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Abstract

The challenge of constructing feedback control laws for risk-averse optimal control of
partial differential equations (PDEs) with random coefficients is addressed. The control ob-
jective composes a tracking-type cost with the nonlinear entropic risk measure. A sequential
quadratic programming scheme is derived that iteratively solves linear quadratic subprob-
lems obtained through second-order Taylor expansions of the objective functional, with each
subproblem re-centered at the previous iterate. It is shown that this method converges locally
quadratically to the unique risk-averse optimal control. This work provides the first rigorous
feedback synthesis for risk-averse objectives subject to PDEs with random coefficients.

Keywords risk-averse optimal control, feedback control under uncertainty, partial differential
equations with random coefficients
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1 Introduction

Optimization and optimal control of systems with uncertain parameters is a challenging task
since already small parameter changes may change the characteristics of the system, such as its
stability properties. If neglected, the uncertainty may lead to failure of the control objective
and hence a careful treatment of the uncertainty is indispensable.

In uncertainty quantification, partial differential equations (PDEs) with random coefficients
have become a popular way of incorporating uncertainty into models for engineering or physical
processes. One reason behind their success is the ability to integrate knowledge of governing
physical equations while accommodating for randomness, which may reflect, for instance, missing
data, measurement uncertainties, material imperfections, or external influences.

If PDEs with random coefficients appear as constraints of an optimal control problem, the
objective function becomes a random variable. In order to be able to perform optimization,
risk measures are used, which map the random variable objective function to the real line. A
widely used risk measure is the expected value, [2, 7, 13, 14, 19, 28, 34, 36]. The expected
value is linear, Fréchet differentiable and it belongs to the class of coherent risk measures ([1]).
Despite its widespread adoption, decisions based solely on the expected value (called risk-neutral
decisions) are inadequate in many practical scenarios, as they fail to account for the inherent
variability in uncertain outcomes. In many situations it is important to minimize the likelihood
of extremely large cost rather than merely minimizing the expected cost. In fact, in real-world
decision-making under uncertainty individuals typically prefer more predictable or less uncertain
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outcomes over those with greater volatility, even if both have the same expected return. This risk
averse preferences can be reflected by risk measures which disproportionately penalize outcomes
that involve high cost or variability.

Risk measures typically involve integrals over the possibly infinite-dimensional space of un-
certain parameters. The significant computational expense associated with these problems has
spurred research into the development of efficient numerical algorithms, such as those based on
sparse grids [28, 29] or quasi-Monte Carlo (QMC) methods [19, 20, 21, 33]. The entropic risk
measure is such a risk averse measure, which can be effectively computed using QMC methods,
see [20, 32].

In this paper the application of sequential second-order Taylor approximations for the ef-
ficient approximation of a risk-averse feedback control law based on the entropic risk measure
is investigated. To do so, given a possibly countably infinite sequence of uncertain parame-
ters σ = (σ)j≥1 ∈ S ⊆ RN, let us consider the parameter-dependent optimal control problem

min
u,y
J (u, y), J (u, y) := 1

2

(∫ T

0

(
R

(
∥C(y(·; t)− g(t))∥2H

)
+ ∥u(t)∥2U

)
dt

+R
(
∥P (y(·;T )− gT )∥2H

))
,

(1.1)

subject to

ẏ(σ; t) = A(σ)y(σ; t) +Bu(t) + f(t) y(σ; 0) = y0, (1.2)

for all σ ∈ S. Given T > 0, the goal is to find a control input u ∈ L2(0, T ;U) which steers the
parameter-dependent state y(σ) as close as possible to the targets g ∈ C([0, T ];H) and gT ∈ H.
The initial condition of the state y(σ; 0) = y0 ∈ H is known. The time evolution of the
system is described by the parameter-dependent operators A(σ) ∈ L(V, V ′) acting on the current
state, B ∈ L(U,H) acting on the input control, and an external forcing f ∈ L2(0, T ;V ′). The
operator C ∈ L(H) is an observation operator and P ∈ L(H). In principle, R can denote any
risk measure. However, in this work, we focus on the entropic risk measure since it is smooth
and it can be computed effectively for high-dimensional uncertain parameters.

Uncertain parameters Throughout this manuscript we assume that the domain of the un-
certain variables is given as

S := [−1, 1]N .

Furthermore, the components σj of the parameter sequence σ = (σj)j∈N are independently and
identically distributed random variables, each being uniformly distributed over [−1, 1]. That is,
the sequence σ is distributed according to the countable product probability measure

dσ :=
⊗
j∈N

dσj
2
.

We shall be interested in continuous functions σ 7→ X(σ) taking values in some Banach space.
In this case X is Bochner-integrable and its expected value can be written as infinite-dimensional
integral

E [X] =

∫
S
X(σ) dσ. (1.3)
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Entropic risk measure We shall focus on a particular choice of the risk measure R: the
entropic risk measure with risk-aversion parameter θ > 0. For a random variable X ∈ L∞(S;R),
it is defined as

Rθ(X) :=
1

θ
log

(
E
[
eθX

])
.

As a function of θ, the entropic risk measure is increasing and strictly increasing if X is not
constant (a.s.). Moreover, it can be shown (see, e.g., [26, Thm. 1.3.2]) that

lim
θ→0
Rθ(X) = E [X] and lim

θ→∞
Rθ(X) = ess sup(X).

Due to its exponential form, the entropic risk measure in (1.1) assigns greater weight to
scenarios that involve large tracking cost, thereby encouraging control actions that avoid these
risks, even if the control cost might be higher. In large deviation theory the entropic risk measure
is also called logarithmic moment generating function [11].

1.1 Notation

Given real numbers r < s and separable Banach spaces X and Y, the space of continuous func-
tions from [r, s] into X is denoted by C([r, s];X ) and the Bochner space of strongly measurable
square integrable functions from the interval (r, s) into X is denoted by L2(r, s;X ) and we also
denote the subspace W (r, s;X ,Y) := {v ∈ L2(r, s;X ) | v̇ ∈ L2(r, s;Y)}. Since the time hori-
zon T > 0 will be fixed throughout this manuscript, to shorten the exposition, sometimes we
shall denote

XT := L2(0, T ;X ) and WT (X ,Y) :=W (0, T ;X ,Y).

By L(X ,Y) we denote the space of linear continuous mappings from X into Y, and in
case X = Y we use the shorter L(X ) := L(X ,X ).

Throughout this manuscript, boldfaced symbols are used to denote multi-indices while the
subscript notation mj is used to refer to the jth component of a multi-index m. Further, let

F := {m ∈ NN
0 | |m| <∞}

denote the set of finitely supported multi-indices, where the order of a multi-index m is defined
as |m| :=

∑
j≥1mj . Further, we write δm,0 = 1 if mj = 0 ∀j ≥ 1 and δm,0 = 0 otherwise.

2 Problem formulation

In order to show existence and uniqueness of a solution to (1.1) subject to (1.2), we make the
following assumptions: the parameter-dependent operator A(σ) in (1.2) can be associated with
a continuous and V -H-coercive parameter-dependent bilinear form a(σ; ·, ·), that is

⟨A(σ)v, w⟩V ′,V := −a(σ; v, w), ∀v, w ∈ V, ∀σ ∈ S, (2.1)

where ∃(ρ, θ) ∈ R× (0,∞) such that

a(σ; v, v) + ρ∥v∥2H ≥ θ∥v∥2V ∀v ∈ V and ∀σ ∈ S. (2.2)

In addition we assume that the operators have a uniform upper bound, that is

∥A(σ)∥L(V,V ′) ≤ CD ∀σ ∈ S. (2.3)

For every σ ∈ S, let us define the parameterized parabolic evolution operator D(σ) as

⟨D(σ)w, (v1, v2)⟩V ′
T×H,VT×H := ⟨ẇ, v1⟩V ′

T ,VT
− ⟨A(σ)w, v1⟩V ′

T ,VT
+ ⟨w(0), v2⟩H (2.4)
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for all w ∈ WT (V, V
′) and all v = (v1, v2) ∈ VT × H, where we recall that VT = L2(0, T ;V ).

The parameterized family of operators {D(σ) ∈ L(WT (V, V
′), V ′

T ×H) : σ ∈ S} has uniformly
bounded inverses, see, e.g., [21, 30].

Throughout the manuscript it will be assumed that

A : S→ L(V, V ′), σ 7→ A(σ) is continuous,

which leads to the following regularity result for solutions of (1.2).

Lemma 2.1. Given u ∈ UT , y0 ∈ H, and f ∈ V ′
T , there is a unique solution y ∈ C([0, T ]; C(S;H))

of (1.2).

Proof. Under the assumption that σ 7→ A(σ) ∈ L(V, V ′) is continuous, the parametric mapping
to the evolution operator σ 7→ D(σ) ∈ L(WT (V, V

′), L2
T (V

′) × H), as defined in (2.4), is con-
tinuous. Then, with (2.2) and (2.3) it follows that D(σ) is boundedly invertible for all σ ∈ S,
and hence from [15, Thm. 1.1.1] we conclude that σ 7→ y ∈ WT (V, V

′) is continuous. From
the continuous embedding of WT (V, V

′) ↪→ C([0, T ];H) we have y ∈ C(S; C([0, T ];H)), and in
particular y ∈ C(S× [0, T ];H), and consequently y(·; t, ·) ∈ C(S;H) for every t ∈ [0, T ].

By substituting y(σ; t) = D(σ)−1(Bu(t) + f(t), y0) in (1.1) one obtains the reduced formu-
lation of the optimal control problem minu J(u), which only depends on the control input u. In
the remainder of this section we will prove the existence and uniqueness of a minimizer of the
reduced (and equivalently the original) problem and characterize it by a necessary and sufficient
optimality condition.

It will sometimes be convenient to write (1.2) in the equivalent form

D(σ)y(σ) = (D1(σ)y(σ), D2(σ)y(σ)) = (Bu+ f, y0) in V ′
T ×H,

where we define

D1(σ) := Λ1D(σ), Λ1 : V
′
T ×H → V ′

T , Λ1(v1, v2) := v1, for all v = (v1, v2) ∈ V ′
T ×H,

D2(σ) := Λ2D(σ), Λ2 : V
′
T ×H → H, Λ2(v1, v2) := v2, for all v = (v1, v2) ∈ V ′

T ×H.

Meaningful (right-)inverse operators of D1(σ) : WT (V, V
′) → V ′

T and D2(σ) : WT (V, V
′) → H

are given by

D†
1(σ) := D(σ)−1Ξ1, Ξ1 : V

′
T → V ′

T ×H, Ξ1v1 := (v1, 0), for all v1 ∈ V ′
T ,

D†
2(σ) := D(σ)−1Ξ2, Ξ2 : H → V ′

T ×H, Ξ2v2 := (0, v2), for all v2 ∈ H.

It follows that, for all σ ∈ S, the unique solution of (1.2) can be written as

y(σ) = D(σ)−1(Bu+ f, y0) = D†
1(σ)(Bu+ f) +D†

2(σ)y0 in WT (V, V
′).

By substituting this into the objective function (1.1), we arrive at the reduced problem

min
u
J(u), J(u) := J (u,D(σ)−1(Bu+ f, y0)).

We show next that this reduced problem (and hence the original one) has a unique solution.

Existence of solutions We have that 0 ≤ J(u), thus there is a sequence (uk)k∈N such

that limk→∞ J(uk) = infu J(u). Since J(u) is coercive (J(u) ≥ 1
2

∫ T
0 ∥u∥

2
U dt), the infimizing

sequence is bounded. The sequence takes values in L2(0, T ;U) and thus it has a weakly con-
vergent subsequence uℓ ⇀ ū. Since J is convex (see also next paragraph) and continuous, it is
weakly lower semicontinuous and we have

J(ū) ≤ lim inf
ℓ→∞

J(uℓ) = inf
u
J(u).

Thus, J(ū) = infu J(u) and ū is the sought minimizer.
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Uniqueness of the solution First, observe that the two terms in the cost functional that
involve the entropic risk measure, Rθ(∥C(y(·; t)− g(t))∥2H and Rθ(∥P (y(·;T )− gT )∥2H , are well-
defined for solutions y ∈ C([0, T ]; C(S;H)) of (1.2). Given θ ≥ 0, for every fixed t ∈ [0, T ], the
functional

u 7→ Rθ(∥C(y(·; t)− g(t))∥2H)

is convex. This follows from the fact, that Et : WT (V, V
′) → H, which evaluates functions

pointwise, is a bounded linear operator, and from the linear dependence of y(σ) on u, the
convexity of z 7→ ∥z∥2H , as well as the convexity and the monotonicity of Rθ. By the same
reasoning the convexity of

u 7→ Rθ(∥P (y(·;T )− gT )∥2H)

follows. Furthermore, we have that

u 7→
∫ T

0
Rθ(∥C(y(·; t)− g(t))∥2H) dt

is convex. The control cost u 7→ 1
2

∫ T
0 ∥u(t)∥

2
U dt is strongly convex. Thus, J(u) is strongly

convex since it is the positive linear combination of two convex functions and a strongly convex
function. Hence, the solution is unique.

Optimality condition Since the problem is strongly convex, first-order optimality conditions
are necessary and sufficient. Thus, we shall be interested in the gradient of the reduced objective
function

J(u) =
1

2

(∫ T

0

(
1

θ
log

(
E
[
eθ∥C(D(·)−1((Bu(t)+f(t)),y0)−g(t))∥2H

])
+ ∥u(t)∥2U

)
dt

+
1

θ
log

(
E
[
eθ∥P (ETD(·)−1((Bu(t)+f(t)),y0)−gT )∥2H

]))
.

Given f ∈ V ′
T and y0 ∈ H, let yu(σ) denote the solution to (1.2) for a fixed σ ∈ S, and a given

input control u. Then, we have that yu+δ(σ)−yu(σ) = D(σ)−1(B(u+δ)+f, y0)−D(σ)−1(Bu+

f, y0) = D(σ)−1(Bδ, 0) = D†
1(σ)Bδ. Using this result, the Fréchet differentiability of J at u ∈

UT = L2(0, T ;U) follows from the differentiability of both the entropic risk measure [24] and
the squared norm, in combination with the chain rule and the Lebesgue dominated convergence
theorem.

The gradient ∇J(u) ∈ UT is identified with the Riesz representer of the Fréchet derivative
at u ∈ UT , that is

∂
∂uJ(u)δ = ⟨∇J(u), δ⟩UT

for all directions δ ∈ UT , and given by

∇J(u) = u+
E
[
eθ∥C(y(·)−g∥2HB∗(D†

1(·))∗ (C∗C(y(·)− g)
]

E
[
eθ∥C(y(·)−g∥2H

]
+

E
[
eθ∥P (ET y(·)−gT )∥2HB∗(D†

1(·))∗ (E∗
TP

∗P (ET y(·)− gT ))
]

E
[
eθ∥P (ET y(·)−gT )∥2H

] ,

(2.5)

where E∗
T denotes the adjoint of the operator ET .
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3 Quadratic approximation of the entropic risk measure

Next we explore a quadratic approximation of the entropic risk measure leading to a linear
quadratic optimal control problem. This approximation forms the basis of a sequential quadratic
programming (SQP) method, which is employed to iteratively approximate the solution of the
original optimal control problem involving the nonlinear entropic risk measure, that is (1.1)
subject to (1.2).

To rigorously establish the Fréchet derivatives required for the quadratic approximation, we
first revisit the regularity properties of the state y. Under the conditions of Lemma 2.1 we
have y ∈ L2(S;VT ) and ẏ ∈ L2(S;V ′

T ). Moreover, VT as well as L2(S) are separable Hilbert
spaces, and hence it holds that L2(S;VT ) = L2(S) ⊗ VT , where ⊗ denotes the Hilbert tensor
product, where equality (or canonical identification) is up to a unique isometric isomorphism,
see [35, Thm. II.10]. Similarly, we have VT = L2(0, T ) ⊗ V since both L2(0, T ) and V are
separable. Thus, we have

L2(S;VT ) = L2(S)⊗ (L2(0, T )⊗ V ) = (L2(S)⊗ L2(0, T ))⊗ V
= L2(S× [0, T ])⊗ V = (L2(0, T )⊗ L2(S))⊗ V
= L2(0, T )⊗ (L2(S)⊗ V ) = L2(0, T ;L2(S;V )),

(3.1)

where we used the associativity (up to unique isometric ismorphism) of the tensor product,
see [27, Prop. 2.6.5.]. Analogously, we have ẏ ∈ L2(0, T ;L2(S;V ′)), and consequently y ∈
WT (L

2(S;V ), L2(S;V ′)).
To compute Fréchet derivatives, we define

Z := {(u, y) ∈ UT ×WT (L
2(S;V ), L2(S;V ′)) | ẏ = Ay +Bu+ f, y(0) = y0},

where A ∈ L(L2(S;V ), L2(S;V ′)) is the extension of the pointwise operator family {A(σ) ∈
L(V, V ′) | σ ∈ S} to the Lebesgue–Bochner space as Av := [σ 7→ A(σ)v(σ)]. The dynamical
system in the definition of Z is posed in L2(0, T ;L2(S;V ′)), which is identified with L2(S;V ′

T )
by (3.1), with VT replaced by V ′

T . Thus, the dynamics in Z can be recast as equation in V ′
T as

follows:

ẏ(σ) = A(σ)y(σ) +Bu+ f, y(σ; 0, ·) = y0 (3.2)

for almost every σ ∈ S. On the other hand, given f , u, and y0, the system (3.2) has a
unique solution ỹ(σ) ∈ WT (V, V

′) for every σ ∈ S, which by Lemma 2.1 admits the additional
regularity ỹ ∈ C(S; C([0, T ];H)). For the solution y to (3.2) we find that y = ỹ up to dσ-almost
everywhere equivalence. We have thus shown the following result:

Lemma 3.1. Given f ∈ V ′
T and y0 ∈ H, the state component of tuples (u, y) ∈ Z admits a

representative y ∈ C(S; C([0, T ];H)).

Hence, in the following, we shall make use of y ∈ C(S; C([0, T ];H)) for elements y ∈ Z
wherever continuity or pointwise evaluation is required.

Let ȳ ∈ C([0, T ]; C(S;H)), for example let ȳ be the solution to (1.2) corresponding to some
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control ū ∈ UT . A quadratic approximation about ȳ of the cost functional (1.1), is of the form

Jquad(u, y)

=
1

2

(∫ T

0

(
∥u(t)∥2U +Rθ(∥C(ȳ(·; t)− g(t))∥2H)

+
〈 ∂

∂y
Rθ(∥C(y(·; t))− g(t))∥2H)

∣∣
y=ȳ(·;t), y(·; t)− ȳ(·; t)

〉
L2(S;H)

+
1

2

[
∂2

∂y2
Rθ(∥C(y(·; t)− g(t))∥2H)

∣∣
y=ȳ(·;t)

]
(y(·; t)− ȳ(·; t), y(·; t)− ȳ(·; t))

)
dt

+Rθ(∥P (ET ȳ(·; t)− gT )∥2H)

+

∫ T

0

(〈 ∂

∂y
Rθ(∥P (ET y(·; t)− gT )∥2H)

∣∣
y=ȳ(·;t), y(·; t)− ȳ(·; t)

〉
L2(S;H)

+
1

2

[
∂2

∂y2
Rθ(∥P (ET y(·; t)− gT )∥2H)

∣∣
y=ȳ(·;t)

]
(y(·; t)− ȳ(·; t), y(·; t)− ȳ(·; t))

)
dt

)
,

(3.3)

for (u, y) ∈ UT × C([0, T ]; C(S;H)).
For the remainder of the manuscript it will be useful to define

C (σ; t) := C∗C(y(σ; t)− g(t)) and P(σ;T ) := P ∗P (y(σ;T )− gT ),

as well as the weight functions

ωθ,C(y(σ; t)) :=
eθ∥C(y(σ;t)−g(t))∥2H

E
[
eθ∥C(y(·;t)−g(t))∥2H

] , and ωθ,P (y(σ;T )) =
eθ∥P (y(σ;T )−gT )∥2H

E
[
eθ∥P (y(·;T )−gT )∥2H

] ,
which are well-defined for y ∈ C([0, T ]; C(S;H)). Furthermore, for an integrable element f
taking values in a separable Banach space, we define the weighted expectations

Eωθ,C(y(σ;t)) [f ] := E [f(·)ωθ,C(y(·; t))] and Eωθ,P (y(σ;T )) [f ] := E [f(·)ωθ,P (y(·;T ))] .

Using this notation, the first-order Fréchet derivatives at y ∈ C([0, T ]; C(S;H)) in direction δ1 ∈
C([0, T ]; C(S;H)) can be expressed as∫ T

0

〈
∂

∂y
Rθ(∥C(y(·, t)− g(t))∥2H), δ1(·; t)

〉
L2(S;H)

dt

= 2

∫ T

0

E[eθ∥C(y(·;t)−g(t))∥2H ⟨C∗C(y(·; t)− g(t)), δ1(·; t)⟩H ]

E[eθ∥C(y(·;t)−g(t))∥2H ]
dt

= 2

∫ T

0
Eωθ,C(y(σ;t)) [⟨C (·; t), δ1(·; t)⟩H ] dt∫ T

0

〈
∂

∂y
Rθ(∥P (ET y(·; t)− gT )∥2H), δ1(·; t)

〉
L2(S;H)

dt

= 2

∫ T

0

E[eθ∥P (ET y(·;t)−gT )∥2H ⟨E∗
TP

∗P (ET y(·; t)− gT ), δ1(·; t)⟩H ]

E[eθ∥P (ET y(·;t)−gT )∥2H ]
dt

= 2Eωθ,P (y(σ;T )) [⟨P(·;T ), δ1(·;T )⟩H ] .

This follows again from the chain rule and Lebesgue’s dominated convergence theorem. We point
out that both derivatives can be extended to bounded linear functionals on L2(0, T ;L2(S;H)).
By Lemma 2.1 these derivatives are well-defined on Z, which will be used in Section 5 to
prove that the solution of the quadratic approximation converges to the solution of the original
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problem. Similarly, evaluated on Z, the second-order Fréchet derivatives in (3.3) are identified
as the bounded bilinear forms∫ T

0

[
∂2

∂y2
Rθ(∥C(y(·; t)− g(t))∥2H)

]
(δ2(·; t), δ1(·; t)) dt

=

∫ T

0
2Eωθ,C(y(σ;t))

[
⟨C∗Cδ2(·; t), δ1(·; t)⟩H

]
+ 4θEωθ,C(y(σ;t))

[
⟨C (·; t), δ2(·; t)⟩H ⟨C (·; t), δ1(·; t)⟩H

]
− 4θEωθ,C(y(σ;t))

[
⟨C (·; t), δ1(·; t)⟩H

]
Eωθ,C(y(σ;t))

[
⟨C (·; t), δ2(·; t)⟩H

]
dt

=

∫ T

0
2Eωθ,C(y(σ;t))

[
⟨C∗Cδ2(·; t), δ1(·; t)⟩H

]
+ 4θCovωθ,C(y(σ;t))

(
⟨C (·; t), δ2(·; t)⟩H , ⟨C (·; t), δ1(·; t)⟩H

)
dt,

for δ1 ∈ L2(0, T ;L2(S;H)) and δ2 ∈ L2(0, T ;L2(S;H)), and analogously∫ T

0

[
∂2

∂y2
Rθ(∥P (ET y(·; t)− gT )∥2H)

]
(δ2(·; t), δ1(·; t)) dt

= 2Eωθ,P (y(σ;T )) [⟨P ∗Pδ2(·;T ), δ1(·;T )⟩H ]

+ 4θCovωθ,P (y(σ;T ))

(
⟨P(·;T ), δ2(·;T )⟩H , ⟨P(·;T ), δ1(·;T )⟩H

)
,

As a consequence, if δ1 = δ2, the second derivative is nonnegative and strictly positive if ad-
ditionally C or P is not a constant (almost surely). Moreover, the second Fréchet derivatives
are locally Lipschitz continuous with respect to y ∈ C([0, T ]; C(S;H)), which will be used in
Section 5.

Remark 3.2. Several remarks are in order:

• We point out that the second-order Fréchet derivative differs from the risk neutral case not
only by the additional covariance terms, but also the expected values are weighted by the
normalized exponential functions ωθ,C(y(σ; t)) and ωθ,P (y(σ; t)). These weights reflect the
risk averse control decision of the entropic risk measure by assigning exponentially more
importance to realizations of the parameter sequence σ ∈ S which lead to large tracking
cost. The exponential reweighting of a probability measure to make rare events more
likely is known in large deviation theory ([5, Ch. 3.1]) and rare event simulation [37] as
exponential tilting or exponential twisting.

• The weighted expected values are related to expected values with respect to the posterior
measure in Bayesian inverse problems [38]. Specifically, in Bayesian inverse problems with
forward model G and centered additive Gaussian noise on the data Ydata = G(ξ) + η, η ∼
N (0,Γ), the prior belief on the unknown parameter ξ is updated by a likelihood of the
form exp(−∥G(ξ)−Ydata∥2Γ)/

∫
exp(−∥G(ξ)−Ydata∥2Γ) dN (0,Γ)(ξ) resulting in a posterior

probability distribution of the parameter given the data. This structural similarity between
Bayesian inverse problems and optimal control problems with entropic risk measure has
been used, e.g., in [32].

3.1 Quadratic approximation leads to risk-adjusted linear quadratic problem

The second-order Fréchet derivatives at ȳ ∈ C([0, T ]; C(S;H)) are associated with the opera-
tors QC,ω(ȳ; t) ∈ L(L2(S;H)) and QP,ω(ȳ;T ) ∈ L(L2(S;H)) as

⟨QC,ω(ȳ(·; t); t)δ1, δ2⟩L2(S;H) = Eωθ,C(ȳ(σ;t)) [⟨C∗Cδ2(·; t), δ1(·; t)⟩H ]

+ 2θCovωθ,C(y(σ;t))

(
⟨C (·; t), δ2(·; t)⟩H , ⟨C (·; t), δ1(·; t)⟩H

)
8



for almost every t ∈ [0, T ] and

⟨QP,ω(ȳ(·;T );T )δ1, δ2⟩L2(S;H) = Eωθ,P (ȳ(σ;T )) [⟨P ∗Pδ2(·;T ), δ1(·;T )⟩H ]

+ 2θCovωθ,P (y(σ;T ))

(
⟨P(·;T ), δ2(·;T )⟩H , ⟨P(·;T ), δ1(·;T )⟩H

)
,

where we use C (σ; t) := C∗C(ȳ(σ; t)− g(t)) and P(σ;T ) := P ∗P (ȳ(σ;T )− gT ). Furthermore,
we include the factor 1

2 for the second-order derivatives in the Taylor expansion (3.3). These
two operators sum up to the second-order Fréchet derivative of the (pointwise in time) tracking
error composed with the entropic risk measure, that is

⟨L(ȳ(·; t); t, T )δ1, δ2⟩L2(S;H) := ⟨(QC,ω(ȳ(·; t); t) +QP,ω(ȳ(·;T );T )) δ1, δ2⟩L2(S;H) (3.4)

for almost every t ∈ [0, T ] as well as for all directions δ1 ∈ L2(0, T ;L2(S;H)) and δ2 ∈
L2(0, T ;L2(S;H)). Given ȳ ∈ C([0, T ]; C(S;H)), for almost every t ∈ [0, T ], the operator
L(ȳ(·; t); t, T ) ∈ L(L2(S;H)) is nonnegative and self-adjoint.

Let us assume that P and C are not both zero (otherwise (1.1)–(1.2) admits only the
trivial solution). Moreover, we assume that there exist positive constants cC and cP such
that ∥Cx∥H ≥ cC∥x∥H if C ̸= 0 and ∥Px∥H ≥ cP ∥x∥H for all x ∈ H if P ̸= 0. Then both opera-
torsQC,ω(ȳ(·; t); t) for almost every t ∈ [0, T ] andQT,ω(ȳ(·;T );T ) are coercive (or zero), and thus
also L(ȳ(σ; t); t, T ) is coercive. Hence, for almost every t ∈ [0, T ] and any ȳ ∈ C([0, T ]; C(S;H)),
there exist unique positive self-adjoint operators QC,ω(ȳ(·; t); t)1/2 and QT,ω(ȳ(·;T );T )1/2.

Next, for ȳ ∈ C([0, T ]; C(S;H)), we set

RC(ȳ(σ; t); t) := C (·; t)ωθ,C(ȳ(σ; t)), and RP (ȳ(σ;T );T ) := P(·;T )ωθ,P (ȳ(σ;T )),

so that the quadratic approximation (3.3) of the cost functional (1.1) can be written as

Jquad(u, y) =
1

2

(
Rθ(∥P (ȳ(·;T )− gT )∥2H) + 2E [⟨RP (ȳ(σ;T );T ), y(·;T )− ȳ(·;T )⟩H ]

+ ⟨QP,ω(ȳ(·;T );T )(y(·;T )− ȳ(·;T )), (y(·;T )− ȳ(·;T ))⟩L2(S;H)

+

∫ T

0

(
Rθ(∥C(ȳ(·; t)− g(t))∥2H) + 2E [⟨RC(ȳ(σ; t); t), y(·; t)− ȳ(·; t)⟩H ]

+ ⟨QC,ω(ȳ(·; t); t)(y(·; t)− ȳ(·; t)), (y(·; t)− ȳ(·; t))⟩L2(S;H) + ∥u(t)∥2U
)
dt

)
.

To reformulate the objective function as a sum of quadratic terms only, we substitute zC(σ; t) =
QC,ω(ȳ(σ; t); t)

1/2(y(σ; t)−ȳ(σ; t)) and zP (σ;T ) = QP,ω(ȳ(σ;T );T )
1/2(y(σ;T )−ȳ(σ;T )), lead-
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ing to

Jquad(u, z)

=
1

2

(
Rθ(∥P (ȳ(·;T )− gT )∥2H) + 2E

[
⟨(QP,ω(ȳ(·;T );T )−1/2)∗RP (ȳ(·;T );T ), zP (·;T )⟩H

]
+ E

[
∥zP (·;T )∥2H

]
+

∫ T

0

(
∥u(t)∥2U +Rθ(∥C(ȳ(·; t)− g(t))∥2H)

+ 2E
[
⟨(QC,ω(ȳ(·; t); t)−1/2)∗RC(ȳ(·; t); t), zC(·; t)⟩H

]
+ E

[
∥zC(·; t)∥2H

] )
dt

)
=

1

2

(
Rθ(∥P (ȳ(·;T )− gT )∥2H) + E

[
∥zP (·;T ) + (QP,ω(ȳ(·;T );T )−1/2)∗RP (ȳ(·;T );T )∥2H

]
− E

[
∥(QP,ω(ȳ(·;T );T )−1/2)∗RP (ȳ(·;T );T )∥2H

]
+

∫ T

0

(
∥u(t)∥2U +Rθ(∥C(ȳ(·; t)− g(t))∥2H)

+ E
[
∥zC(·; t) + (QC,ω(ȳ(·; t); t)−1/2)∗RC(ȳ(·; t); t)∥2H

]
− E

[
∥(QC,ω(ȳ(·; t); t)−1/2)∗RC(ȳ(·; t); t)∥2H

] )
dt

)
.

In the following we will leave out the terms which do not depend on u or y since they have
no effect on the minimizer of Jquad. This leads to the linear quadratic optimal control prob-
lem minu,y Jquad, subject to (1.2), where

Jquad(u, y) =
1

2

(∫ T

0

(
E
[
∥QC,ω(ȳ(·; t))1/2(y(·; t)− g̃(·; t))∥2H

]
+ ∥u(t)∥2U

)
dt

+ E
[
∥QP,ω(ȳ(·;T ))1/2(y(·;T )− g̃T (·))∥2H

]) (3.5)

with target g̃(σ; t) = ȳ(σ; t) − QC,ω(ȳ(σ; t))
−1RC(ȳ(σ; t); t) and terminal target g̃T (σ) =

ȳ(σ;T ) − QP,ω(ȳ(σ;T );T )
−1RP (ȳ(σ;T );T ). For θ → 0, the risk-adjusted quadratic objective

functional (3.5) coincides with the risk-neutral case, that is with (1.1) with R = E.

4 Optimal feedback law of the quadratic approximation

We shall be interested in an optimal feedback law K (·; t) : L2(S;H)→ U for the linear quadratic
probem minu,y Jquad(u, y) subject to (1.2). It will turn out that this feedback law is affine, that
is

K (·; t) = −B∗(Π(T − t)(·) + h(t)),

where Π solves a Riccati equation. For our main result, we will adapt [4, Part IV, Ch. 2,
Thm. 7.3] to the setting presented in this work. To this end, we recall the extension of the
pointwise operator A(σ) ∈ L(V, V ′) for σ ∈ S to Lebegue–Bochner spaces given by

A ∈ L(L2(S;V ), L2(S;V ′)), Av := [σ 7→ A(σ)v(σ)].

Secondly, we introduce the cone Ω(L2(S;H)) of bounded, linear, self-adjoint, and nonnegative
operators in L2(S;H) endowed with the norm of L(L2(S;H)). The Riccati operators will be
sought as strongly continuous operator-valued functions in the set S := Cs([0, T ]; Ω(L2(S;H))),
which is endowed with the topology of strong convergence, i.e., Fn → F holds if and only if
for all x ∈ L2(S;H) it holds that Fn(·)x → F (·)x in C([0, T ];L2(S;H)), see e.g., [4, Part IV,
Ch. 2.1].
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Thirdly, we verify that t 7→ QC,ω(ȳ(·; t); t)x ∈ C([0, T ];L2(S;H)) for any x ∈ L2(S;H).
Indeed, for x ∈ L2(S;H), we have

QC,ω(ȳ(·; t); t)x =
eθ∥C(ȳ(·;t)−g(t))∥2H

E
[
eθ∥C(ȳ(·;t)−g(t))∥2H

](2C∗Cx+ 4θC (·; t)⟨C (·; t), x⟩H

− 4θC (·; t)Eωθ,C(ȳ(σ;t))

[
⟨C (·; t), x⟩H

])
∈ C([0, T ];L2(S;H)).

Finally, the above mentioned result [4, Part IV, Ch. 2, Thm. 7.3] is stated for the case g̃ =
g̃T = 0. A generalization to tracking problems with nontrivial targets can be found, e.g.,
in [31, Ch. III, Eqn. (4.88)]. The latter result can readily be generalized to nontrivial terminal
penalizations (as in [4, Part IV, Ch. 2, Thm. 7.3]). Thus, we arrive at the following result.

Theorem 4.1. The problem minu,y Jquad(u, y) subject to (1.2) has a unique optimal pair (u, y),
and the optimal control u ∈ C([0, T ];U) is related to the optimal state by the feedback formula

u(t) = −B∗(Π(T − t)y(·; t) + h(t)),

for t ∈ [0, T ], where Π ∈ S and h ∈WT (L
2(S;V );L2(S;V ′)) solve

−Π̇(T − t) = Π(T − t)A+A∗Π(T − t)−Π(T − t)BB∗Π(T − t) +QC,ω(ȳ(·; t); t),
−ḣ(t) = (A∗ −Π(T − t)BB∗)h(t) + Π(T − t)f(t)−QC,ω(ȳ(·; t); t)g̃(·; t; ȳ(·; t)),

with Π(0) = QP,ω(ȳ(·;T );T ) and h(T ) = −QP,ω(ȳ(·;T );T )g̃T (·, ȳ(·;T )).

5 Convergence of the quadratic approximation

Recall that the unique optimal pair of minu,y Jquad subject to (1.2) coincides with the unique
optimal pair of minu,y Jquad subject to (1.2) since the two cost functionals differ only by a term
which is independent of both the control u and state y.

We shall show next, that the sequence of minimizers {(u(k)⋆ , y
(k)
⋆ )}k≥0 generated by repeatedly

solving the linear quadratic problem with updated expansion points ȳ(k) = y
(k−1)
⋆ converges with

second order to the unique minimizer of the original problem (1.1)–(1.2) provided that the initial
guess is sufficiently close to the minimizer, as will be made precise below.

To this end, we show that the optimality system of the quadratic approximation minu,y Jquad
subject to (1.2) is a Newton step for the original problem (1.1)–(1.2). Thus, repeatedly solving
the quadratic approximation with updated expansion points results in a so-called sequential
quadratic programming (SQP) method for solving the original problem. The SQP method is
based on the Lagrangian

L (u, y, q) = J (u, y) + ⟨q, e(u, y)⟩L2(0,T ;L2(S;V ))×L2(S;H),L2(0,T ;L2(S;V ′))×L2(S;H).

where we abbreviated e(u, y) = D(·)y(·) − (Bu + f, y0). Let q⋆ = q(y⋆) denote the Lagrange
multiplier at the solution y⋆ of (1.1)–(1.2), then a first-order necessary optimality condition is

L ′(u⋆, y⋆, q⋆) = 0, e(u, y) = 0, (5.1)

where L ′ denotes the derivative of L with respect to (u, y), that is

L ′(u, y, q) =

[
eu(u, y)

∗q + Ju(u, y)
ey(u, y)

∗q + Jy(u, y)

]
, with eu =

∂

∂u
e(u, y), ey =

∂

∂y
e(u, y).
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The SQP method consists in a Newton method applied to the necessary optimality condi-
tion (5.1) in order to iteratively solve for the solution (u⋆, y⋆, q⋆) of the original problem (1.1)–
(1.2). Each Newton step results in the following linear system for the updates:[
L ′′(u(k), y(k), q(k)) e′(u(k), y(k))∗

e′(u(k), y(k)) 0

][u(k+1) − u(k)
y(k+1) − y(k)

]
q(k+1) − q(k)

 = −

eu(u(k), y(k))∗q(k) + Ju(u(k), y(k))ey(u
(k), y(k))∗q(k) + Jy(u(k), y(k))

e(u(k), y(k))

 .
A sufficient second-order condition for optimality of (u⋆, y⋆, q⋆) is

L ′′(u⋆, y⋆, q⋆)((v, x), (v, x)) ≥ κ∥(v, x)∥2UT×WT (L2(S;V ),L2(S;V ′)), (5.2)

for κ > 0, and for all (v, x) in the kernel of e′(u⋆, y⋆), which is given by {(v, x) ∈ UT ×
WT (L

2(S;V ), L2(S;V ′))) | ẋ = Ax+Bv, x(0) = 0}. By the linearity of the constraint e(u, y) we
have euu = euy = eyu = eyy = 0, and thus L ′′(u, y, q) = J ′′(u, y). Further, from Section (3.1) we
know that J ′′(u, y)((v, x), (v, x)) ≥ ∥v∥2UT

. With the bound ∥x∥WT (L2(S;V ),L2(S;V ′)) ≤ C∥u∥UT

for all (v, x) in the kernel of e′(u⋆, y⋆), we further estimate J ′′(u, y)((v, x), (v, x)) ≥ 1
2∥v∥

2
UT

+
1

2C2 ∥x∥2WT (L2(S;V ),L2(S;V ′)). Thus, the sufficient condition (5.2) is satisfied for κ = min{12 ,
1

2C2 }.
Moreover, the Newton step simplifies to 1U 0 eu(u

(k), y(k))∗

0 Jyy(u(k), y(k)) ey(u
(k), y(k))∗

eu(u
(k), y(k)) ey(u

(k), y(k)) 0

[u(k+1) − u(k)
y(k+1) − y(k)

]
q(k+1)

 = −

Ju(u(k), y(k))Jy(u(k), y(k))
e(u(k), y(k))

 ,
which is the optimality system of (3.3) subject to (1.2). Consequently, in each Newton step one
can equivalently solve the quadratic subproblem (3.3) (or (3.5)) subject to (1.2) with expansion
trajectory ȳ = y(k).

In order to ensure that the Fréchet derivatives are well-defined at all iterates, we recall from
Section 3 that this is ensured for pairs (u, y) ∈ Z, i.e., pairs with additional state regularity y ∈
C([0, T ]; C(S;H)). Thus, we choose an initial trajectory ȳ(−1) ∈ C([0, T ]; C(S;H)). From the
Newton step above it is evident that e(uk+1, yk+1) = 0, and thus (uk+1, yk+1) ∈ Z, i.e., the
iterates remain in Z. We next show that Z is a closed (affine) subspace of X := L2(0, T ;U) ×
WT (L

2(S;V ), L2(S;V ′)): clearly Z ⊂ X. To verify that Z is an affine subspace, let

Z0 := {(u, y) ∈ L2(0, T ;U)×WT (L
2(S;V ), L2(S;V ′)) | ẏ −Ay −Bu = 0, y(0) = 0}.

It is readily verified that Z0 is a linear subspace ofX. Furthermore, for arbitrary f ∈ L2(0, T ;V ′)
and y0 ∈ H, there exists a pair (v0, x0) such that ẋ0 − Ax0 − Bv0 − f = 0 with x0(0) =
y0. Furthermore, any pair (v, x) ∈ Z can be expressed as a translation (v0, x0) + (ṽ0, x̃0),
where (ṽ0, x̃0) ∈ Z0, since ẋ− ẋ0−A(x− x0)−B(v− v0) = 0, and x(0)− x0(0) = 0. Thus, Z =
(v0, x0) + Z0 is an affine subspace of X. We will next show that Z is closed in X. For n ∈ N
let (un, yn) ∈ Z be a sequence such that (un, yn) → (u, y) ∈ UT ×WT (L

2(S;V ), L2(S;V ′)).
Then, it holds that Bun → Bu since B is a bounded linear operator, ẏn → ẏ, and Ayn → Ay
by continuity of A. Thus, taking the limit of ẏn(σ) = Ayn(σ) + Bun + f , yn(σ; 0, ·) = y0, we
arrive at

˙̄y(t) = Aȳ(t) +Bū(t) + f(t), for a.e. t ∈ [0, T ], and ȳ(·; 0, ·) = y0,

that is, Z is closed. Further, J and e are smooth with locally Lipschitz continuous second
derivatives, and e′(u⋆, y⋆) is surjective. Under these conditions it is known (see, [25, Ch. 5.3])
that the SQP method is locally quadratic convergent to the unique global minimizer of (1.1)–
(1.2), that is

∥(u(k+1), y(k+1), q(k+1))− (u⋆, y⋆, q⋆)∥W ≤ K∥(u(k), y(k), q(k))− (u⋆, y⋆, q⋆)∥2W ,

for a constant K independent of k, provided that ∥(u(0), y(0), q(0)) − (u⋆, y⋆, q⋆)∥W with W =
UT ×WT (L

2(S;V ), L2(S;V ′)))× L2(0, T ;L2(S;V ))× L2(S;H) is sufficiently small.
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Algorithm 1. SQP Algorithm
Require: Tolerance ε > 0. Initial expansion trajectory ȳ(−1) ∈ C([0, T ]; C(S;H)).
Ensure: Approximate minimizer (u⋆, y⋆) of (1.1)–(1.2) with control in feedback form.

1: Set k ← 0 and y
(k−1)
⋆ ← ȳ(−1).

2: repeat

3: Given the expansion point ȳ = y
(k−1)
⋆ , solve the equations in Theorem 4.1 to find

the optimal Riccati-based feedback control u
(k)
⋆ with corresponding closed-loop

state y
(k)
⋆ of (3.5) s.t. (1.2).

4: k ← k + 1.
5: until ∥∇J(u(k)⋆ )∥UT

< ε.

6: return (u
(k)
⋆ , y

(k)
⋆ ) ≈ (u⋆, y⋆), where the control is given in feedback form.

The optimal control that is computed using Algorithm 1 is in feedback form for the linear
quadratic approximation of the original problem (1.1) subject to (1.2) evaluated at the optimal
trajectory.

6 Discretization and numerical implementation

This section is devoted to the numerical implementation of the dynamical systems appearing in
Theorem 4.1.

6.1 Numerical integration

The expected values involved in the presented problem are given as integrals over an infinite-
dimensional parameter space S, see (1.3). For the numerical implementation we first truncate
the infinite-dimensional parameter sequence σ to an s-dimensional vector σs by setting all
components with index larger than s equal to zero. In the follwoing we will thus consider σ ≈
(σs,0) = (σ1, σ2, . . . , σs, 0, 0, . . .). This allows to replace the infinite-dimensional integrals by
integrals over the s-dimensional parameter space S := [−1, 1]s.

The numerical approximation of these integrals using full tensorgrids of univariate quadrature
rules suffers from the curse of dimensionality, i.e., the number of nodes required to guarantee
a prescribed error tolerance increases exponentially in the dimension s. For sufficiently smooth
problems this issue can be alleviated using sparse grids [6], or quasi-Monte Carlo methods [12].
In this work we shall focus on sample average approximations of the respective integrals. This
includes Monte Carlo as well as quasi-Monte Carlo methods and the presented results can
straightforwardly be modified to other quadrature methods.

6.2 Polynomial chaos expansion

Let Ln(ξ) denote the Legendre polynomial of degree n ≥ 0 in [−1, 1], which is normalized such
that ∫ 1

−1
|Ln(ξ)|2

dξ

2
= 1

Then we have L0 = 1 and {Ln}n≥0 is an orthonormal basis of L2(−1, 1). For ν ∈ F we introduce
the tensorized Legendre polynomials

Lν(σ) =
∏
j≥1

Lνj (σj).

The tensorized Legendre polynomials {Lν(σ) | ν ∈ F} form a Riesz basis, i.e. a dense, or-
thonormal family in L2(S; dσ); in particular, each δ ∈ L2(S; dσ;H) admits an orthogonal
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expansion

δ(σ) =
∑
ν∈F

δνLν(σ), where δν =

∫
S
δ(σ)Lν(σ) dσ ∈ H

In this manuscript we shall be interested in functions in δ ∈ L2(0, T ;L2(S; dσ;H)), thus for
almost every t ∈ [0, T ] the corresponding coefficients {δν}ν∈F are elements in H.

6.2.1 Stochastic Galerkin approximation of a parametric dynamical system

We wish to approximate the solution y(σ; t) of (1.2) using a (truncated) generalized polynomial
chaos expansion

y(σ; t) ≈
∑
ν∈Λ

yν(t)Lν(σ), (6.1)

where Λ := {ν ∈ F : |ν| ≤ p} is a finite index set, and Lν(σ) are the tensorized orthonormal
Legendre polynomials. The bound p on the cardinality of the multi-indices in Λ equals the
highest degree of the polynomials, and hence the total number of coefficients in a truncated
expansion of the form (6.1) is K + 1 = (s+p)!

s!p! . Thus, we can number the indices as Λ =
{ν1,ν2, . . . ,νK+1}. Furthermore, for almost every t ∈ [0, T ] the coefficients {yν(t)}ν∈F are
elements in H.

General Case Substituting the polynomial expansion into the equation (1.2) yields∑
ν∈Λ

ẏν(t)Lν(σ) = A(σ)
∑
ν∈Λ

yν(t)Lν(σ) +Bu(t) + f(t).

Next we project both sides onto the basis functions {Lm}m∈Λ by taking the inner product
in L2(S; dσ)〈∑

ν∈Λ
ẏν(t)Lν(σ), Lm(σ)

〉
=

〈
A(σ)

∑
ν∈Λ

yν(t)Lν(σ), Lm(σ)
〉
+

〈
Bu(t) + f(t), Lm(σ)

〉
,

for m ∈ Λ. Using the orthonormality of the basis, this simplifies to

ẏm(t) =
∑
ν∈Λ

A(ν,m)yν(t) + δm,0(Bu(t) + f(t)), m ∈ Λ,

where the operator-valued coefficients are defined as

A(ν,m) := ⟨A(σ)Lν(σ), Lm(σ)⟩L2(S;dσ) ∈ L(V, V
′),

and

δm,0(Bu(t) + f(t)) = ⟨Bu(t) + f(t), Lm(σ)⟩L2(S;dσ) =

{
Bu(t) + f(t), if m = 0,

0, otherwise.
,

since B, u, and f are deterministic. Denoting AGPC :=
(
A(ν,m)

)
m,ν∈Λ, the Galerkin system

becomes the fully coupled system

ẏ(t) = AGPCy(t) + (Bu(t) + f(t))⊗ e0,

where y(t) = [yν1(t), . . . , yνK+1(t)]
⊤ ∈ HK+1 = ×K

j=0H is the stacked coefficient vector, and

(Bu(t) + f(t))⊗ e0 = [Bu(t) + f(t), 0, . . . , 0]⊤ is the projection onto the first polynomial.
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Affine parameter dependence In many situations, such as in diffusion or reaction problems
in which the random input field is parameterized in terms of a Karhunen–Loève expansion, the
operator A(σ) depends affinely on the parameters, that is

A(σ) = A0 +
s∑

j=1

σjAj ,

where Aj ∈ L(V, V ′) for j = 0, . . . , s, for some s ∈ N. Substituting this into the Galerkin
projection and using orthonormality, we get

ẏm(t) = A0yν(t) +

s∑
j=1

∑
ν∈Λ

Ajyν(t)⟨σjLν(σ), Lm(σ)⟩+ δm,0(Bu(t) + f(t)), m ∈ Λ.

Since the basis functions are tensorized polynomials, and we use a product measure, we can
factor the (s-dimensional) integral over the parameter domain and use the orthonormality

[Mj ]ν,µ := ⟨σjLν(σ), Lm(σ)⟩L2(S;dσ) =
s∏

i=1,i̸=j

δνi,mi ·
∫ 1

−1
σjLνj (σj)Lmj (σj)

dσj
2
,

and thus only univariate integrals need to be computed. Then, the full Galerkin system becomes

ẏ(t) =

A0 ⊗ I +
s∑

j=1

Aj ⊗Mj

y(t) + (Bu(t) + f(t))⊗ e0,

where ⊗ denotes the tensor product.

6.3 Choice of the control operator B

The control input u ∈ UT is modeled as a deterministic function, that is, it is constant as a
function of σ ∈ S. The polynomial chaos expansion of the control takes the form

u(t) = u(σ; t) =
∑
ν∈F

uν(t)Lν(σ), where

{
uν(t) = u(t) ∈ UT if ν = 0,

uν(t) = 0 otherwise.

Thus, in the (truncated) stochastic Galerkin basis the control operator B : U → HK+1 can be
chosen to act only on the first polynomial, that is, the zeroth-order coefficients[

Buν1(t), Buν2(t), . . . , BuνK+1(t)
]
=

[
Buν1(t), 0, . . . , 0

]
=

[
Bu(t), 0, . . . , 0

]
,

where ν1 = 0. Below, by slight abuse of notation we use the same symbol for the control
operator B : U → H, its extension to the Bochner space B : U → L2(S;H), and the Galerkin
discretization of the latter B : U → HK+1.

We will now show, that the adjoint operator of B naturally involves the expected value.
Indeed, for v ∈ L2(S;H), we have

⟨u,B∗v⟩U = ⟨Bu, v⟩L2(S;H) =

∫
S
⟨Bu, v(σ)⟩H dσ =

∫
S
⟨u,B∗v(σ)⟩H dσ

= ⟨u,
∫
S
B∗v(σ) dσ⟩U = ⟨u,B∗

∫
S
v(σ) dσ⟩U .
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With this choice of the control operator, the optimal control of a linear quadratic problem
in the polynomial chaos basis is then implemented as

u(t) = −B∗Π(T − t)y(σ; t) ≈ −
∑
ν∈Λ

B∗Πν(T − t)yν(t)Lν(σ)

= −B∗
(K+1∑

j=1

(Πν1,νj (T − t)yνj (t)

)
Lν1(σ),

(6.2)

where for ν ∈ Λ and all t ∈ [0, T ], we use the notation

Πν(T − t) =


Πν1,ν1 Πν1,ν2 · · · Πν1,νK+1

Πν2,ν1

. . .
...

...
. . .

...
ΠνK+1,ν1 ΠνK+1,ν2 · · · ΠνK+1,νK+1

 (T − t) ∈ L(HK+1, HK+1).

The polynomial expansion of the feedback control in (6.2) contains only zeroth-order polynomi-
als, if ν1 = 0. Thus, the optimal control is a deterministic function, that is, it is constant as a
function of the random parameters σ ∈ S.

Related work Suppose there is a true but unknown parameter σ = σ̄ ∈ S. In this situation
one can apply the following version of the above feedback: using the same B and {Πν}ν∈Λ,
we project the state trajectory onto the first index ν1 corresponding to the zeroth-order poly-
nomials. For t ∈ [0, T ] and a given finite set of multi-indices Λ ⊂ F , the resulting feed-
back takes the form {−B∗Πν(T − t)E}ν∈Λ = −B∗Πν1,ν1(T − t), where E : H → HK+1

maps y 7→
[
y⊤ 0 · · · 0

]⊤
. This feedback law has been constructed and investigated in [23, 22]

based on snapshots/samples, whereas in this manuscript we use a stochastic Galerkin ansatz.

6.4 Choice of the expansion point ȳ and approximation of the weights

The expansion point ȳ, around which the entropic risk objective functional is approximated, is
updated according to Algorithm 1. The initialization of Algorithm 1 can be constructed as fol-
lows. In practical applications, when observational data are available, ȳ(−1) may be constructed
from filtered or regularized measurements, yielding a data-informed reference that incorporates
empirical knowledge of the state. In the absence of data one might start, for instance, with the
uncontrolled trajectories.

In every iteration of Algorithm 1, the weight functions are updated by evaluation at the
current expansion point ȳ, which is given as a polynomial chaos surrogate (cp. (6.1)), that is

ȳ(σ; t) =
∑
ν∈F

ȳν(t)Lν(σ) ≈
∑
ν∈Λ

ȳν(t)Lν(σ),

for a finite set of multi-indices Λ ⊂ F .
We select a set of quadrature nodes {σ(1), . . . ,σ(N)}, leading, for t ∈ [0, T ], to an ensemble

of expansion trajectories {ȳ(σ(1); t), . . . , ȳ(σ(N); t)}, and to a collection of weights stored in a
vector ω of length N with components

ωi(t) := ωθ,C(ȳ(σ
(i); t)) =

eθ∥C(ȳ(σ(i);t)−g(t))∥2H

1
Ñ

∑Ñ
k=1

[
eθ∥C(ȳ(σ(k);t)−g(t))∥2H

] , (6.3)

with a possibly different set of quadrature nodes {σ(1), . . . ,σ(Ñ)}, Ñ ∈ N. We point out
that each node is an s-dimensional vector, that is σ(i) ∈ [−1, 1]s for all 1 ≤ i ≤ N . The
weights ωθ,P (ȳ(σ

(i);T )) are computed analogously.
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6.5 Approximation of the weighted covariance

Given t ∈ [0, T ] and a polynomial chaos expansion of the test functions δX(t) ∈ L2(S;H)
and δY (t) ∈ L2(S;H), the weighted sample average approximation of the covariance term in
the bilinear form associated to the operator QC,ω(ȳ(·; t); t) is of the form

Covωθ,C(y(σ;t))

(
⟨C (·; t), δX(·; t)⟩H , ⟨C (·; t), δY (·; t)⟩H

)
≈ 1

N − 1

N∑
i=1

(
ωi(t)

(
Xi(t)−

1

N

N∑
j=1

ωj(t)Xj(t)

)(
Yi(t)−

1

N

N∑
j=1

ωj(t)Yj(t)

))
,

where, for t ∈ [0, T ], X(t) and Y (t) are two vectors of length N , which contain

Xi(t) :=
∑

m,ν∈F

⟨(C∗Cȳν(t)− δν,0g(t))Lν(σ
(i)), δXm(t)Lm(σ(i))⟩H

Yi(t) :=
∑

m,ν∈F

⟨(C∗Cȳν(t)− δν,0g(t))Lν(σ
(i)), δYm(t)Lm(σ(i))⟩H

for 1 ≤ i ≤ N . In the remainder of this section, we shall omit the dependence on t for better
readability whenever it is clear from the context. The (unbiased) weighted empirical covariance
for fixed t ∈ [0, T ] admits a matrix representation, that is

⟨Cov(ω)X,Y ⟩RN =
1

N − 1

N∑
i=1

(
ωi

(
Xi −

1

N

N∑
j=1

ωjXj

)(
Yi −

1

N

N∑
j=1

ωjYj

))
.

It is readily verified that this matrix representation is given by

Cov(ω) :=
1

N(N − 1)

[
cij

]
with cij :=

{
Nωi − ω2

i if i = j,

−ωiωj otherwise.

Using this matrix representation, we will next derive a matrix representation of the operator
associated with the covariance term in QC,ω(ȳ(·; t); t).

Approximation of the operator QC,ω(ȳ(·; t); t) For the numerical implementation, a spatial
discretization, for instance by a finite element method (FEM), is required. For functions v ∈ H
we suppose a representation of the form v =

∑dFEM
i=1 viϕi such that ⟨v, ṽ⟩H = v⊤M ṽ, for v ∈ H

and ṽ ∈ H with Mij = ⟨ϕi, ϕj⟩H , i.e., M ∈ RdFEM×dFEM .
Without loss of generality we assume that ν and m both belong to Λ, and that bXm and bYm

depend on the same multi-index m. Then, defining the FEM coefficient vectors as aνk
:=[

C∗Cȳνk
(t)− δνk,0g(t)

]
∈ RdFEM and bXmk

:=
[
δXmk

(t)
]
∈ RdFEM for 1 ≤ k ≤ K + 1 allows to

rewrite

Xi =
[
a⊤ν1

. . . a⊤νK+1

]
Lν(σ

(i))MLm(σ(i))

 bXm1
...

bXmK+1

 ,
where M = blockdiag(M) ∈ RdFEM·(K+1)×dFEM·(K+1) and

Lν(σ
(i)) =

[Lν1(σ
(i))]

. . .

[LνK+1(σ
(i))]

 ∈ RdFEM·(K+1)×dFEM·(K+1),
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with

[Lνk
(σ(i))] ∈ RdFEM×dFEM with entries [Lνk

(σ(i))]jℓ =

{
Lνk

(σ(i)) if j = ℓ,

0 otherwise.

Analogously, with bYmk
:=

[
δYmk

(t)
]
∈ RdFEM for 1 ≤ k ≤ K + 1 we get

Yi =
[
a⊤ν1

. . . a⊤νK+1

]
Lν(σ

(i))MLm(σ(i))

 bYm1
...

bYmK+1

 .
For the set of quadrature points {σ(1), . . . ,σ(N)} we define

M =


[
a⊤ν1

. . . a⊤νK+1

]
Lν(σ

(1))MLν(σ
(1))

...[
a⊤ν1

. . . a⊤νK+1

]
Lm(σ(N))MLm(σ(N))

 ∈ RN×dFEM·(K+1).

such that we can write

X =

X1
...
XN

 = M

 bXm1
...

bXmK+1

 ∈ RN and Y =

Y1...
YN

 = M

 bYm1
...

bYmK+1

 ∈ RN .

This allows the following representation of the discretized covariance operator

⟨Cov(ω)X,Y ⟩RN =

X1
...
XN


⊤

Cov(ω)

Y1...
YN

 =

 bXm1
...

bXmK+1


⊤

M⊤Cov(ω)M

 bXm1
...

bXmK+1

 .
where M⊤Cov(ω)M is of dimension dFEM · (K + 1)× dFEM · (K + 1).

Furthermore, for the constant term in QC,ω(ȳ(·; t); t) we have

⟨C∗CδX , δY ⟩L2(S;H) =
∑

m,ν∈Λ
⟨C∗CδXν , δ

Y
m⟩H⟨ωθ,C(ȳ(σ; t))Lν(σ), Lm(σ)⟩L2(S;dσ)

=

 bXν1
...

bXνK+1


⊤ [

1
N

∑N
i=1 ωiLν(σ

(i))C∗MCLm(σ(i))
] bYm1

...
bYmK+1

 ,
where C∗MC = blockdiag(C∗MC) ∈ RdFEM·(K+1)×dFEM·(K+1).

Overall, for ν,m ∈ Λ, t ∈ [0, T ] and {σ(i)}Ni=1 we have

QC,ω(ȳ(·; t); t) ≈
1

N

N∑
i=1

(
ωi(t)Lν(σ

(i))C∗MCLm(σ(i))
)
+ 2θM⊤(t)Cov(ω; t)M(t).

The operator QP,ω can be computed analogously.

6.6 Remarks and outlook on the error analysis

In addition to the spatial and temporal discretization of a deterministic optimal control problem
subject to PDEs, the involved uncertainty requires the following approximations:
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1. Dimension truncation of the parameter space, leading to∫
S
X(σ) dσ ≈

∫
Ss

X(σs) dσs, (6.4)

for some integrable quantity of interest X.

2. Numerical integration of the s-dimensional integrals∫
Ss

X(σs) dσs ≈
N∑
i=1

wiX(σ(i)), (6.5)

for some integrable quantity of interest X.

3. Truncation of the polynomial chaos expansion∑
ν∈F

δνLν(σ) ≈
∑
ν∈Λ

δνLν(σ), (6.6)

for a finite set Λ ⊂ F and some δ ∈ L2(S; dσ;H)

For sufficiently smooth problems these errors can be controlled. More precisely, assuming
that ∥∂νσA(σ)∥L(V,V ′) ≤ bν for a monotonically decreasing sequence b = (bj)j∈N, which is p-
summable for some p ∈ (0, 1), it can be shown that the solution of (1.2) depends analytically on
the parameter sequence σ ∈ S with ∥∂νσy(σ)∥V ≤ C|ν|!bν . Here we use the following notation:
for a sequence σ := (σj)j∈N of real numbers and ν ∈ F , we define

∂νσ :=
∂ν1

∂σ1

∂ν2

∂σ2
· · · , and σν :=

∞∏
j=1

σ
νj
j ,

where we follow the convention 00 := 1.
In [30] it is shown that the optimal control and optimal state-adjoint-state pair of a linear

quadratic optimal control problem admit analytic regularity with respect to the uncertain pa-
rameters, provided that the system operator A(σ) admits the regularity as described above.
Based on this result, in [21] it is shown that a Riccati based feedback law for an autonomous
system (A(·), B, C, P ) admits a similar regularity bound. Such bounds are frequently obtained
in the context of Karhunen–Loève expansions of random fields ([3, 10, 8, 16]), and can be used
to derive convergence rates for the approximations (6.4), (6.5), and (6.6): precisely the inte-
grated dimension truncation error (6.4) decays as O(s−2/p+1) ([18]), while the L2-dimension
truncation error decays as O(s−1/p+1/2) ([17]). Randomly shifted rank-1 lattice rules achieve a
root mean square error of O(N−1+ε) ([20, Thm. 6.6]), while interlaced polynomial lattice rules
achieve an integration error convergence O(N−α), α ≥ 1 ([21, Sect. 5]). Moreover, there exists
a sequence of index sets (Λn)n∈N whose cardinality does not exceed n such that the best n-term
approximation rate (in L2) of the Legendre polynomials is O(n1/p+1/2), see [9], or [30, Thm. 7].

The extension of these results to the presented setting with a time-dependent term appearing
in the Riccati equation as well as a parameter-dependent target of the quadratic subproblems,
which are used to approximate the risk-averse optimal control problem, exceeds the scope of
this paper and is postponed to future works.
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7 Numerical experiments

Let us consider the parameterized diffusion-reaction equation under Neumann boundary condi-
tions as follows

ẏ(σ; t, x)− 0.5∆y(σ; t, x) + c(σ;x)y(σ; t, x) =
√
10

Na∑
i=1

ui(t, x)1Oi(x) (t, x) ∈ (0, T ]×D,

∂y(σ; t, x)

∂n
= 0 (t, x) ∈ [0, T ]× ∂D,

y(σ; t, x) = y◦ (t, x) ∈ {t = 0} ×D,

where T = 0.5, D = (0, 1) with boundary ∂D = {0, 1}, and the functions 1Oi represent the
support of the actuators, which are modelled as the characteristic functions associated to open
sets Oi ⊂ D for 1 ≤ i ≤ Na. In the following numerical experiments Na = 3 actuators are
used as O1 = [0.1, 0.3], O2 = [0.4, 0.6], and O3 = [0.7, 0.9]. While the diffusion is constant, the
reaction term is modeled as

c(σ;x) = c̄(x) +
s∑

j=1

σjψj(x),

where the mean field is set to c̄(x) = 0.2 and σj are independent and identically distributed
(i.i.d.) uniformly in [−1, 1] for all j = 1, . . . , s = 2. Furthermore, the parametric basis func-
tions are chosen to be ψ2j(x) = (2j)−ϑ sin(jπx) and ψ2j−1(x) = (2j − 1)−ϑ cos(jπx) with de-
cay ϑ = 2. We use tensorized Legendre polynomials up to degree p = 2 for the stochastic
Galerkin method, (∆t)−1 = 200 time steps for the temporal discretization and piecewise linear
finite elements with meshwidth h = 2−5 for the spatial discretization. The weights (6.3) are
approximated using 100 i.i.d. samples of the trajectories in a Monte Carlo approximation for
the expected values.

We set P = 0 and Q = 1H , where 1H denotes the identity operator in H, as well as
the initial condition y◦(x) = 4 − cos(2πx). The initial expansion point ȳ(−1) for Algorithm 1
solves the uncontrolled equation with shifted initial condition ȳ◦(t = 0, x) = 1− cos(2πx). The
target g solves the state equation with c(σ;x) = 0 for all σ ∈ S and all x ∈ D, and with initial
data g(t = 0, x) = 1.25− cos(2πx).

Comparison to the risk-neutral case In Figure 1, we present the empirical distributions
of the optimal tracking errors at six selected time points, based on 104 random draws of the
parameter σ ∈ S. We compare the risk-averse (θ = 10) and risk-neutral (θ = 0) cases. As
expected, the distribution of the optimal risk-averse tracking errors are shifted toward smaller
errors compared to the optimal risk-neutral case. This behavior is observed uniformly across all
selected time points.

Comparison to reference trajectories As before we compute 104 realizations of the track-
ing errors of the uncontrolled state. At t = 0 the tracking errors coincide for all realizations
since the initial condition is deterministic. Furthermore, we observe that the tracking errors
increase over time for all realizations, see Figure 2a. Figure 2b shows 104 realizations of the
tracking error corresponding to the optimal state, obtained with the proposed SQP method
(Algorithm 1) alongside 104 realizations of the tracking error corresponding to an open-loop
reference solution computed by a gradient descent algorithm. The displayed results corresponds
to the final iterate after 20 SQP iterations and 200 gradient descent iterations, respectively.
The SQP tracking errors are indistinguishable from the open-loop reference, indicating that the
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Figure 1: Histogram of the tracking errors at six selected time points based on 104 realizations of the optimal trajectory.
Risk-averse case (green) and risk-neutral-case (orange).

(a) 104 realizations of the tracking error as a function of time for the
uncontrolled state trajectories alongside the 95th and 5th percentiles.

(b) 104 realizations of the tracking error as a function of time for the
optimal trajectories alongside the 95th and 5th percentiles (SQP and
OL, respectively).

two methods converge approximately to the same solution, thus providing a validation for the
numerical realizations.

Robustness against perturbed initial conditions Closed-loop solutions are expected to
behave in a more robust manner against noise than open-loop controls. In this example we
illustrate that this is also the case in the present setting. To demonstrate this behavior, the
performance of the approximate feedback control obtained by the proposed SQP method is
compared to an open-loop solution for varying initial conditions. To this end, we parameterize
the initial condition by a noise level ℓ as

y+ℓ := y0 + ℓ+ 0.01ℓξ, 0 ≤ ℓ ≤ 2,

y−ℓ := y0 − ℓ− 0.01ℓξ, 0 ≤ ℓ ≤ 2.

where ξ is a vector of the same length as y0 containing i.i.d. standard normally distributed
random variables. The approximate feedback control as well as the open-loop solution are
computed without noise, i.e., for ℓ = 0 such that y0 = y+ℓ = y−ℓ , and then tested in the dynamics
with perturbed initial conditions. The results for y+ℓ and y−ℓ are displayed in Figure 3. It
is observed that the approximate closed-loop control (CL) steers the state to approximately
the same neighborhood of the target, i.e., the tracking errors have a similar magnitude across
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different noise levels. The open-loop reference solution on the other hand clearly leads to larger
tracking errors for increasing noise levels. Furthermore, with noise level ℓ = 0 the CL and OL
solutions are indistinguishable as expected.

Figure 3: 104 realizations of the tracking error for the open-loop solution (top line) and the approximate closed-loop solution
(bottom line) for different initial conditions. The plots in the left column correspond to the unperturbed initial condition y0,
i.e., to noise level ℓ = 0. The plots in the center correspond to the perturbed intial condition y+ℓ , 0 ≤ ℓ ≤ 2, and the plots

in the right-hand side block correspond to the perturbed intial condition y−ℓ , 0 ≤ ℓ ≤ 2.

8 Conclusions and outlook

We investigate a class of risk-averse optimal control problems for linear dynamical systems with
uncertain evolution operators and develop an SQP algorithm to approximate the optimal feed-
back control. Such controls in feedback form can be constructed independently of the initial
condition of the dynamics, which makes them particularly well-suited for time-critical applica-
tions involving uncertainty. Our approximate feedback is computed a priori and is therefore
independent of any specific realization of the uncertain dynamics. We have shown that our ap-
proximation coincides with the unique optimal control along the optimal trajectory. Moreover,
the numerical experiments suggest that our method yields a control that is significantly more
robust to variations in initial conditions than the optimal open-loop control.

Future research directions include the investigation of computational strategies for large-scale
problems with high-dimensional uncertainty, the extension to optimal control problems over an
infinite time horizon, and a sequential update rule of the feedback driven by observational data.
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