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The numerical approximation of an optimal control problem governed by a semilinear parabolic equa-
tion and constrained by a bound on the spatial L!-norm of the control at every instant of time is studied.
Spatial discretizations of the controls by piecewise constant and continuous piecewise linear functions
are investigated. Under finite element approximations the sparsity properties of the continuous solutions
are preserved in a natural way using piecewise constant approximations of the control, but suitable nu-
merical integration of the objective functional and of the constraint must be used to keep the sparsity
pattern when using spatial continuous piecewise linear approximations. We also obtain error estimates
and finally present some numerical examples.
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1. Introduction

In this paper, we study the numerical approximation of the optimal control problem

uelyy

P) inf J(u) = % /Q (1) = ya(x,1)) dedr + 5 /Q u(x, 1) dedr,
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where Kk >0, 0 = Q x (0,T), with Q C R", n =2 or 3, a convex polygonal/polyhedral domain with
boundary I and 0 < T < +oo is fixed,

Usa = {u € L7(Q) : [[u(t)|| 1) < yforaa. t € (0,7)}

with 0 < ¥ < +4-oco. Further y, is the solution of the semilinear parabolic equation

dy .
{ a—t—l—Ay—i—a(x,t,y)—u inQ=Qx(0,7), (1.1)
y=0onX =TI x(0,T), y(0)=ypin Q.

with .
Ay=— Z axj-(aij(x)ax,-)))'
i,j=1
Precise assumptions on the operator A and the nonlinearity a are given below.

This problem was studied in Casas & Kunisch (2021), where the authors proved existence of a
solution, and obtained first and second order optimality conditions. As it is emphasized in that paper,
there are two special difficulties in the study of (P). The first one is given by the fact that, in order
to be able to deal with strong non-linear terms such as a(x,#,y) = ag(x,t) exp(y) with ag € L*(Q), the
framework for the control space cannot be L?(Q), but should be L7(Q) with ¢ large enough. This implies
that the usual techniques to prove existence of a solution fail, rather, a truncation argument on a is used
for this purpose. The second difficulty is the non-differentiability of the constraint. First order optimality
conditions are obtained using the convexity of U,;. Second order optimality conditions require a careful
setting of the cone of critical directions in order to obtain sufficient conditions with a minimal gap with
respect to the necessary ones. With the aid of first order optimality conditions, sparsity properties of the
optimal control are derived.

There are numerous references regarding the numerical analysis of problems governed by partial
differential equations. Not trying to be exhaustive, and considering only distributed optimal control
problems governed by parabolic equations, we can cite Meidner & Vexler (2011) (linear equation, no
constraints), Chrysafinos & Karatzas (2012) (semilinear equation, but only dimension 2 and not strong
non-linear terms, no constraints), Akman et al. (2014) (discontinuous elements for linear convection-
difussion), Leykekhman & Vexler (2013); Gong et al. (2014); von Daniels et al. (2015) (linear, pointwise
control-constraints), Huang et al. (2018), (space-time spectral discretization), Casas et al. (2017b, 2018)
(semilinear, sparsity-promoting term in the functional, no constraints), Casas et al. (2019) (semilinear,
pointwise control-constraints, no Thikonov regularization), Christof & Vexler (2021) (linear, state con-
straints), Hoppe & Neitzel (2020) (quasilinear, pointwise state constraints).

The only reference that we have been able to find with a pointwise constraint in time on the norm of
the control is Gunzburger & Manservisi (1999). In that reference, the authors impose the differentiable
constraint ||u(,t)|\i2 @ S 1. However, they do not address the obtention of error estimates for the
discrete problems.

Our objectives in this paper are to discretize (P) in such a way that the sparsity properties are pre-
served to prove convergence of the discrete solutions to the solutions of the continuous problem, and
to obtain error estimates. To discretize the state equation, we use a discontinuous Galerkin scheme,
computationally equivalent to the implicit Euler method. For the discretization in space of the state and
the adjoint state, continuous piecewise linear finite elements are used, while for the control we study
both piecewise constant and continuous piecewise linear approximations. The use of piecewise constant
elements leads in a natural way to sparsity properties of the discrete optimal control consistent with
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those obtained for the continuous problem, but a straightforward discretization of (P) using continuous
piecewise linear space-approximations of the control, may result in a loss of the sparsity properties due
to the use of a mass matrix. To overcome this difficulty, we discretize the norm in LP(Q), p = 1,2 with
the help of the lumped mass matrix and use Carstensen’s quasi interpolation operator. A similar tech-
nique for problems with sparsity-promoting terms in the functional was used in Casas et al. (2012) for a
problem governed by a semilinear elliptic equation and in Casas et al. (2018) for a problem governed by
a semilinear parabolic equation; this technique is also found in the thesis by Pieper (2015) and in Rosch
& Wachsmuth (2017).

The plan of this paper is as follows. In Section 2 we recall some results from Casas & Kunisch
(2021) concerned with the continuous problem. In Section 3 the problem is discretized and the sparsity
properties of the discrete solution are established. In Section 4 we prove convergence and obtain error
estimates. Finally, in Section 5, numerical examples are presented to illustrate the results obtained in
the paper.

2. Assumptions and preliminary results

We make the following assumptions along this paper.

Assumption 1-  CR", n =2 or 3, is a convex polygonal/polyhedral domain, and 0 < 7' < oo is fixed.
I" denotes the boundary of Q. The coefficients of the operator A satisfy: a;; are Lipschitz functions in
Q forevery 1 <i,j <n, and

n
M€ < Y aij(x)&&; VEER" andforaa. xeQ (2.1
ij=1

for some A4 > 0. For the initial state we suppose that yg € Hj (2) N C%%(Q), where C%*(Q) denotes
the space of a-Hélder continuous functions in Q with « € (0, 1].

Assumption 2- We assume that a : O x R — R is a Carathéodory function of class C? with respect to
the last variable satisfying the following properties:

0
3C, eR: a—;l(x,ny) >C, Wy eR, (2.2)
; 4
a(-,-,0) € L'(0,T;L*(Q)), with 7 > - (2.3)
dla .
VM >03C,p >0 W(x,t,y) <CumV)y| <Mand j=1,2, (2.4)
Vp >0 and VM > 0 J& > 0 such that

2 2

a 0%a (2.5)
Tyz(anI) - Tyz(x’f’yz)

<p Vyil,y2| < M with |y; —y| <€,

for almost all (x,7) € Q.
Assumption 3- In the control problem (P), we assume that k > 0, ¥ > 0, and y; € L(0,T;L*(R2)).
As usual we denote H>'(Q) = L*(0,T; H*(Q) NH(Q))NH'(0,T;L*(2)). Then, we have the
following result.
THEOREM 2.1 Under under Assumptions 1 and 2, for every u € L"(0,T;LP(Q)) with 1 + 35 < 1and

r,p > 2 there exists a unique solution y, € C%(Q) NH>!(Q) of (1.1) with B € (0, ). Moreover, the
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following estimate holds

Vullcos () + I1yullaz1 o) < 0 ([lull ro,r:L0(2)) + Mio), 06
1Vull=(0,7:02(2)) + Hyu”LZ(o,T;Hé(Q)) < C(||”HL2(Q) +May) '

for a constant C and a monotone non-decreasing function 7 : [0,e0) — [0,0) with 17(0) = 0 independent
of u, and

Mio = [la(-,+ 0) |70, 7:02()) + Vol cow o) + ”yO”H(}(-Q)’
Mo = lal-,-,0)ll12(0) + [Iyoll2()-

The existence of a unique solution of (1.1) in the space L*(0,T; HJ (22)) NL*(Q) as well as the es-
timates in L*(0,7;L*(Q)) and L?(0,T; H; (£2)) were proved in Casas & Kunisch (2021). The H>!(Q)
regularity is a well known consequence of the convexity of £ and the H(% () regularity of yo. The
reader is referred to Ladyzhenskaya et al. (1988, Chap. I1I-§10) or Di Benedetto (1986) for the OB (Q)
regularity.

Taking p =2 and r € (ﬁ,«xﬂ we have that %4—2’—‘ < 1 and r > 2. Then, from Theorem 2.1 we
deduce that the mapping G : L' (0, T; L*()) — H>'(Q) NL=(Q) given by G(u) =y, is well defined.
Further, we have the following differentiability properties.

THEOREM 2.2 The mapping G is of class C2. For u,v,vi,vy € L(0,T;L*(Q)) the derivatives z, =
G'(u)v and z,, ,, = G"(u)(v1,v2) are the solutions of the equations

0z da ;

atv +Az, + jy(x,t, Yu)zy =V in Q, 2.7
zZ=0o0nZX, z,(0)=0inQ,

dz da d%a i

S AT b 50 F G5 ()2, =0 n € 28)

Zy, =00nZ%, z, ,,(0)=0inQ

where z,, = G'(u)v;, i =1,2.

This theorem was proved in Casas & Kunisch (2021) with a change in the range of G, namely
G:L(0,T;L*(Q)) — L*(0,T;HN(Q))NH'(0,T;H'(2)) N L*(Q). The proof given there can be
adapted using the extra regularity of the data of the state equation and Theorem 2.1.

Theorem 2.2 along with the chain rule leads to the following differentiability properties of the cost
functional J.

COROLLARY 2.1 If r > ﬁ, then J : L(0,T;L*()) — R is of class C? and its derivatives are given
by the expressions
Iy = / (@ + Ku)vdxds, 2.9)
Qo

. 32
P2 = [ (1= G5 30)e 3, + Rviva] drdr, 2.10)
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where z,, = G'(u)v;, i = 1,2, and @ € C%F(Q) NH?>!(Q) is the solution of the adjoint state equation

1eX0) N da o :
_W—’—A (P+87y(xata)’u)q)—yu_)’d inQ, (2.11)

@=0o0nZX, o(T)=0in L,

n
withA*gp = — Z dy;(a;i(x)dx; @) the adjoint operator of A
ij=1
Concerning the control problem (P), the following theorem and corollaries follow from Casas &
Kunisch (2021).

THEOREM 2.3 There exists at least one solution of (P). Moreover, fog every IOCE_ll minimizer & in
the L'(0,T;L?(2)) sense with r > ;% there exist y € H>!(Q) N C%%(Q0), ¢ € C(Q)NH*'(Q), and
@l € L*(Q) such that

ay .
{ %—FA)_)-F(Z()C,I,}_/):IZ inQ, (2.12)
F=0onZ, 5(0) =y inQ,
—@+A*‘+@( 6LY)P=3—ys inQ
at (p ay x? 3y (Pfy yd m ) (213)
¢=0onZX, o(T)=0inQ,
/ﬂ(ufﬂ)dxdlgo Yu € Uy, (2.14)
Q
o+xia+p=0. (2.15)

Let us denote by Projp, : L*(2) — ByNL*(2) the L*(L2) projection, where By = {v € L'(Q) :
IVllzi@) < 7}

COROLLARY 2.2 Let i, @, and fi satisfy (2.12)—(2.15) and assume that it € U,,. Then, the following
properties hold

/ A(1)(v— () dx <O Vv € By and foraa. 1€ (0,T), (2.16)
Q

i(t) = Projp, ( — qu)(t)) fora.a.t € (0,T), (2.17)
G, (6, 1) = G| |2 (e, )] for aa. (1) € O,
if [|a(1)| 1) < vthen fi(r) =0in 2 a.e. in (0,7),
if [|a(t)|| 1) = vand fi(t) #0in €,
then supp(ie(t)) C {x € Q : [A(x,2)| = |A(1)| =) }-

(2.18)

COROLLARY 2.3 Let i € U,y NL7(R) satisfy (2.15) and (2.18). Then, the following identities are
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fulfilled
_ | _ _
(1) == sign(@(x,1)) (|@(x,0)| — || (1) ]| () "
1 _ _ - _ _ +
=—K{[<p<x,r>+||u<r>m>} + 60 = 180 =0 | } (2.19)

Moreover, the regularity i € H'(Q) and ft € H'(Q) hold.

We finish this section by considering the second order optimality conditions. To this end we intro-
duce some notation. We consider the Lipschitz continuous and convex mapping j : L' () — R defined
by j(v) = [[v[[11(@)- Its directional derivative is given by the expression

j'(u;v):/mv(x)m v(x)dx+/m|v(x)\dx Vv € L'(Q), (2.20)

Qi
where
QF={xeQ:ukx)>0}, Q, ={xeQ:u(x) <0}and Q) =Q\ (QUQ,).
Given an element &t € U, satisfying the first order optimality conditions (2.12)—(2.15), set

L={te(0,T): j(a(r))=v} and I ={tel,:fi(t)#0in Q}.
Now, we define the cone of critical directions associated with iz
=0 ifrelf
o 2 72 T =0\, v
Ca = {VEL (Q) : J'(iW)v =0 and (u(t),v(t)){ <0 itrenu, }
Then, we have the following theorem, whose proof can be found in Casas & Kunisch (2021).

THEOREM 2.4 Let i be a local solution of (P) in the L'(0,T;L*(R2)) sense with r > 447”. Then, the

inequality J” (iZ)v> > 0 holds for all v € C;. Reciprocally, if i € U,y satisfies the first order optimality
conditions and the second order condition J” (i1)v? > 0 Vv € Cz \ {0}, then there exist § > 0 and € > 0
such that

o
J(zz)+§||u—a||§2(Q) <J(u) Vu € Uy NBe(a), .21)
where B (i1) = {u € L(0,T;L*(2)) : ||u—ll (0 7.12(0)) < €}-
Given s > 0 we define the extended cone

s _ 2000 117 @@ v) <slvlizg) ifrely,
G= {V ELY(Q): [ (@)v| < S”V”LZ(Q) and { Fa(t)v(e)) < S||V||L2(Q) ifr e L\ I, }

Then, we have the following result.

THEOREM 2.5 Let it € U, satisfy the first order optimality conditions (2.12)—(2.15) and the second
order condition J”(ii)v? > 0 ¥v € C; \ {0}. Then, for every r € (3%, 0| there exist strictly positive
numbers €, s, A such that

J"(u)v? > /1||v||§2<Q) Yv e CS and Vu € Be (i), (2.22)

where Be (it) denotes the L (0, T;L*(2)) closed ball.
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3. Numerical approximation

In this section we study the numerical discretization of (P) by discontinuous Galerkin _ﬁnite element
methods. To this end we consider a quasi-uniform family of triangulations {Kj },~o of €, cf. Brenner
& Scott (2008, Definition (4.4.13)), and a quasi-uniform family of partitions of size 7 of [0,T], 0 =
fo <t <---<ty, =T. We will denote by N}, and Ny, the number of nodes and interior nodes of the
triangulation Ky, I; = (tj_1,¢;), Tj =tj —tj—1, T = max < j<n, Tj, and o = (I, 7). Following Meidner &
Vexler (2018) we make the following assumptions.
Assumption 4- The next properties hold

361, 6, > 0 such that 7; > 9112V]—1 ..N¢,

dp >0suchthat Tt < pt1; Vj=1,...Ng,

365,64 > 0and co 7,Cq.r > 0 such that cq 7h% < T < Co rh?,

T|C,4| < 1, where C, satisfies (2.2),

where the constants are independent of 7 and 4. Observe that 65 and 6, can be arbitrarily large and
small, respectively. Hence, it is not a strong restriction.

3.1 Approximation of the state equation.

Now we consider the finite dimensional spaces
Y, ={ym €C(Q): yyx €PI(K) VK€K and y,=0onT},

= {yU eLz(OaT’Yh) :yG‘Ij S Yh VJ: 17"'7NT}'

The elements of % can be written as

Nz Nlh
yG*Z)’h/%} ZZYz/eXJa
Jj= Jj=li=

where y, ; € Y, for j=1,...,Ng,y;j €Rfori=1,...,Nyyand j=1,...,Ng, {e,-}iv"f is the nodal basis

. o N
associated to the interior nodes {x;},}

of the interval I; = (t;_1,1;).
For every u € L*>(Q), we define its associated discrete state as the unique element ys (1) € %5 such
thatfor j=1,...,N;

of the trlangulatlon and y; denotes the characteristic function

/(yhAj_yh,j—l)zhdx+ij(yh,jvzh)+//a(xvtvyh,j)zhdx‘h:// uzpdxdt Nz € Yy,
Q 1;/Q 1;/Q (3.1
yn0 = Puyo,

where P, : L?() — Y}, denotes the L? projection operator, and b : H'(Q) x H'(Q) — R is the
bilinear form

/ Z a;j0y,yox,;zdx Vy,z € H'(Q).
1]1

From a computational point of view, this scheme coincides with the implicit Euler discretization
of the system of ordinary differential equations obtained after spatial finite element discretization. The
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proof of existence and uniqueness of a solution of (3.1) is standard by using Brouwer’s fixed point
theorem and the assumption 7|C,| < 1. Moreover, the system (3.1) realizes an approximation of (1.1) in
the following sense.

THEOREM 3.1 Let u € L’(O,T;LZ(Q) hold with r > 4%,1. Under the assumptions 1, 2, and 4, there
exist g > 0, T > 0, & > 0, C > 0, and a monotone non-decreasing function 1 : [0,00) — [0, 00)
independent of u such that for every T < 7p and i < ho

yu = Yo (W)l 2(0) < C(ullr o 722(0)) +Mr0) (7+ 1), (3.2)
yu = yo () llz=(0) < M (1l (0 7:22(0)) + M) [ Tog PR, (3.3)
where M, is taken as in Theorem 2.1.

Proof.  For the proof of (3.2) the reader is referred to (Meidner & Vexler, 2018, Corollary 6.2). To
prove (3.3) we use (Meidner & Vexler, 2018, Theorem 6.5) to deduce the existence of a constant C;
independent of u such that

T2
1yu = yo (W)l 1=(0) <C1\logh|(log?) Iyu =26 ll=(0) Vo € Y-

Let us select a convenient z5. We denote by P; the L?(0, T') projection operator
Nf 1 1
Prw= —/wtdl i YwelL (0,T).
T j:z,l e (t)dry; (0,7)

It is obvious that || Pez[|z=(g) < ||z|z=(g) for every z € L(Q).
Nip

We also set IT, : Cy(2) — ¥, the interpolation operator IT,z = Zz(xi)e,-. Then, we take z5 =
i=1
P IT,y,. From (2.6) we get

v = 26 ll=(0) < I1Vu — Peyullz=(0) + [1Pe (Vu — IThyu) 2= ()
< yu _P‘E)’MHL"“(Q) +lyu— HhYuHL‘”(Q)
< (PP +(n+ D) yullcos gy < (2P + (n+ DR (lull 0.7:22(0)) +Mro0) -

Using the assumption C_Q’Th93 <1< C971h94 and taking & = min{1, 64 } 3 we deduce (3.3). O

3.2 Approximation of the control problem.

We will consider two different ways to discretize the space of controls:
I - Piecewise constant controls. We introduce the spaces and sets

U, = Uh70 = {uh S LOO(Q) DUp| = UK €R VK € Kh},
Byy={up="Y uxxx €Upo: Y, |Klluk| <7},
KeK,, KeK,,
Nz
Ug = Uo-’() = {uc = Z UpiXj: Un,j S Uh70 fOI'j: 1,... ,Nr},
=1
Ug’ad = {u(; S Ug_’() TUpj € Bh# for j = 1,...,N1}7



ERROR ESTIMATES FOR A CONTROL PROBLEM 9 of 30

where yx and yx; denote the characteristic functions of the sets K and /;, respectively. It is immediate to
check that U 4g = Ug MUy C Uyg-

II - Piecewise linear controls. In this case we take
U, = Uh,l = {I/lh € C(Q) SUp|g S @l([{) VK € Kh},

Ny Ny
Bhy={up=Y uie; €Upy: ) |uil /Qeidx <7},
i i

Ne

Us =Us = {us = Z”h.jlj tup € Upy for 1 <j=1,...,Ni},
J=1

Uo‘,ad = {Mo- EUO-J TUpj GB;M/ fOI‘j: 1,...,Nf},

where &2 (K) denotes the space of the polynomials on K of degree < 1. From the inequality

Np
ol = [ | X mer
2 |i=1

Nh g
dx < Z |u;] / eidx
=1 /2

we infer that U 49 C Uyg.

We observe that Uy C L*(0,T;Uj,) in both cases and every element us € Ug can be written in form

Nt

Y Y ukjxxx; if Us=Usy,

Ne j=1K€K,

U = ) UpiXj=

j=1 Ny Ny

Z Zuiﬁje,’)(j if Ug = UG,1~
j=li=1

Now, we formulate the discrete control problem
. 1 2 K 2
(Ps) inf Js(ug) = 3 /Q [ve(ug) —ya|” dxdr + EHMGHG’

us€UG 4q

where yg (ug) is the solution of (3.1) for u = us and

Nz
2 2
luslls =Y. Tjllun,lli
=

with || - ||, the norm in U}, defined by

P
™
=

S
NI\)
~
=
S
|

S
2

(||| =
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‘We notice that

Yl e = it Uy = Ui,
KEKh K

= A’ = l 1 h h h l’l,l

where we have used that 0 < ¢;(x) < 1 and Z?’:”I ei(x) =1in Q.
We also introduce ||ug || = \/ (Us,Us ), Where the scalar product (-, )¢ in Ug is defined by

lunll72 ) = (34)

Nz
Ny (Mg,vg)Lz(Q) = Z Z ‘L'j|K‘MK1jVK.j if[UO- = UG’O’

i=1KeK
(M(y,VG)G = Z T](uh,j7vh,j)]’l = Nz Ny ; o

= PP (/Q ei(x) dx) Ui jVij if Us =Us,1-

j=li=1

Due to the compactness of Uy 44 in both definitions and the continuity of J, we infer the existence
of at least one solution for (Ps).
Analogously to Corollary 2.1 we have the following differentiability result.

THEOREM 3.2 The functional Js : Us — R is of class C? and its first derivative is given by the
expression

Jo(ug)ve = /Q%vcdxdﬂr K(us,vo)o, (3.5)

where g (1) € Y is the solution of the adjoint state equation: for j = Ng,...,1

da
/Q((Ph,j_(Ph,j+1)ZI1dx+ij(zha(Ph,j)+/1j/9jy(xvtaYG(uG))¢h,thdth

:/I /Q (vo(us) —ya)zndxdt  Nzj € Yy, (3.6)
7

O +1=0.

Now we compare the continuous and discrete adjoint states.

THEOREM 3.3 Letu € L"(0,T;L*(2) hold with r > ﬁ, and let us denote by ¢, and @ (1) the solutions
of (2.11) and (3.6) with ys(us) replaced by ys(u). Under the assumptions 1-4, and taking A and 1,
as in Theorem 3.1, there exists a monotone non-decreasing function 1; : [0,00) — R independent of u
such that for every T < 79 and h < hg

100 = 96 ()l 12(0) < M2 (Iullr0,7:22(0)) +Mr0) (7 +12), (3.7

<
100 — 9o ()l 20y < M2 (1ullr (0,722 () + Mr0) | Tog b A% (3.8)

Proof. Let y, € C%B(Q)NH?>'(Q) denote the solution of the adjoint state equation

ov, ., da B o
- ot +A IVu_’_aiy(xvtayG(u))wu_yG(u) Yd ana (39)

y,=0onZX, y,(T)=0in Q,
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and set @, — @ (u) = (@, — ¥,) + (Y, — @5 (1)) = e, + &,. Subtracting the equations (2.11) and (3.9)
we get

de, ., da B da da .
ot +Ae, + aiy(xata)ﬁz)eu = (yu _yc(”)) + aiy(xﬂtyy(i(”)) - ?y(xahyu)} Y, in Q, (3.10)

e,=0onX, ¢,(T)=0in Q.

Setting M = ||y, ||=(p) + I and taking Ao and 7p small enough, we infer from (3.3) that ||ys () || 1= (0) <
M for every 6 = (h,t) with & < ho and T < 7p. Then, from (3.9) it follows with (2.4) that

1ullz=(0) < C1 (Il ()ll=(0) + IVallr0.7:22(2))) < CtM + Iyall o720 - (.11)

From (2.4), (3.3), and the mean value theorem we obtain

da da
aiy(xvtvyﬁ(”)(x’t)) - aiy(xvtvyu(xvt)) < Ca,M|y0'(”)(xvt) _yu(xvt”' (3-12)
From (3.10), (3.11), (3.12), and (3.2), we infer
leullr2(g) < Co[1 4 CapCr (M + [[yallp0,7:22(00)) ] 1o () = yull 12(0)
< CuC(ulliro.ra2(0)) +Mio) (T+1). (3.13)

The constant Cy; is a monotone non-decreasing function of M.
Let us estimate &,. Since @g(u) is the solution of the discretization of the linear equation (3.8), the
classical error estimates yield the existence of a constant C3 such that

Iz < G2+ 1) (Ive @)l 20 + vl 2 0)- (3.14)

Hence, (3.13) and (3.14) along with (2.6) lead to (3.7).
To prove (3.8) we first modify (3.13) as follows

leullz=(g) < Ca[1 4 CamCr (M + |1yallpi0.7:22(0))) ] 1o () = yull=(g)
<Cym (HMHU(O,T;LZ(Q)) —|—Mf,0)|]0gh|3h50, (3.15)

Finally, using the linearity of the equations satisfied by y,, and arguing as for the estimate (3.3) we
infer

1ull2(0) < C3|logh*h®.

The last inequality and (3.15) imply (3.8). O

3.3 First order optimality conditions.
The goal of this subsection is to prove the first order optimality conditions and their consequences.

THEOREM 3.4 Let iig be a local minimum of (Ps). Then there exist V5, s € ¥ and il € Uy such
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that
/Q(y_h’j_y_h*j*')zhdx+be(y_h,jazh) +/Ij/Qa()C,l‘,)_’h,j)Zhdxdt

:/I/Qﬁh,jzhdxdt Vzp €YpandVj=1,...,Ng, (3.16)
Ir0 = Puyo, !

_ _ _ da _
/Q(‘Ph,j_(Ph,j+l)Zhdx+ij(Zha(Ph,j)+/Ij/_ojy(%%)’c(”@)@z,ﬂhdxm

:/I /Q()_’h,j_)’d)zhdxclt Vzn €Yy and Vj=Ng,..., 1, (3.17)
J
Onn.+1=0,
(o s —lig)e <O Vug € Us ad; 3.18)
l .
ﬁfkfl_)h.,jdxnL Kilg j+ g j=0 VK € KyandVj=1,... N, if Uy = U,
(3.19)

1 .
o e'dx/9¢h,jeidx+r<ﬁ,-,,-+ﬁ,»,j:0 Vi=1,... NyandVj=1,...,N;, ifUs=Uq,.
Fo X1

Proof. Taking s and Qg as solutions of (3.16) and (3.17), respectively, and using the convexity of
Ug g We infer with (3.5)

/Q%(ug g dxdr + K{iig, o — iie)o = J5(iie) (it — i) = 0 Vit € Ugag- (3.20)

Now we distinguish the cases Us = Ug g and Us = Uy 1.
Case Ug = Ug . In this case, (3.20) can be written as follows

Nt

Z Z Tj </ @h,jdX#* K|KI/_£K7]') (MKJ‘ 717![(7]') >0 VYug e Ugﬁad- (3.21)
j=1KeK, K

Then, defining
Ne 1
flg = Z Z fg,jxxx; with fig;j=— (K / Op,jdx+ KIZK,;) ;
j=1K€K, K| Jk
we have that the first identity of (3.19) holds. Inequalities (3.18) are consequence of (3.21):

Nt

(o uo —iic)o =Y, Y, TjlK|fx j(ux j— itk ;)
j=1KE]Kh
N
=-) Y 5 (/ Pn,jdx+ K|K|ﬁ1<,j) (uk,j—ik ;) <O Vus € Ug aa-
J=1KeK, K

Case Ug = Ug 1. From (3.20) and using the definition of (-,-)s we deduce

Ne Ny

Z ZTJ‘ <‘/Q ¢h7jeidx+ K(,/(g Eidx)ﬁi’j> (Mi,j 7121‘.]') >0 VYuge Uc,ad~ (3.22)

j=li=1
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Now we set
Nz Nh

1
i == i e; ¥ th i = — _ 0) dx K_" .
Ho jzzlizzluzdel%] W1 lvlz,J (j_Q eidx/_Q(ph‘Jel + MIJ)
Then, the second identity of (3.19) is satisfied. We finish the proof by checking (3.18) with the aid of
(3.22)

Nz Ny
(Aot —ils)o = ZZT/ / .ulj(ulj_”lj)
j=li=
Nt Ny

= — Z Z (’L’j/g Qp,jeidx+ K‘(/Qeidx)lz,"j) (u,',j—ﬂ,',j) <0 Vug € Ug aq.

j=li=1

Let us introduce the following notation:

IIlE]kX |uK| if Uh = Uh’(),
€y
llunli= = .
max || ifU,=U,;,
1<1\ h

and jj : U, — R is the functional defined by

Y IKllux|  if Uy = Upyp,
KEKh
Jn(un) = 2
Z|ui|/ eidx ifUy=Up,.
i=1 Q

We have the following corollary.

COROLLARY 3.1 Let iig, g, and Qg satisfy (3.17)—(3.19), and assume that iz € Ugs 4q. Then, the
following properties hold for every j=1,...,N¢

(fp,jyup —dpj)n <O Yuy, € By, (3.23)
if UG = UG,O thel‘l
Bk jik,j = |k jllak ;| VK € Ky,
if jh(ﬁh,j) < v then ﬂh,j =0, (3.24)
if ju(iin,;) =y and [ ; # 0, thenif ig ; # 0 = |fig ;| = || A, jl1-
if Us = Ug,1 then
Wp,jitp ;= |th||uh1|
if ]h(um,) < 7y then = 0, (3.25)
if ju(dp ;) =7y and fi, ; #0, thenif @; ; # 0= | ;| = || fn, |1~

Proof. Given 1 < j < N; and u, € By, , we define

N . . .
T i u if [ £ j,

Uo Z ”h,lll with Up) = { L:lhl i i j
=1 '
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Then, us € Ug 4¢ and (3.18) implies

Tj(ﬁh,jauh —’/_‘h,j)h = (I:LO'aMG —120')0' <0,

which proves (3.23). The rest of the proof is divided into two cases.
Case Ug = Ug . For

_ . _ IZ[(/7 i lf K/ # K,
u = Z Ug' Xx' with Ugr = { O] lfK/:K’
KIEKh
(3.23) leads to |K|fig jiik,; > 0, which implies the first identity of (3.24). To establish the second
statement of (3.24), given K € K, arbitrary, we define
+ e . o ug j ifK' #K,
" _K’GZ]K ug' gk With uK_{ iig € if K’ =K.
.\ s
Then, for € small enough, due to the fact that j (ﬁh, j) < 7, we have that uff € By, y. Then, (3.23) leads to
+|K|fik,j€ > 0, which implies that fig ; = O for every K € K,.
Now, we assume that jj, (i, ;) = v and fi; j # 0. Let K° € K}, be such that o j| = maxgrcr, | -
If ik j # O we define

e . .
ﬁK,j_fslgl’l(ﬁK,D ifK'=K,

K|
up = ugr Xx' with Ugr = _ £ . _ )
K;kh Ugo,j+ KO sign(iigo ;) if K' =K,
UK, j otherwise,

where 0 < € < [K|[iig j|. Then, jj,(up) = ju(iiy j) = y. Hence, u;, € Bj, y and we get with (3.23) and the
first statement of (3.24)

€| ko ;| — €k j| = (Rn,j,un —itn, j)n < 0.
This proves the last statement of (3.24).
Case Ug = Ug 1. Let 1 <i < N, arbitrary and set

Ny, — ip o .

. iy i ifi #i

Up = Z uye; with Uy = { I~ if i/ i i’
i'=1 :

Then (3.23) implies
—(/Q eidx) i jit; j = (fp, j,up — iin,j)n < O,

which proves the first statement of (3.25).
To establish the second statement of (3.25), given 1 < i < N, arbitrary, we define

Ny _ oo g
+ o . L= Mi/,j if i # L

“h_i;“le’ with - u; _{ e ifi=i.

Then, for € small enough, due to the fact that (i, ;) < ¥, we have that uf € By, y. Then, (3.23) leads to
+( [ eidx) i j€ > 0, which implies that fi; j = 0 for every i = 1,...,Nj.
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Finally, we assume that jj, (it ;) = yand fi;, ; # 0. Let 1 < i® < N, be such that |0 ;| =max <o, | Hi -
If @; j # 0 we define

€ . _ e .
i j— o sign(it; ;) if i’ =1,
Ny fﬂ €
u, = Z ue; with Uy = o 4 )
=1 BT epdx
it otherwise,

sign(igp ;) ifi' = 0,

where 0 < € < (fQ e; dx) |d@; j|. Then, jj,(up) = jn(itn,;) = y. Hence, u, € By, y and we get with (3.23)
and the first statement of (3.25)

€l ;| — €l j| = (An,j,up — itn, j)n < 0.
This proves the last statement of (3.25). U

COROLLARY 3.2 Letiig € Ug 4¢ satisfy (3.19) and (3.24) or (3.25). Then, the following identities hold
forevery j=1,...,N;

. _ 1 . _ 1 _ _ +
if Us = Ug o then it j = - sign (/I<(p;1,.,-dx) m’/ (ph,jdx‘ — Hlv‘hhi”l"")

- {[Il(l/(Ph;dmeh,JHz } [|K|/(Ph] IIFL;,,J-H;\»T}, (3.26)

. _ 1. _ _ _ +
lfUG:U()'7l thenu,'7j:——51gn(/ (ph,je,'dx) (W|/Q(ph’jeidx|—”ﬂh’j”1w)

1 | .
S idx ¢ | P jeidx—||fn,jlli= . 27
{[fge; / O, jeidx + || fip, | = } {fﬂeidx/g(p]’je Il a1l } } (3.27)

Moreover, the following sparsity property is fulfilled for every j=1,..., N
. _ 1 _ _
if Us = Ugp then itg,; = 0 < ﬁ y/ @njdx| < || jlli=, VK €Ky, (3.28)

if Uo = Uos then =0 — | / Gnjeidx| < ||p ||, Vi=1,. (3.29)

f_Q eidx
Proof. Let us prove the first identity of (3.26). If ||ij, j||;~ = 0, then (3.19) implies that

Ug,j=— |K|/ (ph,jdx VK € K,
which coincides with (3.26). Assume that ||fij ||~ # 0. Then, from (3.24) we deduce that jj (i ;) = V.
Then, the third statement of (3.24) implies that |ix ;| = || @iy, j|| = if fig j # 0. Now, we distinguish three
cases.

i) If iig ; > 0, (3.19) and the first statement of (3.24) lead to

s = o Bt il |
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which coincides with (3.26). Indeed, observe that (3.24) and the positivity of i, ; imply fig,; > 0.
Hence, we conclude with (3.19) that [ @ jdx < 0.
ii) If iig ; = 0, using again (3.19) we get

1 _ _ _
[ s el = 1 < e

Then, the identity (3.26) holds.
iii) If itg ; < O, from the first statement of (3.24) and (3.19) we infer that

1 1
ik i=——1< — [ @ idx— ||y ill=p.
UK. j K{|K|/K(Ph” Il 2,11 }

Moreover, arguing as in the case i), we deduce that [ @, jdx > 0. Hence, (3.26) holds too.
The second identity of (3.26) is obvious. Following the same arguments as above, (3.27) is proved.
Finally, (3.28) and (3.29) are immediate consequences of (3.26) and (3.27), respectively. 0

4. Convergence analysis and error estimates

There are two goals in this section. First we prove that the discrete problems (Ps) provide an approxi-
mation of (P). Second we establish error estimates in terms of 6 = (A, 7) for the difference between the
discrete and continuous optimal controls.

THEOREM 4.1 For every o let iig be a solution of (Ps). Then, there exists 6y = (g, Ty) such that the
family {iis}s with & < hg and T < 1o is bounded in L=(Q). If iiz — i in L*(Q) for a sequence of &
converging to zero, we have that i is a solution of (P), and the following convergence properties hold

g_llT)}) ||I/_l6 — ﬁ”Lr(O;T;LZ(Q)) =0 Vre [1,00) and (lylinojo-(b_lg) = ](l/_l) (41)

To prove this theorem we need the following stability property for the solution of the system (3.1).

LEMMA 4.1 Let us assume that 4|C,|T < 1. Then, given u € L?>(Q) and denoting by ys € % the
solution of (3.1), we have the stability estimate

yoll=0.7:222)) + Vo ll2 073 @)) < C (Il —al-+,0)ll2(0) + yoll (@) 4.2)
for some constant C independent of u.

Proof. For j=1,...,N; we take z;, = yj, ; in (3.1), which leads to
/_Q (Vh,j = Yn,j—1)Yn,jAx + Tib(Vn js Y, j) + /1 /_Q [a(x,2,yn,;) — alx,t,0)]yp, jdxdt
. i
= / / [u—a(x,t,0)]y, jdxdt.
I.] e Q ’
Using (2.1) and (2.2) along with Young’s inequality we deduce from the above identity

1 2 1 2 1 2 2 2
EHyh.jHLZ(_Q) + EHYh.,j —Yh,j—1 HLZ(_Q) - EHyh,jfl ||L2(_Q) + TjAAHth”H&(Q) +CaTj||)’h.jHL2(Q)

Ap
< lu—al-,0) |20z VT lnjllz2 @) < Ci ||M—a('m0)||%z(gx1j) +Tj7|\Yh,ij,(;(Q)~
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From here we infer

193122 gy %5413y < 2C1 =1, 0) s g+ 21Cal om0+ 1 B (43)

With the discrete Gronwall’s inequality and the fact that ||y ol|;2(q) < [[Yoll2() and 7; < 7 for every
j=1,...,N; we get

j—1
ynll72q) < (1=2ICal7) ™ (IIyOIILz +2C12 1=2[Calt) u—a(,, )IILzQX,M)); 4.4

see, for instance, Emmrich (1999). From our assumptions 4|C,|T < 1 and 7 < p 7 for every k, and using
that
1 B 2|C4lT 2|Cq|7
1-2[Cit 1-2|Cilt (1—2|Ca\17)
we obtain
2|CylTi

1-2|C,|7) 7 < (
( |Ca|T) exp 1 —2|Ca‘f

) <exp(4p|CalT).

Then, (4.4) yields

-1
I3m B2 ) < exp(4pICa |T)<||)’0||Lz 426, >||Lzm,k+l)>
k=0

< exp (4p|CalT) (I0l122 ) +2C1 1 —a(--,0) 2 ) )
and consequently
||)’6||L°°(0,T;L2(Q)) = 121271(\/ ||yh,/||L2

< exp(2p[Co|T) max{1,v/2C1} (ol o) + lu—a(--0)l2g)) - 45)

Adding the inequalities (4.3) for j =1,...,N; we deduce

Nz
2 2
AAHyUHLz(QT;H(;(Q)) =AM X%Tj‘lyh,j |H&(Q)
]:

<261 [lu=a(:,-,0) 2 gy + (21Cal Ty (g 720y + V0l ) -

Finally, (4.2) follows from this inequality and (4.5). ([
Proof of Theorem 4.1. We divide the proof into three steps.
Step I. {iic } ¢ is bounded in L(Q). Let us assume that 7 satisfies the condition of Lemma 4.1 and
T < Ty, given by Theorem 3.1. Since the null control 1y = 0 is admissible for every problem (Pg), we
deduce from the optimality of ii:

K- 2 Lo 2
Zlaol < Joluo) = 51b% ~allt o)
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where y2 denotes the discrete state associated with ug. From Lemma 4.1 we infer that {y%}5 is bounded
in LQ(Q). Hence, with (3.4) we deduce the existence of a constant C; independent of iis such that

_ _ 1
sl 0 S is|lo < 7||y(c);—YdHL2 o) <Ci.
( \/E (o)

We denote by js and @5 the state and adjoint state associated with ils. Using again Lemma 4.1 we
obtain

||)76||L°°(0,T;L2(Q)) < C(Hﬁc —a(, '70)||L2(Q) + ||y0||L2(Q)) < C(Cl +la(, 'aO)”LZ(Q) + Hy0||L2(Q)) =G

Arguing as in the proof of Lemma 4.1 we deduce the stability estimate for the solution of (3.6)
corresponding to il

o lr=(07:22(0)) < C3llFo —vallzo) < C3(Ca+ IIyalliz(g)) = Ca-

Next we prove the estimate
_ Cy
s l=(0.7:2202)) < —- (4.6)
We distinguish two cases according to the definition of Us.

Case Ug = Ug 0. From (3.26) we get forevery j=1,...,N;

1

2
1 1 2
laniley = | X Kag; ) <o ¥ ([ o
e = (L Wik ) < (X ()

l

1, _
(Z H‘Ph;HLz ) E”(Ph,jHLz(.Q)

KeKy,

1
2

This inequality implies (4.6)
Case Ug = Ug 1. This time we use (3.27) to deduce

Nh % Nh %
””_‘h,jHLZ(Q) = (/ (thje) ) < (/ Zﬁijeidx>
Q=
1 > WA i L
< fQ 61 / (phlet < E 1:21/!2 (P;u-e,'dx = E”(phvl LZ(Q)'

Hence, (4.6) is satisfied as well in this case. Then combining (2.6) and (3.3) along with the estimate
(4.6) we obtain

Vo l2=(0) < Vag lz=(0) + V2o — Yo llz=(0) < Cs

for every o = (h, ) with h < ho and T < 7. From this estimate, (4.6) and (3.8) we deduce the existence
of Cg independent of ¢ such that || @s||;=(g) < Cs for the same range of ¢ as before. Now using again
(3.26) and (3.27) we conclude that

0

o |l=(0) < - %)

for h < hy and 7T < 7.
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Take a sequence such that iis — i in L=(Q) as & — 0.
Step II: i1 € U,y. It is immediate to check that HMhHLl(Q> = ju(up) if up, € U, = Uy and HuhHLn(Q) <
Jn(up) if up, € Uy = Uy, 1. Therefore, we have

(@) S max Jn(in ;) <7,

sl =071 (@) = max ||ip,; 152,

L<jSN,

and thus {iig }s C Uuy. Since U,q is convex and closed in L?(Q), then it is weakly closed as well. Then,
the weak convergence iy — i in L>(Q) implies that i@ € Uyy.
Step II1: i is a solution of (P). Let ii be a solution of (P). For every ¢ we define

Ne

1 .
PRia=Y ¥ —K//ﬁ(x,t)dxdtxjxl( if Us = Uop,
B J=1K€K, K| i Jk
U = N (4.8)
P Eii = t)e;i(x)dxdr if Us =Ugs 1,
= JZI;TJ Qeldx// xt)ei(x) xjei 1t Uo o,1

where P; is the L2(0,T) projection operator defined in the proof of Theorem 3.1, P, : L?(2) — Uy is
the L2(£2) projection operator, and Ej, : L' () — Uy, is the Carstensen quasi-interpolation operator;

see Carstensen (1999). First we prove that us € Ug 44. In case Uy, = Uy, o we have ug = ):IJ.V;I up, ;X and

forevery j=1,...,N;
i(x,1) //| (x,8)|dxdr = — /|| e
rj|K\// ’ Kek, T /1 L

This implies that us € Ug 44. In the case U;, = Uy, 1, we have

]h(uh j)
KEK/

Ny g Np
u i(x,t)e dxdt/e / / X,t eidx | dt
i) = lilr,fgeldx// ) der| [ e, ( el L e
=— i(t dr <
2 10y
Using that
Nz Nz Ny
L Y k=Y yex=1inQ
j=1KeK, j=li=
we deduce that [|ug||;=(g) < [|ill|1=(g) for every .

In the case Uy = Uglo, we have that PP, : L*(Q) — Ug o is the L?(Q) projection operator, hence
ug — i in L>(Q) when 6 — 0. If Us = Ug,1, then we have

18— us 2y < it = Peit|| 2 ) + || Pe(@— Enil) || 12(g) < ||t = Ped]| 2(g) + ||l = Epil| 12(g) — 0 as 0 — 0.

Indeed Corollary 2.3 implies that i € H'(Q). Hence, from the convergence properties of the Carstensen
operator Ej, we infer the converge of the last term in the above expression. The boundedness of {u }¢ in
L*(Q) and its strong convergence to i in L?(Q) imply the strong convergence in every L?(0,T;L(Q))
space with 1 < p,g < oo.
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Next we prove that limsup,_,gJo () < J(&f). Let us denote by § and y,, the continuous states
corresponding to # and ug, respectively. We also denote by ys the discrete state associated with ug.
Then, using the established convergence us — #, (2.6), and (3.3) we can easily prove

17 = Yo llz=(0) < I = Yuo ll=(0) + V46 — Yo ll=(0) = O-

The proved convergences of {ys }o and {us }s imply that J5(us) — J (i) as 6 — 0 if Us = Ug o; see
(3.4). For the case Us = Ug,1 we have

Nz N Nz Ny

ug? = ZZT/(/ ) =YY ——— // ue,dxdt
j=li= j=1i=1 T Joeidx
N‘: Nh

// aPeidrdr = 2,

which leads to the desired inequality limsup_,oJo (i) < J ().

Using the same arguments as above, we deduce that j5 — ¥ strongly in L= (Q), where y denotes the
continuous state associated with #. Finally, from the optimality of iis and the established convergence
properties we obtain with (3.4)

]111

_ . I, _ 2 K. _ 2 .. _ . _
J(@) < htryn_}gf{2|yc —deLz(Q) + 2Mc||Lz(Q)} < ll(l;l’l_%lf.]c;(ug) < limsup Js (i)

c—0

< limsupJo (o) < J(id) = inf(P).

c—0

These inequalities imply that i is a solution of (P). Moreover, since the identity J(i1) = J(ii) holds, we
conclude that J5(iig) — J(i1). Further we have

_ . L. 2 Ki_ 2 . I 2 Ki_ 2
J(u) < hggf{zlyc _yd”LZ(Q) + 2M6||L2(Q)} < ll?jgp{zya _yd”LZ(Q) + EHMGHLZ(Q)

< limsupJs (i) < limsupJo (ug) < J(id) = J(@).
c—0 c—0

This property and the strong convergence js — ¥ in L*(Q) yield that ||iis|| 12(g) = lill2(g)- To-

gether with the weak* convergence fig — i in L=(Q) this implies the strong convergence i — i in
L"(0,T;L*(R)) for every r < c. Thus, (4.1) is proved. O
The following theorem can be considered as a converse of Theorem 4.1.

THEOREM 4.2 Let if be a strict local minimum of (P) in the L"(0,T;L?(£2)) sense with r € (2, c0).
Then, there exist strictly positive numbers 1y, A, &, and a sequence {iig}s C Beo( i7) of local mlnlma
of (Ps) such that (4.1) holds and

Jo (i) = min Jo(ug) for 1<t and h<h, 4.9)
ug€Ug qaMNBe (i)

where By, (i1) is the closed ball of L"(0,T;L*(£2)) centered at i and radius &.

Proof. Since i is a strict local minimum of (P) in the L"(0,T;L?()) sense, there exists & > 0 such
that i is the only solution of the problem

Q inf  J(u).

u€UqgMBg (i)
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Now, we consider the problems
Qo) inf  Jo(ug).
ug€Ug 4aMBg (@)

If we define ug by (4.8) with ii = i, then us € U 49 and ug — i in L'(0, T;Lz(.Q)). Therefore, there
exist 7| > 0 and &1 > 0 such that us € Bg, (i) for every o with T < 7y and i < hy. Hence, Ug 40 N Bg, (i)
is a compact non-empty set for every T < 7] and & < h;. Then, the continuity of J; implies the existence
of at least one solution ii5 of (Qg) for every ¢ with 7 and 4 satisfying the previous conditions. Since
{iis }o is bounded in L'(0,T;L*()), taking a subsequence if necessary, we can assume that i — il
in L(0,T;L?*(R)) for some i. Due to the embedding Usad C Ugq we deduce that i € Uyg N Bg, (i).
Moreover, we have

J(#) < liminfJs (iis) < limsupJs (i) < limsupJo (ug) < J(i).
o—0 c—0 c—0
Since i is the unique solution of (Q), this inequality is only possible if i = i&. Consequently, the whole
family {iis}s converges weakly to i in L"(0,T;L%(Q)) as 6 — 0 and J(iis) — J(ii). Arguing as in
the proof of Theorem 4.1, we deduce the strong convergence itz — i in L'(0,T;L*()). This leads to
the existence of 7o < 71 and hy < &y such that ii5 belongs to the interior of the ball Bgo(ﬁ) for every
o = (7,h) with T < 7y and h < hy. Hence, every of these iis is a local minimum of (P) satisfying (4.9).
O
The rest of this section is dedicated to the proof of the following theorem.

THEOREM 4.3 Let us assume that i is a local solution of (P) in the L"(0,T;L*(£2)) sense with r €
(7%, 0). We also assume that J” (2)v> > 0 Vv € C; \ {0}. Let {iis }& be a family of local solutions of

)
problems (P ) such that iis — i in L' (0, T; L*(£)); see Theorem 4.2. Then, there exist positive numbers
0o, To, and C such that the following inequality holds:

lig — il 2y < C(h+7) forevery 6 = (h,T) with h < ho and T < 7. (4.10)

We prove this theorem arguing by contradiction. If (4.10) does not hold, then there exists a sequence
{ii, }72_; such that o; = (g, 7)) — 0 as k — oo, iy > 0 and 7 > 0, and

g, —ill 2y > k(e +T) Vk> 1. 4.11)

We will get a contradiction for this sequence. First we prove the next lemma.

LEMMA 4.2 Let A be as in (2.22). There exist ko such that

I o
(' (i1g,) — J' (@) (i1, — 1) > 5 min{2, i} |, — i k= ko 4.12)

Proof. Applying the mean value theorem, we get for some &y = i + 6k (i1, — i)

(' (iig,) —J' (@) (lig, — 1) = J" (i) (i1, — 7). (4.13)

g, —Ul
Set vy = ——&
k H“Gk_”HLZ(Q)

we prove that v € C;. Assuming that this is true, then we argue as follows. From (2.10), the fact that

. Taking a subsequence, if necessary, we can suppose that vy — v in L?>(Q). Below
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Hvk”Lz(Q) =1, and (2.22) we infer

. . . d%a
lim J” (i )v; = lim {/Q (1 - a—yz(x,ny,;k)(pﬁk)zﬁmdde— K}

k—>oo k—>oo

d%a ~ =) 2 YI) 2 2
— [ (1= S an0) dasar s k= @+ k(1= i) = 4 (2= 0

Above, we denoted z4,,, = G’ (dx)vi and z, = G'(i0)v, where G : L"(0,T;L*(Q)) — H>'(Q)NL*(Q)
is the mapping associating to each control the associated state. Since ||v|| 12(0) S 1, the above inequality
proves that

Jim J" (G )vi > min{A, k}.

Therefore, there exist ky > O such that
1 (A~ 2 L.
J" (g )vie = Emln{/'L, K} Vk >k,

or equivalently
o 1. - -
I (i) (i, — )% > 5 min{2, i}l — 72 k= ko

This inequality along with (4.13) leads to (4.12).

Now, we verify that v € C;. From the optimality of i and the fact that it5, € Ug, 4¢ C Usq We obtain
J'(@)vg = 0. Then, passing to the limit in this inequality when k — oo, it follows that J'(iz)v > 0. Let
us prove the converse inequality. We consider again the approximations ug, € Ug, 4¢ defined as in (4.8)
with @ = i. Then, we have

||ugk _IZHLZ(Q) < Cl(hk+7k)||ﬁ||H1(Q) Vk > 1. (4.14)

Indeed, if U, = Ug, 0, the above estimate follows from the fact that ug, is the L2(Q) projection of i. If
Ug, = Ug,,1, the estimate was proved in Casas et al. (2018, Lemma 6.6). From the local optimality of
iig, we have that Ji, (iig, ) (ug, — fig,) > 0. Using this fact we get

T (i) = W {J/(d) (i, — ug,) + 7' (i) (o, — 1)}

() T i)y — they)+ () — T (i) (i — )+ () (s, — )}
[, ”||L2(Q)

=l + Lo+ 13

Now, we estimate every /; term. For I; we use the mean value theorem, the convergence i, — i in
L7(0,T;L*(R2)), and (4.14) as follows

" (i + pr (i, — 7)) (i, — Ugy, T —lig, )|

g, — il 12(0)

‘Ik.1| = < CzHﬁO'k - qu”LZ(Q)

sG {”ﬁ"k — il 20+ HIZ—MGk”LZ(Q)} — 0 as k — oo.
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To estimate Iy » we use (2.9) and (3.5) to get

1
Ly=——"— i — 0c,)(llg, — dxdr
k2 ||gok—ﬁ||L2(Q)4(¢uok ‘Pcrk)(”crk Mak)
K
TR S— V fi, (6, — 1) dxdt — (il g, — ey )y | - (4.15)
||u6k_uHL2(Q) 0

To estimate the first integral in (4.15) we use (3.7) and (4.11) along with the boundedness of {ziok —
Ug, Yoo in L*(Q) (actually ||iig, — ug, l22(0) — 0) as follows

1
e, — |2 (p)
hz%—‘t‘k

i, — il 12 (g)

1 _ _
Sy H‘Pﬁok - (PokHL2(Q) [, — ttcs, ||L2(Q)

Oiy, — 0o, )i, — g, ) dxdt| < 7= —
o = )t ) <

<G o, =ty |l12(0) — 0 as k — oo (4.16)

In the case Ug, = Ug, 0, the scalar products (-,-) 2(p) and (+,+)o, coincide. Hence, the last two terms
of (4.15) cancel and we get from (4.16) that |I; »| — 0. If Ug, = U1, we first observe that

(g, PrEput) g = / ugudxdt Vug € Uy and Yu € L'(Q). 4.17)
9]
It is immediate to check this identity. Moreover, from (3.4) we have that ||, |;2(g) < [/#o; ||o,- This
property, (4.17) with ug = iis, and u = i, (4.14), and (4.11) yield
1

o o 1
oy — il 210 {./Quck(uck —ttg,) dxd — (ilgy., g —uck)ok} <

X = -
[t *”HLZ(Q) .

/ fig, (i1 — 110, ) et
0

hy + T

it — |2 (g)

| —ug, || 12
) g [lz2(0) < Ci i i, ll12(g) — 0 as k — co. (4.18)

X 7= -
(2% _“HLZ(Q)

From (4.15), (4.16), and (4.18) we infer that lim_,.. [z » < 0. The estimate of the last term ;3 is an
immediate consequence of (2.9), (4.11) and (4.14)

ue, —itll 2 (g) h+7t

s| < ||@+ Kl 12 < Cill@+ x| 2 —0ask — oo,

9 |iig — 120 9 |iig — 120

Thus, we have that J’ (i)v = limy_,.. J' (1) v¢ < 0, and consequently J' (iz)v = 0, which is the first condition
to have v € Cj.
Now, take 7 € I. This means that [|@()||;1(q) = 7. Since iig, € Uyq We have that ||iig, |1 (o) < 7. As
a consequence, we get with (2.20) an the convexity of j
1 e

J'(@t);v(t)) < liminf j/ ((t); vi (1)) = liminf -—————j'(a(t); o, (t) — a(t))
k—veo koo |, — it 12(g)

it L i )+l (1) — () — ()
koo |[iig, — it 12(g) PO P
<limind ({7, (1)) — (1) = liminf 1 [ (1) |1.) ~ 7| <O.

koo |, — ][ 12(g) koo |l — ]| 12 ()
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It remains to prove that j(i(t);v(t)) = 0if t € I} . The inequality j'(i(¢); v(t)) < 0 fort € I} implies
—/ vdx—!—/ vdx}/ [v] dx. (4.19)
fox Qi Q0

i(t) (1)
Using (2.15), (2.18), and (4.19) we obtain

O:J’(ﬁ)v:/(¢+Kﬁ)vdxdt:—/[,'Lvdxdt:—/+/ fvdxds
0 o Iy JQ

=— ()|l dx—/ (1(1)] e dx+/ flvdx| dt
J VQ IBOle@pds= [ ROyt [, B ]

> [(t)| — f@v|dxdr.
Jy Jop, WOl @ =

This inequality is possible if and only if || ()| =(q)|v| = Av in Qg(t) x (0,T). Now, this latter identity
and the fact that fi(t) = 0if r ¢ I, we infer

0> [ IO e 000 = [ 180 e [ L

:/ /[Lvdxdt:/ﬂvdxdt:—J'(ﬁ)v:O,
Iy JQ 0

which implies that j(i(t);v(r)) = 0 for almost every ¢ € 1. This concludes the proof of v € C;. O
Proof of Theorem 4.3. Let us take ko big enough so that (3.7) and (4.12) hold. The goal is to prove
that (4.11) is not possible. To this end, we take ug, € Ug, 4q as in the proof of Lemma 4.2. Using the
optimality of iis, we get
0 < J'(itg, ) (ug, — lic,)
=J(iig, ) (i — g, ) +J (1) (ug, — it) + [J' (i, ) — J' ()] (ug, — 1) + [J(’,k (iig,) —J' (ils, )] (tts, — il )-

We also have that J'(it) (iig, —if) > 0. Adding these two inequalities and using (4.12) we infer

v(t)dx— v(t)dx+ |v(t)|dx] dr
) /Q /sz’(,)

)

I . _ _ _ /- _ _ _
S min{&, ik} g, — 12 g, < V' (ia,) — I/ (@) (g, — ) < J'(&) (g, — 1)
+ [J/(ﬂffk) - J/(’Z)] ("‘Gk - ﬂ) + [Jé)'k (’ZO'k) - J/(ao'k)] (”Gk - ﬁGk) =l +liep + I 3 (4.20)
To estimate I ; we use the property
g, — @l g1y < Cr(+ 70l 1 ()3 421
see Casas et al. (2018). With this inequality we get

I 1

<@+ kit g1 (g lue, — | g1 (o) < Ci (h;+ )19+ Kill| 1 g)- (4.22)

For the estimate of /i » we use the mean value theorem, the convergence i, — if in L (0, T;Lz(.Q)),
and (4.14) to get

[k o| = I (i + pi i, — 1)) (g, — it i, — it)| < Co|ug, — il 12(g)llio, — ]| 12(g)
< C3(h+7:)||l/_tgk _IZ”LZ(Q)' (423)
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To deal with I; 3 we apply (2.9) and (3.5) to deduce
I3 = /Q (Poy — @i ) oy, — i) dxdr + K [(ﬁck, e /Q g (Uo, —fi ) dxdt| . (4.24)
With (3.7) and (4.14) we obtain

\ (@~ 01, i) v

< |19o, — Pito, 112(0) e, — fc |l 12 (g)

<ol + ) (Il — il 20 + 17— i |12 )
< G (h% + Tk)(/’lk + 7))+ C4(h/% + Tk) ||IZ — g, ||L2(Q)' 4.25)
The last two terms of (4.24) cancel if U, = Ug, 0. In the case Us, = Ug, 1, (3.4), (4.17), (4.14), and
(4.21) yield
(floy oy, — oy Yo —/Qﬁgk(ugk g, drdr < /Qﬁgk(ﬁ—ugk)dxdt

_ /Q(u(,k ) (i — g, ) dudr Jr/QIZ(zZ g ddr

< Nl — | 2yl = to || 200y + il 1 () 18—ty |1 )

< Co (i + ) llito, — ]| 2 (g) +C (i + ) |l g1 Q)" (4.26)
The estimates (4.24)-(4.16) lead to

3| < Ca (B +T7) + Co (e + 1) ||t — it 12g) - 4.27)
Finally, (4.20), (4.22), (4.23), and (4.27) imply
e, — il 120y < Crolhk+ 1)  Vk > ko,

which contradicts (4.11). [l

5. Numerical Examples
LetQbe (0,1), n=1orn=2,A=—-A,a=0,y0=0,T =1,k =10"%, and

ya(x,1) = exp(—20[(x — 0.2)% 4 (1 — 0.2)]) +exp(—20[(x — 0.7)> + (t — 0.9)]) if n = 1,
or

ya(x,1) = exp(—20[(x; —0.2)> + (x2 — 0.2)* + (r — 0.2)?])
+exp(—20[(x; —0.7)> + (x2 — 0.7)% + (1 — 0.9)?)) if n = 2.

Notice that all the results obtained in the paper are also valid for dimension n = 1. For dimension 1,
these data correspond to the problem presented in (Casas et al., 2017a, Remark 2.11) and also studied
in Casas et al. (2017b, 2018). The problem in dimension 2 was introduced in Casas et al. (2018).

To discretize the problems, we use two families of uniform partitions in space and time, with 4; =
277/2" —1 and T = 27/, and denote o;, j = (hi, ;). The discrete problems are solved using a projected
gradient algorithm with the Barzilai-Borwein strategy as line search; see (Barzilai & Borwein, 1988, eq.
(5)). Projection strategies onto the L!-ball can be found in Condat (2016).
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5.1 Sparsity patterns

In Figure 1 we show the solutions obtained for the one-dimensional problem as the bound parameter y
varies in {0.5,1,2,3}. To discretize the problem we use the control space Uy ; at the discretization level
i = j = 10. We also plot at the left hand side of the graph the norm in L! () of s (-,¢) for all € [0,1],
(this norm is computed with the approximation jj(uy, ;)). We use a dark green line for the norm and a
magenta line for the bound. Notice that when the control constraint is attained, the solution exhibits a
sparsity pattern that varies with time. We have coloured in grey the zero-level set of ii; to emphasize
this behaviour. For y = 0.5 and y = 1, we have that the control constraint is active for all # € [0, 1] (green
line and magenta line coincide). For y =2, we have that |[itg (-,1)[| 1 (o) < vif 7 € J1 = (0.4814,0.5723)
and if r > 0.9980; for y = 3, ||126(-,t)HL1(Q) <yifreJ, =(0.4502,0.6182) and if t > 0.9971. Black
lines are drawn to separate these regions. As soon as the norm constraint is not active we do not observe
sparsity, in the sense that there are no subintervals in space where the control is identically zero. This
behavior is consistent with the optimality condition expressed in (2.18).

The sparsity behavior obtained by means of the constraint imposed by u € U,, should also be com-
pared to sparsity phenomena implied by non-smooth cost-functionals, as considered in Casas et al.
(2017a), for example. The functional in that paper, which is closest to the situation of the present one is
given by u — ||u| ;2 (0,7:L1 (@))» ie. it considers the L%-norm in time, compared to the L*-norm used here.

In both cases the L! norm in space is used. In (Casas et al., 2017a, Figure 1) a numerical result with
the same desired state as in Figure 1 of the present paper is presented. It lies in the nature of these two
different sparsity enhancing approaches, that the solution in (Casas et al., 2017a, Figure 1) also exhibits
intervals of sparsity in the regions corresponding to Ji,J>.

In Figure 2 we show, at nine different instants of time, the solution obtained for the two-dimensional
problem, using the control space Ug at the discretization level i = j = 7. The control constraint
parameter is set to ¥ = 2. The norm of the optimal control in L' () is also reported at the indicated time
instances. Again, the solution exhibits a sparsity pattern that varies with time, and there is not sparsity
if the control constraint is inactive. The subdomains where i (x,#) vanishes are coloured in grey.

5.2 Convergence rates

We show convergence rates for the problem in dimension 1. In this case we take the bound y = 4. Since
we do not have the analytic solution, we denote I = 13 and take as reference solution the one obtained
for Or1.

Three tests are carried out for each of the three discretizations of the control proposed in Section
3.2. In the first test, we take h; = 7;, i = 8,9, 10; in the second one, we take a fixed fine discretization
in time given by 7;, I = 13, and solve for h;, i = 8,9, 10; finally, we fix the discretization parameter in
space to hy, I = 13, and solve for 7;, i = 8,9,10. We measure the experimental order of convergence
(EOC) between two consecutive simultaneous refinement levels by setting

EOC = log, H’ZGI,I — oy HLQ(Q) —log, ””_‘GIJ —lg;; ”LZ(Q)v

and analogously for the refinement in space and in time, respectively.

Results are shown in Table 1 for simultaneous refinement, Table 2 for refinement in space, and Table
3 for refinement in time. Except for a superconvergence phenomenon in the space discretization when
we use continuous piecewise linear in space approximations of the control, all the experimental results
are as predicted in Theorem 4.3.
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FIG. 1. 1D problem. Continuous piecewise linear approximation in space, piecewise constant approximation in time, of the
optimal control for different values of 7. The norm in L' (£) at every instant of time is also shown with a dark green line located
on the plane x = —0.1 together with the magenta line z = 7. In grey, the zero-level set of iis .

=0.000, llull, =200

2
. 20
X 15
. 10
5
) )
° 0z 04 06 08 1

t=0.375, llull, =200 t=0.500, Il

20
15
10
s
} 0
o o0z 04 06 08 1

t=0.750, llull, =2.00 t=1.000, llull, =200
2 15
. 0 .
. 15 X 10
. 10 . 5
B
o 0
0 02 04 06 08 1 0 02 04 06 08 1

FIG. 2. 2D problem. Piecewise constant approximation of the optimal control. In grey, the level sets i (-,;) = 0.

=0.250, llull, =200

. m

- 2

: 10

) o
o 02 04 06 o8 1

t=0.625, llull, =157

0 02 04 06 08 1

b e b o= o e




28 of 30 REFERENCES

UG,O Ua,l
hi =1 ‘ ”’261,1 — IZG[,i||L2(Q) EOC H ||IZGI,I — ﬁGi.[HH(Q) EOC
28 2.0IE—1 — 1.76E — 1 —
279 1.02E—1 0.98 8.93E—2 0.98
2-10 511E—2 0.99 4.49E —2 0.99

Table 1. Experimental order of convergence. Simultaneous refinement in space and time.

UG,O Uc,l
hi ‘ HIZGI.I _IZO'[',IHLZ(Q) EOC H Hﬁcl.l _IZGi.IHLz(Q) EOC
278 9.86E —2 — 1.10E—02 —
279 493E—2 1.00 3.87E—03 1.51
2-10 2.45E—2 1.01 1.34E—03 1.53

Table 2. Experimental order of convergence. Refinement in space.

Ug7o Uc,l
Ti ig,, —lg,; EOC H oy, — gy, EOC
278 [ 1.76E—1 — 1.76E — 1 —

279 | 893E—2 098 || 893E—2 0.98
27101 449E—-2 0.99 || 449E—2 0.99

Table 3. Experimental order of convergence. Refinement in time.
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