσ ∈ Uσ ,0 : uh, j ∈ Bh,γ for j = 1, . . . ,Nτ

}
,
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where χK and χ j denote the characteristic functions of the sets K and I j, respectively. It is immediate to
check that Uσ ,ad = Uσ ∩Uad ⊂Uad .

II - Piecewise linear controls. In this case we take

Uh =Uh,1 = {uh ∈C(Ω̄) : uh|K ∈P1(K) ∀K ∈Kh},

Bh,γ = {uh =
Nh

∑
i=1

uiei ∈Uh,1 :
Nh

∑
i=1
|ui|
∫

Ω

ei dx6 γ},

Uσ = Uσ ,1 = {uσ =
Nτ

∑
j=1

uh, jχ j : uh, j ∈Uh,1 for 16 j = 1, . . . ,Nτ},

Uσ ,ad =
{

uσ ∈ Uσ ,1 : uh, j ∈ Bh,γ for j = 1, . . . ,Nτ

}
,

where P1(K) denotes the space of the polynomials on K of degree 6 1. From the inequality

‖uh‖L1(Ω) =
∫

Ω

∣∣∣∣∣ Nh

∑
i=1

uiei

∣∣∣∣∣ dx6
Nh

∑
i=1
|ui|
∫

Ω

ei dx

we infer that Uσ ,ad ⊂Uad .
We observe that Uσ ⊂ L∞(0,T ;Uh) in both cases and every element uσ ∈Uσ can be written in form

uσ =
Nτ

∑
j=1

uh, jχ j =



Nτ

∑
j=1

∑
K∈Kh

uK, jχK χ j if Uσ = Uσ ,0,

Nτ

∑
j=1

Nh

∑
i=1

ui, jeiχ j if Uσ = Uσ ,1.

Now, we formulate the discrete control problem

(Pσ ) inf
uσ∈Uσ ,ad

Jσ (uσ ) :=
1
2

∫
Q
|yσ (uσ )− yd |2 dxdt +

κ

2
‖uσ‖2

σ ,

where yσ (uσ ) is the solution of (3.1) for u = uσ and

‖uσ‖2
σ =

Nτ

∑
j=1

τ j‖uh, j‖2
h

with ‖ · ‖h the norm in Uh defined by

‖uh‖h =



(
∑

K∈Kh

|K|u2
K

) 1
2

if Uh =Uh,0,

(
Nh

∑
i=1

(∫
Ω

ei(x)dx
)

u2
i

) 1
2

if Uh =Uh,1.
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We notice that

‖uh‖2
L2(Ω) =


∑

K∈Kh

∫
K
|uK |2 dx = ‖uh‖2

h if Uh =Uh,0,∫
Ω

( Nh

∑
i=1

uiei(x)
)2

dx6
∫

Ω

( Nh

∑
i=1

ei(x)u2
i

)
dx = ‖uh‖2

h if Uh =Uh,1,

(3.4)

where we have used that 06 ei(x)6 1 and ∑
Nh
i=1 ei(x) = 1 in Ω .

We also introduce ‖uσ‖σ =
√

(uσ ,uσ )σ , where the scalar product (·, ·)σ in Uσ is defined by

(uσ ,vσ )σ =
Nτ

∑
j=1

τ j(uh, j,vh, j)h =


(uσ ,vσ )L2(Q) =

Nτ

∑
j=1

∑
K∈Kh

τ j|K|uK, jvK, j if Uσ = Uσ ,0,

Nτ

∑
j=1

Nh

∑
i=1

τ j

(∫
Ω

ei(x)dx
)

ui, jvi, j if Uσ = Uσ ,1.

Due to the compactness of Uσ ,ad in both definitions and the continuity of Jσ , we infer the existence
of at least one solution for (Pσ ).

Analogously to Corollary 2.1 we have the following differentiability result.

THEOREM 3.2 The functional Jσ : Uσ −→ R is of class C2 and its first derivative is given by the
expression

J′σ (uσ )vσ =
∫

Q
ϕσ vσ dxdt +κ(uσ ,vσ )σ , (3.5)

where ϕσ (uσ ) ∈ Yσ is the solution of the adjoint state equation: for j = Nτ , . . . ,1

∫
Ω

(ϕh, j−ϕh, j+1)zhdx+ τ jb(zh,ϕh, j)+
∫

I j

∫
Ω

∂a
∂y

(x, t,yσ (uσ ))ϕh, jzhdxdt

=
∫

I j

∫
Ω

(yσ (uσ )− yd)zhdxdt ∀zh ∈ Yh,

ϕh,Nτ+1 = 0.

(3.6)

Now we compare the continuous and discrete adjoint states.

THEOREM 3.3 Let u∈Lr(0,T ;L2(Ω) hold with r > 4
4−n , and let us denote by ϕu and ϕσ (u) the solutions

of (2.11) and (3.6) with yσ (uσ ) replaced by yσ (u). Under the assumptions 1–4, and taking h0 and τ0
as in Theorem 3.1, there exists a monotone non-decreasing function η2 : [0,∞)−→ R independent of u
such that for every τ < τ0 and h < h0

‖ϕu−ϕσ (u)‖L2(Q) 6 η2
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
(τ +h2), (3.7)

‖ϕu−ϕσ (u)‖L∞(Q) 6 η2
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
| logh|3hδ0 . (3.8)

Proof. Let ψu ∈C0,β (Q̄)∩H2,1(Q) denote the solution of the adjoint state equation −
∂ψu

∂ t
+A∗ψu +

∂a
∂y

(x, t,yσ (u))ψu = yσ (u)− yd in Q,

ψu = 0 on Σ , ψu(T ) = 0 in Ω ,
(3.9)
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and set ϕu−ϕσ (u) = (ϕu−ψu)+ (ψu−ϕσ (u)) = eu + ξu. Subtracting the equations (2.11) and (3.9)
we get −

∂eu

∂ t
+A∗eu +

∂a
∂y

(x, t,yu)eu = (yu− yσ (u))+
[

∂a
∂y

(x, t,yσ (u))−
∂a
∂y

(x, t,yu)
]
ψu in Q,

eu = 0 on Σ , eu(T ) = 0 in Ω .
(3.10)

Setting M = ‖yu‖L∞(Q)+1 and taking h0 and τ0 small enough, we infer from (3.3) that ‖yσ (u)‖L∞(Q)6
M for every σ = (h,τ) with h6 h0 and τ 6 τ0. Then, from (3.9) it follows with (2.4) that

‖ψu‖L∞(Q) 6C1
(
‖yσ (u)‖L∞(Q)+‖yd‖Lr̂(0,T ;L2(Ω))

)
6C1

(
M+‖yd‖Lr̂(0,T ;L2(Ω))

)
. (3.11)

From (2.4), (3.3), and the mean value theorem we obtain∣∣∣∣∂a
∂y

(x, t,yσ (u)(x, t))−
∂a
∂y

(x, t,yu(x, t))
∣∣∣∣6Ca,M|yσ (u)(x, t)− yu(x, t)|. (3.12)

From (3.10), (3.11), (3.12), and (3.2), we infer

‖eu‖L2(Q) 6C2
[
1+Ca,MC1

(
M+‖yd‖Lr̂(0,T ;L2(Ω))

)]
‖yσ (u)− yu‖L2(Q)

6CMC
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
(τ +h2). (3.13)

The constant CM is a monotone non-decreasing function of M.
Let us estimate ξu. Since ϕσ (u) is the solution of the discretization of the linear equation (3.8), the

classical error estimates yield the existence of a constant C3 such that

‖ξu‖L2(Q) 6C2(τ +h2)
(
‖yσ (u)‖L2(Q)+‖yd‖L2(Q)

)
. (3.14)

Hence, (3.13) and (3.14) along with (2.6) lead to (3.7).
To prove (3.8) we first modify (3.13) as follows

‖eu‖L∞(Q) 6C2
[
1+Ca,MC1

(
M+‖yd‖Lr̂(0,T ;L2(Ω))

)]
‖yσ (u)− yu‖L∞(Q)

6CMη1
(
‖u‖Lr(0,T ;L2(Ω))+Mr̂,0

)
| logh|3hδ0 . (3.15)

Finally, using the linearity of the equations satisfied by ψu and arguing as for the estimate (3.3) we
infer

‖ξu‖L∞(Q) 6C3| logh|3hδ0 .

The last inequality and (3.15) imply (3.8). �

3.3 First order optimality conditions.

The goal of this subsection is to prove the first order optimality conditions and their consequences.

THEOREM 3.4 Let ūσ be a local minimum of (Pσ ). Then there exist ȳσ , ϕ̄σ ∈ Yσ and µ̄σ ∈ Uσ such
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that

∫
Ω

(ȳh, j− ȳh, j−1)zhdx+ τ jb(ȳh, j,zh)+
∫

I j

∫
Ω

a(x, t, ȳh, j)zhdxdt

=
∫

I j

∫
Ω

ūh, jzhdxdt ∀zh ∈ Yh and ∀ j = 1, . . . ,Nτ ,

ȳh,0 = Phy0,

(3.16)



∫
Ω

(ϕ̄h, j− ϕ̄h, j+1)zhdx+ τ jb(zh, ϕ̄h, j)+
∫

I j

∫
Ω

∂a
∂y

(x, t,yσ (uσ ))ϕ̄h, jzhdxdt

=
∫

I j

∫
Ω

(ȳh, j− yd)zhdxdt ∀zh ∈ Yh and ∀ j = Nτ , . . . ,1,

ϕ̄h,Nτ+1 = 0,

(3.17)

(µ̄σ ,uσ − ūσ )σ 6 0 ∀uσ ∈ Uσ ,ad , (3.18)
1
|K|

∫
K

ϕ̄h, j dx+κ ūK, j + µ̄K, j = 0 ∀K ∈Kh and ∀ j = 1, . . . ,Nτ , if Uσ = Uσ ,0,

1∫
Ω

ei dx

∫
Ω

ϕ̄h, jei dx+κ ūi, j + µ̄i, j = 0 ∀i = 1, . . . ,Nh and ∀ j = 1, . . . ,Nτ , if Uσ = Uσ ,1.

(3.19)

Proof. Taking ȳσ and ϕ̄σ as solutions of (3.16) and (3.17), respectively, and using the convexity of
Uσ ,ad we infer with (3.5)∫

Q
ϕ̄σ (uσ − ūσ )dxdt +κ(ūσ ,uσ − ūσ )σ = J′σ (ūσ )(uσ − ūσ )> 0 ∀uσ ∈ Uσ ,ad . (3.20)

Now we distinguish the cases Uσ = Uσ ,0 and Uσ = Uσ ,1.

Case Uσ = Uσ ,0. In this case, (3.20) can be written as follows

Nτ

∑
j=1

∑
K∈Kh

τ j

(∫
K

ϕ̄h, j dx+κ|K|ūK, j

)
(uK, j− ūK, j)> 0 ∀uσ ∈ Uσ ,ad . (3.21)

Then, defining

µ̄σ =
Nτ

∑
j=1

∑
K∈Kh

µ̄K, jχK χ j with µ̄K, j =−
(

1
|K|

∫
K

ϕ̄h, j dx+κ ūK, j

)
,

we have that the first identity of (3.19) holds. Inequalities (3.18) are consequence of (3.21):

(µ̄σ ,uσ − ūσ )σ =
Nτ

∑
j=1

∑
K∈Kh

τ j|K|µ̄K, j(uK, j− ūK, j)

=−
Nτ

∑
j=1

∑
K∈Kh

τ j

(∫
K

ϕ̄h, j dx+κ|K|ūK, j

)
(uK, j− ūK, j)6 0 ∀uσ ∈ Uσ ,ad .

Case Uσ = Uσ ,1. From (3.20) and using the definition of (·, ·)σ we deduce

Nτ

∑
j=1

Nh

∑
i=1

τ j

(∫
Ω

ϕ̄h, jei dx+κ
(∫

Ω

ei dx
)
ūi, j

)
(ui, j− ūi, j)> 0 ∀uσ ∈ Uσ ,ad . (3.22)
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Now we set

µ̄σ =
Nτ

∑
j=1

Nh

∑
i=1

µ̄i, jeiχ j with µ̄i, j =−
(

1∫
Ω

ei dx

∫
Ω

ϕ̄h, jei dx+κ ūi, j

)
.

Then, the second identity of (3.19) is satisfied. We finish the proof by checking (3.18) with the aid of
(3.22)

(µ̄σ ,uσ − ūσ )σ =
Nτ

∑
j=1

Nh

∑
i=1

τ j
(∫

Ω

ei dx
)
µ̄i, j(ui, j− ūi, j)

=−
Nτ

∑
j=1

Nh

∑
i=1

(
τ j

∫
Ω

ϕ̄h, jei dx+κ
(∫

Ω

ei dx
)
ūi, j

)
(ui, j− ūi, j)6 0 ∀uσ ∈ Uσ ,ad .

�
Let us introduce the following notation:

‖uh‖l∞ =


max
K∈Kh

|uK | if Uh =Uh,0,

max
16i6Nh

|ui| if Uh =Uh,1,

and jh : Uh −→ R is the functional defined by

jh(uh) =


∑

K∈Kh

|K||uK | if Uh =Uh,0,

Nh

∑
i=1
|ui|
∫

Ω

ei dx if Uh =Uh,1.

We have the following corollary.

COROLLARY 3.1 Let ūσ , µ̄σ , and ϕ̄σ satisfy (3.17)–(3.19), and assume that ūσ ∈ Uσ ,ad . Then, the
following properties hold for every j = 1, . . . ,Nτ

(µ̄h, j,uh− ūh, j)h 6 0 ∀uh ∈ Bh,γ , (3.23)
if Uσ = Uσ ,0 then µ̄K, jūK, j = |µ̄K, j||ūK, j| ∀K ∈Kh,

if jh(ūh, j)< γ then µ̄h, j = 0,
if jh(ūh, j) = γ and µ̄h, j 6= 0, then if ūK, j 6= 0⇒ |µ̄K, j|= ‖µ̄h, j‖l∞ .

(3.24)

if Uσ = Uσ ,1 then µ̄h, jūh, j = |µ̄h, j||ūh, j|,
if jh(ūh, j)< γ then µ̄h, j = 0,
if jh(ūh, j) = γ and µ̄h, j 6= 0, then if ūi, j 6= 0⇒ |µ̄i, j|= ‖µ̄h, j‖l∞ .

(3.25)

Proof. Given 16 j 6 Nτ and uh ∈ Bh,γ we define

uσ =
Nτ

∑
l=1

uh,l χl with uh,l =

{
ūh,l if l 6= j,
uh if l = j.
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Then, uσ ∈ Uσ ,ad and (3.18) implies

τ j(µ̄h, j,uh− ūh, j)h = (µ̄σ ,uσ − ūσ )σ 6 0,

which proves (3.23). The rest of the proof is divided into two cases.
Case Uσ = Uσ ,0. For

uh = ∑
K′∈Kh

uK′χK′ with uK′ =

{
ūK′, j if K′ 6= K,

0 if K′ = K,

(3.23) leads to |K|µ̄K, jūK, j > 0, which implies the first identity of (3.24). To establish the second
statement of (3.24), given K ∈Kh arbitrary, we define

u±h = ∑
K′∈Kh

uK′χK′ with uK′ =

{
ūK′, j if K′ 6= K,

ūK, j± ε if K′ = K.

Then, for ε small enough, due to the fact that j(ūh, j)< γ , we have that u±h ∈ Bh,γ . Then, (3.23) leads to
±|K|µ̄K, jε > 0, which implies that µ̄K, j = 0 for every K ∈Kh.

Now, we assume that jh(ūh, j) = γ and µ̄h, j 6= 0. Let K0 ∈Kh be such that |µ̄K0, j|= maxK′∈Kh |µ̄K′, j|.
If ūK, j 6= 0 we define

uh = ∑
K′∈Kh

uK′χK′ with uK′ =


ūK, j−

ε

|K|
sign(ūK, j) if K′ = K,

ūK0, j +
ε

|K0|
sign(ūK0, j) if K′ = K0,

ūK, j otherwise,

where 0 < ε < |K||ūK, j|. Then, jh(uh) = jh(ūh, j) = γ . Hence, uh ∈ Bh,γ and we get with (3.23) and the
first statement of (3.24)

ε|µ̄K0, j|− ε|µ̄K, j|= (µ̄h, j,uh− ūh, j)h 6 0.

This proves the last statement of (3.24).

Case Uσ = Uσ ,1. Let 16 i6 Nh arbitrary and set

uh =
Nh

∑
i′=1

ui′ei′ with ui′ =

{
ūi′, j if i′ 6= i,

0 if i′ = i.

Then (3.23) implies

−
(∫

Ω

ei dx
)
µ̄i, jūi, j = (µ̄h, j,uh− ūh, j)h 6 0,

which proves the first statement of (3.25).
To establish the second statement of (3.25), given 16 i6 Nh arbitrary, we define

u±h =
Nh

∑
i′=1

ui′ei′ with ui′ =

{
ūi′, j if i′ 6= i,

ūi, j± ε if i′ = i.

Then, for ε small enough, due to the fact that j(ūh, j)< γ , we have that u±h ∈ Bh,γ . Then, (3.23) leads to
±
(∫

Ω
ei dx

)
µ̄i, jε > 0, which implies that µ̄i, j = 0 for every i = 1, . . . ,Nh.
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Finally, we assume that jh(ūh, j)= γ and µ̄h, j 6= 0. Let 16 i06Nh be such that |µ̄i0, j|=max16i′6Nh |µ̄i′, j|.
If ūi, j 6= 0 we define

uh =
Nh

∑
i′=1

ui′ei′ with ui′ =


ūi, j−

ε∫
Ω

ei dx
sign(ūi, j) if i′ = i,

ūi0, j +
ε∫

Ω
ei0 dx

sign(ūi0, j) if i′ = i0,

ūi, j otherwise,

where 0 < ε <
(∫

Ω
ei dx

)
|ūi, j|. Then, jh(uh) = jh(ūh, j) = γ . Hence, uh ∈ Bh,γ and we get with (3.23)

and the first statement of (3.25)

ε|µ̄i0, j|− ε|µ̄i, j|= (µ̄h, j,uh− ūh, j)h 6 0.

This proves the last statement of (3.25). �

COROLLARY 3.2 Let ūσ ∈Uσ ,ad satisfy (3.19) and (3.24) or (3.25). Then, the following identities hold
for every j = 1, . . . ,Nτ

if Uσ = Uσ ,0 then ūK, j =−
1
κ

sign
(∫

K
ϕ̄h, j dx

)( 1
|K|
∣∣∫

K
ϕ̄h, j dx

∣∣−‖µ̄h, j‖l∞

)+
=− 1

κ

{[ 1
|K|

∫
K

ϕ̄h, j dx+‖µ̄h, j‖l∞

]−
+
[ 1
|K|

∫
K

ϕ̄h, j dx−‖µ̄h, j‖l∞

]+}
, (3.26)

if Uσ = Uσ ,1 then ūi, j =−
1
κ

sign
(∫

Ω

ϕ̄h, jei dx
)( 1∫

Ω
ei dx

∣∣∫
Ω

ϕ̄h, jei dx
∣∣−‖µ̄h, j‖l∞

)+
=− 1

κ

{[ 1∫
Ω

ei dx

∫
Ω

ϕ̄h, jei dx+‖µ̄h, j‖l∞

]−
+
[ 1∫

Ω
ei dx

∫
Ω

ϕ̄h, jei dx−‖µ̄h, j‖l∞

]+}
. (3.27)

Moreover, the following sparsity property is fulfilled for every j = 1, . . . ,Nτ

if Uσ = Uσ ,0 then ūK, j = 0⇔ 1
|K|
∣∣∫

K
ϕ̄h, j dx

∣∣6 ‖µ̄h, j‖l∞ , ∀K ∈Kh, (3.28)

if Uσ = Uσ ,1 then ūi, j = 0⇔ 1∫
Ω

ei dx

∣∣∫
Ω

ϕ̄h, jei dx
∣∣6 ‖µ̄h, j‖l∞ , ∀i = 1, . . . ,Nh, (3.29)

Proof. Let us prove the first identity of (3.26). If ‖µ̄h, j‖l∞ = 0, then (3.19) implies that

ūK, j =−
1

κ|K|

∫
K

ϕ̄h, j dx ∀K ∈Kh,

which coincides with (3.26). Assume that ‖µ̄h, j‖l∞ 6= 0. Then, from (3.24) we deduce that jh(ūh, j) = γ .
Then, the third statement of (3.24) implies that |ūK, j|= ‖µ̄h, j‖l∞ if ūK, j 6= 0. Now, we distinguish three
cases.

i) If ūK, j > 0, (3.19) and the first statement of (3.24) lead to

ūK, j =−
1
κ

{
1
|K|

∫
K

ϕ̄h, j dx+‖µ̄h, j‖l∞

}
,
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which coincides with (3.26). Indeed, observe that (3.24) and the positivity of ūK, j imply µ̄K, j > 0.
Hence, we conclude with (3.19) that

∫
K ϕ̄h, j dx < 0.

ii) If ūK, j = 0, using again (3.19) we get∣∣ 1
|K|

∫
K

ϕ̄h, j dx
∣∣= |µ̄K, j|6 ‖µ̄h, j‖l∞ .

Then, the identity (3.26) holds.
iii) If ūK, j < 0, from the first statement of (3.24) and (3.19) we infer that

ūK, j =−
1
κ

{
1
|K|

∫
K

ϕ̄h, j dx−‖µ̄h, j‖l∞

}
.

Moreover, arguing as in the case i), we deduce that
∫

K ϕ̄h, j dx > 0. Hence, (3.26) holds too.
The second identity of (3.26) is obvious. Following the same arguments as above, (3.27) is proved.

Finally, (3.28) and (3.29) are immediate consequences of (3.26) and (3.27), respectively. �

4. Convergence analysis and error estimates

There are two goals in this section. First we prove that the discrete problems (Pσ ) provide an approxi-
mation of (P). Second we establish error estimates in terms of σ = (h,τ) for the difference between the
discrete and continuous optimal controls.

THEOREM 4.1 For every σ let ūσ be a solution of (Pσ ). Then, there exists σ0 = (h0,τ0) such that the
family {ūσ}σ with h < h0 and τ < τ0 is bounded in L∞(Q). If ūσ

∗
⇀ ū in L∞(Q) for a sequence of σ

converging to zero, we have that ū is a solution of (P), and the following convergence properties hold

lim
σ→0
‖ūσ − ū‖Lr(0;T ;L2(Ω)) = 0 ∀r ∈ [1,∞) and lim

σ→0
Jσ (ūσ ) = J(ū). (4.1)

To prove this theorem we need the following stability property for the solution of the system (3.1).

LEMMA 4.1 Let us assume that 4|Ca|τ < 1. Then, given u ∈ L2(Q) and denoting by yσ ∈ Yσ the
solution of (3.1), we have the stability estimate

‖yσ‖L∞(0,T ;L2(Ω))+‖yσ‖L2(0,T ;H1
0 (Ω)) 6C

(
‖u−a(·, ·,0)‖L2(Q)+‖y0‖L2(Ω)

)
(4.2)

for some constant C independent of u.

Proof. For j = 1, . . . ,Nτ we take zh = yh, j in (3.1), which leads to∫
Ω

(yh, j− yh, j−1)yh, jdx+ τ jb(yh, j,yh, j)+
∫

I j

∫
Ω

[a(x, t,yh, j)−a(x, t,0)]yh, jdxdt

=
∫

I j

∫
Ω

[u−a(x, t,0)]yh, jdxdt.

Using (2.1) and (2.2) along with Young’s inequality we deduce from the above identity

1
2
‖yh, j‖2

L2(Ω)+
1
2
‖yh, j− yh, j−1‖2

L2(Ω)−
1
2
‖yh, j−1‖2

L2(Ω)+ τ jΛA‖yh, j‖2
H1

0 (Ω)
+Caτ j‖yh, j‖2

L2(Ω)

6 ‖u−a(·, ·,0)‖L2(Ω×I j)
√

τ j‖yh, j‖L2(Ω) 6C1‖u−a(·, ·,0)‖2
L2(Ω×I j)

+ τ j
ΛA

2
‖yh, j‖2

H1
0 (Ω)

.
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From here we infer

‖yh, j‖2
L2(Ω)+τ jΛA‖yh, j‖2

H1
0 (Ω)
6 2C1‖u−a(·, ·,0)‖2

L2(Ω×I j)
+2|Ca|τ j‖yh, j‖2

L2(Ω)+‖yh, j−1‖2
L2(Ω). (4.3)

With the discrete Gronwall’s inequality and the fact that ‖yh,0‖L2(Ω) 6 ‖y0‖L2(Ω) and τ j 6 τ for every
j = 1, . . . ,Nτ we get

‖yh, j‖2
L2(Ω) 6 (1−2|Ca|τ)− j

(
‖y0‖2

L2(Ω)+2C1

j−1

∑
k=0

(1−2|Ca|τ)k‖u−a(·, ·,0)‖2
L2(Ω×Ik+1)

)
; (4.4)

see, for instance, Emmrich (1999). From our assumptions 4|Ca|τ < 1 and τ 6 ρτk for every k, and using
that

1
1−2|Ca|τ

= 1+
2|Ca|τ

1−2|Ca|τ
6 exp

( 2|Ca|τ
1−2|Ca|τ

)
we obtain

(1−2|Ca|τ)− j 6 exp
( 2|Ca|τ j

1−2|Ca|τ

)
6 exp(4ρ|Ca|T ).

Then, (4.4) yields

‖yh, j‖2
L2(Ω) 6 exp(4ρ|Ca|T )

(
‖y0‖2

L2(Ω)+2C1

j−1

∑
k=0
‖u−a(·, ·,0)‖2

L2(Ω×Ik+1)

)
6 exp(4ρ|Ca|T )

(
‖y0‖2

L2(Ω)+2C1‖u−a(·, ·,0)‖2
L2(Q)

)
and consequently

‖yσ‖L∞(0,T ;L2(Ω)) = max
16 j6Nτ

‖yh, j‖L2(Ω)

6 exp(2ρ|Ca|T )max{1,
√

2C1}
(
‖y0‖L2(Ω)+‖u−a(·, ·,0)‖L2(Q)

)
. (4.5)

Adding the inequalities (4.3) for j = 1, . . . ,Nτ we deduce

ΛA‖yσ‖2
L2(0,T ;H1

0 (Ω))
= ΛA

Nτ

∑
j=1

τ j‖yh, j‖2
H1

0 (Ω)

6 2C1‖u−a(·, ·,0)‖2
L2(Q)+

(
2|Ca|T‖yσ‖2

L∞(0,T ;L2(Ω))+‖y0‖2
L2(Ω)

)
.

Finally, (4.2) follows from this inequality and (4.5). �
Proof of Theorem 4.1. We divide the proof into three steps.
Step I. {ūσ}σ is bounded in L∞(Q). Let us assume that τ satisfies the condition of Lemma 4.1 and

τ 6 τ0, given by Theorem 3.1. Since the null control u0 ≡ 0 is admissible for every problem (Pσ ), we
deduce from the optimality of ūσ :

κ

2
‖ūσ‖2

σ 6 Jσ (u0) =
1
2
‖y0

σ − yd‖2
L2(Ω),
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where y0
σ denotes the discrete state associated with u0. From Lemma 4.1 we infer that {y0

σ}σ is bounded
in L2(Q). Hence, with (3.4) we deduce the existence of a constant C1 independent of ūσ such that

‖ūσ‖L2(Q) 6 ‖ūσ‖σ 6
1√
κ
‖y0

σ − yd‖L2(Q) 6C1.

We denote by ȳσ and ϕ̄σ the state and adjoint state associated with ūσ . Using again Lemma 4.1 we
obtain

‖ȳσ‖L∞(0,T ;L2(Ω)) 6C
(
‖ūσ −a(·, ·,0)‖L2(Q)+‖y0‖L2(Ω)

)
6C

(
C1 +‖a(·, ·,0)‖L2(Q)+‖y0‖L2(Ω)

)
=C2.

Arguing as in the proof of Lemma 4.1 we deduce the stability estimate for the solution of (3.6)
corresponding to ūσ

‖ϕ̄σ‖L∞(0,T ;L2(Ω)) 6C3‖ȳσ − yd‖L2(Q) 6C3
(
C2 +‖yd‖L2(Q)

)
=C4.

Next we prove the estimate

‖ūσ‖L∞(0,T ;L2(Ω)) 6
C4

κ
. (4.6)

We distinguish two cases according to the definition of Uσ .
Case Uσ = Uσ ,0. From (3.26) we get for every j = 1, . . . ,Nτ

‖ūh, j‖L2(Ω) =

(
∑

K∈Kh

|K|ū2
K, j

) 1
2

6
1
κ

(
∑

K∈Kh

1
|K|

(∫
K

ϕ̄h, j dx
)2
) 1

2

6
1
κ

(
∑

K∈Kh

‖ϕ̄h, j‖2
L2(K)

) 1
2

=
1
κ
‖ϕ̄h, j‖L2(Ω).

This inequality implies (4.6)
Case Uσ = Uσ ,1. This time we use (3.27) to deduce

‖ūh, j‖L2(Ω) =

(∫
Ω

( Nh

∑
i=1

ūi, jei

)2
dx

) 1
2

6

(∫
Ω

Nh

∑
i=1

ū2
i, jei dx

) 1
2

6
1
κ

(
Nh

∑
i=1

1∫
Ω

ei dx

(∫
Ω

ϕ̄h,iei dx
)2
) 1

2

6
1
κ

(
Nh

∑
i=1

∫
Ω

ϕ̄
2
h,iei dx

) 1
2

=
1
κ
‖ϕ̄h, j‖L2(Ω).

Hence, (4.6) is satisfied as well in this case. Then combining (2.6) and (3.3) along with the estimate
(4.6) we obtain

‖ȳσ‖L∞(Q) 6 ‖yūσ
‖L∞(Q)+‖yūσ

− ȳσ‖L∞(Q) 6C5

for every σ = (h,τ) with h < h0 and τ < τ0. From this estimate, (4.6) and (3.8) we deduce the existence
of C6 independent of σ such that ‖ϕ̄σ‖L∞(Q) 6C6 for the same range of σ as before. Now using again
(3.26) and (3.27) we conclude that

‖ūσ‖L∞(Q) 6
C6

κ
(4.7)

for h < h0 and τ < τ0.
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Take a sequence such that ūσ

∗
⇀ ū in L∞(Q) as σ → 0.

Step II: ū ∈Uad . It is immediate to check that ‖uh‖L1(Ω) = jh(uh) if uh ∈Uh =Uh,0 and ‖uh‖L1(Ω) 6
jh(uh) if uh ∈Uh =Uh,1. Therefore, we have

‖ūσ‖L∞(0,T ;L1(Ω)) = max
16 j6Nh

‖ūh, j‖L1(Ω) 6 max
16 j6Nh

jh(ūh, j)6 γ,

and thus {ūσ}σ ⊂Uad . Since Uad is convex and closed in L2(Q), then it is weakly closed as well. Then,
the weak convergence ūσ ⇀ ū in L2(Q) implies that ū ∈Uad .

Step III: ū is a solution of (P). Let ũ be a solution of (P). For every σ we define

uσ =


Pτ Phũ =

Nτ

∑
j=1

∑
K∈Kh

1
τ j|K|

∫
I j

∫
K

ũ(x, t)dxdtχ jχK if Uσ = Uσ ,0,

Pτ Ehũ =
Nτ

∑
j=1

Nh

∑
i=1

1
τ j
∫

Ω
ei dx

∫
I j

∫
Ω

ũ(x, t)ei(x)dxdtχ jei if Uσ = Uσ ,1,

(4.8)

where Pτ is the L2(0,T ) projection operator defined in the proof of Theorem 3.1, Ph : L2(Ω)−→Uh,0 is
the L2(Ω) projection operator, and Eh : L1(Ω) −→Uh,1 is the Carstensen quasi-interpolation operator;
see Carstensen (1999). First we prove that uσ ∈Uσ ,ad . In case Uh =Uh,0 we have uσ = ∑

Nτ

j=1 uh, jχ j and
for every j = 1, . . . ,Nτ

jh(uh, j) = ∑
K∈Kh

|K|
∣∣∣∣ 1
τ j|K|

∫
I j

∫
K

ũ(x, t)dx
∣∣∣∣6 ∑

K∈Kh

1
τ j

∫
I j

∫
K
|ũ(x, t)|dxdt =

1
τ j

∫
I j

‖ũ(t)‖L1(Ω) dt 6 γ.

This implies that uσ ∈ Uσ ,ad . In the case Uh =Uh,1, we have

jh(uh, j) =
Nh

∑
i=1

∣∣∣∣ 1
τ j
∫

Ω
ei dx

∫
I j

∫
Ω

ũ(x, t)ei(x)dxdt
∣∣∣∣∫

Ω

ei dx6
1
τ j

∫
I j

(∫
Ω

|ũ(x, t)|
Nh

∑
i=1

ei dx

)
dt

=
1
τ j

∫
I j

‖ũ(t)‖L1(Ω) dt 6 γ.

Using that
Nτ

∑
j=1

∑
K∈Kh

χ jχK =
Nτ

∑
j=1

Nh

∑
i=1

eiχ j = 1 in Q.

we deduce that ‖uσ‖L∞(Q) 6 ‖ũ‖L∞(Q) for every σ .
In the case Uσ = Uσ ,0, we have that Pτ Ph : L2(Q)−→ Uσ ,0 is the L2(Q) projection operator, hence

uσ → ũ in L2(Q) when σ → 0. If Uσ = Uσ ,1, then we have

‖ũ−uσ‖L2(Q) 6 ‖ũ−Pτ ũ‖L2(Q)+‖Pτ(ũ−Ehũ)‖L2(Q) 6 ‖ũ−Pτ ũ‖L2(Q)+‖ũ−Ehũ‖L2(Q)→ 0 as σ → 0.

Indeed Corollary 2.3 implies that ũ ∈H1(Q). Hence, from the convergence properties of the Carstensen
operator Eh we infer the converge of the last term in the above expression. The boundedness of {uσ}σ in
L∞(Q) and its strong convergence to ũ in L2(Q) imply the strong convergence in every Lp(0,T ;Lq(Ω))
space with 16 p,q < ∞.
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Next we prove that limsupσ→0 Jσ (uσ ) 6 J(ũ). Let us denote by ỹ and yuσ
the continuous states

corresponding to ũ and uσ , respectively. We also denote by yσ the discrete state associated with uσ .
Then, using the established convergence uσ → ũ, (2.6), and (3.3) we can easily prove

‖ỹ− yσ‖L∞(Q) 6 ‖ỹ− yuσ
‖L∞(Q)+‖yuσ

− yσ‖L∞(Q)→ 0.

The proved convergences of {yσ}σ and {uσ}σ imply that Jσ (uσ )→ J(ũ) as σ → 0 if Uσ = Uσ ,0; see
(3.4). For the case Uσ = Uσ ,1 we have

‖uσ‖2
σ =

Nτ

∑
j=1

Nh

∑
i=1

τ j

(∫
Ω

ei dx
)

u2
i, j =

Nτ

∑
j=1

Nh

∑
i=1

1
τ j
∫

Ω
ei dx

(∫
I j

∫
Ω

ũei dxdt
)2

6
Nτ

∑
j=1

Nh

∑
i=1

∫
I j

∫
Ω

|ũ|2ei dxdt = ‖ũ‖2
L2(Q),

which leads to the desired inequality limsupσ→0 Jσ (uσ )6 J(ũ).
Using the same arguments as above, we deduce that ȳσ → ȳ strongly in L∞(Q), where ȳ denotes the

continuous state associated with ū. Finally, from the optimality of ūσ and the established convergence
properties we obtain with (3.4)

J(ū)6 liminf
σ→0

{
1
2
‖ȳσ − yd‖2

L2(Q)+
κ

2
‖ūσ‖2

L2(Q)

}
6 liminf

σ→0
Jσ (ūσ )6 limsup

σ→0
Jσ (ūσ )

6 limsup
σ→0

Jσ (uσ )6 J(ũ) = inf (P).

These inequalities imply that ū is a solution of (P). Moreover, since the identity J(ū) = J(ũ) holds, we
conclude that Jσ (ūσ )→ J(ū). Further we have

J(ū)6 liminf
σ→0

{
1
2
‖ȳσ − yd‖2

L2(Q)+
κ

2
‖ūσ‖2

L2(Q)

}
6 limsup

σ→0

{
1
2
‖ȳσ − yd‖2

L2(Q)+
κ

2
‖ūσ‖2

L2(Q)

}
6 limsup

σ→0
Jσ (ūσ )6 limsup

σ→0
Jσ (uσ )6 J(ũ) = J(ū).

This property and the strong convergence ȳσ → ȳ in L2(Q) yield that ‖ūσ‖L2(Q) → ‖ū‖L2(Q). To-

gether with the weak∗ convergence ūσ

∗
⇀ ū in L∞(Q) this implies the strong convergence ūσ → ū in

Lr(0,T ;L2(Ω)) for every r < ∞. Thus, (4.1) is proved. �
The following theorem can be considered as a converse of Theorem 4.1.

THEOREM 4.2 Let ū be a strict local minimum of (P) in the Lr(0,T ;L2(Ω)) sense with r ∈
( 4n

4−n ,∞).
Then, there exist strictly positive numbers τ0, h0, ε0, and a sequence {ūσ}σ ⊂ Bε0(ū) of local minima
of (Pσ ) such that (4.1) holds and

Jσ (ūσ ) = min
uσ∈Uσ ,ad∩Bε0 (ū)

Jσ (uσ ) for τ < τ0 and h < h0, (4.9)

where Bε0(ū) is the closed ball of Lr(0,T ;L2(Ω)) centered at ū and radius ε0.

Proof. Since ū is a strict local minimum of (P) in the Lr(0,T ;L2(Ω)) sense, there exists ε0 > 0 such
that ū is the only solution of the problem

(Q) inf
u∈Uad∩Bε0 (ū)

J(u).



ERROR ESTIMATES FOR A CONTROL PROBLEM 21 of 30

Now, we consider the problems
(Qσ ) inf

uσ∈Uσ ,ad∩Bε0 (ū)
Jσ (uσ ).

If we define uσ by (4.8) with ũ = ū, then uσ ∈ Uσ ,ad and uσ → ū in Lr(0,T ;L2(Ω)). Therefore, there
exist τ1 > 0 and h1 > 0 such that uσ ∈ Bε0(ū) for every σ with τ < τ1 and h < h1. Hence, Uσ ,ad ∩Bε0(ū)
is a compact non-empty set for every τ < τ1 and h < h1. Then, the continuity of Jσ implies the existence
of at least one solution ūσ of (Qσ ) for every σ with τ and h satisfying the previous conditions. Since
{ūσ}σ is bounded in Lr(0,T ;L2(Ω)), taking a subsequence if necessary, we can assume that ūσ ⇀ û
in Lr(0,T ;L2(Ω)) for some û. Due to the embedding Uσ ,ad ⊂Uad we deduce that û ∈Uad ∩Bε0(ū).
Moreover, we have

J(û)6 liminf
σ→0

Jσ (ūσ )6 limsup
σ→0

Jσ (ūσ )6 limsup
σ→0

Jσ (uσ )6 J(ū).

Since ū is the unique solution of (Q), this inequality is only possible if û = ū. Consequently, the whole
family {ūσ}σ converges weakly to ū in Lr(0,T ;L2(Ω)) as σ → 0 and Jσ (ūσ )→ J(ū). Arguing as in
the proof of Theorem 4.1, we deduce the strong convergence ūσ → ū in Lr(0,T ;L2(Ω)). This leads to
the existence of τ0 6 τ1 and h0 6 h1 such that ūσ belongs to the interior of the ball Bε0(ū) for every
σ = (τ,h) with τ < τ0 and h < h0. Hence, every of these ūσ is a local minimum of (Pσ ) satisfying (4.9).
�

The rest of this section is dedicated to the proof of the following theorem.

THEOREM 4.3 Let us assume that ū is a local solution of (P) in the Lr(0,T ;L2(Ω)) sense with r ∈( 4
4−n ,∞

)
. We also assume that J′′(ū)v2 > 0 ∀v ∈Cū \{0}. Let {ūσ}σ be a family of local solutions of

problems (Pσ ) such that ūσ → ū in Lr(0,T ;L2(Ω)); see Theorem 4.2. Then, there exist positive numbers
δ0, τ0, and C such that the following inequality holds:

‖ūσ − ū‖L2(Q) 6C(h+ τ) for every σ = (h,τ) with h < h0 and τ < τ0. (4.10)

We prove this theorem arguing by contradiction. If (4.10) does not hold, then there exists a sequence
{ūσk}∞

k=1 such that σk = (hk,τk)→ 0 as k→ ∞, hk > 0 and τk > 0, and

‖ūσk − ū‖L2(Q) > k(hk + τk) ∀k > 1. (4.11)

We will get a contradiction for this sequence. First we prove the next lemma.

LEMMA 4.2 Let λ be as in (2.22). There exist k0 such that

(J′(ūσk)− J′(ū))(ūσk − ū)>
1
2

min{λ ,κ}‖ūσk − ū‖2
L2(Q) ∀k > k0. (4.12)

Proof. Applying the mean value theorem, we get for some ûk = ū+θk(ūσk − ū)

(J′(ūσk)− J′(ū))(ūσk − ū) = J′′(ûk)(ūσk − ū)2. (4.13)

Set vk =
ūσk−ū

‖ūσk−ū‖L2(Q)
. Taking a subsequence, if necessary, we can suppose that vk ⇀ v in L2(Q). Below

we prove that v ∈ Cū. Assuming that this is true, then we argue as follows. From (2.10), the fact that
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‖vk‖L2(Q) = 1, and (2.22) we infer

lim
k→∞

J′′(ûk)v2
k = lim

k→∞

{∫
Q

(
1− ∂ 2a

∂y2 (x, t,yûk)ϕûk

)
z2

ûk,vk
dxdt +κ

}
=
∫

Q

(
1− ∂ 2a

∂y2 (x, t, ȳ)ϕ̄
)

z2
v dxdt +κ = J′′(ū)v2 +κ

(
1−‖v‖2

L2(Q)

)
> κ +(λ −κ)‖v‖2

L2(Q).

Above, we denoted zûk,vk = G′(ûk)vk and zv = G′(ū)v, where G : Lr(0,T ;L2(Ω))−→ H2,1(Q)∩L∞(Q)
is the mapping associating to each control the associated state. Since ‖v‖L2(Q) 6 1, the above inequality
proves that

lim
k→∞

J′′(ûk)v2
k >min{λ ,κ}.

Therefore, there exist k0 > 0 such that

J′′(ûk)v2
k >

1
2

min{λ ,κ} ∀k > k0,

or equivalently

J′′(ûk)(ūσk − ū)2 >
1
2

min{λ ,κ}‖ūσk − ū‖2
L2(Q) ∀k > k0.

This inequality along with (4.13) leads to (4.12).
Now, we verify that v ∈Cū. From the optimality of ū and the fact that ūσk ∈ Uσk,ad ⊂Uad we obtain

J′(ū)vk > 0. Then, passing to the limit in this inequality when k→ ∞, it follows that J′(ū)v > 0. Let
us prove the converse inequality. We consider again the approximations uσk ∈ Uσk,ad defined as in (4.8)
with ũ = ū. Then, we have

‖uσk − ū‖L2(Q) 6C1(hk + τk)‖ū‖H1(Q) ∀k > 1. (4.14)

Indeed, if Uσk = Uσk,0, the above estimate follows from the fact that uσk is the L2(Q) projection of ū. If
Uσk = Uσk,1, the estimate was proved in Casas et al. (2018, Lemma 6.6). From the local optimality of
ūσk we have that J′σk

(ūσk)(uσk − ūσk)> 0. Using this fact we get

J′(ū)vk =
1

‖ūσk − ū‖L2(Q)

{
J′(ū)(ūσk −uσk)+ J′(ū)(uσk − ū)

}
6

1
‖ūσk − ū‖L2(Q)

{
[J′(ū)− J′(ūσk)](ūσk −uσk)+ [J′(ūσk)− J′σk

(ūσk)](ūσk −uσk)+ J′(ū)(uσk − ū)
}

= Ik,1 + Ik,2 + Ik,3.

Now, we estimate every Ii term. For I1 we use the mean value theorem, the convergence ūσk → ū in
Lr(0,T ;L2(Ω)), and (4.14) as follows

|Ik,1|=
|J′′(ū+ρk(ūσk − ū))(ūσk −uσk , ū− ūσk)|

‖ūσk − ū‖L2(Q)

6C2‖ūσk −uσk‖L2(Q)

6C2

{
‖ūσk − ū‖L2(Q)+‖ū−uσk‖L2(Q)

}
→ 0 as k→ ∞.
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To estimate Ik,2 we use (2.9) and (3.5) to get

Ik,2 =
1

‖ūσk − ū‖L2(Q)

∫
Q
(ϕūσk

− ϕ̄σk)(ūσk −uσk)dxdt

+
κ

‖ūσk − ū‖L2(Q)

[∫
Q

ūσk(ūσk −uσk)dxdt− (ūσk , ūσk −uσk)σk

]
. (4.15)

To estimate the first integral in (4.15) we use (3.7) and (4.11) along with the boundedness of {ūσk −
uσk}∞

k=0 in L2(Q) (actually ‖ūσk −uσk‖L2(Q)→ 0) as follows∣∣∣∣∣ 1
‖ūσk − ū‖L2(Q)

∫
Q
(ϕūσk

− ϕ̄σk)(ūσk −uσk)dxdt

∣∣∣∣∣6 1
‖ūσk − ū‖L2(Q)

‖ϕūσk
− ϕ̄σk‖L2(Q)‖ūσk −uσk‖L2(Q)

6C3
h2

k + τk

‖ūσk − ū‖L2(Q)

‖ūσk −uσk‖L2(Q)→ 0 as k→ ∞. (4.16)

In the case Uσk =Uσk,0, the scalar products (·, ·)L2(Q) and (·, ·)σk coincide. Hence, the last two terms
of (4.15) cancel and we get from (4.16) that |Ik,2| → 0. If Uσk = Uσk,1, we first observe that

(uσ ,Pτ Ehu)σ =
∫

Q
uσ udxdt ∀uσ ∈ Uσ and ∀u ∈ L1(Q). (4.17)

It is immediate to check this identity. Moreover, from (3.4) we have that ‖ūσk‖L2(Q) 6 ‖ūσk‖σk . This
property, (4.17) with uσ = ūσk and u = ū, (4.14), and (4.11) yield

1
‖ūσk − ū‖L2(Q)

{∫
Q

ūσk(ūσk −uσk)dxdt− (ūσk , ūσk −uσk)σk

}
6

1
‖ūσk − ū‖L2(Q)

∫
Q

ūσk(ū−uσk)dxdt

6
‖ū−uσk‖L2(Q)

‖ūσk − ū‖L2(Q)

‖ūσk‖L2(Q) 6C1
hk + τk

‖ūσk − ū‖L2(Q)

‖ūσk‖L2(Q)→ 0 as k→ ∞. (4.18)

From (4.15), (4.16), and (4.18) we infer that limk→∞ Ik,2 6 0. The estimate of the last term Ik,3 is an
immediate consequence of (2.9), (4.11) and (4.14)

|Ik,3|6 ‖ϕ̄ +κ ū‖L2(Q)

‖uσk − ū‖L2(Q)

‖ūσk − ū‖L2(Q)

6C1‖ϕ̄ +κ ū‖L2(Q)

h+ τ

‖ūσk − ū‖L2(Q)

→ 0 as k→ ∞.

Thus, we have that J′(ū)v= limk→∞ J′(ū)vk6 0, and consequently J′(ū)v= 0, which is the first condition
to have v ∈Cū.

Now, take t ∈ Iγ . This means that ‖ū(t)‖L1(Ω) = γ . Since ūσk ∈Uad we have that ‖ūσk‖L1(Ω) 6 γ . As
a consequence, we get with (2.20) an the convexity of j

j′(ū(t);v(t))6 liminf
k→∞

j′(ū(t);vk(t)) = liminf
k→∞

1
‖ūσk − ū‖L2(Q)

j′(ū(t); ūσk(t)− ū(t))

= liminf
k→∞

1
‖ūσk − ū‖L2(Q)

liminf
ρ→0

j(ū(t)+ρ(ūσk(t)− ū(t))− j(ū(t))
ρ

6 liminf
k→∞

1
‖ūσk − ū‖L2(Q)

[ j(ūσk(t))− j(ū(t))] = liminf
k→∞

1
‖ūσk − ū‖L2(Q)

[‖ūσk(t)‖L1(Ω)− γ]6 0.
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It remains to prove that j′(ū(t);v(t)) = 0 if t ∈ I+γ . The inequality j′(ū(t);v(t))6 0 for t ∈ I+γ implies

−
∫

Ω
+
ū(t)

vdx+
∫

Ω
−
ū(t)

vdx>
∫

Ω 0
ū(t)

|v|dx. (4.19)

Using (2.15), (2.18), and (4.19) we obtain

0 = J′(ū)v =
∫

Q
(ϕ̄ +κ ū)vdxdt =−

∫
Q

µ̄vdxdt =−
∫

I+γ

∫
Ω

µ̄vdxdt

=−
∫

I+γ

[∫
Ω

+
ū(t)

‖µ̄(t)‖L∞(Ω)vdx−
∫

Ω
−
ū(t)

‖µ̄(t)‖L∞(Ω)vdx+
∫

Ω 0
ū(t)

µ̄vdx

]
dt

>
∫

I+γ

∫
Ω 0

ū(t)

[
‖µ̄(t)‖L∞(Ω)|v|− µ̄v

]
dxdt.

This inequality is possible if and only if ‖µ̄(t)‖L∞(Ω)|v|= µ̄v in Ω 0
ū(t)× (0,T ). Now, this latter identity

and the fact that µ̄(t) = 0 if t 6∈ I+γ we infer

0>
∫

I+γ
‖µ̄(t)‖L∞(Ω) j′(ū(t);v(t)dt =

∫
I+γ
‖µ̄(t)‖L∞(Ω)

[∫
Ω

+
ū(t)

v(t)dx−
∫

Ω
−
ū(t)

v(t)dx+
∫

Ω 0
ū(t)

|v(t)|dx

]
dt

=
∫

I+γ

∫
Ω

µ̄vdxdt =
∫

Q
µ̄vdxdt =−J′(ū)v = 0,

which implies that j′(ū(t);v(t)) = 0 for almost every t ∈ I+γ . This concludes the proof of v ∈Cū. �
Proof of Theorem 4.3. Let us take k0 big enough so that (3.7) and (4.12) hold. The goal is to prove

that (4.11) is not possible. To this end, we take uσk ∈ Uσk,ad as in the proof of Lemma 4.2. Using the
optimality of ūσk we get

06 J′(ūσk)(uσk − ūσk)

= J′(ūσk)(ū− ūσk)+ J′(ū)(uσk − ū)+ [J′(ūσk)− J′(ū)](uσk − ū)+ [J′σk
(ūσk)− J′(ūσk)](uσk − ūσk).

We also have that J′(ū)(ūσk − ū)> 0. Adding these two inequalities and using (4.12) we infer

1
2

min{λ ,κ}‖ūσk − ū‖2
L2(Q) 6 [J′(ūσk)− J′(ū)](ūσk − ū)6 J′(ū)(uσk − ū)

+ [J′(ūσk)− J′(ū)](uσk − ū)+ [J′σk
(ūσk)− J′(ūσk)](uσk − ūσk) = Ik,1 + Ik,2 + Ik,3. (4.20)

To estimate Ik,1 we use the property

‖uσk − ū‖H1(Q)∗ 6C1(h2
k + τ

2
k )‖ū‖H1(Q); (4.21)

see Casas et al. (2018). With this inequality we get

|Ik,1|6 ‖ϕ̄ +κ ū‖H1(Q)‖uσk − ū‖H1(Q)∗ 6C1(h2
k + τ

2
k )‖ϕ̄ +κ ū‖H1(Q). (4.22)

For the estimate of Ik,2 we use the mean value theorem, the convergence ūσk → ū in Lr(0,T ;L2(Ω)),
and (4.14) to get

|Ik,2|= |J′′(ū+ρk(ūσk − ū))(uσk − ū, ūσk − ū)|6C2‖uσk − ū‖L2(Q)‖ūσk − ū‖L2(Q)

6C3(h+ τ)‖ūσk − ū‖L2(Q). (4.23)
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To deal with Ik,3 we apply (2.9) and (3.5) to deduce

Ik,3 =
∫

Q
(ϕ̄σk −ϕūσk

)(uσk − ūσk)dxdt +κ

[
(ūσk ,uσk − ūσk)σk −

∫
Q

ūσk(uσk − ūσk)dxdt
]
. (4.24)

With (3.7) and (4.14) we obtain∣∣∣∣∫Q
(ϕ̄σk −ϕūσk

)(uσk − ūσk)dxdt
∣∣∣∣6 ‖ϕ̄σk −ϕūσk

‖L2(Q)‖uσk − ūσk‖L2(Q)

6C4(h2
k + τk)

(
‖uσk − ū‖L2(Q)+‖ū− ūσk‖L2(Q)

)
6C5(h2

k + τk)(hk + τk)+C4(h2
k + τk)‖ū− ūσk‖L2(Q). (4.25)

The last two terms of (4.24) cancel if Uσk =Uσk,0. In the case Uσk =Uσk,1, (3.4), (4.17), (4.14), and
(4.21) yield

(ūσk ,uσk − ūσk)σk −
∫

Q
ūσk(uσk − ūσk)dxdt 6

∫
Q

ūσk(ū−uσk)dxdt

=
∫

Q
(ūσk − ū)(ū−uσk)dxdt +

∫
Q

ū(ū−uσk)dxdt

6 ‖ūσk − ū‖L2(Q)‖ū−uσk‖L2(Q)+‖ū‖H1(Q)‖ū−uσk‖H1(Q)∗

6C6(hk + τk)‖ūσk − ū‖L2(Q)+C7(h2
k + τ

2
k )‖ū‖H1(Q). (4.26)

The estimates (4.24)-(4.16) lead to

|Ik,3|6C8(h2
k + τ

2
k )+C9(hk + τk)‖ūσk − ū‖L2(Q). (4.27)

Finally, (4.20), (4.22), (4.23), and (4.27) imply

‖ūσk − ū‖L2(Q) 6C10(hk + τk) ∀k > k0,

which contradicts (4.11). �

5. Numerical Examples

Let Ω be (0,1)n, n = 1 or n = 2, A =−∆ , a≡ 0, y0 ≡ 0, T = 1, κ = 10−4, and

yd(x, t) = exp(−20[(x−0.2)2 +(t−0.2)2])+ exp(−20[(x−0.7)2 +(t−0.9)2]) if n = 1,

or

yd(x, t) = exp(−20[(x1−0.2)2 +(x2−0.2)2 +(t−0.2)2])

+exp(−20[(x1−0.7)2 +(x2−0.7)2 +(t−0.9)2]) if n = 2.

Notice that all the results obtained in the paper are also valid for dimension n = 1. For dimension 1,
these data correspond to the problem presented in (Casas et al., 2017a, Remark 2.11) and also studied
in Casas et al. (2017b, 2018). The problem in dimension 2 was introduced in Casas et al. (2018).

To discretize the problems, we use two families of uniform partitions in space and time, with hi =
2−i√2n−1 and τ j = 2− j, and denote σi, j = (hi,τ j). The discrete problems are solved using a projected
gradient algorithm with the Barzilai-Borwein strategy as line search; see (Barzilai & Borwein, 1988, eq.
(5)). Projection strategies onto the L1-ball can be found in Condat (2016).
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5.1 Sparsity patterns

In Figure 1 we show the solutions obtained for the one-dimensional problem as the bound parameter γ

varies in {0.5,1,2,3}. To discretize the problem we use the control space Uσ ,1 at the discretization level
i = j = 10. We also plot at the left hand side of the graph the norm in L1(Ω) of ūσ (·, t) for all t ∈ [0,1],
(this norm is computed with the approximation jh(uh, j)). We use a dark green line for the norm and a
magenta line for the bound. Notice that when the control constraint is attained, the solution exhibits a
sparsity pattern that varies with time. We have coloured in grey the zero-level set of ūσ to emphasize
this behaviour. For γ = 0.5 and γ = 1, we have that the control constraint is active for all t ∈ [0,1] (green
line and magenta line coincide). For γ = 2, we have that ‖ūσ (·, t)‖L1(Ω) < γ if t ∈ J1 = (0.4814,0.5723)
and if t > 0.9980; for γ = 3, ‖ūσ (·, t)‖L1(Ω) < γ if t ∈ J2 = (0.4502,0.6182) and if t > 0.9971. Black
lines are drawn to separate these regions. As soon as the norm constraint is not active we do not observe
sparsity, in the sense that there are no subintervals in space where the control is identically zero. This
behavior is consistent with the optimality condition expressed in (2.18).

The sparsity behavior obtained by means of the constraint imposed by u ∈Uad should also be com-
pared to sparsity phenomena implied by non-smooth cost-functionals, as considered in Casas et al.
(2017a), for example. The functional in that paper, which is closest to the situation of the present one is
given by u→‖u‖L2(0,T ;L1(Ω)), ie. it considers the L2-norm in time, compared to the L∞-norm used here.
In both cases the L1 norm in space is used. In (Casas et al., 2017a, Figure 1) a numerical result with
the same desired state as in Figure 1 of the present paper is presented. It lies in the nature of these two
different sparsity enhancing approaches, that the solution in (Casas et al., 2017a, Figure 1) also exhibits
intervals of sparsity in the regions corresponding to J1,J2.

In Figure 2 we show, at nine different instants of time, the solution obtained for the two-dimensional
problem, using the control space Uσ ,0 at the discretization level i = j = 7. The control constraint
parameter is set to γ = 2. The norm of the optimal control in L1(Ω) is also reported at the indicated time
instances. Again, the solution exhibits a sparsity pattern that varies with time, and there is not sparsity
if the control constraint is inactive. The subdomains where ūσ (x, t) vanishes are coloured in grey.

5.2 Convergence rates

We show convergence rates for the problem in dimension 1. In this case we take the bound γ = 4. Since
we do not have the analytic solution, we denote I = 13 and take as reference solution the one obtained
for σI,I .

Three tests are carried out for each of the three discretizations of the control proposed in Section
3.2. In the first test, we take hi = τi, i = 8,9,10; in the second one, we take a fixed fine discretization
in time given by τI , I = 13, and solve for hi, i = 8,9,10; finally, we fix the discretization parameter in
space to hI , I = 13, and solve for τi, i = 8,9,10. We measure the experimental order of convergence
(EOC) between two consecutive simultaneous refinement levels by setting

EOC = log2 ‖ūσI,I − ūσi−1,i−1‖L2(Q)− log2 ‖ūσI,I − ūσi,i‖L2(Q),

and analogously for the refinement in space and in time, respectively.
Results are shown in Table 1 for simultaneous refinement, Table 2 for refinement in space, and Table

3 for refinement in time. Except for a superconvergence phenomenon in the space discretization when
we use continuous piecewise linear in space approximations of the control, all the experimental results
are as predicted in Theorem 4.3.
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FIG. 1. 1D problem. Continuous piecewise linear approximation in space, piecewise constant approximation in time, of the
optimal control for different values of γ . The norm in L1(Ω) at every instant of time is also shown with a dark green line located
on the plane x =−0.1 together with the magenta line z = γ . In grey, the zero-level set of ūσ .

FIG. 2. 2D problem. Piecewise constant approximation of the optimal control. In grey, the level sets ūσ (·, t j) = 0.



28 of 30 REFERENCES

Uσ ,0 Uσ ,1
hi = τi ‖ūσI,I − ūσi,i‖L2(Q) EOC ‖ūσI,I − ūσi,i‖L2(Q) EOC

2−8 2.01E−1 − 1.76E−1 −
2−9 1.02E−1 0.98 8.93E−2 0.98
2−10 5.11E−2 0.99 4.49E−2 0.99

Table 1. Experimental order of convergence. Simultaneous refinement in space and time.

Uσ ,0 Uσ ,1
hi ‖ūσI,I − ūσi,I‖L2(Q) EOC ‖ūσI,I − ūσi,I‖L2(Q) EOC

2−8 9.86E−2 − 1.10E−02 −
2−9 4.93E−2 1.00 3.87E−03 1.51
2−10 2.45E−2 1.01 1.34E−03 1.53

Table 2. Experimental order of convergence. Refinement in space.

Uσ ,0 Uσ ,1
τi ūσI,I − ūσI,i EOC ūσI,I − ūσI,i EOC

2−8 1.76E−1 − 1.76E−1 −
2−9 8.93E−2 0.98 8.93E−2 0.98
2−10 4.49E−2 0.99 4.49E−2 0.99

Table 3. Experimental order of convergence. Refinement in time.
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AKMAN, T., YÜCEL, H. & KARASÖZEN, B. (2014) A priori error analysis of the upwind symmetric
interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady
convection diffusion equations. Comput. Optim. Appl., 57, 703–729.

BARZILAI, J. & BORWEIN, J. M. (1988) Two-point step size gradient methods. IMA J. Numer. Anal.,
8, 141–148.

BRENNER, S. C. & SCOTT, L. R. (2008) The mathematical theory of finite element methods. Texts in
Applied Mathematics, vol. 15, third edn. New York: Springer.

CARSTENSEN, C. (1999) Quasi-interpolation and a posteriori error analysis in finite element methods.
M2AN Math. Model. Numer. Anal., 33, 1187–1202.

CASAS, E., HERZOG, R. & WACHSMUTH, G. (2012) Approximation of sparse controls in semilinear
equations by piecewise linear functions. Numer. Math., 122, 645–669.

CASAS, E., HERZOG, R. & WACHSMUTH, G. (2017a) Analysis of spatio-temporally sparse optimal
control problems of semilinear parabolic equations. ESAIM Control Optim. Calc. Var., 23, 263–295.



REFERENCES 29 of 30
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