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Abstract

A data-driven approach for the computation of high-dimensional optimal feedback laws
arising in deterministic nonlinear control is proposed. The approach exploits the control-
theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function
of the optimal control problems, and first-order optimality conditions via Pontryagin’s Max-
imum Principle. The latter is used as a representation formula to recover the value function
and its gradient at arbitrary points in the space-time domain through the solution of a two-
point boundary value problem. After generating a dataset consisting of different state-value
pairs, a hyperbolic cross polynomial model for the value function is fitted using a LASSO
regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal
control reveal that enriching the dataset with gradient information reduces the number of
training samples, and that the sparse polynomial regression consistently yields a feedback
law of lower complexity.

1 Introduction

A large class of design problems including the synthesis of autopilot and guidance systems,
the computation of optimal investment strategies, and the control of fluid flow phenomena,
among others, can be cast as optimal control problems. In this framework, we compute a
time-dependent control signal u(t) by minimizing a performance index

J(u; t0,x) :=

∫ T

t0

`(y(t),u(t)) dt+ F(T,y(T )) (1)

subject to y(t) being a solution of the nonlinear dynamical system in Rn

d

dt
y(t) = f(y(t),u(t)) , y(t0) = x . (2)
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The numerical realization of control laws by solving the dynamic optimization problem above
is a topic at the interface between control theory, computational optimization, and numerical
analysis. While this problem dates back to the birth of Calculus of Variations, it was during the
second half of the 20th century when two major methodological breakthroughs shaped our under-
standing of optimal control theory, namely, the development of Pontryagin’s Maximum Principle
and the theory of Dynamic Programming (see [66] for a historical survey on this topic). On the
one hand, Pontryagin’s Maximum Principle (PMP) [67] yields first-order optimality conditions
for (1)-(2) in the form of a two-point boundary value problem for a forward-backward coupling
between state, adjoint, and control variables, denoted by (y∗(t),p∗(t),u∗(t)) respectively, which
in short reads

d
dty
∗(t) = f(y∗(t),u∗(t)) ,

− d
dtp
∗(t) = ∂yf(y

∗(t),u∗(t))p∗(t) + ∂y`(y
∗(t),u∗(t)) ,

y∗(t0) = x , p∗(T ) = ∂yF(T,y∗(T )) ,

min
u
{〈f(y∗(t),u),p∗(t)〉+ `(y∗(t),u)}

= 〈f(y∗(t),u∗(t)),p∗(t)〉+ `(y∗(t),u∗(t)) , ∀t ∈ (t0, T ) .

(TPBVP)

This procedure yields an optimal state-adjoint-control triple originating from the initial condition
x, in what is known as an open-loop control. On the other hand, the Dynamic Programming
approach synthesizes the optimal control as

u∗(t,y) = argmin
u

{〈f(y,u),∇V (t,y)〉+ `(y,u)} , (3)

where V (x, t) is the value function of the problem

V (t,x) := inf
u(·)
{J(u; t,x) subject to (2)} , (4)

which in turn satisfies a first-order, nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential
equation of the form{

∂tV (t,x) + min
u
{〈f(y,u),∇V (t,x)〉+ `(x,u)} = 0 for (t,x) ∈ [0, T )×X ,

V (T,x) = F(T,x),
(HJB)

to be solved over the state space of the dynamics X ⊂ Rn [12, Chapter 1]. This approach ex-
presses the optimal control as a feedback map or closed-loop form, i.e. u∗ = u∗(t,y(t)), yielding
a control law that is optimal in the whole state space. From a practical viewpoint, optimal trajec-
tories obtained from the solution of (TPBVP) are not robust with respect to disturbances in the
control loop, raising the case for a HJB-based feedback synthesis. However, the solution of HJB
PDEs, especially for high-dimensional dynamical systems, comes at a formidable computational
cost, often referred in the literature as the curse of dimensionality [18]. Over the last years,
a number of works have reported remarkable progress in the solution of high-dimensional HJB
PDEs, including the use of sparse grids [42, 20], tree structure algorithms [8], max-plus methods
[62, 5], polynomial approximation [53, 54], tensor decomposition techniques [50, 71, 45, 39, 65],
and an evergrowing literature on artificial neural networks [48, 37, 64, 51, 59].
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On the link between PMP and HJB PDEs. We follow an alternative approach for the
computation of optimal feedback laws that circumvents the direct solution of the HJB PDE
by exploiting its links with the PMP. There exists an extensive literature dating back to [67,
Chapter 1] discussing the relation between dynamic programming and first-order optimality
conditions, and we refer the reader to [12, Section 3.4] for an exhaustive revision of the main
results in this topic and to the work by Barron and Jensen [13], which is the first reference
studying the link between PMP and viscosity solutions of first-order HJB PDEs. In the simplest
version of the statement, assuming the solution of the HJB PDE is C2, it can be shown that the
forward-backward dynamics originating from the PMP correspond to the characteristic curves of
the HJB equation. Therefore, the value V (t0,x) can be obtained by solving the optimality system
(TPBVP) with initial condition y(t0) = x. Moreover, the initial adjoint variable corresponds to
p∗(t0) = ∇V (t0,x) [32, 24, 34]. The PMP can be thus interpreted as a representation formula
for the value function and its gradient at a given space-time point. This idea constitutes the
basis of our work.

A data-driven method for computing optimal feedback laws. We restrict our atten-
tion to a class of smooth and unconstrained nonlinear optimal control problems where the
aforedescribed link between PMP and the HJB PDE is direct, and we use it to generate a
characteristic-based, causality-free method to approximate V (t,x) and as a by-product u(t,x),
without solving (HJB). To do this, we sample a set of initial conditions {(ti,xi)}Ni=1, for which we
compute both V (ti,xi) and ∇V (ti,xi) by realizing the optimal trajectory through PMP. This is
done by following a reduced gradient approach [49], in which forward-backward iterative solves
of (TPBVP) are combined with a gradient descent method to find the minimizer of J(u; t0,x).
Having collected an enriched dataset {ti,xi, V (ti,xi),∇V (ti,xi)}Ni=1, we fit a polynomial model
for the value function

Vθ(t,x) =

q∑
i=1

θiΦi(t,x) = 〈θ,Φ〉 , (5)

with Φ(t,x) = (Φ1(t,x), . . . ,Φq(t,x)) are elements of a suitable polynomial basis, and the pa-
rameters θ = (θ1, . . . , θq) obtained from a LASSO regression

min
θ∈Rq
‖[Φ;∇Φ] θ − [V ;∇V ]‖22 + λ‖θ‖1,w , (6)

where the matrix [Φ;∇Φ] ∈ R(n+1)N×q and the vector [V ;∇V ] ∈ R(n+1)N include value function
and gradient data. Finally, the optimal feedback map is recovered as

u∗(t,x) = argmin
u

{〈f(x,u),∇Vθ(t,x)〉+ `(x,u)} . (7)

Related literature and contributions. The idea of using open-loop solves to build a nu-
merical representation of an optimal feedback law dates back at least to [17, 52], where a low-
dimensional feedback law was constructed directly by interpolating the optimal control from a
set of collocation points. More recently, this idea has been revisited and improved in [57, 56] by
exploiting the extremely parallelizable structure of the open-loop solves together with a sparse
grid interpolant, scaling up to 6-dimensional examples. In [63, 55] this idea has been further
developed by replacing the use of a grid-based interpolant with artificial neural networks which
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are trained using a dataset consisting of both the value function and gradient evaluations, pre-
senting computational results up to dimension 30. In a similar vein, the works [31, 30, 29, 38]
have proposed the use of representation formulas for HJB PDEs, ranging from the celebrated
Lax-Hopf formula to variations of the PMP, in conjunction with efficient convex optimization
techniques for the solution of point values of the HJB PDE on the fly. These results have been
further studied in [73], and used in [74, 47] for the construction of control Lyapunov functions
both with sparse grids and neural networks. Our work, while in line with the aforedescribed,
proposes a different methodology which is summarized in the following ingredients:

• An enriched dataset containing both value function and gradient information, where the
open-loop solves are realized through a reduced gradient approach, which is well suited for
high-dimensional nonlinear optimal control problems.

• The value function, and as a consequence the feedback law, is approximated with a polyno-
mial ansatz (5). This choice is backed by the extensive literature concerning power series
approximations of the value function [7, 58, 61, 23]. In fact, it is well-known that for lin-
ear dynamics and quadratic cost functions, the value function corresponds to a quadratic
form, which is contained in the span of our approximation space. In [53, 54], we have
studied a Galerkin approach for HJB PDEs arising in nonlinear control and games with
polynomial approximation functions. In these works we have constructed a polynomial
basis limited by the total degree of the monomials, solving up to 14-dimensional tests.
Here instead, borrowing a leaf from the vast literature on polynomial approximation the-
ory [16, 27, 33, 26, 4], we consider a hierarchical basis defined through hyperbolic cross
approximation, for which we report tests up to dimension 80 at moderate computational
cost.

• The use of a polynomial expansion for the value function, which is linear in the coefficients,
allows us to fit the value function model through a LASSO regression framework (6). This
least squares problem can easily account for the use of gradient data and has a well-
understood numerical realization [4, 60]. Moreover, we include an `1 penalty on the
expansion coefficients, leading to the synthesis of low complexity feedback laws (7), which
is crucial for a fast online computation of the feedback action.

• Our extensive numerical assessment of the methodology includes a class of genuinely non-
linear, fully coupled, high-dimensional dynamics arising in agent-based modelling [28],
which ultimately connects with the control of non-local transport equations arising in
mean field control [6, 40, 44].

The rest of the paper is structured as follows. In Section 2 we present the specific settings
of the finite horizon, nonlinear optimal control problem under study. Section 3 describes our
numerical methodology, including the numerical generation of the dataset, the polynomial ansatz
for the value function and the model fit through LASSO regression. Finally, Section 4 presents
an exhaustive numerical assessment of the proposed methodology, including the synthesis of
high-dimensional optimal feedback laws for nonlinear PDEs and multiagent systems.
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2 Formulating the Optimal Control Problem

We briefly describe the control setting used throughout the rest of the paper. Without loss of
generality, we will be concerned with an unconstrained, finite-horizon, nonlinear optimal control
without terminal penalty

min
u(·)∈L2(t0,T ;Rm)

J(u; t0,x) :=

∫ T

t0

`(y(t)) + β‖u(t))‖22 dt , β > 0 , (8)

subject to y(t) being the solution to the control-affine nonlinear dynamics

d

dt
y(t) = f(y(t)) + g(y(t))u(t) , y(t0) = x , (9)

where y(t) ∈ Rn the state and u(t) ∈ Rm the control variable. We assume that the running cost
` : Rn → R, the dynamics f : Rn → Rn, and g : Rn → Rn×m, are continuously differentiable.
Under these assumptions, the optimal control is characterized by a triple (y∗(t),p∗(t),u∗(t))
which satisfies the state equation (9), coupled with the backward adjoint system for p∗ =
(p∗1, . . . , p

∗
n) given by

−p∗i (t) =
n∑
j=1

p∗j (t) (∂yi(fj(y
∗(t)) + gj(y

∗(t))u∗(t)) + ∂yi`(y
∗(t)) , i = 1, . . . , n , (10)

p∗i (T ) = 0 , (11)

and the optimality condition

u∗(t) = − 1

2β
gt(y∗(t))p∗(t) , ∀t ∈ (t0, T ) . (12)

Note that the latter equation is an instance of the optimality condition formally stated in
(TPBVP), in the case of an unconstrained, control-affine problem with quadratic control pe-
nality. As it was discussed in the previous section, our interest is to make use of the numerical
solution of open-loop optimal controls satisfying the two-point boundary value problem (9)-
(12), to recover an optimal feedback law globally defined. The latter can be computed through
dynamic programming arguments. Defining the value function V (t,x) : [0, T ]× Rn −→ R as

V (t,x) := inf
u(·)
{J(u; t,x) subject to (9)} , (13)

it is well-known that it corresponds to the unique viscosity solution to the Hamilton-Jacobi-
Bellman PDE {

∂tV (t,x) +H(x,∇V (t,x)) = 0 for t ∈ (0, T ),

V (T,x) = 0,
(14)

where for every (x,p) ∈ Rn × Rn, the Hamiltonian H is defined by

H(x,p) := min
u∈Rm

{
`(x) + β‖u‖22 + pt (f(x) + g(x)u)

}
. (15)

After solving this equation, the optimal feedback map is given by

u∗(t,x) = argmin
u∈Rm

{
β‖u‖22 +∇V (t,x)t (g(x)u)

}
= − 1

2β
gt(x)∇V (t, x). (16)
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Note that it is possible to combine (14) with (16) to obtain the HJB PDE

∂tV (t,x)− 1

2β
∇V (t,x)tg(x)gt(x)∇V (t,x) +∇V (t,x)tf(x) + `(x) = 0 , (17)

V (T,x) = 0 . (18)

The numerical approximation of optimal feedback laws by solving the HJB equation above
poses an overwhelmingly complex computational challenge, as it requires the solution of an
n−dimensional nonlinear PDE. In this work, we circumvent this difficulty by interpreting system
(9)-(12) as a representation formula for the solution of (17). More precisely, the computation
of a given V (ti,xi) can be realized by solving (9)-(12) setting t0 = ti and the initial condition
y(t0) = xi, and evaluating the optimal cost (13) using the optimal triple (y∗(t),p∗(t),u∗(t)).
Moreover, the optimal adjoint verifies p∗(t) = ∇V (t,y∗(t)). Therefore, the solution of (9)-(12)
is a representation formula for V (t,y∗(t)) and ∇V (t,y∗(t)) along the optimal state trajectory
y∗(t) for t ∈ (t0, T ).

Stabilization with static feedback laws. For large optimization horizon T, and `(y) =
‖y‖2, the cost (8) can be considered as an approximation to the asymptotic stabilization problem
were T =∞. This scenario will be the focus of our numerical tests. This also motivates that in
the rest of the paper we will restrict our presentation to the approximation of V (0,x) = V (x)
and ∇V (0,x) = ∇V (x), and to the associated static feedback law u∗(0,x) = u∗(x). This
approximation also relates to the one done in nonlinear model predictive control, where after
an open-loop solve is computed, the initial optimal control u∗(0) is used to evolve the state
equation for a short period , after which the open-loop optimization is re-computed with an
updated initial state. It can be shown that as the prediction horizon T increases, the optimal
control approaches the stationary feedback laws, see for instance [9, 46, 69, 72]. For the reader
interested in obtaining the complete time-dependent optimal feedback law, we discuss at the
end of Section 3 how to extend the proposed methodology.

3 Data-driven Recovery of Feedback Laws

In this section, we develop the different building blocks of the proposed approach. We first discuss
how to generate the training dataset by solving a set of open-loop optimal control problems with
a reduced gradient approach. Next, we build a polynomial model for the value function based
on a hyperbolic cross approximation. Having set both the data and the model, we fit our model
with a LASSO regression. At the end of the section, we explain how to modify the proposed
framework to recover time-dependent feedback laws.

3.1 Generating a dataset with a reduced gradient approach

We begin by generating a dataset {xj , V (0,xj),∇V (0,xj)}Nj=1 which is obtained from the solving
open-loop optimal control problems of the form (8) (with t0 = 0 and T sufficiently large) through
the use of first-order optimality conditions (9)-(12). For this purpose we follow a reduced gradient
approach with a Barzilai-Borwein update [14, 10], which is summarized as follows.

Assuming that the solution operator y(u) = y(u,x) corresponding to the state equation (9) is
well-defined and continuously differentiable, we can rewrite (8)-(9) as the following unconstrained
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dynamic optimization problem depending solely on the control variable u

min
u(·)
J (u) = min

u(·)
J(y(u),u) = min

(y(·),u(·))
{J(y,u) : subject to e(y,u) = 0}, (19)

where

e(y,u) :=

(
d
dty(t)− (f(y(t)) + g(y(t))u(t))

y(0)− x

)
. (20)

Formally, we obtain the directional derivative of J at ū ∈ L2(0, T ;Rm) in a direction δu ∈
L2(0, T ;Rm) by computing

J ′(ū)δu = (G(ū), δu) = ((y′(ū))∗∂yJ(v̄) + ∂uJ(v̄), δu), (21)

where v̄ := (ȳ, ū) with ȳ := y(ū), G denotes the gradient of J , (·, ·) stands for the scalar product
in the space of controls L2(0, T ;Rm), and the superscript ∗ corresponds to the adjoint operator.
Moreover, the term y′(ū) is given by

y′(ū)δu = −(∂ye(v̄))−1∂ue(v̄)δu. (22)

It can be shown that (∂ye(y(u),u))−1, defined by (φ,q0) 7→ q, is the solution operator of the
following linearised equation{

d
dtq(t)− ∂y (f(y(t)) + g(y(t))u(t))q(t) = φ,

q(0) = q0,
(23)

and that its the adjoint operator (∂ye(y(u),u))−∗ defined by (ψ,pT ) 7→ p, is the solution
operator to the following backward-in-time equation{

− d
dtp(t)− (∂y (f(y(t)) + g(y(t))u(t))t p(t) = ψ,

p(T ) = pT .
(24)

Putting these elements together, we are now in a position to compute the gradient G of J at ū.
Using (21) and (22), we obtain

G(ū) = ∂uJ(v̄)− (∂ue(v̄))∗(∂ye(v̄))−∗∂yJ(v̄) , (25)

and therefore, for almost every t ∈ (0, T ), we have

G(ū)(t) = g(ȳ(t))tp̄(t) + 2βū(t), (26)

where p̄ is the solution to{
− d
dtp(t)− (∂y (f(ȳ(t)) + g(ȳ(t))ū(t))t p(t) = ∂y`(ȳ(t)),

p(T ) = 0.
(27)

Having a realization of the reduced gradient, we follow the Barzilai-Borwein gradient method
for finding the stationary point u∗ of J ( i.e., G(u∗) = 0). In this method, the stepsizes are
chosen according to be either

αBB1
k :=

(Sk−1,Yk−1)

(Sk−1,Sk−1)
, or αBB2

k :=
(Yk−1,Yk−1)

(Sk−1,Yk−1)
, (28)
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Algorithm 1 Barzilai-Borwein two-point step-size gradient method

Input: Choose u−1 := 0 and u0 := −G(0), tolerance tol > 0.
1: Set k = 0.
2: while ‖Gk‖ ≥ tol , do
3: Compute yk(uk) via (9).
4: Compute pk(yk,uk) via (27).
5: Compute Gk = G(uk) using (26) with (yk,pk,uk).
6: Choose

αk =

{
αBB1
k for odd k,

αBB2
k for even k.

7: Set dk = 1
αk
Gk.

8: Compute the step-size ηk > 0 based on the non-monotone linesearch given in [36].
9: Set uk+1 = uk − ηkdk, k = k + 1, and go to Step 2.

where Gk := G(uk), Sk−1 := uk − uk−1 and Yk−1 := Gk − Gk−1. With these specifications, we
introduce Algorithm 1, which is used for solving the open-loop problems. Note that the formulas
above are written for continuous-time dynamical systems. In practice, Algorithm 1 is expected
to be used in conjunction with a suitable numerical integrator for an accurate approximation
of both the state and its adjoint. Finally, fixing an initial condition xj , after Algorithm 1 has
converged to u∗ the dataset is completed with V (xj) = J (u∗) and ∇V (xj) = p∗(0).

3.2 Building a polynomial model for the value function

Having generated a dataset for recovering the value function associated to the optimal control
problem, we now turn our attention to deriving a suitable model for regression. Our approxi-
mation of the static value function V (x) : Rn → R follows the ideas presented in [4, 1].

Let D ⊂ Rn be a bounded domain and {Φi}i∈Nn0 be a tensor-product orthonormal basis of
L2(D). We consider basis which are typically polynomial, using for instance Legendre or Cheby-
shev polynomials. Concretely, assume that D := (−1, 1)n and that {φi}∞i=0 is one-dimensional
orthonormal basis of L2(−1, 1). Then, the corresponding tensor-product basis of L2(D) is defined
by

Φi(x) :=
n∏
j=1

φij (xi) , with i = (i1, i2, . . . , in) ∈ Nn, x = (x1, x2, . . . , xn), (29)

where N0 := N ∪ {0}. Assuming that V (x) ∈ L2(D) ∩ L∞(D), we can write

V (x) =
∑
i∈Nn0

θiΦi , (30)

with θi = (V (x),Φi)L2(D) for every i ∈ Nn0 . We approximate this object by considering a
truncated basis {Φi}i∈I with a finite multi-index set I ⊂ Nn0 with cardinality |I| = q < ∞.
Hence, we write

V (x) = V I
θ + eI =

∑
i∈I

θiΦi +
∑
i/∈I

θiΦi (31)
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with {θi}i∈Nn0 ∈ `2(Nn0 ). In this work we are particularly interested in the case where D is a
high-dimensional space and computing V (x) by solving a HJB PDE is not a feasible alternative.
Therefore, the selection of a basis I whose cardinality scales reasonably well in high-dimensions,
while maintaining an acceptable level of accuracy, is a fundamental criterion in our model
selection. Figure 1 illustrates some of the typical options for generating a multi-dimensional
polynomial basis. Generating a basis by directly taking the tensor product of polynomials up
to a certain degree s leads to

ITP (s) = {i = (i1, i2, . . . , in) ∈ Nn0 : ‖i‖∞ ≤ s} , (32)

with |ITP (s)| = (s + 1)n, scaling exponentially in the dimension, limiting its applicability to
n ≤ 5 unless additional low-rank structures are assumed [39]. This exponential increase in the
dimension can be mitigated by considering a total degree truncation

ITD(s) = {i = (i1, i2, . . . , in) ∈ Nn0 : ‖i‖1 ≤ s} , (33)

with cardinality

|ITD(s)| =
s∑
j=1

(
n+ j − 1

j

)
. (34)

This combinatorial dependence on the dimension allows to solve moderately high-dimensional
problems, in our experience for n ≤ 15 [53, 54]. In this work, we opt for a bases constructed
with the hyperbolic cross index set, defined as

I = I(s) =

i = (i1, i2, . . . , in) ∈ Nn0 :

n∏
j=1

(ij + 1) ≤ s+ 1

 . (35)

While there are no explicit formulas for the cardinality of I, different upper bounds [2] such as

|I(s)| ≤ min
{

2s34n, e2s2+log2(n)
}
, (36)

indicate that it scales reasonably well for high-dimensional problems. For reference, in this paper
we report results up to n = 80 at moderate computational cost. With 80 dimensions and degree
4, the tensor product basis would contain, 8.27×1055 elements, the total degree basis 1.93×106

elements, while the upper bound above for the hyperbolic cross above is 7.56 × 105. Besides
the dimensionality argument, the hyperbolic cross set is also an adequate basis regarding best
approximation properties [4] in conjunction with the `1 regression framework we will discuss in
the following section. For the rest of the paper, we will adopt the notation i1, i2, . . . , iq(s) for an
order of multi-indices in I(s), and we write θI = {θi}i∈I = {θik}

q
k=1.

3.3 Gradient-augmented regression

The last building block of our approach consists in fitting the polynomial expansion presented
above with the dataset containing information of both the value function and its gradient. We
first present an un-augmented linear least squares approach which will be used for numerical
comparison. Based on the data generation procedure presented in section 3.1, we assume the
existence of a dataset consisting of N samples

D =
{
xj , V j

}N
j=1

, (37)
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Figure 1: Alternatives for generating a high-dimensional polynomial basis. From left to right: direct
tensorization of a 1-dimensional basis, truncation by total degree, hyperbolic cross approximation.

where V j := V (xj). By defining V ∈ RN , A ∈ RN×q, and e ∈ RN by

V :=
1√
N

(
V (xj)

)N
j=1

, A :=
1√
N

(
Φik(xj)

)N,q
j,k=1

, and e :=
1√
N

(
eI(xj)

)N
j=1

, (38)

we write the following linear system to be satisfied by our model

V =
[
Vθ(x

i)
]N
i=1

= AθI + e , (39)

from which V (x) can be approximated on the subspace {span({Φi}i∈I)}, by solving the linear
least squares problem

min
θ∈Rq
‖Aθ −V‖22. (P`2)

In order to enhance sparsity in the vector of coefficients, we resort to compressed sensing tech-
niques and we consider the weighted LASSO regression

min
θ∈Rq
‖Aθ −V‖22 + λ‖θ‖1,w, (P`1)

where λ > 0 , and the weights w := {wi}i∈Nn0 with wi ≥ 1 define the ‖ · ‖1,w norm as

‖θ‖1,w =
∑
i∈Nn0

wi|θi|. (40)

Denoting by θ`2 ∈ Rq and θ`1 ∈ Rq the solutions to problems (P`2) and (P`1), respectively, we
recover the following approximations of V (x)

V`2(x) =

q∑
k=1

(θ`2)ikΦi(x) =
∑
i∈I

(θ`2)iΦi(x) and V`1 =
∑
i∈I

(θ`1)iΦi(x). (41)

Building on the fact that our data generation procedure retrieves the value function and its
gradient, we recast the regression problems by using the augmented data [4]. We assume
V (x) ∈ H1(D). For the augmented dataset

Daug =
{
xj , V j , V j

x

}N
j=1

, with V j
x =

(
∂VT
∂x1

(xj),
∂VT
∂x1

(xj), . . . ,
∂VT
∂xn

(xj)

)t
for j = 1, . . . , N,

(42)
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and, for every m = 0, . . . , n, we define

Am :=
1√
N

(
∂Φik

∂xm
(xj)

)N,q
j,k=1

, Vm :=
1√
N

(
∂VT
∂xm

(xj)

)N
j=1

, and em :=
1√
N

(
∂eI
∂xm

(xj)

)N
j=1

,

(43)
where

A0 :=
1√
N

(
Φik(xj)

)N,q
j,k=1

, V0 :=
1√
N

(
VT (xj)

)N
j=1

, and e0 :=
1√
N

(
eI(xj)

)N
j=1

. (44)

Then by assembling

Ā :=


A0

A1
...

An

 , V̄ :=


V0

V1
...

Vn

 , and ē :=


e0
e1
...
en

 , (45)

we obtain the following system of linear equations

V̄ = ĀθI + ē , (46)

for which we formulate the augmented-gradient optimization problems

min
θ∈Rq
‖Āθ − V̄‖22, (AP`2)

and
min
θ∈Rq
‖Āθ − V̄‖22 + λ‖θ‖1,w. (AP`1)

Denoting by θ̄`2 ∈ Rq and θ̄`1 ∈ Rq the solutions to (AP`2) and (AP`2), respectively, we recover
the following gradient-augmented approximations of V (x)

V̄`2(x) =
∑
i∈I

(θ̄`2)iΦi(x) and V̄`1(x) =
∑
i∈I

(θ̄`1)iΦi(x). (47)

Similarly, we obtain the following representations for ∇xV (x), where ∇x = ( ∂
∂x1

, . . . , ∂
∂xn

)t

∇xV̄`2(x) =
∑
i∈I

(θ̄`2)i∇xΦi(x) and ∇xV̄`1(x) =
∑
i∈I

(θ̄`1)i∇xΦi(x) (48)

recovering the optimal feedback laws

u∗?(x) = − 1

2β
gt(x)∇xV̄?(x) , ? ∈ {`1, `2} . (49)

On the numerical realization of the weighted LASSO regression. The linear least
squares problems (P`2) and (AP`2) can be efficiently solved by using a preconditioned conjugate
gradient method. The formulations (P`1) and (AP`1) are instead convex, nonsmooth optimiza-
tion problem which require a more elaborate treatment. In this work, we compute the solution
of (P`1) and (AP`1) by means of the Alternating Direction Method of Multipliers (ADMM) [22].
To make matters precise, Algorithm 2 presents its implementation for problem (P`1). In this
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Algorithm 2 ADMM for solving weighted LASSO

Input: Choose θ0, z0, h0 ∈ Rq, ρ > 0, and tolerance tol > 0.
1: Set k = 0.
2: while ‖θk − zk‖ ≥ tol and ‖ρ(hk − hk−1)‖ ≥ tol do

3: θk+1 =
(
2AAt + ρI

)−1 (
2AtV + ρ(zk − hk)

)
4: zk+1 = Proxλ

ρ
‖·‖1,w(θk+1 + hk).

5: hk+1 = hk + θk+1 − zk+1.
6: Set k = k + 1 and go to Step 2.

algorithm, I stands for the identity matrix and the proximal operator Proxλ
ρ
‖·‖1,w is explicitly

given by a soft-thresholding type operator [15, Chapter 6]

Proxλ
ρ
‖·‖1,w(x) =

(
[|xi| −

λwi
ρ

]+ sgn(xi)

)q
i=1

for x = (x1, . . . , xq) , (50)

where [·]+ denotes the positive part. The application of Algorithm 2 for problem (AP`1) is
directly done by replacing A and V by Ā and V̄, respectively.

3.4 Recovering time-dependent feedback laws.

The present computational framework can be extended to recover time-dependent value func-
tions and feedback laws. While we argue that the primary object of study in deterministic
optimal control of physical systems is the synthesis of static feedback laws, there exist appli-
cations in finance and operations research where the computation of time-dependent feedback
controls is of great interest [41]. As discussed at the end of Section 2, the solution of the
optimal control problem for a given initial condition (tj ,xj) generates data for V (t,y∗(t)) and
∇V (t,y∗(t)) with t ∈ (tj , T ), along the optimal trajectory departing from y∗(tj) = xj . From
an approximation viewpoint, this space-time data can be use to fit a model for V (t,x). The
simplest option is to approximate V (t,x) along the space-time cylinder treating time in the same
way as x, that is

V (t,x) ≈ Vθ(x̃) =
∑
i∈I

θiΦi(x̃) , x̃ = (t,x) ∈ Rn+1 . (51)

The computational cost of this augmented representation is related to the new polynomial basis
and the increase of |I(s)| in Rn to Rn+1. An alternative to this treatment is to establish a
time-marching structure for t, and embed this time dependence in θ, similar to the method of
lines for parabolic PDEs [70]. Formally, we write

V (t,x) ≈ Vθ(t,x) =
∑
i∈I

θi(t)Φi(x) , (52)

where an additional approximation for θ is required. It is reasonable to assume that the artificial
dataset from the numerical optimal control solutions will be provided as a time series with a
uniform time discretization parameter τ , so we use a piecewise constant approximation for θi(t)

θi(t) ≈ θk,i , for t ∈ [(k − 1)τ, kτ) , k = 1, . . . , NT (53)
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where NT = T/τ , and the space-time approximation of V (t,x) becomes

Vθ(t,x) =

NT∑
k=1

∑
i∈I

θk,iΦi(x) , (54)

which can be further simplified in the absence of terminal penalties in the cost functional since
in this case V (T,x) = 0. Thus, the computational increase is linear with respect to the cost
associated to the static feedback law. A high-order discretization in time can be used to reduce
the number of time nodes, however, it is necessary to always maintain a linear structure in θ.

4 Numerical Tests

In this section we assess the proposed methodology for recovering optimal feedback laws in three
different tests. After presenting the practical aspects of our numerical implementation, we study
the control of a nonlinear, low-dimensional oscillator. Then, we study large-dimensional dynam-
ics arising in optimal control of nonlinear parabolic PDEs and non-local agent-based dynamics.
In these tests, we focus on studying the effects of the sparse regression and the selection of weights
in the `1 penalty, the gradient-augmented recovery, the selection of a suitable polynomial basis,
and the effectiveness of the recovered control law. Both sampling and regression algorithms were
implemented in MATLAB R2014b, and the numerical tests were run in a MacBook Pro with
2.9 GHz Dual-Core Intel Core i5 and memory 16 GB 1867 MHz DDR3.

4.1 Practical aspects

Generating the samples. For each test we fixed an n− dimensional hyperrectangle as the
domain for sampling initial condition vectors {xj}Nj=1 ∈ Rn. These initial vectors were generated

using Halton quasi-random sequences1 in dimension n. Then for every i ∈ {1, . . . , N}, we
compute the value function V j = V (0,xj) by solving the open-loop optimal control problem
(8)-(9). Every optimal control problem was solved in the reduced form by using Algorithm 1
with tol = 10−5 as discussed in Section 3.1. Note that the computational burden associated to
solving an optimal control problem for each initial condition of the ensemble can be alleviated
by directly parallelising this task. Further, for each control problem, the gradient of the value
function was obtained by evaluating the solution p∗ of the adjoint equation (10) at initial time
t0 = 0, so that ∇V j

x (xj) = ∇V (0,xj) = p∗(0). This quantity is obtained as a by-product of
solving the optimal control problem at not additional cost.

Training and validation. We split the sampling dataset {xj , V j , V j
x }Nj=1 into two sets: a set

of training indices Itr which is used for regression, and a set of validation indices Ival, with
Ival ∪ Itr ⊂ {1, . . . , N}. Without loss of generality, we assume that Itr = {1, . . . , Nd} and
Ival = {Nd + 1, . . . , N} for N ∈ N with Nd < N . The linear least square problems (P`2) and
(AP`2) were solved using a preconditioned conjugate gradient method, and the algorithm was
terminated when the norm of residual was less than 10−8. For the LASSO regressions (P`1) and
(AP`1), we employed Algorithm 2 with tol = 10−5. To analyse the generalization error of the

1https://www.mathworks.com/help/stats/generating-quasi-random-numbers.html

13

https://www.mathworks.com/help/stats/generating-quasi-random-numbers.html


approximated value function V̄ (x) with respect to the exact value V (0,x), we use the following
relative errors:

ErrL2(V̄ ) =


∑

j∈Ival
|V̄ (xj)− V (0,xj)|2∑

j∈Ival
|V (0,xj)|2


1
2

,

ErrH1(V̄ ) =


∑

j∈Ival

(
|V̄ (xj)− V (0,xj)|2 +

∑n
i=1

∣∣∣∂V̄ (xj)
∂xi

− ∂V (0,xj)
∂xi

∣∣∣2)
∑

j∈Ival

(
|V (0,xj)|2 +

∑n
i=1

∣∣∣∂V (0,xj)
∂xi

∣∣∣2)


1
2

.

(55)

Weights in the `1 norm. Regarding the selection of weights for the ‖·‖1,w norm, we consider
expressions of the form

wi = vαi for α > 0, (56)

where the terms vi depend on the polynomial basis chosen for regression. In the case of Legendre
and Chebyshev polynomials, we proceed as in [68], which we summarize in the following. We
consider tensorized Legendre polynomials on D = [−1, 1]n of the from

Li(x) :=

n∏
j=1

Lij (xi) with i = (i1, i2, . . . , in) ∈ Nn, x = (x1, x2, . . . , xn), (57)

with Lk defined as the univariate orthonormal Legendre polynomials of degree k. In this case,
the Legendre polynomials form a basis for the real algebraic polynomials on D and are orthog-
onal with respect to the tensorized uniform measure on D. Moreover, due to the fact that
‖Lk‖L∞(−1,1) ≤

√
k, we can write that

‖Li‖L∞(D) ≤
n∏
j=1

(1 + ij)
1
2 , (58)

from where we take the hyperbolic cross weights vi =
∏n
j=1(1 + ij)

1
2 . For tensorized Chebyshev

polynomials on D

Ci(x) :=

n∏
j=1

Cij (xi) with i = (i1, i2, . . . , in) ∈ Nn, x = (x1, x2, . . . , xn), (59)

with Ck(x) =
√

2 cos((k − 1) arccos(x)), the uniform bound ‖Ck‖L∞(−1,1) ≤
√

2 holds, leading

to ‖Ci‖L∞(D) ≤ 2
‖i‖0
2 . The latter is a valid alternative for setting vi, however we note that the

bound (58) also holds in this case, so we choose vi =
∏n
j=1(1 + ij)

1
2 . To fit with these settings,

in our numerical experiments we rescale the sampling set of initial conditions D to the unit
hypercube [−1, 1]n.
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4.2 Test 1: Van der Pol oscillator

We consider the optimal control of the Van der Pol oscillator expressed as

min
u∈L2(0,T ;R)

∫ T

0
y2

1(t) + y2
2(t) + βu2(t)dt (60)

subject to 
∂ty1 = y2,

∂ty2 = −y1 + y2(1− y2
1) + u,

(y1(0), y2(0)) = (x1, x2),

(61)

where we set x := (x1, x2), β = 0.1, and T = 3. A dataset {xj , V j , V j
x }Nj=1 with N = 2000

is prepared by solving open-loop problems for different values of quasi-randomly chosen initial
vectors from the domain D = [−3, 3]2. The temporal discretization is done by the Crank-
Nicolson time stepping method with step-size ∆t = 10−4. Here we set s = 16 in the Hyperbolic
cross index set I(s) given in (35). In this case we have q ≡ |I(s)| = 52. That is, we use 52
polynomial basis functions to approximate the value function V (x) := V (0,x) corresponding to
the optimal control problem (60)-(61).

We computed the solutions θ`2 , θ̄`2 , θ`1 and θ̄`1 to the problems (P`2) , (AP`2), (P`1), and
(AP`1), respectively, analysing different sizes for the training dataset Nd, the choice of `1 weights
encoded through α in (56), and polynomial bases. A compact summary of these results is given
in Table 1. The first column gives the errors of the value function and the nonzero components
in its expansion without relying on gradient information and without sparsification. In the
second column gradient information is added and the errors decrease for the same number of
training samples (Nd = 40). For the third column the sparsity enhancing functional is added
and approximately the same errors are obtained with significantly fewer nonzero components in
the expansion.

ErrL2 ErrH1 Nonzero components

V`2 for Nd = 40, λ = 0.002 1.46× 10−1 1.17 52/52
V̄`2 for Nd = 40, λ = 0.01 9.38× 10−3 3.25× 10−2 52/52
V̄`1 for Nd = 40, λ = 0.01 1.20× 10−2 2.05× 10−2 19/52

Table 1: Test 1. Numerical Results for Legendre polynomial basis and α = 1 for V̄`1 . Including gradient
information and sparsification leads to less error and fewer components in the expansion with a reduced
number of training samples.

To illustrate the approximation of the value function V (x) by the different regression formu-
lations, we consider Figure 2(a). This figure displays the scatter plot associated to the training
and validation data {xj , V j}Nj=1 with N = 2000. Figure 2(b) shows the approximation on the
bases of (AP`1) for the Legendre polynomial basis, with λ = 0.01, α = 1, and Nd = 40. It
clearly outperforms the approximation on the basis of (P`2) given in Figure 2(c), again with
Nd = 40. To achive a similar result without including gradient information would require to
increase the size of the training set to Nd = 120, as shown in Figure 2(d). Sparse regression
with gradient-augmented information provides an accurate reduced complexity approximation
with fewer training samples.
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(a) Scatter plot of sampling
data

(b) V̄`1 for Nd = 40 (c) V`2 for Nd = 40 (d) V`2 for Nd = 120

Figure 2: Test 1. (a) Training and validation dataset (b) Sparse regression with gradient-augmented
information andNd = 40 training points (c) Linear least squares without gradient-augmented information,
Nd = 40 (d) Linear least squares without gradient information with Nd = 120. Sparse regression
with gradient-augmented information provides an accurate reduced complexity approximation with fewer
training samples.

We next turn to Figures 3–6 where the errors according to (55) are plotted on a logarithmic
scale ( log10) with respect to the number of samples Nd used for training. Here |Ival| = 1800
validation samples were used. For problem (P`1) and (AP`1) we chose the sparse penalty param-
eter λ = 0.002 and λ = {0.01, 0.02}, respectively. Choosing λ larger for (AP`1) than for (P`1)
allows to approximately balance the contributions for the data and the regularization terms in
the cost functionals of these two problems. The cardinality of the non-zero coefficients of θ`1 and
θ̄`1 is determined by defining components as nonzero if its absolute value is bigger than double
machine extended precision 10−20. Let us next make some observations on these results.

As expected, the error decreases with the training size Nd, up to a certain threshold. The
best possible fit for the chosen order s = 16 (q = 52) of the polynomial approximation is reached
at about Nd = 50 and Nd = 75 for Legendre and Chebyshev polynomials, respectively, without
the use of gradient information, see Figures 3 and 4. These error levels are reached much earlier
when we include gradient information, as shown in Figures 5 and 6. The influence of the `1
weights, expressed in terms of α, is not very pronounced. Note that α = −∞ corresponds to no
regularisation, whereas α = 0 corresponds to a constant weight. In the case that Nd ≪ 52, the
system is highly under-determined for α = −∞, which goes along with a large error. For small
Nd, the choice α = 2 can be favoured over the choice α = 0, with the latter giving best results
for Nd sufficiently large.

In the last column of these plots the cardinality of nonzero coefficients for θ̄`1 is depicted. It
typically increases with Nd up to a certain threshold, and roughly stays constant thereafter, at
less than 50 percent of the total number of free coefficients. Increasing λ promotes sparsity, as
expected, see Figures 5 -6, (c) and (f).

Figures 3 and 5 correspond to the Legendre polynomial basis, while Figures 4 and 6 are
obtained with Chebyshev polynomials. The results are quite similar in terms of the asymptotic
(w.r.t. Nd) behavior of the errors. The number of non-zero components is higher for the
Chebyshev than for the Legrendre polynomial expansion. By comparing Figures 5 (resp. Figure
6 ) with 3 (resp. Figure 4 ), we can see that for obtaining the same precision of approximation we
need to consider more samples. As expected, for the case of gradient-augmented approximation
we obtained better results for the H1-errors for small Nd.
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Figure 3: Test 1. Numerical results for the polynomial approximation without gradient informations
using the Legendre polynomial basis.
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Figure 4: Test 1. Numerical results for the polynomial approximation without gradient informations
using the Chebyshev polynomial basis.

Moreover, we approximated the optimal control by using (48) and (49). To be more precise,
we compute the following feedback law:

uθ(x) = − 1

2β

∑
i∈I

θi∇xΦi(x). (62)

where ∇xΦi stands for the gradient of the polynomial basis. We applied this feedback law for the
choices θ`2 , θ̄`2 , and θ̄`1 for two initial vectors (2, 1) and (2,−1). The evolution of the norm for
the states controlled by these feedback laws, compared to the optimal state, and the uncontrolled
state is illustrated in Figures 7(a) and 8(a). Figures 7(b) and 8(b) depict the evolution of the
absolute value of the controls. Clearly, the controls uθ̄`2

and uθ̄`1
on the basis of V̄`2 and V̄`1

approximate well the challenging behaviour of the optimal control, and they outperform uθ`2
obtained by V`2 .
Another advantage of using a sparse regression is the synthesis of a feedback law of reduced
complexity. This is particularly relevant for the implementation of feedback laws in a real-time
environment, where the number of calculations in the control loop needs to be minimized. In
general, a feedback law expressed in the form

uθ(x) = − 1

2β
gt(x)

∑
i∈I

θi∇xΦi(x) , with g(x) ∈ Rn×m ,∇Φi(x) ∈ Rn , (63)
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Figure 5: Test 1. Numerical results for the gradient-augmented polynomial approximation using the
Legendre polynomial basis.

requires O((mn2 +n)q) floating-point operations, where q is the number of non-zero components
in the expansion. Thus, the operation count decreases linearly with the level of sparsity. Going
back to Table 1, this implies a reduction of 63% in the number of operations with respect to an
`2-based controller.

4.3 Test 2: Controlled Allen-Cahn equation

In the following test, we consider the PDE-constrained optimal control problem

min
u∈L2(0,T ;R2)

∫ T

0
(‖y(t)‖2L2(0,1) + β|u(t)|2`2)dt (64)

subject to 
∂ty − ν∂2

xy − y(1− y2) =
∑3

i=1 ui(t)1ωi in (0, T )× Ω,

∂xy(t, 1) = ∂xy(t, 0) = 0 in (0, T ),

y(0, y) = y0 in Ω,

(65)

with the 3-d control vector u(t) := [u1(t), u2(t), u3(t)] ∈ L2(0, 4;R3), Ω = (−1, 1), ν = 0.1,
β = 0.01 and T = 4. The control signals act through 1ωi = 1ωi(x), which denote the indicator
functions with supports ω1 = (−0.7,−0.4), ω2 = (−0.2, 0.2), and ω3 = (0.4, 0.7). Due to the
infinite-dimensional nature of the state equation this problem does not fall directly into the
optimal control setting considered in this paper. We first perform an approximation of (65) in
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Figure 6: Test 1. Numerical results for the gradient-augmented polynomial approximation using the
Chebyshev polynomial basis.
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Figure 7: Test 1. Evolution of ‖y(t)‖`2 and |u(t)| for x = (2,−1). Here UnCo stands for the uncontrolled
trajectory, and Op refers to the exact optimal trajectory.

space by doing a pseudospectral collocation using Chebyshev spectral elements with 18 degrees of
freedom as in [54]. This approximates the PDE control dynamics as an 18-dimensional nonlinear
dynamical system. The resulting ODE system was treated numerically by the Crank-Nicolson
time stepping method with step-size ∆t = 0.005. Subsequently, a dataset {xj , V j , V j

x }Nj=1 with
N = 9000 (including samples for training and validation) was generated by solving open-loop
problem (64)-(65) for different values of quasi-randomly chosen initial vectors from the hypercube
[−10, 10]18.
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Figure 8: Test 1. Evolution of ‖y(t)‖`2 and |u(t)| for x = (2, 1). Here UnCo stands for the uncontrolled
trajectory, and Op refers to the exact optimal trajectory.

For this example we used the two different values s = 4 and s = 8 in the hyperbolic cross
index set I(s). For these choices we have |I(4)| = 226 and |I(8)| = 1879, resulting in 226 (resp.
1897) polynomial basis functions to approximate the value functions V := V (0, ·). We computed
the solutions θ`2 , θ̄`2 , θ`1 and θ̄`1 to problems (P`2) , (AP`2), (P`1), and (AP`1) for the different
choices of Nd, α, and polynomial basis. For problems (P`1) and (AP`1) we show results with
λ = 0.01 and λ = 0.008, 0.04, respectively, using Chebyshev polynomials. Similarly as in Test
1, we report the level of non-sparsity of θ`1 , θ̄`1 . The errors (55) are shown for a validation set
with |Ival| = 5000 samples. These results are depicted in Figures 9 and 10.

Overall, these results allow to draw the same conclusions as for the previous test. In par-
ticular, as Nd increases, the validation errors are getting smaller. Again, comparing Figures 9
and 10 the gradient-augmented results reach the lowest errors with significantly smaller datasets
Nd than the gradient-free ones. Figures 9-10 also confirm that the errors for s = 8 are smaller
compared to s = 4. Naturally, for the set of polynomials basis associated to s = 8, we need to
increase the training data in comparison to s = 4. Comparing rows 1 and 2 in Figure 9, we
observe that decreasing λ results in an increase on the number of non-zero components and in
a decrease of the errors.

We approximated the optimal control using (49) and (48), resulting in the feedback law

uθ(x) = − 1

2β
gt
∑
i∈I

θi∇xΦi(x) , (66)

where g := [1ω1 |1ω2 |1ω3 ] ∈ Rn×3. We applied this feedback law for the choices θ`2 , θ̄`2 , and θ̄`1
on the initial condition

y0(x) = (x− 1)(x+ 1) + 5. (67)

We report the results for the Chebyshev polynomial basis with s = 4 and thus q = 226. For
the case θ̄`1 we set λ = 0.008 and α = 1. The evolution of the norm of the resulting controlled,
optimal, and uncontrolled states are depicted in Figures 11(a), and the associated controls in
11(b).

Figure 12(a) depicts the uncontrolled state. It converges to the stable equilibrium given by
the constant function with value 1. The state controlled by uθ̄`1 is illustrated in Figure 12(b).
Here the state tends to 0 as expected.
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Figure 9: Test 2. Numerical results for the gradient-augmented polynomial approximation using the
Chebyshev polynomial basis

4.4 Test 3: Optimal consensus control in the Cucker-Smale model

We conclude with a thorough discussion of a high-dimensional, non-linear, non-local optimal
control problem related to consensus control of agent-based dynamics [11, 21, 25]. We study the
Cucker-Smale model [35] for consensus control with Na agents with states (yi, vi) ∈ Rd×Rd for
i = 1, . . . , Na, where yi and vi stand for the position and velocity of the i-th agent, respectively,
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Figure 10: Test 2. Numerical results for the polynomial approximation without gradient informations
using the Chebyshev polynomial basis.
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Figure 11: Test 2. Evolution of ‖y(t)‖L2(Ω) and log10(‖u(t)‖) for the choices λ = 0.008, α = 1, and
Chebyshev polynomial basis.

and d ∈ N is the dimension of the physical space. Then dynamics of the agents are governed by

dyi
dt

= wi ,

dvi
dt

=
1

Na

Na∑
j=1

vj − vi
1 + ‖yi − yj‖2

+ ui , i = 1, . . . , Na ,

yi(0) = xi , vi(0) = wi .

(68)
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(a) Uncontrolled (b) Controlled

Figure 12: Test 2. The uncontrolled state and the controlled state by uθ̄`1 for Nd = 34, λ = 0.008,
α = 1, and α = 1.

The consensus control problem consists of finding a control u(t) := (u1(t), . . . , uNa(t)) ∈ Rd×Na
which steers the system towards the consensus manifold

vi = v̄ =
1

Na

Na∑
j=1

vj , ∀i = 1, . . . , Na . (69)

Asymptotic consensus emergence is conditional to the cohesiveness of the initial state x0 =
(x1, . . . , xNa) and w0 = (w1, . . . , wNa) [35]. To remove this dependence on the initial state, we
cast this problem as an optimal control problem by defining the following cost functional

J(u;x0,w0) :=

∫ T

0

Na∑
i=1

1

Na
‖vi(t)− v̄‖2 + β‖ui(t)‖2 dt, (70)

and formulating the optimal control problem

min
u∈L2(0,T ;Rd×Na )

{J(u;x0,v0) subject to (68)}. (OC(x̂0))

For the sake of completeness, in this case the adjoint system is given by [11]

−dpyi
dt

=
1

Na

∑
j 6=i

−2(pvj − pvi)
(1 + ‖yj − yi‖2)2

[(yi − yj)⊗ (vi − vj)] , (71)

−dpvi
dt

= pyi +
1

Na

∑
j 6=i

pvj − pvi
1 + ‖yi − yj‖2

+
2

N
(vi − v̄)t i = 1, . . . , Na , (72)

pyi(T ) = 0, pvi(T ) = 0 , (73)

and the optimality condition reads

pvi(t) + 2βu∗i (t) = 0 ∀ t ∈ (0, T ) , i = 1, . . . , N . (74)

We denote the augmented initial state x̂0 = (x0,w0), and we approximate the value func-
tion V (x̂) = V (0, x̂). We set Na = 20, d = 2, T = 10, and β = 0.01, and we compute a
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dataset {x̂j , V j , V j
x̂ }

N
j=1 with N = 104. For every j, the initial vectors x̂j ∈ R80 were chosen

quasi-randomly from the hypercube [−3, 3]80. The dataset was computed by solving open-loop
problems with a time discretization using the fourth order Runge-Kutta method with step-size
∆t = 0.01.

The choice s = 4 in the hyperbolic cross index set I(s), results in |I(4)| = 3481 polynomial
basis functions for V . As in the previous examples, we computed the solutions θ`2 , θ̄`2 , θ`1 and θ̄`1
for different values of Nd and λ. We report results for the errors and levels of non-sparsity for the
case of Legendre polynomials as basis functions, λ = 5×10−4, 10−4 and |Ival| = 5000, in Figures
13 and 14, with and without gradient information, respectively. For this 80-dimensional problem,
the observations from the previous examples are confirmed, and the gradient-augmented sparse
regression requires two orders of magnitude less of training samples to achieve the same error
levels of the gradient-free counterpart.
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Figure 13: Test 3. Numerical results for the gradient-augmented polynomial approximation using the
Legendre polynomial basis.

Furthermore, we computed the approximation of the optimal control according to (66) with
g = [0; I]t for different setting of θ = θ`1 and θ = θ̄`1 , and present stabilization results in Figure
15.

Figure 16(a) shows the uncontrolled dynamics of the agents for a specific initial state x̂0.
The dynamics of the optimal state and approximations, corresponding to OC(x̂0), are plotted
in Figures 16(b), 16(c), and 16(d). Colored trajectories are uncontrolled, and red trajectories
represent the controlled evolution. By comparing these Figures, it can be seen that the dynamics
of the optimal state and its approximation obtained by uθ̄`1

for Nd = 70, λ = 2.5 × 10−4 are

almost identical. Note that the controlled trajectories in these two subplots 16(b) and 16(c)
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Figure 14: Test 3. Numerical results of the polynomial approximation using the Legendre basis without
gradient information.
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Figure 15: Test 3. (a) Evolution of the consensus variance 1
Na

∑Na

i=1 ‖vi(t) − v̄‖2 for different control
laws and (b) the norm ‖u(t)‖ of the associated control signals. Here Op stands for the exact optimal
control, and UnCo for the uncontrolled solution.

achieve consensus, unlike 16(d), where the feedback obtained with a sparse regression without
gradient information does not stabilize the dynamics despite the large training dataset. This
observation is also supported by Table 2 and Figure (15). Table 2 shows that the smallest
validation error is achieved for the gradient-augmented sparse regression of the value function
with only 70 training samples, with approximately 20% of nonzero components. Figure (15)
depicts the evolution of the tracking term 1

Na

∑Na
i=1 ‖vi(t) − v̄‖2 and the norm of the control of

every feedback law. From this figure, we can see that the control uθ̄`1
associated to Nd = 70,

λ = 2.5 × 10−4 delivers the best approximation for the optimal control of OC(x̂0) among the
different control laws.

Concluding remarks

We have presented a sparse polynomial regression framework for the approximation of feedback
laws arising in nonlinear optimal control. The main ingredients of our approach include: the
generation of a gradient-augmented dataset for the value function associated to the control
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Figure 16: Test 3. Controlled trajectories (in red) generated by different control laws. In this high-
dimensional problem (n = 80), the sparse, gradient-augmented regression for V (c) yields an feedback
law which approaches the optimal trajectory (b) with few training samples Nd = 70.

ErrL2 ErrH1 Nonzero components

V̄`1 for Nd = 50, λ = 7.5× 10−4 5.40× 10−2 6.37× 10−2 393/3481
V̄`1 for Nd = 70, λ = 2.5× 10−4 3.56× 10−2 4.11× 10−2 738/3481
V`1 for Nd = 2430, λ = 2.5× 10−4 7.46× 10−2 9.38× 10−2 656/3481

Table 2: Test 3. Validation errors for different regressions.

problem by means of PMP solves, a hyperbolic cross polynomial ansatz for recovering the value
function and its feedback law, and a sparse optimization method to fit the model. Through
a series of numerical tests, we have shown that the proposed approach can approximate high-
dimensional control problems at moderate computational cost. The gradient-augmented dataset
reduces the number of open-loop solves required to recover the optimal control, and the sparse
regression provides a feedback law of reduced complexity, which is an appealing feature for
real-time implementations. The effectiveness of the proposed methodology suggests different
research directions. First, the deep neural network ansatz proposed in [63] can be combined
with a sparsity-promoting loss function along the lines of our work. In the light of recent
results discussed in [3], it is a pertinent question to find whether deep neural networks or
polynomial approximants are more effective ansatz for the value function. As we have previously
mentioned, there are different control-theoretical arguments which support the case for having a
polynomial approximation of the value function. A second direction of research is related to the
extension of the presented results in the context to time-dependent, and second-order stochastic
control problems where the representation formula given by the PMP is replaced by a backward
stochastic differential equation [43]. Finally, the ideas proposed in this work regarding sparse
polynomial regression can be implemented in the context of approximate dynamic programming
in reinforcement learning [19].
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J. Trumpf, editors, Mathematical System Theory – Festschrift in Honor of Uwe Helmke on
the Occasion of his Sixtieth Birthday, pages 247–260. CreateSpace, 2013.

[59] K. Kunisch and D. Walter. Semiglobal optimal feedback stabilization of autonomous sys-
tems via deep neural network approximation, 2020. arXiv preprint:2002.08625.

[60] L. Laurent, R. Le Riche, B. Soulier, and P.-A. Boucard. An overview of gradient-
enhanced metamodels with applications. Archives of Computational Methods in Engineer-
ing, 26(1):61–106, Jan 2019.

[61] D. Lukes. Optimal regulation of nonlinear dynamical systems. SIAM Journal on Control,
7(1):75–100, 1969.

[62] W. M. McEneaney. A curse-of-dimensionality-free numerical method for solution of certain
HJB PDEs. SIAM J. Control Optim., 46(4):1239–1276, 2007.

[63] T. Nakamura-Zimmerer, Q. Gong, and W. Kang. Adaptive deep learning for high-
dimensional hamilton-jacobi-bellman equations, 2019. arXiv preprint:1907.05317.
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