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Abstract. It is shown that an internal control based on a moving indica-

tor function is able to stabilize the state of parabolic equations evolving in

rectangular domains. For proving the stabilizability result, we start with a
control obtained from an oblique projection feedback based on a finite number

of static actuators, then we used the continuity of the state when the control

varies in relaxation metric to construct a switching control where at each given
instant of time only one of the static actuators is active, finally we construct

the moving control by traveling between the static actuators.

Numerical computations are performed by a concatenation procedure fol-
lowing a receding horizon control approach. They confirm the stabilizing per-

formance of the moving control.

1. Introduction

Stabilizability of controlled parabolic-like equations of the form

ẏ +Ay +Arc(t)y = u(t)Φ(t), y(0) = y0, t > 0, (1.1)

where the state evolves in a Hilbert space H, that is, y(t) ∈ H for all t ≥ 0 is
investigated. The pair (u,Φ), with u(t) ∈ R and Φ(t) ∈ H, with |Φ(t)|H = 1, is at
our disposal. We shall look for a continuous function Φ: [0,+∞)→ H, where Φ(t)
represents the actuator moving on a compact subset of the unit sphere in H.

The goal consists in constructing a (signed) magnitude control function u(t) and
a moving actuator Φ(t) so that the solution of (1.1) satisfies

|y(t)|H ≤ Ce−µt |y0|H , for all t ≥ 0, (1.2a)

with

u ∈ L2(R0,R), Φ̇ ∈ L∞((0,+∞), H), and Φ̈ ∈ L∞((0,+∞), H). (1.2b)

In particular Φ ∈ C1([0,+∞), H), which implies that the actuator moves in a regular
way.
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1.1. Example. As an illustration we consider a parabolic equation whose state
evolves in H = L2(Ω), with Ω ∈ Rd, d ∈ {1, 2, 3}, a regular bounded domain.

ẏ − ν∆y + ay + b · ∇y = u1̂ω(c), Gy|Γ = 0, y(0, ·) = y0, (1.3)

where y = y(t, x) ∈ R, y(t, ·) ∈ L2(Ω), a = a(t, x) ∈ R, b = b(t, x) ∈ Rd, and G
denotes either Dirichlet or Neumann conditions on the boundary Γ of Ω, i.e. Gy|Γ =
y(t, x̄) or Gy|Γ = n(x̄) · ∇y(t, x̄), where n(x̄) stands for the unit outward vector
normal at x ∈ Γ.

Here the actuator is chosen as Φ(t) = 1̂ω(c(t)), where 1̂ω(c(t)) denotes the nor-

malized indicator function whose support is the rectangle ω(c(t)). This rectan-
gle ω(c(t)) := c(t) + ω0 ⊂ Ω is the translation of a rectangular reference do-
main ω0 ⊂ Rd, with 0 ∈ ω0, and ‖ω0‖ :=

∫
ω0

1 dRd. Then

1̂ω(c(t))(x) :=

{
‖ω0‖−

1
2 , if x ∈ ω(c(t)),

0, if x /∈ ω(c(t)),
and

∣∣∣1̂ω(c(t))

∣∣∣
L2(Ω)

= 1.

To simplify the exposition let us also assume that 0 is the center mass of ω0,
so that we can simply say that 0 is the center of ω0. Since c(t) ∈ ω(c(t)), this
justifies to call c(t) ∈ Rd the center of the actuator. Hence the motion of the

actuator Φ(t) = 1̂ω(c(t)) is described by the center of ω(c(t)). See Figure 1, where

we have taken ω0 ⊂ Rd as a small rectangular domain.

ω(c(0))

ω(c(1))

ω(c(2))

c

Ω

Figure 1. An internal moving actuator with support ω(c(t)) ⊂ Ω.

The main result of this paper, when applied to (1.3), implies the following The-
orem 1.1, concerning parabolic equations evolving in the bounded rectangular do-
main

Ω :=
d

×
n=1

(0, Ln) ⊂ Rd, L := (L1, L2, . . . , Ld) ∈ (0,+∞)d ⊂ Rd. (1.4a)

For any given r ∈ [0, 1] we further define the subsets

rΩ :=
d

×
n=1

(0, rLn) ⊂ Ω, (1− r)Ω + r
2L :=

d

×
n=1

( r2Ln, Ln −
r
2Ln) ⊂ Ω, (1.4b)

ω0 := rΩ− r
2L =

d

×
n=1

(− r2Ln,
r
2Ln). (1.4c)

Observe that c+ ω0 ⊂ Ω if, and only if, c ∈ (1− r)Ω + r
2L.
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Theorem 1.1. Let Ω be a bounded rectangular domain as in (1.4a), and let a ∈
L∞((0,+∞) × Ω,R) and b ∈ L∞((0,+∞) × Ω,Rd). Then for each sufficiently
small r ∈ (0, 1), and for each initial state y0 ∈ L2(Ω), each initial actuator posi-
tion c(0) = c0 ∈ (1 − r)Ω + r

2L with initial actuator velocity ċ(0) = 0 ∈ Rd, there
exists an actuator motion function c and a magnitude control function u, with

c(t) ∈ (1− r)Ω + r
2L, and u(t) ∈ R

such that the solution of (1.3), with

ω(c(t)) := rΩ + c(t)− r
2L =

d

×
n=1

(cn(t)− r
2Ln, cn(t) + r

2Ln)

satisfies

|y(t, ·)|L2(Ω) ≤ Ce−µt |y0|L2(Ω) , for all t ≥ 0, (1.5a)

with

u ∈ L2((0,+∞),R), ċ ∈ L∞((0,+∞),Rd), and c̈ ∈ L∞((0,+∞),Rd). (1.5b)

Furthermore, the mapping y0 7→ u(y0) is continuous from L2(Ω) into L2((0,+∞),R)
with |u(y0)|L2((0,+∞),R) ≤ Cu |y0|H and |ċ|L∞(R0,RM ) + |c̈|L∞(R0,RM ) ≤ Cc. Above

the constants C, Cu, Cc, and µ > 0 are independent of y0 and c0.

Besides the theoretical result we also discuss the numerical computation and
implementation of a stabilizing control input based on a moving indicator func-
tion. Note that the control input u(t)1̂ω(c(t)) depends nonlinearly on the control
functions (u, c). In order to realize the geometrical constraint ω(c(t)) ⊂ Ω, which
can be obtained through constraints on the velocity ċ and acceleration c̈, it will be
convenient to introduce a new auxiliary function

η = c̈+ ςċ+ εc, for given ε ≥ 0, ς ≥ 0.

We shall consequently consider system (1.3) in the extended form

ẏ − ν∆y + ay + b · ∇y = u1̂ω(c), Gy|Γ = 0, y(0, ·) = y0, (1.6a)

c̈+ ςċ+ εc = η, c(0) = c0, ċ(0) = 0, (1.6b)

with proper constraints on the newly introduced additional control η, in order
to force the actuator to move in an appropriate way. Note that looking for c is
equivalent to looking for η, as soon as the initial actuator position c0 is given. An
analogous extension argument is used in [5,21,24], with a first order ode, ċ+εc = η
in order to deal with boundary controls problems.

Observe that system (1.3) is linear in the state variable y and nonlinear in the
control variable (u, c). Instead system (1.6) is linear in the control variable (u, η) and
nonlinear in the state variable (y, c), because c(t) 7→ 1ω(c(t)) is nonlinear from Rd
into L2(Ω).

In order to compute the pairs (u, η), the stabilization problem will be formulated
as an infinite horizon optimal control problem (see (5.1)–(5.2)) whose solution will
be a stabilizing pair of (u, η). To deal with the resulting infinite-horizon problem
a receding horizon control framework will be employed. In this framework, a sta-
bilizing moving control is constructed through the concatenation of solutions of
open-loop problems defined on overlapping temporal domains covering [0,∞).
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1.2. Related literature. Moving controls have been considered, for example,
in [9,17] where suitable moving Dirac delta functions are taken as actuators. In [17],
both approximate controllability and exact null controllability results are proven
for a semilinear 1D parabolic equation by means of two moving Dirac functions.
Both Dirac delta functions and indicator functions are typical actuators in appli-
cations, see for instance [17] (cf. [17, Eqs. (1.2) and (1.3)]). Such actuators lead
to lumped controls, which are essentially characterized by the temporal behavior
only. Concerning again the terminology, in [17] the Dirac delta functions based
controls are called point controls, and the indicator functions based controls are
called average controls or zone controls. In [9] approximate controllability results
for higher dimensional linear autonomous parabolic equations, by means of moving
point controls and, more generally, with controls moving in a lower-dimensional
submanifold, are presented. For semilinear 1D parabolic equations evolving in the
spatial interval (0, 1) ∈ R, approximate controllability results have been derived
in [16] by means of a single static average control u(t)1ω̂, ω̂ = (l1, l2) ⊂ (0, 1). The
results are obtained under the condition that l1 ± l2 are irrational numbers.

Concerning partial differential equations which are not of parabolic type we
refer to [20], where controllability properties for 1D damped wave equations, under
periodic boundary conditions, Ω = T, are derived by means of a control based on a
single moving point actuator u(t)Φ(t). The actuator is either a Dirac delta Φ(t) =
δc(t), see [20, Thm. 1.4], or a single moving function Φ(t) = φc(t) ∈ L2(T), see [20,
Thm. 1.1] where we can also see that the function φc(t) is required to have zero
mean. We refer also to [8,10,19] where a moving average control is considered, but
where the magnitude control function u = u(t, x) depends on both time and space
variables. By means of such a moving control, in [10] the approximate controllability
of higher dimensional damped wave equations is derived and, in [8] the inner null
controllability of the one-dimensional wave equation is investigated theoretically
and numerically. In [19] the null controllability is derived for a 1D coupled pde-ode
system of FitzHugh–Nagumo type, again with a magnitude control function u =
u(t, x) depending on both time and space variables. We recall that such systems
are not null controllable by means of static average controls.

It is well known that observability properties and null controllability properties
are related. In this respect we refer to the observability results in [15] for the
autonomous higher dimensional case with point observations. We recall that often
the tools used to derive controllability/observability results for autonomous systems
are not appropriate or are not valid to deal with the nonautonomous case. See for
example the solution representation in [15, Eq. (2.1)], and the discussion in [9,
Sect. 6, §1].

Our result in Theorem 1.1 is of different nature, when compared to the ones
mentioned above. Approximate and null controllability are properties concerning
the state y(T ) at a given time T . Instead, our goal in (1.5) is concerned with the
asymptotic behavior of the state (as time goes to +∞). Of course, if we have a
control driving the state to y(T ) = 0 at time t = T , then by switching the control
off, for t > T , results in a stabilizing control. Thus exact controllability is a stronger
property than stabilizability.

On the other hand for practical considerations controls driving the system to 0
at time T may not be enough for applications, since, due to noise or computational
error, the control may not drive the state exactly to the origin. If the latter is
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unstable and the control is nonetheless switched off then the state may diverge as
time tends to infinity. Therefore, a control is still needed which stabilizes the state
once it is close to the origin, or which keeps it in a small neighborhood of 0 which
is proportional to the magnitude of noise and disturbances.

1.3. On (lack of) stabilizability with a single static actuator. In this section
we provide examples where a single static actuator is not sufficient to stabilize the
system, no matter what its shape or placement in the spatial domain is. This
negative result can be seen as a motivation for our work in this manuscript, where
we show that we can still stabilize the system if we are allowed to dynamically move
a given indicator function as actuator.

Here we consider only the particular case of controlled autonomous diffusion-
reaction systems of the form

∂
∂ty(t, x)− ν∆y(t, x) + (a0 + a(x))y(t, x) = u(t)Ψ, t > 0, (1.7a)

y(0, ·) = y0, Gy|Γ = 0, (1.7b)

evolving in a regular enough bounded domain Ω ⊂ Rd, d ∈ N0, and with

ν > 0, a0 ∈ R, Ψ ∈ L2(Ω), (1.8)

u ∈ L2
loc((0,+∞),R), y0 ∈ L2(Ω), and a ∈ L∞(Ω). (1.9)

In (1.7) above G stands for either the Dirichlet or the Neumann trace operator.
Let {ẽi | i = 1, 2, . . . } be a countable complete linearly independent system of

eigenfunctions of the operator

A := −ν∆ + a(x)1 : D(A)→ L2(Ω),

with domain D(A) = {z ∈ H2(Ω) | Gz |Γ = 0}. Let α̃i be the corresponding
eigenvalues

Aẽi = α̃iẽi, α̃1 ≤ α̃2 ≤ α̃3 ≤ ...., lim
i→+∞

α̃i = +∞.

The following result implies that system (1.7) is not stabilizable, for any given static
actuator Ψ ∈ L2(Ω).

Proposition 1.2. If there exists a nonsimple eigenvalue α̃j and if −a0 > 0 is
large enough, then for each Ψ ∈ L2(Ω) we can find y0 ∈ L2(Ω) such that for
all u ∈ L2

loc((0,+∞),R) the weak solution y of (1.7) satisfies lim
t→+∞

|y(t, ·)|H = +∞.

Next, for the sake of completeness, we present/recall also a positive result for
stabilization with a single actuator Ψ.

Proposition 1.3. If all the nonpositive eigenvalues of A+ a01 are simple, and if
none of the corresponding eigenfunctions is orthogonal to Ψ, then system (1.7) is
stabilizable.

The proofs of Propositions 1.2 and 1.3 are given in the Appendix, Section A.1.

1.4. Contents and notation. In Section 2 we present the assumptions we require
for the operators A and Arc in (1.1). Our main exponential stabilization result is
proved in Section 3. In Section 4 this is applied to the concrete parabolic equations
as (1.3) and Theorem 1.1 is proved. Section 5 is devoted to the numerical compu-
tation of a moving control based on the receding horizon framework which shows
the exponentially stabilizing performance.
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Concerning notation, we write R and N for the sets of real numbers and nonneg-
ative integers, respectively, and we set Rr := (r,+∞) with r ∈ R, whose closure is
denoted by Rr := [r,+∞). Finally, we set N0 := N \ {0}.

Given two Banach spaces X and Y , if the inclusion X ⊆ Y is continuous, we

write X ↪−→ Y . We write X
d
↪−→ Y , respectively X

c
↪−→ Y , if the inclusion is also

dense, respectively compact.
Let X ⊆ Z and Y ⊆ Z be continuous inclusions, where Z is a Hausdorff topo-

logical space. Then we define the Banach spaces X × Y , X ∩ Y , and X + Y ,

endowed with the norms |(h, g)|X×Y :=
(
|h|2X + |g|2Y

) 1
2 , |ĥ|X∩Y := |(ĥ, ĥ)|X×Y , and

|h̃|X+Y := inf
(h,g)∈X×Y

{
|(h, g)|X×Y | h̃ = h+ g

}
, respectively. In case we know that

X ∩ Y = {0}, we say that X + Y is a direct sum and we write X ⊕ Y instead.

For a given interval I ⊂ R, we denote W (I,X, Y ) := {f ∈ L2(I,X) | ḟ ∈
L2(I, Y )}, endowed withe the norm |f |W (I,X,Y ) :=

∣∣∣(f, ḟ)
∣∣∣
L2(I,X)×L2(I,Y )

.

The space of continuous linear mappings from X into Y is denoted by L(X,Y ).
In case X = Y we write L(X) := L(X,X).

The continuous dual of X is denoted X ′ := L(X,R). The adjoint of an operator
L ∈ L(X,Y ) will be denoted L∗ ∈ L(Y ′, X ′).

The space of continuous functions from X into Y is denoted by C(X,Y ).
The orthogonal complement to a given subset B ⊂ H of a Hilbert space H, with

scalar product (·, ·)H , is denoted by B⊥ := {h ∈ H | (h, s)H = 0 for all s ∈ B}.
Given two closed subspaces F ⊆ H and G ⊆ H of the Hilbert space given

by H = F ⊕ G, we denote by PGF ∈ L(H,F ) the oblique projection in H onto F
along G. That is, writing h ∈ H as h = hF + hG with (hF , hG) ∈ F × G, we
have PGF h := hF . The orthogonal projection in H onto F is denoted by PF ∈
L(H,F ). Notice that PF = PF

⊥

F .

By C [a1,...,an] we denote a nonnegative function that increases in each of its
nonnegative arguments ai ≥ 0, 1 ≤ i ≤ n.

Finally, C, Ci, i = 0, 1, . . . , stand for unessential positive constants.

2. Assumptions

The results will follow under general assumptions on the plant dynamics opera-
tors A and Arc, and on a particular stabilizability assumption of (1.1) by means of
controls based on a large enough finite number M of suitable static actuators.

The Hilbert space H, in which system (1.1) is evolving in, will be set as a pivot
space, that is, we identify, H ′ = H. Let V be another Hilbert space with V ⊂ H.

Assumption 2.1. A ∈ L(V, V ′) is symmetric and (y, z) 7→ 〈Ay, z〉V ′,V is a com-
plete scalar product in V.

From now on, we suppose that V is endowed with the scalar product (y, z)V :=
〈Ay, z〉V ′,V , which still makes V a Hilbert space. Necessarily, A : V → V ′ is an
isometry.

Assumption 2.2. The inclusion V ⊆ H is dense, continuous, and compact.

Necessarily, we have that

〈y, z〉V ′,V = (y, z)H , for all (y, z) ∈ H × V,
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and also that the operator A is densely defined in H, with domain D(A) satisfying

D(A)
d, c
↪−−→ V

d, c
↪−−→ H

d, c
↪−−→ V ′

d, c
↪−−→ D(A)′.

Further, A has a compact inverse A−1 : H → D(A), and we can find a nondecreasing
system of (repeated accordingly to their multiplicity) eigenvalues (αn)n∈N0 and a
corresponding complete basis of eigenfunctions (en)n∈N0 :

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 → +∞ and Aen = αnen. (2.1)

We can define, for every ζ ∈ R, the fractional powers Aζ , of A, by

y =

+∞∑
n=1

ynen, Aζy = Aζ
+∞∑
n=1

ynen :=

+∞∑
n=1

αζnynen,

and the corresponding domains D(A|ζ|) := {y ∈ H | A|ζ|y ∈ H}, and D(A−|ζ|) :=

D(A|ζ|)′. We have that D(Aζ)
d, c
↪−−→ D(Aζ1), for all ζ > ζ1, and we can see

that D(A0) = H, D(A1) = D(A), D(A
1
2 ) = V .

For the time-dependent operator we assume the following:

Assumption 2.3. For almost every t > 0 we have Arc(t) ∈ L(V,H), and we have
a uniform bound, that is, |Arc|L∞(R0,L(V,H)) =: Crc < +∞.

Finally, we will need the following norm squeezing property, by means of controls
based on static actuators.

Assumption 2.4. There exist:

• a positive integer M , and positive real numbers T > 0 and θ ∈ (0, 1),

• a linearly independent family {Φ̂j | j ∈ {1, 2, . . . ,M}} ⊂ H with
∣∣∣Φ̂∣∣∣

H
= 1,

• a family of functions {vk ∈ L(V,L∞((kT, kT + T ),RM )) | k ∈ N}, with
sup
k∈N
|vk|L(V,L∞((kT,kT+T ),RM )) ≤ K,

such that: for all k ∈ N, the solution of

ẏ +Ay +Arc(t)y =
M∑
j=1

vk,j(v)(t)Φ̂j , y(kT ) = v, t ∈ (kT, kT + T ), (2.2)

satisfies

|y(kT + T )|V ≤ θ |v|V , for all v ∈ V. (2.3)

Remark 2.5. Assumptions 2.1–2.4 are satisfiable for parabolic equations as (1.3)
evolving in bounded rectangular domains Ω ⊂ Rd. The satisfiability of such as-
sumptions shall be revisited/proven later on, in Section 4, where we give the proof
of Theorem 1.1, concerning standard parabolic equations.

Remark 2.6. Alternatively, in Assumption (2.3) we can take a reaction-convection
term Arc(t) ∈ L∞(R0,L(H,V ′)). The proof will however involve slightly different
steps. Motivations and further details are given later in Section 4.4.
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3. Existence of a moving stabilizing control

Hereafter SH denote the unit sphere in H,

SH := {h ∈ H | |h|H = 1}.

We prove our main result, which is the following.

Theorem 3.1. Under Assumptions 2.1–2.4, there exist a magnitude control func-
tion u and a continuous moving actuator Φ satisfying

u ∈ L2(R0,R), Φ̇ ∈ L∞(R0, H), Φ̈ ∈ L∞(R0, H),

Φ(0) = Φ̂1, Φ̇(0) = 0, Φ(t) ∈ SH for t ≥ 0,

and constants C ≥ 1 and µ > 0, such that the solution of the system (1.1),

ẏ +Ay +Arc(t)y = u(t)Φ(t), y(0) = y0 ∈ V, t > 0, (3.1)

satisfies (1.2),

|y(t)|V ≤ Ce−µt |y0|V , for all t ≥ 0, (3.2a)

and the mapping y0 7→ u(y0) is continuous,

|u|C(V,L2(R0,R)) =: N0 < +∞. (3.2b)

Furthermore,
∣∣∣Φ̇∣∣∣

L∞(R0,H)
+
∣∣∣Φ̈∣∣∣

L∞(R0,H)
≤ CΦ with CΦ independent of y0.

Note that Theorem 3.1 gives us stabilizability in the V -norm. The stabilizability
in H-norm as stated in (1.2a) follows as a consequence.

Corollary 3.2. Let Φ∗ ∈ C1([0, 1], H) satisfy

Φ̈∗ ∈ L∞((0, 1), H), Φ∗(1) = Φ̂1, Φ̇∗(1) = 0, Φ∗(t) ∈ SH , for t ∈ [0, 1].

Under Assumptions 2.1–2.4, there exist a magnitude control function ue and a
continuous moving actuator Φe satisfying

ue ∈ L2(R0,R), Φ̇e ∈ L∞(R0, H), Φ̈e ∈ L∞(R0, H),

Φe |[0,1] = Φ∗, Φe(t) ∈ SH for t ≥ 0,

and constants Ce ≥ 1 and µ > 0, such that the solution of the system (1.1),

ẏ +Ay +Arc(t)y = ue(t)Φe(t), y(0) = y0 ∈ H, t > 0, (3.3)

satisfies (1.2),

|y(t)|H ≤ C
ee−µt |y0|H , for all t ≥ 0, (3.4a)

and the mapping y0 7→ u(y0) is continuous,

|u|C(H,L2(R0,R)) =: Ne
0 < +∞. (3.4b)

Moreover,
∣∣∣Φ̇e∣∣∣

L∞(R0,H)
+
∣∣∣Φ̈e∣∣∣

L∞(R0,H)
≤ max

{
CΦ,

∣∣∣Φ̇∗∣∣∣
L∞((0,1),H)

+
∣∣∣Φ̈∗∣∣∣

L∞((0,1),H)

}
with CΦ independent of (y0,Φ

∗(0)).
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Proof. For t ∈ [0, 1] we choose the control u(t)Φ∗ with u = 0. Using the smoothing
property of parabolic-like equations (cf. [7, Lem. 2.4]), we arrive at a state y(1) =:
y1 ∈ V , with

|y(1)|V ≤ C [Crc] |y(0)|H . (3.5)

In the time interval R1, we can find a control u1 ∈ L2(R1,R) and a moving

actuator Φ1 as in Theorem 3.1, with Φ1(1) = Φ̂1 and Φ̇1(1) = 0, giving us

|y(t)|V ≤ C [Crc]e
−µ(t−1) |y(1)|V , t ≥ 1. (3.6)

Indeed it is enough to consider a shift in time variable and use Theorem 3.1 to the
function w(τ) = y(1 + τ), which solves the system

d
dτw +Aw + Ãrcw = u(τ)Φ(τ), w(0) = y1, τ > 0,

with Ãrc(τ) = Arc(s+ τ). Hence obtaining

|w(τ)|V ≤ C [Crc,1]e
−µτ |w(0)|V , τ ≥ 0,

with Crc,1 =
∣∣∣Ãrc

∣∣∣
L∞(R0,L(V,H))

= |Arc|L∞(R1,L(V,H)) ≤ Crc which implies (3.6), by

taking for t ≥ 1, u1(t) = u(t− 1) and Φ1(t) = Φ(t− 1).
Next, defining

ue(t) = 0 and Φe(t) = Φ∗(t), for t ∈ [0, 1),

ue(t) = u1(t) and Φe(t) = Φ1(t), for t ≥ 1,

we obtain, using (3.6) and (3.5),

|y(t)|H ≤ |1|L(V,H) |y(t)|V ≤ C[Crc,|1|L(V,H)]
e−µ(t−1) |y(1)|V

≤ C[Crc,|1|L(V,H),µ]e
−µt |y(0)|H , t ≥ 1.

and (cf. [7, Lem. 2.2])

|y(t)|H ≤ C [Crc] |y(0)|H ≤ C [Crc]e
µe−µt |y(0)|V

≤ C [Crc,µ]e
−µt |y(0)|H , t ∈ [0, 1).

We can see that we can take Ce of the form C[Crc,|1|L(V,H),µ] in (3.4a).

Using Φ∗(1) = Φ1(1) = Φ̂1 and Φ̇∗(1) = Φ̇1(1) = 0, we can conclude that Φe ∈
C1([0,+∞), H). Finally, by Theorem 3.1 we have that

∣∣∣Φ̇1
∣∣∣
L∞(R1,H)

+
∣∣∣Φ̈1
∣∣∣
L∞(R1,H)

≤

CΦ with CΦ independent of y1 (and of Φ∗). �

We are going to use Assumption 2.4 together with a concatenation argument,
and will prove that Theorem 3.1 is a corollary of the following result concerning
the restriction of our system to the intervals

Ik := (kT, kT + T ), Ik := [kT, kT + T ] k ∈ N. (3.7)

Theorem 3.3. Under Assumptions 2.1–2.4, there exist a magnitude control func-
tion uk and a continuous moving actuator Φk satisfying

uk ∈ L2(Ik,R), Φ̇k ∈ L∞(Ik, H), Φ̈k ∈ L∞(Ik, H),

Φk(kT ) = Φk(kT + T ), Φ̇k(kT ) = Φ̇k(kT + T ), Φk(t) ∈ SH for t ∈ Ik,
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such that the solution of the system

ẏ +Ay +Arc(t)y = uk(t)Φk(t), y(kT ) = v ∈ V, (3.8)

satisfies

|y(kT + T )|V ≤
θ+1

2 |v|V , (3.9a)

and, the mapping v 7→ uk(v) is continuous,

|uk|C(V,L2(Ik,R)) =: N1 < +∞. (3.9b)

with N1 independent of k ∈ N.

Proof of Theorem 3.1. We consider the concatenation of controls uk given by The-
orem 3.3 as follows

u(y0) = uk(y(kT )), if t ∈ Ik,
where the construction of u is to be understood in a sequential manner: first we
take u(y0)|I0 = u0(y(0T )) = u0(y0), then we consider the corresponding state y(T )

at final time t = T , which we then use to define u(y0)|I1 = u1(y(1T )), in this way,

by concatenation, we have constructed a control on the interval I0
⋃
I1 = (0, 2T ).

Once we have constructed the control u(y0)|(0,kT ) on (0, kT ), we take u(y0)|Ik =

uk(y(kT )) and have a control defined for time t ∈ (0, (k+ 1)T ). Eventually we will
have u(y0) defined in the entire time interval R0.

By (3.9a), we find that the solution associated to u(y0) satisfies

|y(kT + T )|V ≤
θ+1

2 |y(kT )|V ≤ ( θ+1
2 )k+1 |y(0)|V , (3.10)

that is, since 0 < θ < 1,

|y(kT + T )|H ≤ e−µ(k+1)T |y(0)|H , with µ := − 1
T log( θ+1

2 ) > 0. (3.11)

By a standard continuity argument (e.g., see [7, Lem. 2.3], recalling that C(Ik, V ) ↪−→
W (Ik,D(A), H)), we find that for t ≥ 0,

|y(t)|2V ≤ C [T,Crc]

(
|y(kT )|2V + |ukΦ|2L2(Ik,H)

)
, with k = b tT c, (3.12)

where brc denotes the integer satisfying k ≤ r < k + 1, r ∈ R. Since |Φ(t)|H = 1,
it follows that, by using (3.10),

|y(t)|2V ≤ C [T,Crc,M ]

(
|y(kT )|2V + |uk|2L2(Ik,RM )

)
≤ C [T,Crc,M,N1] |y(kT )|2V

≤ C [T,Crc,M,N1]e
−µkT |y(0)|2V = C [T,Crc,M,N1]e

µ(t−kT )e−µt |y(0)|2V
≤ C [T,Crc,M,N1,µ]e

−µt |y(0)|2V ,

because eµ(t−kT ) ≤ eµT = C [T,µ]. Therefore, (3.2a) holds true.
It remains to show (3.2b). Due to (3.9b) and (3.10) we find

|u(y0)|L2(R0,R) =
∞∑
k=0

|uk(y(kT ))|L2(Ik,R)

≤ N1

∞∑
k=0

|y(kT )|V ≤ N1 |y(0)|V
∞∑
k=0

e−
µ
2 kT = N1

1

1−e−
µ
2
T
|y0|V ,

which gives us (3.2b), with N0 ≤ N1
1

1−e−
µ
2
T

. �
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Proof of Theorem 3.3. Let us fix an arbitrary k ∈ N. By Assumption 2.4, we

have that Vk(v)(t) =
M∑
j=1

vk,j(v)(t)Φ̂j , is a control function driving system (2.2)

from v ∈ V at time t = kT to a state y(kT + T ) at time t = kT + T , with a norm
squeezed by a factor θ ∈ (0, 1). The proof will follow by successive approximations of
such control, hence we start by denoting V0

k = Vk, where the superscript underlines
that V0

k is our starting control. Since k has been fixed, for simplicity we will omit
the subscript k in the control, V0 = V0

k = Vk.

V0(v)(t) =
M∑
j=1

v0
j (v)(t)Φ̂j , v0

j (v)(t) := vk,j(v)(t), (v, t) ∈ V × Ik. (3.13)

Let us consider our dynamical system (2.2) with a general external forcing f as
follows,

ẏ +Ay +Arcy = f, y(kT ) = v ∈ V, t ∈ Ik, (3.14)

Denoting by y = Yk(v, f), y(t) = Yk(v, f)(t) the solution of (3.14). We can write∣∣Yk(v,V0(v))(kT + T )
∣∣
V
≤ θ |v|V (3.15a)

where 0 ≤ θ < 1. We see that V0(v) is a control based on the static actuators Φ̂j ,
and recall that

V0(v)(t) ∈ SΦ̂
:= span{Φ̂j | 1 ≤ j ≤M} ⊂ H, (3.15b)

v0 = (v0
1 , v

0
2 , . . . , v

0
M ) ∈ L(V,L∞(Ik,RM )), (3.15c)

The proof is completed into 5 main steps in Sections 3.1–3.5, where we construct
suitable approximations of V0: V0 ≈ V1 ≈ V2 ≈ V3 ≈ V4 ≈ V5, arriving at a
moving control V5 = V5(v), taking values V5(v)(t) in H, with∣∣Yk(v,V5(v))(kT + T )

∣∣
V
≤ 1+θ

2 |v|V .

That is, V5(v) drives the system from v ∈ H at initial time t = kT to a state y(kT+
T ) at final time t = kT + T with a norm squeezed by a factor 1+θ

2 ∈ (θ, 1). �

In each of remaining steps of the proof of Theorem 3.3 we will use a continuity
argument for system (3.14). The main contents, in each step, are as follows.

s© Step 1: Taking auxiliary static actuators in D(A). In Section 3.1, we replace

(i.e., approximate) our static actuators Φ̂j ∈ H by suitable static actuators Φ̃j ∈

D(A) ⊂ H. In this way we obtain a control V1(v)(t) =
M∑
j=1

v0
j (v)(t)Φ̃j , taking values

in SΦ̃
:= span{Φ̃j | 1 ≤ j ≤ M} ⊂ D(A). Taking actuators in D(A) is needed for

technical reasons, which play a role in Step 2 of the proof.

s© Step 2: Piecewise constant static control in D(A). In Section 3.2, we approximate
the control V1(v), by a right-continuous piecewise constant control V2(v) taking

values V2(v)(t) in the set {sΦ̃j | 1 ≤ j ≤ M, −K ≤ s ≤ K} ⊂ D(A) for a suitable
constant K > 0, for all t ∈ Ik.

s© Step 3: Piecewise constant static control in H. Back to original actuators. In

Section 3.3, we replace back the Φ̃js by the Φ̂js. In this way we arrive at a piecewise

constant control V3(v) defined as V3(v)(t) := sΦ̂j if V2(v)(t) = sΦ̃j taking values

in the set {sΦ̂j | 1 ≤ j ≤M, −K ≤ s ≤ K} ⊂ H.



12 B. Azmi, K. Kunisch, and S. S. Rodrigues

s© Step 4: A piecewise constant static control with nondegenerate intervals of con-
stancy. In Section 3.4 we construct a piecewise constant control V4(v) taking val-
ues V4(v)(t) in H, where the lengths of the intervals of constancy are all larger than
a suitable positive constant.

s© Step 5: A moving control in H. In Section 3.5, we construct a moving con-
trol V5 = V5(v) = u(t)Φ(t) which visits (several times) the positions of the static

actuators Φ̂j , spending a suitable amount of time at those positions, and trav-
els, in H, fast enough between those positions. In this way we obtain a moving
control V5 = V5(v), taking values V5(v)(t) in H.

Steps 1 and 3 are needed only if some of our static actuators are in H \ D(A).
This will, in general, be the case for indicator functions 1ω, ω ⊂ Ω, for scalar
parabolic equations evolving in bounded domains Ω ⊂ Rd.

The continuity arguments in Steps 1, 3, 4, and 5 are standard, namely the con-
tinuity of the solution of system (3.14) on the right-hand side as y = Yk(v, ·) ∈
C(L2(Ik, H), C(Ik, V )). The continuity argument in Step 2 is less standard, involv-
ing the continuity of the solution when the right-hand side varies in the so called
relaxation metric, details will be given in Section 3.2.

3.1. A static control taking values in D(A). Observe that 1+θ
2 − θ = 1−θ

2 > 0.

Recall that (cf. [7, Lem. 2.3], recalling that C(Ik, V ) ↪−→ W (Ik,D(A), H)) the
solution of system (3.14) satisfies

|Yk(v, f)(t)|2V ≤ DY

(
|v|2V + |f |2L2(Ik,H)

)
, t ∈ Ik = (kT, kT + T ), (3.16)

with DY = C [T,Crc] independent of k, where Crc is defined in Assumption 2.3.

By Assumption 2.4, the actuators Φ̂j are in the unit sphere SH of H. Then,

from D(A)
d
↪−→ H we can choose a family {Φ̃j | 1 ≤ j ≤M} such that

Φ̃j ∈ D(A)
⋂
SH , (3.17a)∣∣∣Φ̃j − Φ̂j

∣∣∣
H
≤ 1−θ

10 D
− 1

2

Y T−
1
2K−1M−1, 1 ≤ j ≤M. (3.17b)

The fact that the Φ̃j can be taken in the unit sphere is a corollary of the following
result, whose proof is given in Section A.2.

Proposition 3.4. Let X ⊂ H be a vector space. Then, the density of X ⊂ H
implies the density of X

⋂
SH ⊂ SH .

Now we recall the control V0 in (3.13), and define a new control as

V1(v)(t) =
M∑
j=1

v1
j (v)(t)Φ̃j , v1

j (v)(t) := v0
j (v)(t), (v, t) ∈ V × Ik. (3.18)

where we replace each actuator Φ̂j ∈ H by the auxiliary actuator Φ̃j ∈ D(A) ⊂ H.
Note that, by Assumption 2.4, for v1 := (v1

1 , v
1
2 , . . . , v

1
M ), we find

sup
t∈Ik

∣∣v1(v)(t)
∣∣
RM = sup

t∈Ik

∣∣v0(v)(t)
∣∣
RM ≤ K |v|V . (3.19)

Let us denote d1 := Yk(v,V1(v))−Yk(v,V0(v)), which satisfies

ḋ1 +Ad1 +Arcd
1 = V1(v)− V0(v), for t ∈ Ik, d1(kT ) = 0. (3.20)
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By (3.16) and (3.17), we find that, since M ≥ 1,∣∣d1(t)
∣∣
V
≤ D

1
2

Y

∣∣V1(v)− V0(v)
∣∣
L2(Ik,H)

≤ 1−θ
10 T

− 1
2K−1M−1

∣∣v0(v)
∣∣
L2(Ik,RM )

≤ 1−θ
10 T

− 1
2K−1

∣∣v0(v)
∣∣
L2(Ik,RM )

≤ 1−θ
10 K−1

∣∣v0(v)
∣∣
L∞(Ik,RM )

.

Thus, using Assumption 2.4,∣∣Yk(v,V1(v))(t)−Yk(v,V0(v))(t)
∣∣
V
≤ 1−θ

10 |v|V , for all t ∈ Ik. (3.21)

3.2. A piecewise constant static control taking values in D(A). Let us de-
note the closed unit ball in D(A) by BD(A). Recall the control V1(v)(t), defined

in (3.18), taking values in SΦ̃ = span{Φ̃j | 1 ≤ j ≤ M}. We will prove that the

solution of (3.14) varies continuously in C(Ik, V ) when the external forcing varies
continuously in the so called (weak) relaxation metric (cf. [12, Ch. 3])

Dwrx
Ik

(f, g) := sup
t∈Ik

∣∣∣∣∫ t

kT

f(s)− g(s) ds

∣∣∣∣
D(A)

, {f, g} ⊂ L∞(Ik,SΦ̃

⋂
KBD(A)),

(3.22)
for a given K > 0. Hence we will approximate V1(v) by a piecewise constant
control V2(v) in such a metric. We underline here that f and g above are functions
taking their values in the bounded subset SΦ̃

⋂
KBD(A) of the finite dimensional

subspace SΦ̃ ⊂ D(A).
As the reference [12] shows, such continuity is known in control theory of ordinary

differential equations. It has also been used to derive (approximate) controllability
results for partial differential equations, see for example [1, Sect. 12.3], [2, Sect. 6.3],
[22, Sect. 9], [23, Sect. 3.2.2].

We follow a variation of the procedure in [12, Ch. 3], which allows us to construct

a piecewise constant control taking values in {sΦ̃j | 1 ≤ j ≤ M, −K ≤ s ≤
K}, for a suitable fixed K > 0, see (3.39). The fact that the control takes its

values in a subset of the cone {rΦ̃j | 1 ≤ j ≤ M, r ∈ R} will be important in
Section 3.5. With respect to this, we would like to refer also to [27, Lemma 3.5],
for a different approximation involving piecewise constant controls, but where the
control is allowed to take values which are not necessarily in the cone above.

In order to construct a piecewise constant control, we start with a partition of
the time interval Ik into N subintervals of constant size T

N ,

Ik,n := (kT + (n− 1) TN , kT + n TN ), 1 ≤ n ≤ N.

and we denote Ik,n := [kT +(n−1) TN , kT +n TN ]. We are going to construct a piece-
wise constant control on each of the subintervals Ik,n with exactly 2M subintervals

of constancy (possibly with vanishing length) where each of the M actuators Φ̃j ,
1 ≤ j ≤M will be active in exactly two of such intervals.

We start by defining the nonnegative constant

Σn(v) :=
N

T

M∑
m=1

∣∣∣∣∣
∫
Ik,n

v1
m(v)(t) dt

∣∣∣∣∣
R

. (3.23)

Observe that

Σn(v) ≤ N

T

∫
Ik,n

M∑
m=1

∣∣v1
m(v)(t)

∣∣
R dt ≤ N

T
M

∫
Ik,n

∣∣v1(v)(t)
∣∣
RM dt
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and, by (3.19), it follows that

Σn(v) ≤MK |v|V . (3.24)

Let us denote

lk,n,j = lk,n,2M+1−j := 1
2Σn(v)

∫
Ik,n

v1
j (v)(t) dt, 1 ≤ j ≤M. (3.25)

Next, we consider the cases Σn(v) 6= 0 and Σn(v) = 0 separately.

• The case Σn(v) 6= 0. We rewrite our control V1(v), as

V1(v)(t) =
M∑
j=1

v1
j (v)(t)Φ̃j =

M∑
j=1

v1j (v)(t)

Σn(v) Σn(v)Φ̃j .

We define a piecewise constant control in each interval Ik,n ⊂ Ik, where the
lengths of the intervals of constancy are given by

|lk,n,j | := |lk,n,j |R . (3.26a)

Observe that
2M∑
j=1

|lk,n,j | = 2 1
2Σn(v)

M∑
j=1

∣∣∣∫Ik,n v1
j (v)(t) dt

∣∣∣
R

= T
N . (3.26b)

Note also that some of the lengths may vanish.

Next, we denote the switching time instants tk,n,j = t
[N ]
k,n,j as follows

tk,n,0 := kT + (n− 1) TN , (3.27a)

tk,n,j := kT + (n− 1) TN +
j∑

m=1
|lk,n,m| , 1 ≤ j ≤ 2M. (3.27b)

In particular, we have tk,n,2M = kT + n TN .
To simplify the exposition we denote

Φ̃2M+1−j := Φ̃j , 1 ≤ j ≤M. (3.28)

We define

Ik,n,j := [tk,n,j−1, tk,n,j), 1 ≤ j ≤ 2M. (3.29a)

V[N ](v)(t) = sign(lk,n,j)Σn(v)Φ̃j , if t ∈ Ik,n,j , 1 ≤ j ≤ 2M. (3.29b)

• The case Σn(v) = 0. We define V[N ](v)(t) = 0, for all t ∈ Ik,n. Which we can
still rewrite as a piecewise constant control as follows.

Firstly we define

tk,n,0 := kT + (n− 1) TN , tk,n,j := kT + (n− 1) TN + j T
2MN , 1 ≤ j ≤ 2M. (3.30)

and, then we set analogously to (3.29),

Ik,n,j := [tk,n,j−1, tk,n,j) = [kT + (n− 1) TN + j T
2MN ), 1 ≤ j ≤ 2M. (3.31a)

V[N ](v)(t) = sign(lk,n,j)Σn(v)Φ̃j = 0Φ̃j , if t ∈ Ik,n,j , 1 ≤ j ≤ 2M. (3.31b)

In either case we obtain a piecewise constant control in the entire interval Ik. Ob-

serve that V[N ](v)(t) tells us that we activate the actuators Φ̃j in each interval Ik,n
in the order

Φ̃1 → Φ̃2 → · · · → Φ̃M−1 → Φ̃M → Φ̃M+1 → Φ̃M+2 → · · · → Φ̃2M−1 → Φ̃2M ,
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which is the same, by (3.28), as the cycle

Φ̃1 → Φ̃2 → · · · → Φ̃M−1 → Φ̃M → Φ̃M → Φ̃M−1 → · · · → Φ̃2 → Φ̃1. (3.32)

Some actuators may be active in degenerate intervals of length zero. The actuators
are activated with the same input of constant magnitude sign(lk,n,j)Σn(v).

Next, we show that V[N ](v)(t) approaches V1(v)(t) in the relaxation metric (3.22).
We set

I[N ](t) :=

∫ t

kT

(
V[N ](v)(s)− V1(v)(s)

)
ds.

Then

Dwrx
Ik

(V[N ](v),V1(v)) = sup
t∈Ik

∣∣I[N ](t)
∣∣
D(A)

.

We show now that I[N ] vanishes at the extrema of the intervals Ik,n. Clearly

I[N ](kT ) = 0. (3.33)

Further, if we assume that I[N ](kT + n TN ) = 0 for a given 0 ≤ n ≤ N − 1, then:
• if Σn(v) 6= 0 we obtain

I[N ](kT + (n+ 1) TN ) =

∫
Ik,n

(
V[N ](v)(s)− V1(v)(s)

)
ds

=
2M∑
j=1

|lk,n,j | sign(lk,n,j)Σn(v)Φ̃j −
∫
Ik,n

V1(v)(s) ds

=
2M∑
j=1

1

2

∫
Ik,n

v1
j (v)(s) dsΦ̃j −

∫
Ik,n

V1(v)(s) ds = 0.

• if Σn(v) = 0 we obtain

I[N ](kT + (n+ 1) TN ) =

∫
Ik,n

(
0− V1(v)(s)

)
ds = 0.

Therefore, in either case we have that

I[N ](kT + n TN ) = 0 =⇒ I[N ](kT + (n+ 1) TN ) = 0, 0 ≤ n ≤ N − 1. (3.34)

From (3.33) and (3.34), by induction we can conclude that

I[N ](kT + n TN ) = 0, for all n ∈ {0, 1, 2, . . . , N}. (3.35)

Now for an arbitrary t ∈ Ik,n we find∣∣I[N ](t)
∣∣
D(A)

≤ T
N

(
sup
s∈Ik,n

∣∣V[N ](v)(s)
∣∣
D(A)

+ sup
s∈Ik,n

∣∣V1(v)(s)
∣∣
D(A)

)

≤ T
N

(
Σn(v) sup

1≤j≤M

∣∣∣Φ̃j∣∣∣
D(A)

+ sup
s∈Ik

∣∣v1(v)(s)
∣∣
RM sup

1≤j≤M

∣∣∣Φ̃j∣∣∣
D(A)

)
and by (3.24) and Assumption 2.4,∣∣I[N ](t)

∣∣
D(A)

≤ T
N (MK |v|V + K |v|V ) sup

1≤j≤M

∣∣∣Φ̃j∣∣∣
D(A)

≤ T
N (M + 1)

∥∥∥Φ̃
∥∥∥ K |v|V , t ∈ Ik,

∥∥∥Φ̃
∥∥∥ := sup

1≤j≤M

∣∣∣Φ̃j∣∣∣
D(A)

. (3.36)



16 B. Azmi, K. Kunisch, and S. S. Rodrigues

Next we show the continuity of the solution when the right-hand side control
varies in the relaxation metric. Let us denote dN := Yk(v,V[N ](v))−Yk(v,V1(v)),
and observe that dN satisfies (3.14), as

ḋN +AdN +ArcdN = V[N ](v)− V1(v), dN (kT ) = 0.

With zN := dN −I[N ], we see that żN = ḋN −İ[N ] = −AdN −ArcdN , which implies

żN +AzN +ArczN = −AI[N ] −ArcI[N ], zN (kT ) = 0,

and also, by (3.35),

zN (kT + n TN ) = dN (kT + n TN ), 0 ≤ n ≤ N. (3.37)

Therefore, for zN = Yk(0,−AI[N ] −ArcI[N ]) we obtain, see (3.16),

|zN (t)|2V ≤ DY

∣∣−AI[N ] −ArcI[N ]

∣∣2
L2(Ik,H)

, t ∈ Ik.

By standard computations we find, for all t ∈ Ik,

|zN (t)|2V ≤ DY

(∣∣AI[N ]

∣∣
L2(Ik,H)

+
∣∣ArcI[N ]

∣∣
L2(Ik,H)

)2

≤ DY

(∣∣I[N ]

∣∣
L2(Ik,D(A))

+ Crc

∣∣I[N ]

∣∣
L2(Ik,V )

)2

= DY (1 + Crc |1|L(D(A),V ))
2T
∣∣I[N ]

∣∣2
L∞(Ik,D(A))

,

and using (3.36),

|zN (t)|V ≤
1

N
D

1
2

Y (1 + Crc |1|L(D(A),V ))T
3
2 (M + 1)

∥∥∥Φ̃
∥∥∥ K |v|V .

Now we can take N large enough, namely

N = N̂ ≥ D
1
2

Y (1 + Crc |1|L(D(A),V ))T
3
2 (M + 1)

∥∥∥Φ̃
∥∥∥ K 10

1−θ , (3.38)

in order to obtain
∣∣zN̂ (t)

∣∣
V
≤ 1−θ

10 |v|V . Then, we set

V2(v)(t) := V[N̂ ](v)(t) = sign(lk,n,j)Σn(v)Φ̃j , if t ∈ Ik,n,j , 1 ≤ j ≤ 2M, (3.39)

where the intervals Ik,n,j are defined as in (3.29) and (3.31),

Ik,n,j = I
[N̂ ]
k,n,j = [t

[N̂ ]
k,n,j−1, t

[N̂ ]
k,n,j) = [tk,n,j−1, tk,n,j). (3.40)

We find, using (3.36),∣∣Yk(v,V2(v))(t)−Yk(v,V1(v))(t)
∣∣
V

=
∣∣dN̂ (t)

∣∣
V
≤
∣∣zN̂ (t)

∣∣
V

+
∣∣∣I[N̂ ](t)

∣∣∣
V

≤ 1−θ
10 |v|V + T

N̂
(M + 1)

∥∥∥Φ̃
∥∥∥ K |v|V , for all t ∈ Ik, (3.41a)

and, using (3.37),∣∣Yk(v,V2(v))(kT + T )−Yk(v,V1(v))(kT + T )
∣∣
V

=
∣∣dN̂ (kT + T )

∣∣
V

=
∣∣zN̂ (kT + T )

∣∣
V
≤ 1−θ

10 |v|V . (3.41b)



Stabilization of parabolic equations by a moving actuator 17

3.3. A piecewise constant static control taking values in H. To simplify the
exposition we denote

Φ̂2M+1−j := Φ̂j , 1 ≤ j ≤M. (3.42)

Recall that V2(v) takes its values V2(v)(t) in the set {±Σn(v)Φ̃j} ⊂ D(A), for t ∈
Ik. We define a new piecewise constant control V3(v)(t), taking its values in the

set {±Σn(v)Φ̂j} ⊂ H, by

V3(v)(t) = sign(lk,n,j)Σn(v)Φ̂j , for V2(v)(t) = sign(lk,n,j)Σn(v)Φ̃j . (3.43)

Using (3.24), we can see that the corresponding solutions satisfy∣∣Yk(v,V3(v))(t)−Yk(v,V2(v))(t)
∣∣2
V
≤ DY

∣∣V3(v)− V2(v)
∣∣2
L2(Ik,H)

≤ DY T sup
1≤n≤N

Σn(v)2 max
1≤j≤M

∣∣∣Φ̃j − Φ̂j

∣∣∣2
H

≤ DY TM
2K2 |v|2V max

1≤j≤M

∣∣∣Φ̃j − Φ̂j

∣∣∣2
H

and by (3.17),∣∣Yk(v,V3(v))(t)−Yk(v,V2(v))(t)
∣∣
V
≤ 1−θ

10 |v|V , t ∈ Ik. (3.44a)

Note also that∣∣V3(v)(t)
∣∣
V
≤ sup

1≤n≤N
Σn(v) ≤MK |v|V , t ∈ Ik, (3.44b)

V3(v)(kT + (n− 1) TN ) ∈ {±Σn(v)Φ̂1}, 1 ≤ n ≤ N̂ . (3.44c)

Observe that V2 switches between the actuators Φ̃j as described in (3.32), and

hence V3 switches between the actuators Φ̂j as in the analogous cycle

Φ̂1 → Φ̂2 → · · · → Φ̂M−1 → Φ̂M → Φ̂M → Φ̂M−1 → · · · → Φ̂2 → Φ̂1, (3.45)

which, due to (3.28), results in

Φ̂1 → Φ̂2 → · · · → Φ̂M−1 → Φ̂M → Φ̂M+1 → Φ̂M+2 → · · · → Φ̂2M−1 → Φ̂2M .

3.4. A control with no degenerate intervals of constancy. By construction,
the length |lk,n,j | vanishes if v1

j (v) has zero average on Ik,n, see (3.25). It will be
convenient, also to simplify the exposition in Section 3.5 below, that all the intervals
of constancy have a length larger than a suitable positive constant.

Recall the switching time instants tk,n,j on each interval Ik,n ⊂ Ik, see (3.40),

tk,n,0 ≤ tk,n,1 ≤ tk,n,2 ≤ · · · ≤ tk,n,2M−1 ≤ tk,n,2M , 1 ≤ n ≤ N̂ , (3.46a)

and recall that

tk,n−1 := tk,n,0 = kT + (n− 1) T
N̂

and tk,n := tk,n,2M = kT + n T
N̂
. (3.46b)

To guarantee nondegenerate intervals of constancy we will define new switching
time instants satisfying

tεk,n,0 < tεk,n,1 < tεk,n,2 < · · · ≤ tεk,n,2M−1 < tεk,n,2M (3.47a)

with

tεk,n,0 := tk,n−1 and tεk,n,2M := tk,n. (3.47b)
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To do so we fix a positive number ε > 0, and define

tεk,n,j = tk,n−1 + ϑε(tk,n,j − tk,n−1 + j+1
2 jε), 0 ≤ j ≤ 2M, (3.48a)

with

ϑε := T

T+N̂(2M+1)Mε
. (3.48b)

Now we show that, indeed, the sequence (3.48) satisfies (3.47). We find

tεk,n,0 = tk,n−1 + ϑε0 = tk,n−1, (3.49a)

tεk,n,2M = tk,n−1 + ϑε(
T

N̂
+ (2M + 1)Mε) = tk,n−1 + T

N̂
= tk,n, (3.49b)

tεk,n,j − tεk,n,j−1 = ϑε(tk,n,j − tk,n,j−1 + ( j+1
2 j − j

2 (j − 1))ε),

≥ ϑε( j+1
2 j − j

2 (j − 1))ε = εϑεj > 0, 1 ≤ j ≤ 2M. (3.49c)

From (3.49) we see that (3.47) is satisfied.
Next we define the piecewise constant control, for time t ∈ Ik, as follows

Vε(v)(t) := sign(lk,n,j)Σn(v)Φ̂j , if t ∈ [tεk,n,j−1, t
ε
k,n,j), (3.50)

for 1 ≤ n ≤ N̂ , 1 ≤ j ≤ 2M.

where the intervals of constancy have a positive minimum length, see (3.49),

min
1≤j≤2M

{tεk,n,j−1 − tεk,n,j−1} ≥ εϑε > 0. (3.51)

Observe that, from (3.39) and (3.43), we have that

V3(v)(t) = sign(lk,n,j)Σn(v)Φ̂j , if t ∈ [tk,n,j−1, tk,n,j).

Note that as ε → 0 we have tεk,n,j → tk,n,j . Now we show that we also

have Vε(v)(t)→ V3(v)(t) in L2(Ik, H), as ε→ 0.

Proposition 3.5. Let [a, b] ∈ R be a nonempty interval, a < b, let X be a Banach
space, and let K be positive integer. Let us be given a finite sequence in X

φj ∈ X, 1 ≤ j ≤ K,

and two finite sequences in [a, b],

a = τ0 ≤ τ1 ≤ · · · ≤ τK−1 ≤ τK = b and a = σ0 ≤ σ1 ≤ · · · ≤ σK−1 ≤ σK = b.

Then, for the following two functions defined for t ∈ (a, b) by

fτ (t) := φj if t ∈ [τj−1, τj) and fσ(t) := φj if t ∈ [σj−1, σj),

we have the estimate

|fτ − fσ|L2((a,b),X) ≤ K
1
2R 1

2X ,

with R := max
0≤j≤K

|τj − σj |R and X := max
1≤i,j≤K

|φj − φi|X .

The proof of Proposition 3.5 is given in Section A.3.
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From Proposition 3.5 it follows that∣∣Vε(v)− V3(v)
∣∣
L2(Ik,H)

≤ (2MN̂)
1
2 max

0≤j≤2M

1≤n≤N̂

∣∣tεk,n,j − tk,n,j∣∣ 12R max
1≤i,j≤M
1≤n≤N̂

∣∣∣Σn(v)Φ̂j − Σn(v)Φ̂i

∣∣∣
H

≤ 2(2MN̂)
1
2 max

1≤n≤N̂
Σn(v) max

0≤j≤2M

1≤n≤N̂

∣∣tεk,n,j − tk,n,j∣∣ 12R .
Recalling (3.24), we arrive at∣∣Vε(v)− V3(v)

∣∣
L2(Ik,H)

≤ (2M)
3
2 N̂

1
2K |v|V max

0≤j≤2M

1≤n≤N̂

∣∣tεk,n,j − tk,n,j∣∣ 12R . (3.52)

Next, from (3.48) we find that∣∣tεk,n,j − tk,n,j∣∣R =
∣∣tk,n−1 − tk,n,j + ϑε(tk,n,j − tk,n−1 + j+1

2 jε)
∣∣
R

=
∣∣(ϑε − 1)(tk,n,j − tk,n−1) + j+1

2 jεϑε
∣∣
R

≤ (1− ϑε) TN̂ + (2M + 1)Mεϑε =: Θ(ε). (3.53)

By combining (3.52) and (3.53), we obtain that∣∣Vε(v)− V3(v)
∣∣
L2(Ik,H)

≤ (2M)
3
2 N̂

1
2K |v|V Θ(ε)

1
2 , (3.54)

and by using (3.16) it follows that∣∣Yk(v, Ve(v))(t)−Yk(v,V3(v))(t)
∣∣
V
≤ (8M3DY N̂)

1
2KΘ(ε)

1
2 |v|V , t ∈ Ik. (3.55)

From (3.48) we also find

1− ϑε = N̂(2M+1)Mε

T+N̂(2M+1)Mε
, εϑε = Tε

T+N̂(2M+1)Mε
,

and

1− ϑε → 0, εϑε → 0, and Θ(ε)→ 0, as ε→ 0.

Therefore, there exists ε̂ small enough, so that

Θ(ε̂) ≤ (8M3DY N̂)−1K−2( 1−θ
10 )2. (3.56)

Now we set the control

V4(v) = Vε̂(v), t ∈ Ik, (3.57a)

with nondegenerate intervals of constancy (cf. (3.51)),

min
1≤j≤2M

{tε̂k,n,j − tε̂k,n,j−1} ≥ ε̂ϑε̂ > 0. (3.57b)

From (3.55), and (3.56), it follows that∣∣Yk(v,V4(v))(t)−Yk(v,V3(v))(t)
∣∣
V
≤ 1−θ

10 |v|V , t ∈ Ik. (3.58)
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3.5. A continuously moving control taking values in H. We will travel in H

between the static actuators Φ̂i, following the cycle (3.45).
For traveling we fix a set of roads, in the unit sphere SH , connecting the static

actuators, as follows:

Rj : Cp([0, 1],SH), 1 ≤ j ≤M − 1, p ∈ N, (3.59a)

with Rj(0) = Φ̂j and Rj(1) = Φ̂j+1, (3.59b)

RM (s) = Φ̂M , s ∈ [0, 1], (3.59c)

RM+j(s) = RM−j(1− s), 1 ≤ j ≤M − 1. (3.59d)

Note that by (3.42), we also have

RM+j(0) = RM−j(1) = Φ̂M−j+1 = Φ̂M+j , (3.59e)

RM+j(1) = RM−j(0) = Φ̂M−j = Φ̂M+j+1. (3.59f)

We also introduce the scalar function

rε̂,ξk,n,j(t) :=

(
ξ+tε̂k,n,j−t

2ξ

)
sign(lk,n,j) +

(
ξ−tε̂k,n,j+t

2ξ

)
sign(lk,n,j+1), (3.60a)

with, recall (3.57),

ξ ∈ (0, ε̂ϑε̂2 ). (3.60b)

Then we define a moving control Vξ(v), for t ∈ Ik as follows:

Vξ(v)(t) := sign(lk,n,1)Σn(v)Φ̂1, (3.61a)

if t ∈ [kT + (n− 1) T
N̂
, tε̂k,n,1 − ξ], 1 ≤ n ≤ N̂ .

Vξ(v)(t) := sign(lk,n,2M )Σn(v)Φ̂1, (3.61b)

if t ∈ [tε̂k,n,2M−1 + ξ, kT + n T
N̂

], 1 ≤ n ≤ N̂ .

Vξ(v)(t) := sign(lk,n,j)Σn(v)Φ̂j , (3.61c)

if t ∈ [tε̂k,n,j−1 + ξ, tε̂k,n,j − ξ], 1 ≤ n ≤ N̂ , 2 ≤ j ≤ 2M − 1.

Vξ(v)(t) := rε̂,ξk,n,j(t)Σn(v)Rj(
ξ−tε̂k,n,j+t

2ξ ), (3.61d)

if t ∈ [tε̂k,n,j − ξ, tε̂k,n,j + ξ], 1 ≤ n ≤ N̂ , 1 ≤ j ≤ 2M − 1.

Observe that Vξ differs from V4 only in the intervals (tε̂k,n,j − ξ, tε̂k,n,j + ξ), 1 ≤
n ≤ N̂ , 1 ≤ j ≤ 2M − 1, when we travel from the static actuator Φ̂j to the static

actuator Φ̂j+1. These are exactly N̂(2M − 1) intervals, where each has length 2ξ.
Thus∣∣Vξ(v)− V4(v)

∣∣2
L2(Ik,H)

≤ 2ξN̂(2M − 1) max
1≤n≤N̂
1≤j≤2M−1

{∣∣∣rε̂,ξk,n,j(t)∣∣∣2R Σn(v)2
∣∣∣Φ̂j∣∣∣2

H

}
.

Since
∣∣∣rε̂,ξk,n,j(t)∣∣∣R ≤ 1 and

∣∣∣Φ̂j∣∣∣
H

= 1, using (3.24), we arrive at∣∣Vξ(v)− V4(v)
∣∣2
L2(Ik,H)

≤ 2ξN̂(2M − 1)M2K2 |v|2H .
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Recalling (3.16), we obtain∣∣Yk(v,Vξ(v))(t)−Yk(v,V4(v))(t)
∣∣2
V
≤ DY

∣∣Vξ(v)− V4(v)
∣∣2
L2(Ik,H)

≤ DY 2ξN̂(2M − 1)M2K2 |v|2V , t ∈ Ik. (3.62)

Now choosing small enough ξ, namely

ξ = ξ̂ := min

{
ε̂ϑε̂
2
,
(
DY 2N̂(2M − 1)M2K2

)−1

( 1−θ
10 )2

}
, (3.63)

and setting

V5(v))(t) := Vξ̂(v))(t), t ∈ Ik, (3.64)

we find ∣∣Yk(v,V5(v))(t)−Yk(v,V4(v))(t)
∣∣
H
≤ 1−θ

10 |v|H . (3.65)

Finally, note that V5(v) is a moving control of the form

V5(v)(t) =: u(t)Φ(t), t ∈ Ik, with |u(t)|H ≤MK |v|V , Φ(t) ∈ SH , (3.66a)

for suitable u ∈ L∞(Ik,R) and Φ ∈ C(Ik,SH). Furthermore, by choosing p ≥ 0
in (3.59) we can obtain a regular motion of the actuator. Namely, if we have

dq

dsq |s=0 Rj = 0 = dq

dsq |s=1 Rj , 1 ≤ q ≤ p, (3.66b)

then

Φ ∈ Cp(Ik,SH) (3.66c)

and

max
τ∈Ik

∣∣ dp

dtp |t=τ Φ
∣∣
H
≤ ( 1

2ξ̂
)p max

1≤j≤M
max
s0∈[0,1]

∣∣ dp

dsp |s=s0 Rj

∣∣
H
.

In particular, we have that

|Φ|Cp(Ik,SH) ≤ ( 1

2ξ̂
)p max

1≤j≤M
|Rj |Cp([0,1],H) . (3.66d)

Conclusion of the proof of Theorem 3.3. By using (3.21), (3.41), (3.44), (3.58),
and (3.65), together with the triangle inequality, we arrive at∣∣Yk(v,V5(v))(kT + T )−Yk(v,V0(v))(kT + T )

∣∣
H
≤ 5 1−θ

10 |v|H = 1−θ
2 |v|H .

Finally, note that the choice of ε̂ in (3.56) and that of ξ in (3.63) are independent
of y0. This finishes the proof of Theorem 3.3. �

Remark 3.6. Observe that the actuators Φ̃j in (3.17), the integer N̂ in (3.38), the

parameter ε̂ in (3.56), and the parameter ξ̂ in (3.63), were all chosen independently
of k ∈ N. Furthermore, from (3.66) we can also see that |Φ|Cp(Ik,SH) is bounded by

a constant independent of k ∈ N. Again from (3.66), by recalling Assumption 2.4 we
also have |u|L∞(Ik,H) ≤MK |v|V = MK |y(kT )|V with the productMK independent

of k ∈ N.
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4. Proof of Theorem 1.1

We start by writing (1.3) as

ẏ +Ay +Arcy = u1̂ω(c), y(0) = y0, t > 0, (4.1)

with A := −ν∆ + 1 and Arcz = Arc(t)z := (a(t, ·)− 1)z + b(t, ·) · ∇z.
It is not hard to check that Assumptions 2.1, 2.2, and 2.3, are satisfied by A ∈

L(V, V ′) and Arc ∈ L∞(R0,L(V,H)), namely with V = H1
0 (Ω) in the case of

Dirichlet boundary conditions and with V = H1(Ω) (see, e.g., [25, Sect.5.1]).

4.1. Satisfiability of Assumption 2.4. Assumption 2.4 follows from the results
in [25, Thm. 4.5] (when applied to linear equations), from which we know that

ẏ +Ay +Arcy = P
E⊥M
UM

(Arcy − λy) , y(0) = y0, t > 0, (4.2)

is a stable system for a suitable oblique projection P
E⊥M
UM

, where λ > 0. Namely, its
solution satisfies,

|y(t)|V ≤ Ce−µ(t−s) |y(s)|V , t ≥ s ≥ 0, (4.3)

with C ≥ 1 and µ ≥ 0 independent of (t, s). Actually in [25, Thm. 4.5] only the
case s = 0 is mentioned, however by a time shift argument t =: s+τ , w(τ) = y(s+τ),

Ãrc(τ) = Arc(s+ τ), we can rewrite (4.2) as

d
dτw +Aw + Ãrcw = P

E⊥M
UM

(
Ãrcw − λw

)
, w(0) = y(s), τ > 0,

and the results in [25, Thm. 4.5] give us

|w(τ)|V ≤ Cse
−µτ |y(s)|V , τ ≥ 0,

which is equivalent to (4.3). The constant Cs is of the form C[
|Ãrc|

L∞(R0,L(V,H))

],
and so Cs ≤ C0, that is we can take C independent of s in (4.3).

This stability result in [25, Thm. 4.5] holds for large enough M , where UM =
span{1ωj | 1 ≤ j ≤ M} is the span of suitable indicator functions supported in

small rectangles ωj ⊂ Ω. The operator PEMUM is the oblique projection in L2(Ω)

onto UM along an auxiliary space E⊥M , where EM is the span of a suitable set of
eigenfunctions of the diffusion A defined in L2(Ω), where Ω is a bounded rectangular
domain. For precise definitions of suitable UM and EM we refer to [18, Sect. 4.8.1]
and [25, Sect. 2.2]. Furthermore, for such choice we have

sup
M≥1

∣∣∣PE⊥MUM ∣∣∣L(H)
=: ‖P‖ < +∞. (4.4)

Observe that UM is the range of PEMUM , hence our control is of the form

P
E⊥M
UM

(Arcy − λy) =:
M∑
j=1

ṽj(t)1ωj =

M∑
j=1

vj(t)Φ̂j =: v(t)

In particular, from (4.3), for any given θ ∈ (0, 1) we have that, for all k ∈ N,

|y(kT + T )|V ≤ Ce−µT |y(kT )|V ≤ θ |y(kT )|V , if T ≥ µ−1 log(Cθ ).
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To prove that Assumption 2.4 is satisfied, it remains to show that the vj(t) are

appropriately essentially bounded. From (4.3) and P
E⊥M
UM

= P
E⊥M
UM

PEM , we find

|v(t)|H ≤ ‖P‖ |PEM (Arcy − λy)|H
≤
(
|Arc|L∞(R0,L(V,H)) + λ |1|L(V,H)

)
‖P‖ |y(t)|V

≤
(
Crc + λ |1|L(V,H)

)
‖P‖ Ce−µ(t−kT ) |y(kT )|V , t ≥ kT. (4.5)

which implies that

|v(t)|H ≤ K0 |y(kT )|V , t ∈ Ik = [kT, kT + T ]. (4.6)

with K0 =
(
Crc + λ |1|L(V,H)

)
‖P‖ C independent of k.

Therefore, Assumption 2.4 holds for M large enough, and with T = µ−1 log(Cθ )
and K = K0 as above.

4.2. Illustration of a path for the moving actuator. We consider the static
actuators 1ωi = 1ω(ci) with center ci as in [18, Sect. 4.8.1], illustrated in figure 2.
Then we order the actuators, for example as illustrated in the figure, and consider
the corresponding cycle, starting at the first actuator in the bottom-left corner,
going up until the Mth actuator in the top-right corner and returning back to the
bottom-left corner.

S = 1 S = 2 S = 3

Figure 2. Supports of the static actuators. Case Ω ⊂ R2.

In this way we are considering roads, see (3.66),

Rj(s) = 1̂ω(cj(s)), ω(cj(s)) ⊂ Ω, cj ∈ C2([0, 1],Rd),

and

cj(0) = cj , cj(1) = cj+1, ċj(0) = ċj(1) = c̈j(0) = c̈j(1) = 0.

Note that for such roads, we may take

cj(s) = cj + φ(s)(cj+1 − cj), 1 ≤ j ≤M,

where φ ∈ C2([0, 1], [0, 1]) is increasing and satisfies the relations φ(0) = 0, φ(1) = 1,

and φ̇(0) = φ̇(1) = φ̈(0) = φ̈(1) = 0. Furthermore, we have

|c|Cm(R0,Rd ≤ ( 1

2ξ̂
)m |φ|Cm([0,1],R) , m ∈ {0, 1, 2}. (4.8)

Recall also that ξ̂ can be chosen independent of y0.
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4.3. Conclusion of proof of Theorem 1.1. Let us fix y0 ∈ H and c0 ∈ RM
with ω(c0) ⊂ Ω, and let c1 be the center of the static actuator 1ω1 . For ĉ(t) :=
c0 + t2(2− t)2(c1 − c0) we have that

ĉ(0) = c0, ĉ(1) = c1, ˙̂c(0) = ˙̂c(1) = 0, ¨̂c ∈ L∞((0, 1),RM ).

We proceed as in Corollary 3.2 by taking the actuator path Φ∗(t) = 1̂ĉ(t), for
time t ∈ [0, 1], and the path illustrated in section 4.2 for time t ≥ 1 where we use

Theorem 3.1. Note that Φ∗(1) = 1̂ω(ĉ(1)) = 1̂ω1 and Φ̇∗(1) = 0.

Observe also that
∣∣∣ ˙̂c∣∣∣

W 1,∞((0,1),RM )
≤ |ϕ̇|W 1,∞(0,1)

∣∣c1 − c0∣∣RM ≤ C3 with ϕ(t) :=

t2(2− t)2, where C3 can be taken independent of c0 because Ω is bounded. There-
fore, we have that |ċ|W 1,∞(R0,RM ) ≤ max{C3, |·c|W 1,∞(R1,RM )} ≤ C4, with C4 inde-

pendent of (y0, c0), because |ċ|W 1,∞(R1,RM ) is independent of y(1) (cf. (4.8)), hence

independent of y(0). �

4.4. A remark on Assumption 2.3 and weak solutions. Instead of the reaction-
convection operatorArc ∈ L∞(R0,L(V,H)), we can also takeArc ∈ L∞(R0,L(H,V ′))
which is the case for a convection term as ∇ · (by) under homogeneous Dirichlet
boundary conditions, with b ∈ L∞(R0,Rd). For the latter case we can repeat the
procedure and prove the stabilizability result in the H-norm. That is, we must
work with weak solutions y ∈ C(R0, H) instead of strong solutions y ∈ C(R0, V ). In
particular we would just need to replace V by H in Assumption (2.4) and in (3.16).

Recall that, with C̃rc = |Arc|L∞(R0,L(H,V ′)) and D̃Y = C[T,C̃rc], we will have (cf. [21,

Lem. 2.2], recalling that C(Ik, H) ↪−→W (Ik, V, V
′))

|Yk(v, f)(t)|2H ≤ D̃Y

(
|v|2H + |f |2L2(Ik,V ′)

)
, t ∈ Ik = (kT, kT + T ).

Concerning parabolic equations we can see that instead of (4.5) we would obtain

|v(t)|V ′ ≤ ‖P‖
(
|PEM |L(V ′,H) |Arcy|V ′ + λ |y|H

)
≤
(
|PEM |L(V ′,H) |Arc|L∞(R0,L(H,V ′)) + λ

)
‖P‖ |y(t)|H

≤
(
|PEM |L(V ′,H) Crc + λ

)
‖P‖ Ce−µ(t−kT ) |y(kT )|H , t ≥ kT. (4.9)

which implies that

|v(t)|V ′ ≤ K0 |y(kT )|H , t ∈ Ik = [kT, kT + T ]. (4.10)

Such inequality implies that the control is essentially bounded as required in As-
sumption (2.4).

Such weak solutions are also defined for Arc ∈ L∞(R0,L(V,H)), but we can-
not show that the control remains essentially bounded in the case we only know
that |y(t)|H remains bounded. For that we would need to bound (4.5) by |y(kT )|H
instead of |y(kT )|V , but this seems to be not possible in general.

5. Numerical simulations

According to the construction in Sections 3 and 4, once we have fixed a set of
roads Rj , see (4.7), we could compute the moving control V5 in (3.64) from the

control V0 given by (4.2) simply by setting N = N̂ large enough, ε = ε̂ small enough

and ξ = ξ̂, and by computing the scalars lk,n,j in (3.61), from which we could also
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compute Σn(y(kT )), the switching times in (3.48). However, we would obtain an
actuator V5 which would be moving very fast by visiting all initial static actuators
twice in a each interval of time i TN , i ∈ N. In applications, this is likely not the
“best” motion for the actuator, sometimes it would be better to stay longer in a
particular region or it would be better to leave the roads Rj in order to cover other
regions of Ω. Therefore, we are going to compute the center c = c(t) of the moving
actuator and the control magnitude u = u(t) using tools from optimal control.

5.1. Computation of a stabilizing single actuator based receding horizon
control. We deal with system (1.6), where now we will consider (y, c) as the state
of the system and (u, η) as the control. Note that η can be seen as a control on
the acceleration of c, which also makes sense from the applications point of view,
where we cannot change instantaneously the velocity of a device, but instead we can
apply a force/acceleration to it. Then, to compute the the force η and magnitude
u, we formulate the following infinite-horizon optimal control problem defined by
minimizing the performance index function defined by

J∞(u, η : (y0, c0, 0)) :=
1

2

∫ ∞
0

|∇y(t, ·)|2L2(Ω,Rd) + β|u(t)|2 dt. (5.1)

That is, we define the infinite-horizon optimization problem

inf
(u,η)∈L2(R0,R)×L2

loc(R0,Rd)
J∞(u, η : (y0, c0, 0)) (5.2a)

subject to
ẏ − ν∆y + ay + b · ∇y = u1ω(c), y|Γ = 0,

c̈+ ςċ+ εc = η,

y(0, ·) = y0, c(0) = c0, ċ(0) = 0,

(5.2b)

as well as to the constraints{
c ∈ C := {g ∈ C(R0,Rd) | ω(g(s)) ⊂ Ω, for s ∈ R0},
η ∈ X := {κ ∈ L2

loc(R0,Rd) | ‖κ(s)‖ ≤ K for a.e. s ∈ R0},
(5.2c)

where K = (K1,K2, . . . ,Kd) ∈ Rd is a vector with coordinates Ki > 0, for all
1 ≤ i ≤ d, and where by ‖κ(s)‖ ≤ K we mean that |κi(s)| ≤ Ki for all 1 ≤ i ≤ d.
For tackling this infinite-horizon problem we employ a receding horizon framework.
This framework relies on successively solving finite-horizon open-loop problems on
bounded time-intervals as follows. Let us fix T > 0 and let an initial vector of the
form I0 := (t0, y0, c0, c

1
0) ∈ R0 × L2(Ω) × Rd × Rd be given. We define the time

interval It0 := (t0, t0 + T ), and the finite-horizon cost functional

JT (u, η : I0) :=
1

2

∫ t0+T

t0

|∇y(t, ·)|2L2(Ω,Rd) + β|u(t)|2 dt,

and introduce the finite-horizon optimization problem

min
(u,η)∈L2(It0 ,R1+d)

JT (u, η : I0) (5.3a)
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subjected to the dynamical constraints
ẏ − ν∆y + ay + b · ∇y = u1ω(c), y|Γ = 0,

c̈+ ςċ+ εc = η,

y(t0, ·) = y0, c(t0) = c0, ċ(t0) = c10,

(5.3b)

in the time interval It0 , as well as to the constraints{
c ∈ Ct0,T := {g ∈ C(It0 ,Rd) | ω(g(s)) ⊂ Ω for s ∈ It0}
η ∈ Xt0,T := {κ ∈ L2(It0 ,Rd) | ‖κ(s)‖ ≤ K for a.e. s ∈ It0}.

(5.3c)

The steps of the RHC are described in Algorithm 1, where we use the subset

Rd[ω] := {c ∈ Rd | ω(c) ∈ Ω}.

Algorithm 1 Receding Horizon Algorithm

Require: The prediction horizon T > 0, the sampling time δ < T , and an initial
vector I∞ = (y0, c0) ∈ H × Rd[ω].

Ensure: The suboptimal RHC pair (urh, ηrh).
1: Set t0 = 0 and I0 = (t0, y0, c0, 0);
2: Find the solution (y∗T (·; I0), u∗T (·; I0), c∗T (·; I0), η∗T (·; I0)) over the time hori-

zon It0 by solving the open-loop problem (5.3);
3: For all τ ∈ [t0, t0 + δ), set urh(τ) = u∗T (τ ; I0) and ηrh(τ) = η∗T (τ ; I0);
4: Update: t0 ← t0 + δ;
5: Update: I0 ← (t0, y

∗
T (t0; I0), c∗T (t0; I0), ċ∗T (t0; I0));

5.2. Numerical discretization and implementation. Here we report on nu-
merical experiments related to Algorithm 1. These experiments confirm the capa-
bility of the moving control computed by Algorithm 1. In all examples, we deal with
one-dimensional controlled systems of the form (1.3) defined on Ω := (0, 1) which
are exponentially unstable without control. Moreover, we compare the performance
of one single moving control with finitely many static actuators. Throughout, the
spatial discretization was done by the standard Galerkin method using piecewise
linear and continuous basis functions with mesh-size h = 0.0025. Moreover, for
temporal discretization we used the Crank–Nicolson/Adams–Bashforth scheme [13]
with step-size tstep = 0.001. In this scheme, the implicit Crank–Nicolson scheme
is used except for the nonlinear term u1ω(c) and convection term b · ∇y which
are treated with the explicit Adams–Bashforth scheme. To deal with open-loop
problems 5.3a, we considered the reduced formulation of the problem with respect
to the independent variables (η, u). The state constraints Ct0,T were treated us-
ing the Moreau–Yosida [14] regularization with parameter µ = 10−5. Moreover,
the box constraints |u(t)| ≤ K were handled using projection. We used the pro-
jected Barzilai–Borwein gradient method [4, 6, 11] equipped with a nonmonotone
line search strategy. Further, we terminated the algorithm as the L2-norm of the
projected gradient for the reduced problem was smaller than 10−4 times of the
norm of the projected gradient for initial iterate.

For the case with static actuators, we choose the indicator functions 1ωi with
the placements

ωi :=
(

1
2M (2i− 1)− r

2 ,
1

2M (2i− 1) + r
2

)
for i = 1, . . . ,M, (5.4)
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where r > 0 and integer M ∈ N. This is motivated by the stabilizability results
given in [26, Thm. 4.4] and [18, Sect. 4.8.1]. Further, for every t ≥ 0, the moving
actuator 1ω(c(t)) is described by

ω(c(t)) :=
(
c(t)− r

2 , c(t) + r
2

)
.

For all actuators, namely moving and fixed ones, we chose r = 0.04. Thus the
support of every actuator covers only four percent of the whole of domain. In the
case of the static actuators, we employed the receding horizon framework given
in [3, Alg. 1] for the choice of | · |∗ = | · |`2 with control cost parameter β. In all
numerical experiments, we chose T = 1.25 and δ = 0.5.

Example 5.1. In this example, we set (cf. (5.2b)–(5.2c))

ν = 0.1, ς = 1, ε = 0,

a(t, x) = −3− 2| sin(t+ x)|, b(t, x) = | cos(t+ x)|, K = 500.

Further, we chose the initial conditions

y0(x) := sin(πx), (c0, c
1
0) := (0.5, 0).

Figures 3 and 4 correspond to the choices β = 0.1 and β = 0.5, respectively.
Figures 3(a) and 4(a) illustrate the evolution of the L2(Ω)-norm for the states
corresponding to uncontrolled system, one single moving actuator, and fixed ac-
tuators (M = 1, . . . , 5). The black dotted line in both figures corresponds to the
uncontrolled state. It shows that the uncontrolled state is exponentially unsta-
ble. For both cases β = 0.1 and β = 0.5, we can see that the moving control
obtained by Algorithm 1 is stabilizing and its stabilization rate is smaller than the
one corresponding to one single static actuator (M = 1), and comparable to the
cases M = 2, 3, 4. Further, by comparing Figures 3(a) and 4(a), we can infer that
β = 0.1 leads to a faster stabilization compared to the case β = 0.5. As can be
seen from Figure 4(a), it is not clear for the case β = 0.5 that one fixed actuator
is asymptotically stabilizing. Moreover, for M = 4, 5 we have better stabilization
results compared to the single moving control. Figures 3(b) and 4(b) illustrate
the time evolution of the control domain ω(crh(t)). From Figures 3(b), we can
observe that, at some point (t = 2.5), the actuator stops moving. This corresponds
to Figure 3(d), which demonstrates the evolution of the force. In this case, the
receding horizon framework moved the actuator until some degree of stabilization
(|yrh(t, ·)|L2(Ω) ≤ 10−3) was reached and, then, decided to steer the system with
only a fixed actuator. In this case, the |yrh(t, ·)|L2(Ω)-norm corresponding to M = 4
and M = 5 is smaller than the one corresponding to the single actuator which is
free to move, once t ≥ 3, see Figure 3(a). For the case β = 0.5, we have a different
scenario. In this case, the control remains moving throughout the whole simula-
tion (see Figure 4(b)). This fact can also be seen from Figure 4(d) which shows
that, here a stronger force was needed compared to the case β = 0.1. Figures 3(c)
and 4(c) show the evolution of the absolute value of the magnitude control urh.

Example 5.2. In this example, motivated by Proposition 1.2, we present a situa-
tion in which one single fixed actuator is not stabilizing, or more precisely, it has
no influence. A moving control steers, however, the system to zero. Here we used
the same setting as in the previous example, except that we put

a(t, x) = −5, b(t, x) = 0, y0(x) = sin(2πx).
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Figure 3. Example 5.1: Numerical results for β = 0.1.

From Figure 5(a), we can see that the curves corresponding to the uncontrolled
state and one single fixed actuator are overlapping each other completely. This
means that their corresponding states are exponentially unstable and the fixed
actuator centered at 0.5 has no influence. Interestingly, we observed that all open-
loop problems within the receding horizon framework for this single fixed actuator
were solved easily with u∗ = 0 also for long time horizons. This suggests that
u∗ = 0 is the unique minimum for all finite horizon open-loop problems which
corresponds to the result given in Proposition 1.2. On the contrary, we can see
from Figures 5(b) and 5(a) that a single moving control is able to steer the system
exponentially to zero by moving the actuator. Figures 5(c) and 5(d) depict the
evolution of the absolute value of the magnitude urh and the evolution of the force
ηrh, respectively.

Summarizing, we can assert that the single moving actuator obtained by Algo-
rithm 1 is able to stabilize the system to zero, confirming our theoretical findings.

Appendix

A.1. Proofs of Propositions 1.2 and 1.3. Recall system (1.7),

∂
∂ty(t, x)− ν∆y(t, x) + (a0 + a(x))y(t, x) = u(t)Ψ, (A.1a)

y(0, ·) = y0, Gy|Γ = 0, (A.1b)
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Figure 4. Example 5.1: Numerical results for β = 0.5

and the system of eigenfunctions ẽi and increasing sequence of eigenvalues α̃i of the
operator A = −ν∆ + a(x)1, Aẽi = α̃iẽi.

We start with the following auxiliary result.

Lemma A.1. If there exists a nonsimple eigenvalue α̃j, then there exists one as-
sociated eigenfunction ej such that (ej ,Ψ)L2(Ω = 0.

Proof. If α̃j is a nonsimple eigenvalue, we can assume that α̃j = α̃j+1. Then, in
case (ẽj ,Ψ)L2(Ω) = 0 or (ẽj+1,Ψ)L2(Ω) = 0 the proof is finished. It remains to
consider the case (ẽj ,Ψ)L2(Ω =: βj 6= 0 6= βj+1 := (ẽj+1,Ψ)L2(Ω. In this case we
simply take the eigenfunction ej := βj+1ẽj − βj ẽj+1 which satisfies (ej ,Ψ)L2(Ω) =
βj+1βj − βjβj+1 = 0. �

Proof of Proposition 1.2. We take the eigenfunction given by Lemma A.1 as initial
condition, y0 := ej , (ej ,Ψ)L2(Ω = 0. Note that the eigenfunctions ofA coincide with
those of A+a01. So we can decompose the solution into orthogonal components y =
q +Q, with q ∈ span{ej} and Q ∈ {ej}⊥, leading us to

∂
∂tq(t, x) + (A+ a01)q(t, x) = 0, q(0) = ej , (A.2a)

∂
∂tQ(t, x) + (A+ a01)Q(t, x) = u(t)Ψ, Q(0) = 0, (A.2b)

Gq|Γ = 0 = GQ|Γ . (A.2c)
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Figure 5. Example 5.1: Numerical results for β = 0.01

Observe that the dynamics of the component q is independent of u, and such
component is then given by q(t, ·) = e−(a0+α̃j)tej , t > 0. Now, for the norm of the
entire state, and for any magnitude control u we obtain

|y(t, ·)|2L2(Ω) = |q(t, ·)|2L2(Ω) + |Q(t, ·)|2L2(Ω) ≥ e−2(a0+α̃j)t |ej |2L2(Ω) , t > 0.

Finally, if −a0 is large enough we find that −a0 − α̃j > 0, which implies the

divergence |y(t, ·)|2L2(Ω) → +∞, regardless of the control u. �

Proof of Proposition 1.3. Let j0 := min{j ∈ N | a0 + α̃j > 0}. If j0 = 1 then the
free dynamics is exponentially stable. If j0 > 1, then we consider the dynamics
onto the linear span of the first j0 − 1 eigenfunctions

Ej0−1 := span{ẽj | 1 ≤ j ≤ j0 − 1}, q(t) := PEj0−1y(t) ∈ Ej0−1

where PEj0−1 ∈ L(L2(Ω), Ej0−1) denotes the orthogonal projection in L2(Ω) onto
the subspace Ej0−1. We decompose the system as

∂
∂tq(t, x) + (A+ a01)q(t, x) = u(t)PEj0−1

Ψ, q(0) = PEj0−1
y0, (A.3a)

∂
∂tQ(t, x) + (A+ a01)Q(t, x) = u(t)PE⊥j0−1

Ψ, Q(0) = PE⊥j0−1
y0, (A.3b)

Gq|Γ = 0 = GQ|Γ , (A.3c)
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with Q = y−q = PE⊥j0−1
y. Next we prove that the finite dimensional system (A.3a)

is null controllable. Writing

q =
j0−1∑
k=1

qkẽk, q =


q1

q2

...
qj0−1


we obtain the system

q̇ = Aq +Bu, (A.4)

with A ∈ R(j0−1)×(j0−1) and B ∈ R(j0−1)×1 as follows

A = diag (a0 + α̃1, a0 + α̃2, . . . , a0 + α̃j0−1) and B =


(ẽ1,Ψ)
(ẽ2,Ψ)

...
(ẽj0−1,Ψ)

 .
The matrix A is diagonal with entries A(i,i) = a0 + α̃i.

For any given T > 0, we have that system (A.4) is controllable at time T . Indeed,
this follows from Kalman rank condition (see, e.g., [28, Sect 1.3, Thm. 1.2]), because
we have that

det(
[
A | B

]
) =

(
j0−1

×
k=1

(ẽk,Ψ)

)
detV

where [
A | B

]
:=
[
B AB . . . Aj0−2B

]
and V is the Vandermonde matrix whose entries are

V(i,j) = (a0 + α̃i)
j−1.

Hence

det(
[
A | B

]
) =

(
j0−1

×
k=1

(ẽk,Ψ)

)(
×

1≤i<j≤j0−1

(α̃j − α̃i)

)
6= 0.

Therefore, we can choose a control u such that q(T, ·) = 0, which implies q(T, ·) =
0. Then, we take the concatenated control defined as: uc(t) if t ∈ [0, T ], and uc(t) =
0 for t > T . For time t ≥ T we have that q(t, ·) = 0 and

|y(t, ·)|2L2(Ω) = |Q(t, ·)|2L2(Ω) = e−(a0+α̃j0 )(t−T ) |Q(T, ·)|L2(Ω) , t ≥ T.

Since, by definition of j0, we have that a0 + α̃j0 > 0, it follows that |y(t, ·)|2L2(Ω)

converges exponentially to zero, as t→ +∞. That is, uc is a stabilizing (open-loop)
control. �

A.2. Proof of Proposition 3.4. Let us fix an arbitrary δ > 0 and let h ∈ SH

be in the unit ball of H. Since X is dense in H, we can choose h ∈ X \ {0} such

that
∣∣h− h∣∣

H
≤ δ

2 . Now, for h̃ :=
∣∣h∣∣−1

H
h ∈ SH we find∣∣∣h̃− h∣∣∣

H
≤
∣∣∣∣∣h∣∣−1

H
h− h

∣∣∣
H

+
∣∣h− h∣∣

H
≤
∣∣∣∣∣h∣∣−1

H
− 1
∣∣∣
R

∣∣h∣∣
H

+ δ
2

=
∣∣h∣∣−1

H

∣∣1− ∣∣h∣∣
H

∣∣
R

∣∣h∣∣
H

+ δ
2 =

∣∣|h|H − ∣∣h∣∣H ∣∣R + δ
2 ≤

∣∣h− h∣∣
H

+ δ
2 = δ.

Hence we can conclude that X
⋂

SH is dense in SH . �
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A.3. Proof of Proposition 3.5. We start by defining

tj := max{τj , σj}, tj := min{τj , σj}, 0 ≤ j ≤ K,
and by writing, with g := fτ − fσ,

|fτ − fσ|2L2((a,b),X) =

K∑
j=1

∫ tj

tj−1

|fτ (t)− fσ(t)|2X dt =

K∑
j=1

∫ tj

tj−1

|g(t)|2X dt. (A.5)

We proceed by Induction. Firstly, we find that∫ t1

a

|g(t)|2X dt =

∫ t1

t0

|g(t)|2X dt =

∫ t1

t1

|g(t)|2X dt ≤ RX 2, (A.6)

where in the last inequality we used the fact that g(t) = fτ (t)−fσ(t) = φ1−φ1 = 0
for t ∈ [t0, t1).

Next, we assume that for a given i ∈ {1, 2, . . . ,K − 1} we have∫ ti

a

|g(t)|2X dt ≤ iRX 2. (H)

Then we obtain ∫ ti+1

a

|g(t)|2X dt ≤ iRX 2 +

∫ ti+1

ti

|g(t)|2X dt,

which implies that∫ ti+1

a

|g(t)|2X dt ≤ iRX 2 +

∫ ti+1

ti

|g(t)|2X dt+

∫ ti+1

ti+1

|g(t)|2X dt, if ti < ti+1 ≤ ti+1,

and∫ ti+1

a

|g(t)|2X dt ≤ iRX 2 +

∫ ti+1

ti+1

|g(t)|2X dt, if ti+1 ≤ ti ≤ ti+1,

Observe that, if ti < ti+1, then g(t) = fτ (t) − fσ(t) = φi+1 − φi+1 = 0, for
t ∈ (ti, ti+1) ⊆ (τi, τi+1)

⋂
(σi, σi+1). Therefore, in either case we have∫ ti+1

a

|g(t)|2X dt ≤ iRX 2 +

∫ ti+1

ti+1

|g(t)|2X dt ≤ iRX 2 +RX 2 = (i+ 1)RX 2. (T)

Hence, assumption (H) implies (T), which together with (A.6) imply, by Induction,∫ tj

a

|g(t)|2X dt ≤ jRX 2, for all j ∈ {1, 2, . . . ,K}. (A.7)

In particular, since tK = b, for j = K we obtain |fτ − fσ|L2((a,b),X) ≤ K
1
2R 1

2X . �
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