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Abstract

The value function for an infinite horizon tracking type optimal control problem with semilinear parabolic equation
is investigated. In view of a possible nonconvexity of the optimal control problem, a local version of the value
function is considered. Its differentiability is proved for initial data in a neighborhood around the nominal initial
value, provided a second order sufficient optimality condition is fulfilled for the nominal locally optimal control.
Based on the differentiability of the value function, a Hamilton-Jacobi-Bellman equation is derived.
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1. Introduction

In this paper, we study the value function associated with the optimal control problem

(P) min
u∈L2(Qω)

J(u) :=
1
2

∫
Q

(yu − yd)2 dx dt +
κ

2

∫
Qω

u2 dx dt,

where Q = Ω × (0,∞) and Qω = ω × (0,∞) with Ω being a bounded domain of Rn, 1 ≤ n ≤ 3, and ω a measurable
subset of Ω of positive Lebesgue measure. We assume that κ > 0 and yd ∈ L2(Q). We denote by yu the state associated
with u, solution of the following Neumann initial-boundary value problem

∂y
∂t
− ∆y + ay + f (y) = g + χωu in Q,

∂ny = 0 on Σ, y(0) = y0 in Ω.
(1.1)

Above, the notation Σ = Γ × (0,∞) is used, where Γ is the boundary of Ω that we assume to be Lipschitz.
Assumptions on the other data will be given later.

The main goal of this paper is to investigate the sensitivity of the optimal solution with respect to the initial datum
and subsequently regularity properties of the value function associated with the optimal control problem (P). The value
function plays a fundamental role in optimal feedback control of evolution equations. Indeed, an optimal feedback
control can be obtained by means of the verification theorem which involves the gradient of the value function. The
value function itself satisfies a Hamilton-Jacobi-Bellman (HJB) equation, possibly only in the viscosity sense. Its
numerical realisation is a significant challenge, since inevitably one is confronted with a curse of dimensionality.
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Nonetheless, investigating the HJB equation is an essential first step towards numerical techniques for obtaining
approximating solutions.

Value functions were extensively studied in the literature. For the control of ordinary differential equations, we
mention exemplarily [12]. Infinite-dimensional control systems were discussed in the general expositions [1, 2, 6],
and in [3, 4, 5]. For semilinear parabolic equations, we mention [13] that inspired the investigations in our paper and
[3, 11] that are related to parabolic equations, as well.

In the references cited above, the problems are posed with initial data in L2(Ω). This is a convenient setting since,
in the case that the value function is differentiable, its operator representation of the derivatives is again in L2(Ω). As a
consequence of this choice of initial data in L2(Ω), dimension-dependent restrictions on the degree of the nonlinearity
f arise. Therefore in the present work, the parameter space for the initial conditions is chosen to be L∞(Ω), which
significantly enlarges the range of the admissible degree of nonlinearities for the nonlinearity f . Moreover, as it turns
out, once the differentiability of the value function is guaranteed, the derivative enjoys extra regularity and allows a
convenient representation in terms of the adjoint state. One of the difficulties which has to be overcome along this
approach results from the fact that the control-to-state mapping is not in general differentiable for L2-controls, while
the optimization in (P) is subject to controls of L2(Qω). Therefore, in several steps we show for an auxiliary problem
that any of its locally optimal controls is automatically essentially bounded, i.e. it belongs to L∞(Qω) although the
controls are not restricted. The reader is referred to [10] where this issue has been deeply studied for finite horizon
optimal control problems and arbitrary dimension n ≥ 2.

Concerning the techniques involved to study the regularity of the value function, let us point out that in [3, 5],
for instance, the approach rests primarily on a direct study of the value function, verifying, at first Lipschitz and
semi-concavity properties. This is followed by results on the superdifferential of the value function along optimal
trajectories. Under additional assumptions the superdifferentials are in fact Frechet derivatives. In [13] and the present
paper, the differentiability of the value function is essentially obtained by the chain rule applied to the mapping
from the initial conditions to the optimal values of the cost-functional, with optimal controls and optimal states as
intermediate quantities.

The plan of the paper is as follows: Section 2 deals with the well-posedness of the state equation in suitable
spaces and with the differentiability of the control-to-state mapping for controls of Lp(0,∞; L2(ω)) with p > 4

4−n if
n ∈ {2, 3} or p ≥ 2 if n = 1. In Section 3, the existence of optimal controls in L2(Qω) is proved. Moreover, it
will be confirmed that they belong to Lp(0,∞; L2(ω)) ∩ L2(Qω) ∩ L∞(Qω). First-order necessary and second-order
sufficient optimality conditions are established in Section 4. Second-order sufficient conditions are indispensable for
the stability of locally optimal controls. Section 5 contains the main result of our paper – the differentiability of the
local value function and the representation of its derivative in terms of the adjoint state function. In Section 6 we
discuss the Hamilton-Jacobi-Bellman equation associated to (P) for the special case yd = g = 0.

2. Preliminary results

In this section, we analyze the well-posedness of the state equation and the differentiability of the associated
control-to-state mapping. For this purpose, we assume the following hypotheses:

(A1) We suppose that a ∈ L∞(Q), a ≥ 0, a . 0, g, yd ∈ L2(Q) ∩ Lp(0,∞; L2(Ω)) with p > 4
4−n if n = 2 or 3 and

p ≥ 2 if n = 1, and y0 ∈ L∞(Ω). Along this paper this condition on p will be assumed.

(A2) The function f : R −→ R is of class C2, f ′(s) ≥ 0 for all s ∈ R, and f (0) = 0.
The number p ∈ ( 4

4−n ,∞] introduced in Assumption (A1) remains fixed throughout this paper. The boundedness
of y0 is required to make the nonlinearity of the parabolic equation well defined.

Due to the assumptions on the function a, we know that there exists a constant Ca > 0 such that

Ca ∥y∥H1(Ω) ≤
( ∫
Ω

[|∇y|2 + ay2] dx
) 1

2
∀y ∈ H1(Ω). (2.1)

In equation (1.1), χω denotes the characteristic function of the set ω. Hence, we have (χωu)(x, t) = u(x, t) if
(x, t) ∈ Qω and χωu is zero in Q \ Qω.
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For every T ∈ (0,∞], we define W(0, T ) = {y ∈ L2(0, T ; H1(Ω)) : ∂y
∂t ∈ L2(0, T ; H1(Ω)∗)}. We know that W(0,T )

is a Hilbert space endowed with the Hilbertian norm

∥y∥W(0,T ) =
(
∥y∥2L2(0,T ;H1(Ω)) +

∥∥∥∥∂y
∂t

∥∥∥∥2
L2(0,T ;H1(Ω)∗)

) 1
2
.

Definition 2.1. Given u ∈ L2(Qω), we say that a function y : Q −→ R is a solution to (1.1) if for every T ∈ (0,∞) the
restriction of y to QT = Ω × (0, T ) belongs to W(0, T ), f (y|QT

) ∈ L2(QT ), and y satisfies the following equation
∂y
∂t
− ∆y + ay + f (y) = g + χωu in QT ,

∂ny = 0 on ΣT , y(0) = y0 in Ω,
(2.2)

where ΣT = Γ × (0, T ).

We have the following result on well-posedness of the state equation (1.1).

Theorem 2.2. Under the assumptions (A1) and (A2), for every control u ∈ L2(Qω) there exists a unique solution
yu ∈ W(0,∞) of (1.1). Moreover, f (yu) belongs to L2(Q) and there is a constant C independent of u and y0 such that

∥yu∥C([0,∞);L2(Ω)) + ∥yu∥L2(0,∞;H1(Ω)) ≤ C
(
∥y0∥L2(Ω) + ∥g + χωu∥L2(Q)

)
, (2.3)

∥yu∥W(0,∞) + ∥ f (yu)∥L2(Q) ≤ C
(
∥ f (y0)∥L∞(Ω) + ∥y0∥L∞(Ω) + ∥g + χωu∥L2(Q)

)
. (2.4)

In addition, if u ∈ Lp(0,∞; L2(ω)), then yu ∈ L∞(Q) and the following estimate holds with a constant C∞ independent
of u and y0

∥yu∥L∞(Q) ≤ C∞
(
∥y0∥L∞(Ω) + ∥g + χωu∥L2(Q) + ∥g + χωu∥Lp(0,∞;L2(Ω))

)
. (2.5)

Proof. The uniqueness is an immediate consequence of the monotonicity of f . Let us prove the existence and the
associated estimates. For every integer k ≥ 1, we define fk(s) = f

(
Proj[−k,+k](s)

)
, where Proj[−k,+k](s) denotes the

projection of s on the interval [−k,+k]. We also take a sequence {ỹ0k}
∞
k=1 ⊂ H1(Ω) such that ỹ0k → y0 in L2(Ω). For

M = ∥y0∥L∞(Ω) we define y0k(x, t) = Proj[−M,+M](ỹ0k(x, t)). Then, we still have that {y0k}
∞
k=1 ⊂ H1(Ω) and y0k → y0 in

L2(Ω). In addition, the inequality ∥y0k∥L∞(Ω) ≤ ∥y0∥L∞(Ω) holds. For every T ∈ (0,∞), we consider the equation
∂y
∂t
− ∆y + ay + fk(y) = g + χωu in QT ,

∂ny = 0 on ΣT , y(0) = y0k in Ω.
(2.6)

By an easy application of Schauder’s fixed point theorem, we infer the existence of a solution yk ∈ W(0, T ) of (2.6).
Moreover, since y0k ∈ H1(Ω) and g+χωu− fk(yk) ∈ L2(QT ), we deduce from [16, Proposition III 2.5] that yk ∈ H1(QT ).
Testing the equation (2.6) with yk, using (2.1), and that fk(s)s ≥ 0 for all s ∈ R (notice that f (0) = 0), we get

1
2
∥yk(T )∥2L2(Ω) +C2

a∥yk∥
2
L2(0,T ;H1(Ω))

≤
1
2
∥yk(T )∥2L2(Ω) +

∫
QT

[|∇yk |
2 + ay2

k] dx dt +
∫

QT

fk(yk)yk dx dt =
∫

QT

(g + χωu)yk dx dt +
1
2
∥y0k∥

2
L2(Ω)

≤
1

2C2
a
∥g + χωu∥2L2(Q) +

C2
a

2
∥yk∥

2
L2(Q) +

1
2
∥y0k∥

2
L2(Ω).

Since y0k → y0 in L2(Ω) and T ∈ (0,∞) is arbitrary this inequality implies

∥yk∥L∞(0,∞;L2(Ω)) + ∥yk∥L2(0,∞;H1(Ω)) ≤ 2 max
{
1,

1
C4

a

}(
∥y0∥L2(Ω) + ∥g + χωu∥L2(Q)

)
. (2.7)
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Now, we define the function Fk : R −→ R by Fk(s) =
∫ s

0 fk(θ) dθ. The monotonicity of fk and the fact that
fk(0) = 0 imply that 0 ≤ Fk(s) ≤ s fk(s) ≤ s f (s). Using these properties, we get∫

QT

∂yk

∂t
fk(yk) dx dt =

∫ T

0

d
dt

∫
Ω

Fk(yk) dx dt =
∫
Ω

Fk(yk(x, T )) dx −
∫
Ω

Fk(yk(x, 0)) dx

≥ −

∫
Ω

y0k(x) f (y0k(x)) dx ≥ −|Ω| ∥ f (y0)∥L∞(Ω)∥y0∥L∞(Ω).

Using this inequality and testing (2.6) with fk(yk), we obtain

∥ fk(yk)∥2L2(QT ) ≤

∫
QT

∂yk

∂t
fk(yk) dx dt+

∫
QT

[ f ′k (yk)|∇yk |
2+ayk fk(yk)] dx dt+

∫
QT

fk(yk)2 dx dt+|Ω| ∥ f (y0)∥L∞(Ω)∥y0∥L∞(Ω)

=

∫
QT

(g + χωu) fk(yk) dx dt + |Ω| ∥ f (y0)∥L∞(Ω)∥y0∥L∞(Ω)

≤
1
2
∥g + χωu∥2L2(Q) +

1
2
∥ fk(yk)∥2L2(QT ) +

|Ω|

2

(
∥ f (y0)∥2L∞(Ω) + ∥y0∥

2
L∞(Ω)

)
.

Once again, since T is arbitrary we infer from the above estimate

∥ fk(yk)∥L2(Q) ≤ max{1,
√
|Ω|}
(
∥ f (y0)∥L∞(Ω) + ∥y0∥L∞(Ω) + ∥g + χωu∥L2(Q)

)
. (2.8)

Combining (2.7) and (2.8), we get from (2.6)

∥yk∥W(0,∞) ≤ C
(
∥ f (y0)∥L∞(Ω) + ∥y0∥L∞(Ω) + ∥g + χωu∥L2(Q)

)
. (2.9)

From (2.8) and (2.9), we infer the existence of a subsequence of {yk}
∞
k=1, denoted in the same way, such that yk ⇀ y

in W(0,∞) and fk(yk) ⇀ ϕ in L2(Q). Since the embedding W(0,T ) ⊂ L2(QT ) is compact, we deduce that yk → y in
L2(QT ) for every T < ∞. Hence, taking a new subsequence, we have that yk(x, t) → y(x, t) for almost all (x, t) ∈ QT .
This implies that fk(yk(x, t)) → f (y(x, t)) for almost every (x, t) ∈ QT . Therefore, the identity ϕ = f (y) holds. Using
these convergences, it is straightforward to pass to the limit in (2.6) and to get that y satisfies (2.2) for every T > 0.
Hence, y is the solution of (1.1). Moreover, the estimates (2.3) and (2.4) are immediately obtained from (2.7)–(2.9).
Finally, the L∞(Q) regularity of y and the estimate (2.5) follow from [7, Theorem A.2 and Remark 5.2].

While Theorem 2.3 ensures well-posedness of the state equation in L2(Qω), the sensitivity analysis requires the
differentiability of the mapping u 7→ yu that cannot be proved for u ∈ L2(Qω). This is why we introduce below the
dense subspaceUp of L2(Qω), where differentiability can be shown. We will prove later that locally optimal controls
belong to L∞(Qω) so that first- and second-order optimality conditions can be derived. This is the roadmap for the
sensitivity analysis.

We setUp = Lp(0,∞; L2(ω)) ∩ L2(Qω) and endowUp with the norm

∥u∥Up = ∥u∥L2(Qω) + ∥u∥Lp(0,∞;L2(ω)).

Then,Up is a Banach space that is reflexive and separable if p < ∞. We notice that L2(Qω) ∩ L∞(Qω) ⊂ Up. Indeed,
this follows from the inequality

∥u∥Lp(0,∞;L2(ω)) ≤ ∥u∥
p−2

p

L∞(Qω)∥u∥
2
p

L2(Qω) ≤
p − 2

p
∥u∥L∞(Qω) +

2
p
∥u∥L2(Qω). (2.10)

According to Theorem 2.2, the mapping G : Up −→ W(0,∞) ∩ L∞(Q) associating to every control u the cor-
responding state, G(u) = yu, is well defined. Concerning the differentiability of G, the next result follows from [7,
Theorems 2.2 and 3.1, and Remark 5.2].
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Theorem 2.3. The mapping G is of class C2. Moreover, given u, v, v1, v2 ∈ Up, the derivatives zv = G′(u)v and
zv1,v2 = G′′(u)(v1, v2) are the unique solutions of the equations

∂z
∂t
− ∆z + az + f ′(yu)z = χωv in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(2.11)


∂z
∂t
− ∆z + az + f ′(yu)z = − f ′′(yu)zv1 zv2 in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω,
(2.12)

where zvi = G′(u)vi for i = 1, 2.

By this theorem and the chain rule, we obtain the differentiability properties of the cost functional J.

Corollary 2.4. The functional J : Up −→ R is of class C2. For every u, v, v1, v2 ∈ Up, its derivatives are given by

J′(u)v =
∫

Qω

(φu + κu)v dx dt, (2.13)

J′′(u)(v1, v2) =
∫

Q

[
1 − f ′′(yu)φu

]
zu,v1 zu,v2 dx dt + κ

∫
Qω

v1v2 dx dt, (2.14)

where zu,vi = G′(u)vi, i = 1, 2, and φu ∈ W(0,∞) ∩ BC(Ω̄ × [0,∞)) satisfies the adjoint equation −
∂φu

∂t
− ∆φu + aφu + f ′(yu)φu = yu − yd in Q,

∂nφu = 0 on Σ, limt→∞ ∥φu(t)∥L2(Ω) = 0,
(2.15)

where BC(Ω̄ × [0,∞)) denotes the space of bounded and continuous functions in Ω̄ × [0,∞).

Proof. The reader is referred to [7, Theorem A.4 and Remark 5.2] for the existence proof of a unique solution φu ∈

W(0,∞) ∩ L∞(Q) of (2.15). The expressions (2.13) and (2.14) follow from (2.11), (2.12), and (2.15) in the standard
way. It remains to prove the continuity of φu. To do this we define zT (x, t) = tφu(x, T − t) for every T ∈ (0,∞). From
(2.15) we deduce that zT satisfies the following equation

∂zT

∂t
− ∆zT + azT + f ′(ŷu)zT = t(ŷu − ŷd) + φ̂u in QT ,

∂nzT = 0 on ΣT , zT (0) = 0 in Ω,

where (ŷu, ŷd, φ̂u)(t) = (yu, yd, φu)(T − t). Since t(ŷu − ŷd) + φ̂u ∈ Lp(0, T ; L2(Ω)) we infer that zT ∈ C(Q̄T ); see, for
instance, [9] or [14, Chapter 3]. Finally, the identity φu(x, t) = 1

T−t zT (x, T − t) implies the continuity of φu in Ω̄×[0, T ).
Since T was taken arbitrarily in (0,∞), the continuity of φu in Ω̄ × [0,∞) follows.

Remark 2.5. From [7, Theorem A.3 and Remark 5.2], we deduce that the mapping G′(u) : Up −→ W(0,∞) can
be extended to a linear continuous mapping G′(u) : L2(Qω) −→ W(0,∞). Using this, the expressions (2.13) and
(2.14), and the fact that yu, φu belong to L∞(Q) ∩ L2(Q) for every u ∈ Up, we infer that the linear and bilinear forms
J′(u) : Up −→ R and J′′(u) : Up × Up −→ R can be extended to continuous forms J′(u) : L2(Qω) −→ R and
J′′(u) : L2(Qω) × L2(Qω) −→ R, respectively. We mention thatUp is continuously and densely embedded in L2(Qω).
The continuity is obvious. The density is proved as follows: given v ∈ L2(Qω), we set vk(x, t) = Proj[−k,+k](v(x, t)) for
every integer k ≥ 1. Then, it is obvious that {vk}

∞
k=1 ⊂ L2(Qω) ∩ L∞(Qω) ⊂ Up and vk → v in L2(Qω).

3. Solvability of (P)

In this section, first we prove the existence of solutions to (P) in L2(Qω). In a second step, we will prove that every
local minimizer belongs to L∞(Qω). This information is needed to later prove that the notion of local optimality in the
sense of L2(Qω) is equivalent to that in the sense ofUp, the space where J is of class C2. This proof will occupy the
major part of this section.
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Theorem 3.1. The optimal control problem (P) has at least one solution ū ∈ L2(Qω).

Proof. Let {uk}
∞
k=1 be a sequence such that J(uk)↘ inf (P). Then, the inequality κ

2∥uk∥
2
L2(Qω) ≤ J(uk) ≤ J(u1) for every

k implies the boundedness of {uk}
∞
k=1 in L2(Qω). Taking a subsequence that we denote in the same way, we obtain that

uk ⇀ ū in L2(Qω). Let us write yk = yuk . Thanks to (2.4), the sequences {yk}
∞
k=1 and { f (yk)}∞k=1 are bounded in W(0,∞)

and L2(Q), respectively. Then, selecting again a subsequence, if needed, we have the convergences yk ⇀ ȳ in W(0,∞)
and f (yk) ⇀ ϕ in L2(Q). Arguing as in the proof of Theorem 2.2, we get ϕ = f (ȳ). Passing to the limit in the state
equation satisfied by yk we conclude that ȳ = yū. Finally, we deduce by standard semicontinuity arguments that ū is a
solution of (P).

Let us mention the obvious fact that any solution ū of (P) is also a local solution in the L2(Qω)-sense. The latter
means that there exists ε > 0 such that J(ū) ≤ J(u) if ∥u − ū∥L2(Qω) ≤ ε.

Theorem 3.2. Let ū be a local solution of (P) in the L2(Qω)-sense. Then ū belongs to L∞(Qω) ∩Up.

Proof. Let ū be a local solution of (P) and fix ε > 0 such that J(ū) ≤ J(u) for all u ∈ B̄ε(ū), where B̄ε(ū) is the closed
ball of L2(Qω) centered at ū with radius ε. Define KM = {u ∈ B̄ε(ū) : ∥u∥L∞(Qω) ≤ M}. For every M > 0 we consider
the auxiliary control problems

(PM) min
u∈KM

I(u) := J(u) +
1
2

∫
Qω

(u − ū)2 dx dt.

Since KM is closed and convex in L2(Qω), arguing as in the proof of Theorem 3.1 we deduce the existence of a solution
uM of (PM) for every M > 0. The remaining proof of the theorem is split into two steps.

Step I - limM→∞ ∥uM − ū∥L2(Qω) = 0. Since KM ⊂ B̄ε(ū) we deduce that {uM}M>0 is bounded in L2(Qω). Hence,
there exists a sequence {Mk}

∞
k=1 tending to ∞ such that uMk ⇀ ũ in L2(Qω) with some ũ ∈ B̄ε(ū). As in the proof of

Theorem 3.1, we have that yMk = yuMk
⇀ ỹ = yũ in W(0,∞).

Define ūMk (x, t) = Proj[−Mk ,+Mk](ū(x, t)). It is clear that {ūMk } converges pointwise to ū. From the Lebesgue
dominated convergence theorem, we obtain that ūMk → ū in L2(Qω). Therefore, an integer kε exists such that ∥ūMk −

ū∥L2(Qω) ≤ ε for every k ≥ kε. Consequently, ūMk belongs to KMk for every k ≥ kε.
Thanks to the local and global optimality of ū and uMk , respectively, we infer

J(ū) ≤ J(ũ) ≤ I(ũ) ≤ lim inf
k→∞

I(uMk ) ≤ lim sup
k→∞

I(uMk ) ≤ lim sup
k→∞

I(ūMk ) = I(ū) = J(ū).

These inequalities imply that ũ = ū. With [8, Lemma 5.2], the convergence of the three summands of I(uMk ) follows, in
particular limk→∞ ∥uMk − ū∥L2(Qω) = 0. Since this holds for all weakly convergent sequences {uMk }

∞
k=1, the convergence

limM→∞ ∥uM − ū∥L2(Qω) = 0 is obtained.

Step II - Optimality conditions for uM . We know from Step I that there exists Mε > 0 such that ∥uM − ū∥L2(Qω) < ε
holds for all M > Mε. Since uM ∈ L2(Qω) ∩ L∞(Qω) ⊂ Up, Corollary 2.4 implies the differentiability of I at uM .
Hence, we have I′(uM)(u − uM) ≥ 0 for every u ∈ L2(Qω) satisfying ∥u∥L∞(Qω) ≤ M. This leads to the optimality
conditions

∂yM

∂t
− ∆yM + ayM + f (yM) = g + χωuM in Q,

∂nyM = 0 on Σ, yM(0) = y0 in Ω,
(3.1)

 −
∂φM

∂t
− ∆φM + aφM + f ′(yM)φM = yM − yd in Q,

∂nφM = 0 on Σ, limt→∞ ∥φM(t)∥L2(Ω) = 0,
(3.2)∫

Qω

(φM + κuM + uM − ū)(u − uM) dx dt ≥ 0 ∀u ∈ L2(Qω) such that |u(x, t)| ≤ M for a.a. (x, t) ∈ Qω. (3.3)

Applying Theorem 2.2 to equation (3.1), we deduce from (2.3) and the boundedness of {uM}M>0 in L2(Qω) that
∥yM∥L∞(0,∞;L2(Ω)) + ∥yM∥L2(Q) ≤ C1 for some real number C1 independent of M. Using again [7, Theorem A.4 and
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Remark 5.2] for (3.2) we infer that ∥φM∥L∞(Q) ≤ C2 < ∞ for all M ≥ Mε. Now, (3.3) implies that

uM(x, t) = Proj[−M,+M]

(
−

1
κ

(φM + uM − ū)(x, t)
)
.

Taking M > max{C2/κ, Mε} we obtain from the above identity

|uM(x, t)| ≤
∣∣∣∣Proj[−M,+M]

(
−

1
κ
φM(x, t)

)∣∣∣∣
+
∣∣∣∣Proj[−M,+M]

(
−

1
κ

(φM + uM − ū)(x, t)
)
− Proj[−M,+M]

(
−

1
κ
φM(x, t)

)∣∣∣∣ ≤ C2

κ
+

1
κ
|uM(x, t) − ū(x, t)|.

Now we select an increasing sequence {Mk}
∞
k=1 of real numbers tending to infinity such that uMk (x, t) → ū(x, t) for

almost all (x, t) ∈ Qω. Passing to the limit in the above inequality with M replaced by Mk, we infer that |ū(x, t)| ≤ C2/κ
and, hence, ū ∈ L∞(Qω). Finally, the inclusion ū ∈ Up follows from (2.10).

So far, we have considered local solutions of (P) in the L2(Qω)-sense. However, since the functional J is differen-
tiable onUp, it is natural to ask for local optimality in theUp-sense, which is defined analogously to the L2(Qω)-sense
just substituting theUp-norm for the L2(Qω)-norm. Now we prove that both concepts are equivalent.

Theorem 3.3. A control ū ∈ L2(Qω) is a local solution of (P) in the L2(Qω)-sense if and only if ū ∈ Up and it is a
Up-local solution of (P).

Proof. If ū is a local solution of (P) in the L2(Qω)-sense, Theorem 3.2 implies that ū ∈ Up. Moreover, the fact
that ū is also a local solution of (P) in the Up-sense is a straightforward consequence of the inequality of the norms
∥u∥L2(Qω) ≤ ∥u∥Up .

Let us prove the converse implication. By definition of a local solution in the sense ofUp, there exists ε > 0 such
that

J(ū) ≤ J(u) ∀u ∈ Up with ∥u − ū∥Up ≤ ε. (3.4)

For r > 0 specified below, we consider the following control problem:

(Pr) min
u∈B̄r(ū)

J(u),

where B̄r(ū) = {u ∈ L2(Qω) : ∥u − ū∥L2(Qω) ≤ r}. As in Theorem 3.1, we obtain the existence of a solution ũ of (Pr).
Below, we will prove that ũ ∈ L∞(Qω) and that there exists a constant M independent of r such that ∥ũ∥L∞(Qω) ≤ M.
From this and (2.10) we get that ũ ∈ Up and

∥ũ − ū∥Lp(0,∞;L2(ω)) ≤ ∥ũ − ū∥
p−2

p

L∞(Qω)∥ũ − ū∥
p
2

L2(Qω) ≤
(
M + ∥ū∥L∞(Qω)

) p−2
p r

p
2 .

Selecting r satisfying (
M + ∥ū∥L∞(Qω)

) p−2
p r

p
2 ≤ ε,

we infer that ∥ũ − ū∥Up ≤ ε. Hence, (3.4) and the optimality of ũ for (Pr) imply J(ū) ≤ J(ũ) = inf (Pr). Therefore,
ū is also a solution of (Pr) and, consequently, ū is an L2(Qω)-local solution of (P). It remains to show the estimate
∥ũ∥L∞(Qω) ≤ M. The remainder of this section is devoted to prove this.

For every integer k ≥ 1 we define the truncation function hk : R −→ R of class C2 by

hk(s) =


k + 1 if s ≥ k + 1,
3(s − k)5 − 7(s − k)4 + 4(s − k)3 + s if s ∈ (k, k + 1),
s if s ∈ [−k,+k],
3(s + k)5 + 7(s + k)4 + 4(s + k)3 + s if s ∈ (−k − 1,−k),
−k − 1 if s ≤ −k − 1.
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The verification of the C2-property and of the following facts is left to the reader:

hk(0) = 0, |hk(s)| ≤ 1.512|s|, 0 ≤ h′k(s) ≤ 1.512, |h′′k (s)| ≤ 3.95. (3.5)

Associated with hk we set fk(s) = f (hk(s)). Then, fk : R −→ R is of class C2 and

fk(0) = 0, | fk(s)| ≤ C′f ,k |s|, 0 ≤ f ′k (s) ≤ C′f ,k = 1.512 max
|θ|≤k+1

f ′(θ), | f ′′k (s)| ≤ C′′f ,k = 2.3 max
|θ|≤k+1

| f ′′(θ)| + 3.95C′f ,k. (3.6)

Given u ∈ L2(Qω), we denote by yk,u the solution of the equation
∂y
∂t
− ∆y + ay + fk(y) = g + χωu in Q,

∂ny = 0 on Σ, y(0) = y0 in Ω.
(3.7)

Existence and uniqueness of yk,u ∈ W(0,∞) with fk(yk,u) ∈ L2(Q) follow from Theorem 2.2. Next, we show the
differentiability of the mapping Gk : L2(Qω) −→ W(0,∞) defined by Gk(u) = yk,u. Notice that this does not follow
from Theorem 2.3, since G is defined onUp, while we need the differentiability of Gk in L2(Qω).

Lemma 3.4. The mapping Gk is of class C1. Given u, v ∈ L2(Qω), the derivative zk,v = G′k(u)v is the solution of the
equation 

∂z
∂t
− ∆z + az + f ′k (yk,u)z = χωv in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.
(3.8)

Proof. We apply the implicit function theorem to the following mapping:

F : W(0,∞) × L2(Qω) −→ L2(0,∞; H1(Ω)∗) × L2(Ω),

F (y, u) =
(∂y
∂t
− ∆y + ay + fk(y) − g − χωu, y(0) − y0

)
.

We prove that F is of class C1. To this end, it is enough to check that the mapping Fk : W(0,∞) −→ L2(Q) with
Fk(y)(x, t) = fk(y(x, t)) is of class C1, because fk is the only nonlinear term that appears in F . We prove this for n = 3,
the proof for n < 3 is similar and even simpler. In this case, we use the Gagliardo inequality

∥y∥L4(Ω) ≤ C∥y∥
1
4

L2(Ω)∥y∥
3
4

H1(Ω). (3.9)

Let us confirm that [F′k(y)z](x, t) = f ′k (y(x, t))z(x, t). We get with the mean value theorem, (3.9), Hölder’s, and Young’s
inequalities

∥Fk(y + z) − Fk(y) − F′k(y)z∥2L2(Q) =

∫
Q
| fk(y + z) − fk(y) − f ′k (y)z|2 dx dt =

∫
Q
| f ′k (y + θkz) − f ′k (y)|2z2 dx dt

≤

∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥2L4(Ω)∥z∥

2
L4(Ω) dt ≤ C2

∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥2L4(Ω)∥z∥

1
2

L2(Ω)∥z∥
3
2

H1(Ω) dt

≤ C2∥z∥
1
2

L∞(0,∞;L2(Ω))

( ∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥8L4(Ω) dt

) 1
4
∥z∥

3
2

L2(0,∞;H1(Ω))

≤
3C2

4
∥ f ′k (y + θkz) − f ′k (y)∥2L8(0,∞;L4(Ω))

(
∥z∥2L∞(0,∞;L2(Ω)) + ∥z∥

2
L2(0,∞;H1(Ω))

)
≤

3C2

4
∥ f ′k (y + θkz) − f ′k (y)∥2L8(0,∞;L4(Ω))∥z∥

2
W(0,∞).

Then, we have
∥Fk(y + z) − Fk(y) − F′k(y)z∥L2(Q)

∥z∥W(0,∞)
≤

√
3C
2
∥ f ′k (y + θkz) − f ′k (y)∥L8(0,∞;L4(Ω)).

To prove that the right hand side of the above inequality tends to zero as ∥z∥W(0,∞) → 0, we use (3.6) to get

∥ f ′k (y + θkz) − f ′k (y)∥L4(Ω) ≤ 2C′f ,k |Ω|
1
4
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and ∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥8L4(Ω) dx dt ≤ [2C′f ,k]4|Ω|

∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥4L4(Ω) dx dt

≤ [2C′f ,k]6|Ω|

∫ ∞
0
∥ f ′k (y + θkz) − f ′k (y)∥2L2(Ω) dx dt ≤ [2C′f ,k]6|Ω|C′′2f ,k

∫ ∞
0
∥z∥2L2(Ω) dx dt → 0 as ∥z∥W(0,∞) → 0.

Due to the continuity of the derivative F′k : W(0,∞) −→ L2(Q), the C1 property of Fk follows. Thus, F is of class C1

and

∂F

∂y
(y, u) : W(0,∞) −→ L2(0,∞; H1(Ω)∗) × L2(Ω)

∂F

∂y
(y, u)z =

(∂z
∂t
− ∆z + az + f ′k (y)z, z(0)

)
.

The linear mapping ∂F
∂y (y, u) is an isomorphism, if the equation

∂z
∂t
− ∆z + az + f ′k (y)z = h in Q,

∂nz = 0 on Σ, z(0) = z0 in Ω

has a unique solution z ∈ W(0,∞) continuously depending on (h, z0) ∈ L2(0,∞; H1(Ω)∗) × L2(Ω). This was proved in
[7, Theorem A.3 and Remark 5.2]. The statement of the lemma follows from the implicit function theorem.

Lemma 3.5. If {uk}
∞
k=1 ⊂ L2(Qω) converges weakly in L2(Qω) to u, then {yk,uk }

∞
k=1 converges weakly in W(0,∞) to yu,

the solution of (1.1).

Proof. Proceeding as in the proof of Theorem 2.2, with some constants C1, C2 we get the formulas

∥yk,uk∥L∞(0,∞;L2(Ω)) + ∥yk,uk∥L2(0,∞;H1(Ω)) ≤

√
2

min{1,C2
a}

(
∥y0∥L2(Ω) + ∥g + χωuk∥L2(Q)

)
≤ C1

∥ fk(yk,uk )∥L2(Q) ≤ max{1,
√
|Ω|}
(
∥ f (y0)∥L∞(Ω) + ∥y0∥L∞(Ω) + ∥g + χωuk∥L2(Q)

)
≤ C2

that are analogous to (2.7) and (2.8). This implies that {yk,uk }
∞
k=1 is bounded in W(0,∞). Once again, arguing as in the

proof of Theorem 2.2, we conclude that yk,uk ⇀ yu in W(0,∞).

Lemma 3.6. For arbitrary u ∈ L2(Qω), the sequence {yk,u}
∞
k=1 converges strongly in L2(0,∞; H1(Ω)) to yu.

Proof. The function ϕk = yk,u − yu satisfies
∂ϕk

∂t
− ∆ϕk + aϕk + f ′k (yu + θk(yk,u − yu))ϕk = f (yu) − fk(yu) in Q,

∂nϕk = 0 on Σ, ϕk(0) = 0 in Ω.

In view of | fk(yu(x, t))| ≤ | f (yu(x, t))| and fk(yu(x, t)) → f (yu(x, t)) almost everywhere in Q, and f (yu) ∈ L2(Q), we
deduce with the Lebesgue dominated convergence theorem that fk(yu)→ f (yu) in L2(Q) as k → ∞. Testing the above
equation with ϕk, we get with the constant Ca introduced in (2.1)

1
2
∥ϕk(T )∥2L2(Ω) +C2

a∥ϕk∥
2
L2(0,T ;H1(Ω)) ≤

1
2C2

a
∥ f (yu) − fk(yu)∥2L2(Q) +

C2
a

2
∥ϕk∥

2
L2(Q) ∀T ∈ (0,∞),

that obviously implies our claim.
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Now, we introduce the following family of control problems

(Pr,k) min
u∈B̄r(ū)

Jk(u) :=
1
2

∫
Q

(yk,u − yd)2 dx dt +
κ

2

∫
Qω

u2 dx dt +
1
2

∫
Qω

(u − ũ)2 dx dt,

where ũ is the solution of (Pr) introduced in the proof of Theorem 3.3.

Lemma 3.7. Problem (Pr,k) has at least one solution uk and it holds limk→∞ ∥uk − ũ∥L2(Qω) = 0.

Proof. Once again, arguing as in Theorem 3.1 we infer the existence of a solution uk for (Pr,k). We invoke the
optimality of uk for (Pr,k), Lemma 3.6, and the optimality of ũ for (Pr) to obtain

κ

2
∥uk∥

2
L2(Qω) ≤ Jk(uk) ≤ Jk(ũ)→ J(ũ) ≤ J(ū). (3.10)

This implies the boundedness of {uk}
∞
k=1 in L2(Qω). Hence, we can select a subsequence denoted in the same way

such that uk ⇀ u in L2(Qω). We know from Lemma 3.5 that yk,uk ⇀ yu in L2(Q). Using this fact, Lemma 3.6, that
u ∈ B̄r(ū), and that ũ is a solution of (Pr), we get

J(u) +
1
2
∥u − ũ∥2L2(Qω) ≤ lim inf

k→∞
Jk(uk) ≤ lim sup

k→∞
Jk(uk) ≤ lim sup

k→∞
Jk(ũ) = J(ũ) ≤ J(u).

This implies that u = ũ and limk→∞ Jk(uk) = J(ũ). Consequently, the strong convergence uk → ũ follows. This holds
for every weakly converging subsequence, hence the result is valid for the whole sequence.

Now we are ready to confirm the estimate that is needed for completing the proof of Theorem 3.3.

Lemma 3.8. The control ũ belongs to L∞(Qω) and there exists a constant M independent of r such that ∥ũ∥L∞(Qω) ≤ M.

Proof. From Lemma 3.4 and the chain rule, we deduce that Jk : L2(Qω) −→ R is of class C1. The optimality of uk

yields J′k(uk)(u − uk) ≥ 0 for every u ∈ B̄r(ū). This leads to the optimality system
∂yk,uk

∂t
− ∆yk,uk + ayk,uk + fk(yk,uk ) = g + χωuk in Q,

∂nyk,uk = 0 on Σ, yk,uk (0) = y0 in Ω,
(3.11)

 −
∂φk,uk

∂t
− ∆φk,uk + aφk,uk + f ′(yk,uk )φk,uk = yk,uk − yd in Q,

∂nφk,uk = 0 on Σ, limt→∞ ∥φk,uk (t)∥L2(Ω) = 0,
(3.12)∫

Qω

(φk,uk + κuk + uk − ũ)(u − uk) dx dt ≥ 0 ∀u ∈ B̄δ(ū). (3.13)

It is well known that the variational inequality (3.13) is equivalent to

uk = ProjB̄r(ū)

(
−

1
κ

[φk,uk + uk − ũ]
)
,

where ProjB̄r(ū) stands for the projection onto B̄r(ū) in the L2(Qω) sense. This means

uk =


−

1
κ

[φk,uk + uk − ũ] if
∥∥∥1
κ

[φk,uk + uk − ũ] + ū
∥∥∥

L2(Qω) ≤ r,

ū − r
1
κ
[φk,uk + uk − ũ] + ū∥∥∥ 1

κ
[φk,uk + uk − ũ] + ū

∥∥∥
L2(Qω)

else.
(3.14)

Thanks to (3.10) we get ∥uk∥L2(Qω) ≤ C1 for a constant C1 independent of r. Then, (3.11) and (2.3) imply that
∥yk,uk∥L∞(0,T ;L2(Ω)) ≤ C2, where C2 is also independent of r. This bound can be applied to the adjoint equation (3.12) to
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obtain that ∥φk,uk∥L∞(Q) ≤ C3 with C3 independent of r. This estimate follows from [7, Theorem A.4 and Remark 5.2].
Inserting this in (3.14) we infer

|uk(x, t)| ≤
C3

κ
+ 2∥ū∥L∞(Qω) + |uk(x, t) − ũ(x, t)| for a.a. (x, t) ∈ Qω.

Notice that the boundedness of ū follows from Theorem 3.2. From Lemma 3.7, we know that uk → ũ in L2(Qω).
Hence, taking a subsequence such that uk(x, t)→ ũ(x, t) for almost all (x, t) ∈ Qω, the above estimate yields

|ũ(x, t)| = lim
k→∞
|uk(x, t)| ≤

C3

κ
+ 2∥ū∥L∞(Qω) + lim

k→∞
|uk(x, t) − ũ(x, t)| =

C3

κ
+ 2∥ū∥L∞(Qω) = M.

This concludes the proof of lemma.

4. First and second order optimality conditions for (P)

We start this section by establishing the necessary optimality conditions satisfied by any local solution of (P).

Theorem 4.1. Let ū be a local solution of (P) in the L2(Qω)-sense. Then, there exist ȳ, φ̄ ∈ W(0,∞)∩L∞(Q) such that
∂ȳ
∂t
− ∆ȳ + aȳ + f (ȳ) = g + χωū in Q,

∂nȳ = 0 on Σ, ȳ(0) = y0 in Ω,
(4.1)

 −
∂φ̄

∂t
− ∆φ̄ + aφ̄ + f ′(ȳ)φ̄ = ȳ − yd in Q,

∂nφ̄ = 0 on Σ, limt→∞ ∥φ̄(t)∥L2(Ω) = 0,
(4.2)

J′(ū) = φ̄|Qω + κū = 0, (4.3)

J′′(ū)v2 =

∫
Q

[1 − φ̄ f ′′(ȳ)]z2
v dx dt + κ

∫
Qω

v2 dx dt ≥ 0 ∀v ∈ L2(Qω), (4.4)

where zv = G′(ū)v.

Proof. Theorem 3.3 yields that ū ∈ Up and ū is a local solution of (P) in the Up-sense. Hence, the statement of the
theorem is a straightforward consequence of Corollary 2.4, Remark 2.5, and that the first and second order necessary
conditions J′(ū)v = 0 and J′′(ū)v2 ≥ 0 for all v ∈ Up hold at any local minimizer.

Next we address sufficient second order conditions for optimality.

Theorem 4.2. Let ū ∈ Up obey the first order necessary conditions (4.1)–(4.3). Assume in addition that J′′(ū)v2 > 0
holds for all v ∈ L2(Qω) \ {0}. Then, there exist ε > 0 and δ > 0 such that

J(ū) +
δ

4
∥u − ū∥2L2(Qω) ≤ J(u) ∀u ∈ Up with ∥u − ū∥Up ≤ ε. (4.5)

Proof. We split the proof into three steps.
Step I - δ = inf∥v∥L2(Qω )=1 J′′(ū)v2 > 0. We proceed by contradiction. If δ = 0, there exists a minimizing sequence

{vk}
∞
k=1 such that ∥vk∥L2(Qω) = 1 for every k ≥ 1 and J′′(ū)v2

k → 0 as k → ∞. By taking a subsequence, we can
assume that vk ⇀ v in L2(Qω). In view of Remark 2.5 and our assumption, we have that the quadratic mapping
J′′(ū) : L2(Qω) −→ R is continuous and positive definite. Hence, it is also convex. Then, the inequality J′′(ū)v2 ≤

limk→∞ J′′(ū)v2
k = 0 follows. According to our assumption, this is possible only if v = 0. Using again Remark 2.5,

we deduce the convergence zvk = G′(ū)vk ⇀ G′(ū)v = 0 in W(0,∞). In particular, we have that zvk → 0 in L2(QT ) for
every T < ∞.

Let ρ > 0 be arbitrarily small. From (4.2) we infer the existence of Tρ < ∞ such that

∥φ̄(t)∥L2(Ω) < ρ ∀t > Tρ.
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Equation (4.1) implies that ȳ ∈ L∞(Q) and, hence, | f ′′(y(x, t))| ≤ C for almost every (x, t) ∈ Q. Exploiting these
facts, we obtain

J′′(ū)v2
k =

∫
Q

[1 − φ̄ f ′′(ȳ)]z2
vk

dx dt + κ
∫

Qω

v2
k dx dt ≥ −

∫
Q
φ̄ f ′′(ȳ)z2

vk
dx dt + κ

= −

∫ Tρ

0

∫
Ω

φ̄ f ′′(ȳ)z2
vk

dx dt −
∫ ∞

Tρ
φ̄ f ′′(ȳ)z2

vk
dx dt + κ ≥ −C∥φ̄∥L∞(Q)∥zvk∥

2
L2(QTρ ) −C

∫ ∞
Tρ
∥φ̄(t)∥L2(Ω)∥zvk∥

2
L4(Ω) dt + κ

≥ −C∥φ̄∥L∞(Q)∥zvk∥
2
L2(QTρ ) −C′∥zvk∥

2
L2(0,∞;H1(Ω))ρ + κ ≥ −C∥φ̄∥L∞(Q)∥zvk∥

2
L2(QTρ ) −C′∥G′(ū)∥2ρ + κ,

where we have used the embedding H1(Ω) ⊂ L4(Ω) and that ∥zvk∥W(0,∞) ≤ ∥G′(ū)∥ ∥vk∥L2(Qω) = ∥G′(ū)∥ in the last
inequality. This yields

κ ≤ C∥φ̄∥L∞(Q)∥zvk∥
2
L2(QTρ ) +C′∥G′(ū)∥2ρ + J′′(ū)v2

k → C′∥G′(ū)∥2ρ ∀ρ > 0,

being a contradiction to the assumption κ > 0. Consequently, we have that δ > 0.

Step II - ∃ε > 0 such that |[J′′(u) − J′′(ū)]v2| ≤ δ
2∥v∥

2
L2(Qω) ∀v ∈ L2(Qω), if ∥u − ū∥Up ≤ ε. We denote by B(ū) the

closed ball of Up centered at ū with radius 1. For every u ∈ B(ū) we have that ∥u∥Up ≤ 1 + ∥ū∥Up . Hence, Theorem
2.2 implies the existence of C1 such that

∥yu∥W(0,∞) + ∥yu∥L∞(Q) ≤ C1 ∀u ∈ B(ū). (4.6)

Applying [7, Theorem A.4] to the adjoint equation (2.15) and using (4.6), we obtain a constant C2 such that

∥φu∥W(0,∞) + ∥φu∥L∞(Q) ≤ C2 ∀u ∈ B(ū). (4.7)

Given an arbitrary element u ∈ B(ū) we set y = yu − ȳ, then
∂y
∂t
− ∆y + ay + f ′(ȳ + θ(yu − ȳ))y = χω(u − ū) in Q,

∂ny = 0 on Σ, y(0) = 0 in Ω.

Invoking [7, Theorem TA.3] and (4.6), we get

∥yu − ȳ∥W(0,∞) + ∥yu − ȳ∥L∞(Q) ≤ C3∥u − ū∥Up ∀u ∈ B(ū). (4.8)

This yields the property

∀ρ > 0 ∃ε ∈ (0, 1] such that ∥ f ′(yu) − f ′(ȳ)∥L∞(Q) + ∥ f ′′(yu) − f ′′(ȳ)∥L∞(Q) ≤ ρ, if ∥u − ū∥Up < ε. (4.9)

Now, we set φ = φu − φ̄, then we have −
∂φ

∂t
− ∆φ + aφ + f ′(ȳ)φ = yu − ȳ + [ f ′(ȳ) − f ′(yu)]φu in Q,

∂nφ = 0 on Σ, limt→∞ ∥φ(t)∥L2(Ω) = 0.

Applying [7, Theorem TA.4] to this equation and using (4.7) and (4.9) we arrive at

∀ρ > ∃ε ∈ (0, 1] such that ∥φu − φ̄∥W(0,∞) + ∥φu − φ̄∥L∞(Q) ≤ ρ, if ∥u − ū∥Up < ε. (4.10)

Putting zu,v = G′(u)v, we deduce from [7, Theorem TA.3] and (4.6)

∥zu,v∥W(0,∞) ≤ C4∥v∥L2(Qω) ∀u ∈ B(ū) and ∀v ∈ L2(Qω). (4.11)

Denoting zv = G′(ū)v and z = zu,v − zv we have
∂z
∂t
− ∆z + az + f ′(ȳ)z = [ f ′(ȳ) − f ′(yu)]zu,v in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.
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Applying again [7, Theorem TA.3] and taking into account (4.9) and (4.11), we deduce the following property

∀ρ > ∃ε ∈ (0, 1] such that ∥zu,v − zv∥W(0,∞) ≤ ρ∥v∥L2(Qω) ∀v ∈ L2(Qω), if ∥u − ū∥Up < ε. (4.12)

Next we estimate |[J′′(u) − J′′(ū)]v2|:

|[J′′(u) − J′′(ū)]v2| =

∣∣∣∣∣∣
∫

Q
[1 − φu f ′′(yu)]z2

u,v dx dt −
∫

Q
[1 − φ̄ f ′′(ȳ)]z2

v dx dt

∣∣∣∣∣∣
≤

∫
Q
|zu,v − zv| |zu,v + zv| dx dt +

∫
Q
|φu − φ̄|| f ′′(ȳu)|z2

u,v dx dt +
∫

Q
|φ̄| | f ′′(yu) − f ′′(ȳ)|z2

u,v dx dt

+

∫
Q
|φ̄| | f ′′(ȳ)| |zu,v − zv| |zu,v + zv| dx dt =

4∑
i=1

Ii.

Taking ρ = δ
16C4

in (4.12) and using (4.11), we deduce the existence of ε1 ∈ (0, 1) such that I1 ≤
δ
8∥v∥

2 if ∥u−ū∥Up ≤ ε1.
With (4.6), (4.10), and (4.11) we infer the existence of ε2 ∈ (0, 1) such that I2 ≤

δ
8∥v∥

2 if ∥u − ū∥Up ≤ ε2. The same
estimate is obtained for I3 for some ε3 ∈ (0, 1) with the aid of (4.7), (4.9), and (4.11). Finally, I4 is estimated similarly
to I1 and using (4.7) and (4.9). Taking ε = min1≤i≤4 εi, the proof of Step II is concluded.

Step III - Proof of (4.5). We perform a Taylor expansion and use the results of the Steps I, II, along with formula
(4.3) to infer

J(u) = J(ū) + J′(ū)(u − ū) +
1
2

J′′(ū + θ(u − ū))(u − ū)2

= J(ū) +
1
2

J′′(ū)(u − ū)2 +
1
2

[J′′(ū + θ(u − ū)) − J′′(ū)](u − ū)2

≥ J(ū) +
δ

2
∥u − ū∥2L2(Qω) −

δ

4
∥u − ū∥2L2(Qω) = J(ū) +

δ

4
∥u − ū∥2L2(Qω) for all u with ∥u − ū∥Up ≤ ε.

Remark 4.3. As proved in Step I of the above demonstration, the second order condition J′′(ū)v2 > 0 for all v ∈
L2(Qω) \ {0} implies that

∃δ > 0 such that J′′(ū)v2 ≥ δ∥v∥2L2(Qω) ∀v ∈ L2(Qω). (4.13)

Using this fact and the statement proved in Step II, we infer in addition that

∃r̄ > 0 such that J′′(u)v2 ≥
δ

2
∥v∥2L2(Qω) ∀v ∈ L2(Qω) and ∀u ∈ B̄r̄(ū), (4.14)

where δ is given by (4.13) and B̄r̄(ū) is theUp-closed ball centered at ū with radius r̄.

5. The local value function

In this section, ū ∈ L∞(Qω)∩Up denotes a local solution of (P) satisfying the second order condition J′′(ū)v2 > 0
for all v ∈ L2(Qω) \ {0}. This control ū will be our reference control for the rest of the paper.

For initial data η ∈ L∞(Ω) we define the control problem

(Pη) min
u∈L2(Qω)

Jη(u) :=
1
2

∫
Q

(yη,u − yd)2 dx dt +
κ

2

∫
Qω

u2 dx dt,

where yη,u ∈ W(0,∞) is the solution of the equation
∂y
∂t
− ∆y + ay + f (y) = g + χωu in Q,

∂ny = 0 on Σ, y(0) = η in Ω.
(5.1)
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In view of our previous analysis, it should be clear, why we do not consider the value function for initial data from
L2(Qω). The restriction to essentially bounded functions η causes the main difficulties of our paper.

Analogously to Theorem 3.1, (Pη) has at least one solution. Moreover, every local solution in the L2(Qω)-sense is
an element of L∞(Qω) ∩Up; see Theorem 3.2. Further, according to Theorem 3.3, uη is a local solution of (Pη) in the
L2(Qω)-sense if and only if it is a local solution in theUp-sense.

We define the value function V : L∞(Ω) −→ R by V(η) = inf (Pη). Since the problems (Pη) can have several global
solutions, this function V can be even discontinuous. For this reason we introduce a local value function. We proceed
as follows. Given r > 0, we define the control problems

(Pr,η) min
u∈L2(Qω), ∥u−ū∥L2(Qω )≤r

Jη(u) :=
1
2

∫
Q

(yη,u − yd)2 dx dt +
κ

2

∫
Qω

u2 dx dt,

where yη,u ∈ W(0,∞) is the solution of the equation (5.1). We need the following technical result.

Theorem 5.1. For every α > 0 there exist rα and Mα, monotone increasing with respect to α, such that for ∥η −
y0∥L∞(Ω) ≤ α and r ≤ rα any solution uη of (Pr,η) satisfies uη ∈ Up ∩ L∞(Qω) and

∥uη∥L∞(Qω) ≤ Mα and ∥uη − ū∥Up ≤ r̄, (5.2)

where r̄ > 0 was introduced in (4.14). Finally, there exists ᾱ such that, for any η ∈ L∞(Ω) with ∥η − y0∥L∞(Ω) < ᾱ and
any r ≤ rᾱ, problem (Pr,η) has a unique solution.

Proof. In view of ∥η∥L∞(Ω) ≤ ∥y0∥L∞(Ω) + α, we can argue as in the proof of Lemma 3.8 to deduce the existence of Mα,
monotone increasing with respect to α, such that the estimate ∥uη∥L∞(Qω) ≤ Mα holds. Moreover, we have

∥uη − ū∥Up = ∥uη − ū∥L2(Qω) + ∥uη − ū∥Lp(0,∞;L2(ω)) ≤ r + |ω|
p−2
2p (Mα + ∥ū∥L∞(Qω))

p−2
2 ∥uη − ū∥

2
p

L2(Qω)

≤ rα + |ω|
p−2
2p (Mα + ∥ū∥L∞(Qω))

p−2
2 r

2
p
α ≤ r̄

for rα > 0 small enough. To conclude the proof we establish the following stability result for (4.14) with respect to η:
there exists ᾱ > 0 such that

J′′η (u)v2 ≥
δ

4
∥v∥2L2(Qω) ∀v ∈ L2(Qω), ∥η − y0∥L∞(Ω) < ᾱ, and ∥u − ū∥Up ≤ r̄. (5.3)

Indeed, this inequality proves that Jη is strictly convex at the ball B̄r̄(ū) if ∥η − y0∥L∞(Ω) < ᾱ. Since (5.2) implies that
any solution of (Pr,η) belongs to the ball B̄r̄(ū) for r ≤ rᾱ, the uniqueness follows.

In order to prove (5.3), we compare J′′η (u)v2 with J′′(u)v2 for u ∈ B̄r̄(ū) and use (4.14). We will see that this
difference is as small as needed if we take ᾱ sufficiently small. We denote by yη,u, zη,u,v, φη,u the solutions of (5.1),
(2.11) and (2.15) with yu replaced by yη. We also denote by yu, zu,v, φu the solutions of (1.1), (2.11), and (2.15). Then,
we have

|[J′′η (u) − J′′(u)]v2| =
∣∣∣∣ ∫

Q
[1 − φη,u f ′′(yη,u)]z2

η,u,v dx dt −
∫

Q
[1 − φu f ′′(yu)]z2

u,v dx dt
∣∣∣∣

≤

∫
Q
|z2
η,u,v − z2

u,v| dx dt +
∫

Q
|φη,u − φu|| f ′′(yη,u)|z2

η,u,v dx dt

+

∫
Q
|φu|| f ′′(yη,u) − f ′′(yu)|z2

η,u,v dx dt +
∫

Q
|φu|| f ′′(yu)||z2

η,u,v − z2
u,v| dx dt =

4∑
i=1

Ii. (5.4)

We have to estimate the terms yη,u − yu, zη,u,v − zu,v, and φη,u − φu. Setting w = yη,u − yu and using the mean value
theorem we get 

∂w
∂t
− ∆w + aw + f ′(yθ)w = 0 in Q,

∂nw = 0 on Σ, w(0) = η − y0 in Ω
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for some measurable function θ : Q −→ [0, 1] and yθ = yu + θ(yη,u − yu). From Theorem 2.2 we know that yη,u and yu

are uniformly bounded in L∞(Q) if ∥η − y0∥L∞(Ω) ≤ ᾱ. From [7, Theorem A.3] we deduce that

∥yη,u − yu∥L2(Q) + ∥yη,u − yu∥L∞(Q) ≤ C1∥η − y0∥L∞(Ω) ≤ C1ᾱ. (5.5)

Now, we put z = zη,v − zu,v and apply again the mean value theorem to get
∂z
∂t
− ∆z + az + f ′(yu)z = f ′′(yϑ)(yu − yη,u)zη,u,v in Q,

∂nz = 0 on Σ, z(0) = 0 in Ω.

Once again from [7, Theorem A.3] and (5.5) we infer

∥zη,u,v∥L2(Q) + ∥zu,v∥L2(Q) ≤ C2∥v∥L2(Qω) and ∥zη,u,v − zu,v∥L2(Q) ≤ C3ᾱ∥v∥L2(Qω). (5.6)

For the last estimate we set ϕ = φη,u − φu and once again use the mean value theorem to obtain
∂ϕ

∂t
− ∆ϕ + aϕ + f ′(yu)ϕ = [ f ′′(yϑ)φη − 1](yu − yη,u) in Q,

∂nϕ = 0 on Σ, limt→∞ ∥ϕ(t)∥L2(Ω) = 0.

With [7, Theorem A.4] and (5.5) we get

∥φη,u − φu∥L∞(Q) = ∥ϕ∥L∞(Q) ≤ C4ᾱ. (5.7)

Finally, inserting the estimates (5.5)-(5.7) in (5.4) we conclude that

|[J′′η (u) − J′′(u)]v2| ≤
δ

4
∥v∥2L2(Qω)

if ᾱ is small enough. This completes the proof with (4.14).

Definition 5.2. Let ᾱ > 0 and rᾱ be as in Theorem 5.1. The open ball of L∞(Ω) centered at y0 with radius ᾱ is denoted
by Bᾱ(y0). Given r ∈ (0, rᾱ], we define the local value function Vr : Bᾱ(y0) −→ R by Vr(η) = inf (Pr,η).

Theorem 5.3. The local value function Vr is of class C1 and its derivative is given by

V ′r(η)ξ =
∫
Ω

φη(x, 0)ξ(x) dx ∀η ∈ Bᾱ(y0) and ∀ξ ∈ L∞(Ω), (5.8)

where φη is the adjoint state corresponding to the unique solution uη of (Pr,η). Furthermore, if a sequence {ηk}
∞
k=1 ⊂

Bᾱ(y0) converges to η ∈ Bᾱ(y0) in L∞(Ω), then V ′r(ηk) = φηk (·, 0) converges to V ′r(η) = φη(·, 0) in C(Ω̄).

Remark 5.4. The above theorem states that Vr : Bᾱ(y0) ⊂ L∞(Ω) −→ R is a function of class C1. So we have that
V ′r : Bᾱ(y0) −→ L∞(Ω)∗ is a continuous function. Formula (5.8) allows to identify V ′r(η) with φη(·, 0), which is an
element of C(Ω̄); see Corollary 2.4.

Proof. First we prove that Vr is Gâteaux differentiable. Given (η, ξ) ∈ Bᾱ(y0) × L∞(Ω) \ {0} and 0 < ρ < ᾱ−∥η−y0∥L∞ (Ω)

∥ξ∥L∞ (Ω)
,

we set ηρ = η + ρξ ∈ Bᾱ(y0), uρ is the solution of the control problem (Pr,ηρ ), yρ is the state associated with (ηρ, uρ),
and φρ the corresponding adjoint state. We also denote by uη, yη, and φη the solution of (Pr,η), its associated state, and
the corresponding adjoint state, respectively. Now, we define

vρ =
uρ − uη
ρ

, zρ =
yρ − yη
ρ

, and ψρ =
φρ − φη

ρ
.
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Subtracting the optimality systems for uρ and uη we infer
∂zρ
∂t
− ∆zρ + azρ + f ′(ŷρ)zρ = χωvρ in Q,

∂nzρ = 0 on Σ, zρ(0) = ξ in Ω,
(5.9)

 −
∂ψρ

∂t
− ∆ψρ + aψρ + f ′(yη)ψρ = (1 − f ′′(ỹρ)φρ)zρ in Q,

∂nψρ = 0 on Σ, limt→∞ ∥ψρ(t)∥L2(Ω) = 0,
(5.10)

ψρ + κvρ = 0 in Qω, (5.11)

where ŷρ = yη + θρ(yρ − yη) and ỹρ = yη + ϑρ(yρ − yη) for some measurable functions θρ, ϑρ : Q −→ [0, 1]. The rest of
this proof is split into four steps.

Step I.- ∃C > 0 such that ∥vρ∥L2(Qω) ≤ C∥ξ∥L∞(Ω) for all 0 < ρ < ᾱ−∥η−y0∥L∞ (Ω)

∥ξ∥L∞ (Ω)
.

Using the optimality of uρ and uη and the fact that ∥uρ − ū∥L2(Qω) ≤ r and ∥uη − ū∥L2(Qω) ≤ r we infer

J′η(uη)(uρ − uη) ≥ 0 and J′ηρ (uρ)(uη − uρ) ≥ 0.

This yields [J′η(uρ) − J′η(uη)](uρ − uη) ≤ [J′ηρ (uρ) − J′η(uρ)](uη − uρ). Using the mean value theorem we obtain

J′′η (uη + σρ(uρ − uη))(uρ − uη)2 ≤ ∥φρ − φη,uρ∥L2(Qω)∥uη − uρ∥L2(Qω)

for some σρ ∈ [0, 1]. Here, φη,uρ is the adjoint state satisfying the equation −
∂φη,uρ

∂t
− ∆φη,uρ + aφη,uρ + f ′(yη,uρ )φη,uρ = yη,uρ − yd in Q,

∂nφη,uρ = 0 on Σ, limt→∞ ∥φη,uρ (t)∥L2(Ω) = 0,

where yη,uρ is the solution of (5.1) for u = uρ. From Theorem 5.1 we deduce that uη and uρ belong to the Up-ball
centered at ū and radius r̄. Hence, uη + σρ(uρ − uη) also belongs to that ball. Since ∥η − y0∥L∞(Ω) ≤ ᾱ, we deduce
from the above inequality and (5.3) that δ

4∥uη − uρ∥L2(Qω) ≤ ∥φρ − φη,uρ∥L2(Qω). Dividing this inequality by ρ we
obtain ∥vρ∥L2(Qω) ≤

4
δ
∥ϕρ∥L2(Qω), where ϕρ =

φρ−φη,uρ
ρ

. Hence, we need to estimate ϕρ. To this end, we first estimate

wρ =
yρ−yη,uρ

ρ
. Noting that both states yρ and yη,uρ are associated to the same control and wρ(0) = ξ, we can proceed as

in the estimate (5.5) to deduce that
∥wρ∥L2(Q) + ∥wρ∥L∞(Q) ≤ C1∥ξ∥L∞(Ω).

Using this fact, the estimate ∥ϕρ∥L2(Q) ≤ C2∥ξ∥L∞(Ω) follows similarly as the one of ϕ in (5.7). This completes the proof
of Step I.

Step II.- Passing to the limit in the system (5.9)–(5.11). First, we observe that the boundedness of vρ implies the
convergence ∥uρ − uη∥L2(Qω) → 0 as ρ → 0. This convergence, the fact that ηρ → η in L∞(Ω), and the boundedness
of {uρ}ρ and uη in Up implies that {yρ}ρ is bounded in L∞(Q) and additionally yρ → yη in W(0,∞). Using the
boundedness of vρ and ŷρ in (5.9) we deduce the boundedness of {zρ}ρ in W(0,∞). Now, from (5.10) the boundedness
of ψρ in W(0,∞) also follows. Therefore, taking subsequences and using the mentioned properties it is easy to pass
to the limit in (5.9)–(5.11) and to obtain that (z̄, ψ̄, v̄) is a solution of the system

∂z
∂t
− ∆z + az + f ′(yη)z = χωv in Q,

∂nz = 0 on Σ, z(0) = ξ in Ω,
(5.12)

 −
∂ψ

∂t
− ∆ψ + aψ + f ′(yη)ψ = (1 − f ′′(yη)φη)z in Q,

∂nψ = 0 on Σ, limt→∞ ∥ψ(t)∥L2(Ω) = 0,
(5.13)

ψ + κv = 0 in Qω, (5.14)

where (zρk , ψρk , vρk ) ⇀ (z̄, ψ̄, v̄) in W(0,∞) × W(0,∞) × L2(Qω)) and ρk → 0 as k → ∞. Next we prove that this
system has a unique solution, which implies the weak convergence of the whole family: (zρ, ψρ, vρ) ⇀ (z̄, ψ̄, v̄) in
W(0,∞) ×W(0,∞) × L2(Qω)) as ρ→ 0.
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To prove the uniqueness of a solution of (5.12)–(5.14) we observe that this is the optimality system for the follow-
ing linear-quadratic control problem:

(Q) min
v∈L2(Qω)

J(v) :=
1
2

∫
Q

[
1 − f ′′(yη)φη

]
z2

v dx dt +
κ

2

∫
Qω

v2 dx dt,

where zv is the solution of (5.12). It is enough to prove that J is strictly convex to conclude the result. To this end we
write zv = zuη,v + zξ, where zuη,v is the solution of (2.11) with yu replaced by yη, and zξ satisfies the partial differential
equation of (2.11) with v = 0 and yu substituted by yη, and the initial condition zξ(0) = ξ. Then, we have

J(v) =
1
2

∫
Q

[
1 − f ′′(yη)φη

]
z2

uη,v dx dt +
κ

2

∫
Qω

v2 dx dt

+

∫
Q

[
1 − f ′′(yη)φη

]
zuη,vξ dx dt +

1
2

∫
Q

[
1 − f ′′(yη)φη

]
z2
ξ dx dt

=
1
2

J′′η (uη)v2 +

∫
Q

[
1 − f ′′(yη)φη

]
zuη,vξ dx dt +

1
2

∫
Q

[
1 − f ′′(yη)φη

]
z2
ξ dx dt.

Then, it is enough to use (5.3) to deduce the strict convexity of J . Notice that the second term is linear in v and the
third one is constant.

Step III.- Gâteaux differentiability of Vr. With the above notations we have

Vr(η + ρξ) − Vr(η)
ρ

=
Jηρ (uρ) − Jη(uη)

ρ

=
1
2

∫
Q

zρ(yρ + yη − 2yd) dx dt +
κ

2

∫
Qω

vρ(uρ + uη) dx dt
ρ→0
−→

∫
Q

z̄(yη − yd) dx dt + κ
∫

Qω

v̄uη dx dt.

With the adjoint state φη, integrating by parts, and (5.12) we get∫
Q

z̄(yη − yd) dx dt + κ
∫

Qω

v̄uη dx dt =
∫
Ω

φη(x, 0)ξ(x) dx +
∫

Qω

(φη + κuη)v̄ dx dt =
∫
Ω

φη(x, 0)ξ(x) dx,

which proves (5.8).
Step IV.- Vr is of class C1. Now we prove that V ′r : Bᾱ(y0) −→ L∞(Ω)∗ is continuous. This continuity and the

Gâteaux differentiability imply that Vr is of class C1. Since V ′r(η) is identified with φη(0) by the formula (5.8), the
continuity follows if we prove that V ′r(ηk)→ V ′r(η) in C(Ω̄) if ηk → η in L∞(Ω). Let {ηk}

∞
k=1 ⊂ Bᾱ(y0) such that ηk → η

in L∞(Ω) as k → ∞ and η ∈ Bᾱ(y0). We define (vk, zk, ψk) = (uηk − uη, yηk − yη, φηk − φη). Subtracting the optimality
systems for uηk and uη we infer

∂zk

∂t
− ∆zk + azk + f ′(ŷk)zk = χωvk in Q,

∂nzk = 0 on Σ, zk(0) = ηk − η in Ω,
(5.15)

 −
∂ψk

∂t
− ∆ψk + aψk + f ′(yη)ψk = (1 − f ′′(ỹk)φηk )zk in Q,

∂nψk = 0 on Σ, limt→∞ ∥ψk(t)∥L2(Ω) = 0,
(5.16)

ψk + κvk = 0 in Qω, (5.17)

where ŷk = yη + θk(yηk − yη) and ỹk = yη + ϑk(yηk − yη) for some measurable functions θk, ϑk : Q −→ [0, 1]. Arguing
similarly to Step I we infer that ∥vk∥L2(Qω) ≤ C∥ηk − η∥L∞(Ω) → 0 as k → ∞. Moreover, Theorem 5.1 implies that
{uηk }

∞
k=1 is bounded in L∞(Qω). This yields ∥uηk − uη∥Up → 0 as k → ∞. From Theorem 2.2 we deduce that {ŷk}

∞
k=1

and {ỹk}
∞
k=1 are bounded in L∞(Q). Then, applying [7, Theorems A.3 and A.4] to equations (5.15) and (5.16) we get

that yηk → yη and φηk → φη in W(0,∞) ∩ L∞(Q) as k → ∞. The last convergence along with Corollary 2.4 implies
that φηk → φη in C(Ω̄ × [0,∞)) and, consequently, V ′r(ηk) = φηk (0)→ φη(0) = V ′r(η) in C(Ω̄).

17



6. The Hamilton-Jacobi-Bellman equation

The goal of this section is to derive the Hamilton-Jacobi-Bellman equation satisfied by the value function Vr. To
this end we make the following assumption

yd = g = 0 and a ∈ L∞(Ω) with 0 ≤ a . 0.

Following 5.2 and Theorem 5.3, we have that the value function Vr : Bᾱ(y0) −→ R defined by Vr(η) = inf (Pr,η) is
of class C1 and V ′r(η) = φη(0) ∈ L∞(Ω) for every η ∈ Bᾱ(y0), where Bᾱ(y0) denotes the open ball of L∞(Ω) centered
at y0 and radius ᾱ. In this section, uη denotes the solution of (Pr,η) and yη and φη are the associated state and adjoint
state.

Now, we introduce the operator A : D(A) ⊂ L2(Ω) −→ L2(Ω) defined by Ay = ∆y − ay, where

D(A) = {y ∈ H1(Ω) : Ay ∈ L2(Ω) and ∂ny = 0}.

As usual we consider the following norm in D(A): ∥y∥D(A) = ∥y∥L2(Ω) + ∥Ay∥L2(Ω). It is obvious that D(A) is a Hilbert
space. Moreover, from the classical results for elliptic equations we infer that D(A) is continuously embedded in
C(Ω̄); see, for instance, [15].

The rest of this section is dedicated to prove the following theorem.

Theorem 6.1. The following Hamilton-Jacobi-Bellman equation is satisfied by Vr:

1
2
∥η∥2L2(Ω) −

1
2κ
∥V ′r(η)|ω∥2L2(ω) + (V ′r(η),∆η − aη − f (η))L2(Ω) = 0 ∀η ∈ Bᾱ(y0) ∩ D(A). (6.1)

Proof. Let η ∈ Bᾱ(y0) ∩ D(A) be chosen arbitrarily. Since D(A) ⊂ C(Ω̄) we infer that yη ∈ C(Q̄); see [9]. Using this
continuity we infer the existence of t0 > 0 such that {yη(t) : t ∈ [0, t0]} ⊂ Bᾱ(y0). Moreover, since D(A) ⊂ H1(Ω) we
also obtain that yη ∈ C([0, t0]; H1(Ω)); see [16, Page 114].

As established in the proof of Theorem 5.3, we also have that φη ∈ C(Ω̄ × [0, T ]) for every T < ∞. Then, from
(4.3) we deduce that uη ∈ C(ω̄ × [0, T ]) for all T < ∞.

We split the proof into three steps.
Step I - Computation of y′η(0

+). Next we prove that

lim
t→0+

1
t

(yη(t) − η) = ∆η − aη − f (η) + χωuη(0), (6.2)

where the limit is taken in the weak topology of L2(Ω). First we establish this limit in the weak topology of H1(Ω)∗.
To this end we take w ∈ H1(Ω) arbitrary. Testing the equation satisfied by yη with w, integrating between 0 and t with
0 < t < t0, and dividing the resulting expression by t we get∫

Ω

1
t

(yη(t) − η)w dx =
1
t

∫ t

0

∫
Ω

{−∇yη(s)∇w − [ayη(s) + f (yη(s)) − χωuη(s)]w} dx ds.

Since yη ∈ C(Ω̄ × [0,T ]), uη ∈ C(ω̄ × [0, T ]), ∇yη : [0, t0] −→ L2(Ω)n is continuous, and yη(0) = η we deduce from
the above identity that

lim
t→0

∫
ω

1
t

(yη(t) − η)w dx =
∫
Ω

(−∇η∇w − [aη + f (η) − χωuη(0)]w) dx ds ∀w ∈ H1(Ω).

This implies that the limit (6.2) holds in the H1(Ω)∗ weak topology. Now, if we prove the boundedness of
{

1
t (yη(t) −

η)
}
t∈[0,t0]

in L2(Ω) we conclude that (6.2) holds also in the weak topology of L2(Ω). To do this we consider the
representation formula for yη given by the semigroup {S (t)}t>0 generated by the operator A:

yη(t) = S (t)η +
∫ t

0
S (t − s)(− f (yη(s)) + χωuη(s)) ds.
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This identity implies that

1
t

(yη(t) − η) =
1
t

(S (t)η − η) +
1
t

∫ t

0
S (t − s)(− f (yη(s)) + χωuη(s)) ds. (6.3)

Since η ∈ D(A) we have

lim
t→0+

1
t

(S (t)η − η) = Aη = ∆η − aη in L2(Ω). (6.4)

Further, the contractivity of the semigroup {S (t)}t>0 implies that∥∥∥∥1t
∫ t

0
S (t − s)(− f (yη(s)) + χωuη(s)) ds

∥∥∥∥
L2(Ω)

≤
1
t

∫ t

0
∥S (t − s)(− f (yη(s)) + χωuη(s))∥L2(Ω) ds

≤
1
t

∫ t

0
∥ − f (yη(s)) + χωuη(s)∥L2(Ω) ds ≤ ∥ f (yη)∥C([0,t0];L2(Ω)) + ∥uη∥C([0,t0];L2(ω)).

This inequality along with (6.3) and (6.4) prove the boundedness of
{

1
t (yη(t) − η)

}
t∈[0,t0]

in L2(Ω).

Step II - Computation of limt→0+
1
t (Vr(yη(t)) − Vr(η)). Using the mean value theorem we get

1
t

(Vr(yη(t)) − Vr(η)) = V ′r(η + θ(t)(yη(t) − η))
1
t

(yη(t) − η), (6.5)

where θ : [0, t0] −→ [0, 1] is a measurable function. Since η+ θ(t)(yη(t)− η)→ η in L∞(Ω) as t → 0+ we deduce from
Theorem 5.3 that V ′r(η+ θ(t)(yη(t)− η))→ V ′r(η) strongly in C(Ω̄). Using this fact and (6.2) we deduce from (6.5) that

1
t

(Vr(yη(t)) − Vr(η))→ V ′r(η)[∆η − aη − f (η) + χωuη(0)] weakly in L2(Ω). (6.6)

Step III - Usage of Bellman’s principle. By Bellman’s principle we have for t ∈ [0, t0]

Vr(η) =
1
2

∫ t

0

(
∥yη(s)∥2L2(Ω) + κ∥uη(s)∥2L2(ω)

)
ds + Vr(yη(t)).

This yields
1
t

(Vr(yη(t)) − Vr(η)) +
1
2t

∫ t

0

(
∥yη(s)∥2L2(Ω) + κ∥uη(s)∥2L2(ω)

)
ds = 0.

Passing to the limit as t → 0+ and using (6.6) and the continuity of the functions yη and uη we get

V ′r(η)[∆η − aη − f (η) + χωuη(0)] +
1
2
∥η∥2L2(Ω) +

κ

2
∥uη(0)∥2L2(ω) = 0.

Finally, using (4.3) and (5.8) we obtain that uη(0) = − 1
κ
φη(0)|ω = − 1

κ
V ′r(η). Inserting this twice in the above identity

we derive (6.1).
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