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Abstract

A shape optimization problem subject to an elliptic equation in the presence of missing data on
the Dirichlet boundary condition is considered. It is formulated by optimizing the deformation field
that varies the spatial domain where the Poisson equation is posed. To take into consideration the
missing boundary data the problem is formulated as a no-regret problem and approximated by low-
regret problems. This approach allows to obtain deformation fields that are robust against the missing
information. The formulation of the regret problems was achieved by employing the Fenchel transform.
Convergence of the solutions of the low-regret to the no-regret problems is analysed, the gradient of
the cost is characterized and a first order numerical method is proposed. Numerical examples illustrate
the robustness of the low-regret deformation fields with respect to missing data. To the best of our
knowledge, this is the first time that a numerical investigation is reported on the level of effectiveness of
the low-regret approach in the presence of missing data in an optimal control problem.

Keywords: shape optimization, missing data, no-regret problem, low-regret problem.

1 Introduction

In this work, we seek to advance the understanding of optimization problems involving incomplete or missing
data through the lens of low-regret and no-regret formulations. These approaches are grounded in optimiza-
tion and control theory. The no-regret formulation aims to find solutions that minimize the worst-case
discrepancy between the actual and the ideal outcomes, ensuring robustness against all admissible realiza-
tions of the missing data. However, this approach can lead to overly conservative solutions, particularly in
high-dimensional or ill-posed settings. To address this, the low-regret formulation is introduced as a regular-
ized variant of the no-regret problem. By incorporating a regularization term, it relaxes the strict worst-case
criterion, allowing for a controlled trade-off between robustness and performance, and often leading to more
stable and computationally tractable solutions.

A particular focus of our study lies in evaluating the numerical performance of these formulations, as, to
the best of our knowledge, there has been a lack of reported implementations or comprehensive computational
studies in the existing literature. To this end, we conduct a detailed investigation using a tracking-type
shape optimization problem characterized by incomplete boundary Dirichlet data. This setting provides a
meaningful and challenging testbed for assessing the practical effectiveness of the regret-based methodologies.
To deal with this problem we utilize the notion of the no-regret and low-regret control problems as proposed
in [31]. As remarked by J.L. Lions, the notion of regret was first introduced in [39]. We also mention that
regret problems can be seen as a way to increase robustness of the control with respect to perturbations of
certain data.

Concerning shape optimization problems there are different techniques to quantify domain variations,
including the use of level sets and/or considering an arbitrary class of domains satisfying specified properties.
In our case, we opt for considering deformation fields that vary a given fixed domain. We will start with a
domain Ω ⊂ Rd and find a vector field φ : Rd → Rd so that the new domain Ω(φ) = (I + φ)(Ω) minimizes
the functional of interest. This quantification is convenient for specifying a reference system which is vital in
the formulation of no and low-regret problems. After appropriate reformulations of the no- and low-regret

1



problems, the gradient of the associated cost-functional of the latter will be characterized and a gradient
descent algorithm, see e.g., [18, 33] and the references therein, with a Barzilai-Borwein line search will be
described.

The specific shape optimization problem that we shall consider is motivated by inverse problems from
electrical impedance tomography [38], where the unknown quantity is the shape. In our case also part of
the boundary condition depends on an unknown quantity. In a classical ‘inverse approach’, one might opt
for identifying both quantities, the shape and the missing boundary data simultaneously or alternatingly,
see e.g., [1, 9, 11, 12, 13]. In the no-regret approach, one proceeds by formulating a saddle point problem,
in such a way that the classical inverse problem formulation for the unknown shape is still present. The
influence of the unknown boundary data is taken into consideration, but the boundary data themselves are
not determined.

To specify the shape optimization problem we introduce a bounded hold-all domain D ⊂ Rd, for d ∈
{2, 3}, with boundary Σ := ∂D, a nontrivial simply connected subdomain S ⊂ D, with boundary Γ := ∂S
and the fixed annular subregion Ω = D\S. The set of deformation fields is given by

O(Ω) := {φ ∈W 3,∞(D;Rd) : ∥φ∥W 3,∞ ≤ c, [I + φ](Ω) ⊂ D, and φ = 0 and Dφ = 0 on Σ},

where I is the identity map on Rd, 0 < c < 1, and 0 is the d-dimensional matrix with entries equal to zero.
The condition Dφ = 0 on Σ in the specification of O(Ω) will be used in the sensitivity analysis of the cost
functional in Section 4.

Using the notations Ω(φ) := (I + φ)(Ω) and Γ(φ) := (I + φ)(Γ), we study the following optimization
problem

min
φ∈O(Ω)

J(φ, gδ) :=
1

2

∫
ω

|u− ud|2 dx (1)

subject to

−∆u = f in Ω(φ), u = 0 on Γ(φ), u = gr + gδ on Σ, (2)

where ω ⊂ D is a domain satisfying ω̄ ⊂ Ω(φ) for each φ ∈ O(Ω). Further f : D → R and ud : ω → R is a
given target profile. Finally the source function on the boundary Σ consists of a reference source gr : Σ→ R
and of gδ : Σ→ R, which represents the missing part of the Dirichlet datum. See Figure 1 for an illustration
of the set up.

Figure 1: An illustration of the domain Ω, the boundaries Γ and Σ, and the subdomains ω and S.

As the goal is to determine φ ∈ O(Ω) that minimizes the objective functional J for a class of gδ, in a
first step we consider the saddle point problem

min
φ∈O(Ω)

sup
gδ∈Q

J(φ, gδ),
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where Q := {g ∈ H 1
2 (Σ) : ga ≤ g ≤ gb a.e. on Σ} for some given ga, gb ∈ H

1
2 (Σ) with ga(x) ≤ 0 ≤ gb(x),

for a.e. x ∈ Σ. Incorporating the goal of not wanting to deteriorate too much from a reference deformation
field

◦
φ ∈ O(Ω) suggests to replace the previous saddle point problem by:

min
φ∈O(Ω)

sup
gδ∈Q

[J(φ, gδ)− J(
◦
φ, gδ)].

The problem above is analyzed in [22, 31]—from which the term no-regret problem was introduced—for the
treatment of linear optimal control problems with missing initial or boundary data. In the aforementioned
papers, the variable φ appears as an affine term on the right hand side of the state equation. However, in
our situation the state variable y depends on φ in a nonlinear fashion. In such a case, a linearisation of
the cost functional J at a reference value for g is carried out to arrive at a convenient problem formulation
for analysis and numerical treatment of low-regret problems, [30, 29]. Considering gr as an initial guess
for the unknown boundary datum suggests to carry out this expansion at 0 and to introduce J1(φ, gδ) :=

J(φ, 0) + ∂
∂gJ(φ, g)

∣∣∣
g=0

gδ. This leads to the no-regret formulation of the shape optimization problem with

missing boundary data as

min
φ∈O(Ω)

sup
gδ∈Q

[J1(φ, gδ)− J1(
◦
φ, gδ)], (3)

as well as the low-regret formulation

min
φ∈O(Ω)

sup
gδ∈Q

[
J1(φ, gδ)− J1(

◦
φ, gδ)−

ε

2
∥gδ∥2L2(Σ)

]
, (4)

where ε > 0. The reformulation will allow a convenient decomposition of the cost functionals so that the
inner sup-operation can be easily solved. This will be demonstrated in the following subsection.

1.1 Reformulation via decomposition

Due to the min sup - operation problem (3) and (4) represent a significant challenge for numerical approaches.
We therefore present a reformulation which will be amenable for practical realizations. For this purpose it
is convenient to introduce the unknown data-to-state operator Mφ : H

1
2 (Σ) → H1(Ω(φ)) which maps

gδ ∈ H
1
2 (Σ) to the solution of the Poisson equation (2). Here and throughout it is assumed that φ ∈ O(Ω),

f ∈ L2(D) and the reference boundary term satisfies gr ∈ H
1
2 (Σ). It can be easily shown (see e.g., [10, 42])

that for each φ ∈ O(Ω) the operator Mφ is Gâteaux differentiable at any g ∈ H
1
2 (Σ) in any direction

δg ∈ H 1
2 (Σ). The derivative, which is denoted byM′

φ(g)δg = v(φ), is the solution to the equation
−∆v = 0 in Ω(φ),

v = 0 on Γ(φ),

v = δg on Σ.

By the chain rule, and using the above expression forM′
φ with (g, δg) = (0, gδ) and the definition of J1 we

compute

J1(φ, gδ)− J1(
◦
φ, gδ) = J(φ, 0)− J( ◦

φ, 0) +

[
∂

∂g
J(φ, g)

∣∣
g=0

]
gδ −

[
∂

∂g
J(

◦
φ, g)

∣∣
g=0

]
gδ

= J(φ, 0)− J( ◦
φ, 0) +

∫
Ω(φ)

(Mφ(0)− ud)χωM′
φ(0)gδ dx−

∫
Ω

(M◦
φ(0)− ud)χω

∂

∂g
M′

◦
φ
(0)gδ dx,

where for a given set A the function χA : D → {0, 1} is the characteristic function of the set A defined as

χω(x) =

{
1 if x ∈ A,
0 otherwise.
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Introducing the adjoint variable w(φ) ∈ H1
0 (Ω(φ)) ∩H2(Ω(φ)) which solves the equation{

−∆w = (u(φ)− ud)χω in Ω(φ),

w = 0 on ∂Ω(φ),
(5)

where u(φ) =Mφ(0), the above computation can be continued as follows

J1(φ, gδ)− J1(
◦
φ, gδ) = J(φ, 0)− J( ◦

φ, 0) +

∫
Σ

[∂νw(
◦
φ)− ∂νw(φ)]gδ ds.

The no-regret problem can thus be rewritten as

min
φ∈O(Ω)

sup
gδ∈Q

[
J(φ, 0)− J( ◦

φ, 0) +

∫
Σ

[∂νw(
◦
φ)− ∂νw(φ)]gδ ds

]
, (6)

while the low-regret problem is recast in the form

min
φ∈O(Ω)

sup
gδ∈Q

[
J(φ, 0)− J( ◦

φ, 0) +

∫
Σ

[∂νw(
◦
φ)− ∂νw(φ)]gδ ds−

ε

2
∥gδ∥2L2(Σ)

]
.

This can be expressed as

min
φ∈O(Ω)

[J(φ, 0)− J( ◦
φ, 0) + F∗

ε(∂νw(
◦
φ)− ∂νw(φ))] , (7)

where F∗
ε : L2(Σ)→ R is the Fenchel transform of [gδ 7→ ε

2∥gδ∥
2
L2(Σ)] : L

2(Σ)→ R defined by

F∗
ε(y) = sup

gδ∈Q

[
⟨y, gδ⟩Σ −

ε

2
∥gδ∥2L2(Σ)

]
.

Remark 1. Due to the constraints on the elements of Q and the concavity of the functional inside the
supremum in the definition of the Fenchel transform, one can easily establish the existence of g ∈ Q such that
F∗

ε(y) = ⟨y, g⟩Σ− ε
2∥g∥

2
L2(Σ). We further infer from the Karush-Kuhn-Tucker conditions that g = P[ga,gb](

1
εy),

where P[ga,gb] : L
2(Σ)→ L2(Σ) is the projection operator on [ga, gb].

1.2 Related literature and novelty

Let us discuss related works that led to the formulation of our current problem. Aside from the already
mentioned seminal works of J.D. Savage [39] and J.L. Lions [31], we also refer to the work of D. Gabay and
J.L. Lions [22] extending the concept of regret problems to a system of multiple agents. Later O. Nakoulima
et al., [34] showed that the concept of Pareto controls and no-regret controls are synonymous. The authors
further provided necessary optimality conditions for both no-regret and low-regret optimal control problems,
where they first derived such optimality system for the latter and showed that the solution converges to the
solution of the optimality system for the former, which turns out to be a singular optimality system. The
approach they used —which we adopted in this exposition— for the decomposition is based on the first order
expansion of the state solution around the zero control.

Recent works dealing with regret control problems include systems modelling populations dynamics: B.
Jacob and A. Omrane [28] worked on an age-structured model with missing initial data; C. Kenne et al., [29]
investigated an age-structured model with missing birth rate leading to a system which depends nonlinearly
on the missing data. Systems involving fractional time derivatives, to capture appropriate description of
memory and hereditary effects, were also studied: D. Baleanu et al., [6] worked on a wave equation with
a Riemann-Liouville time derivative with unknown data in the initial condition. Meanwhile, G. Mophou
[32] considered perturbations on the boundary data in a heat equation. Lastly, we also mention works on
equations modelling physical phenomena such as a wave equation with unknown Dirichlet data and wave
speed [23], and a model for a thermoelastic body with missing initial condition [24].
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In the mentioned papers, conditions on the set of admissible controls were imposed in such a manner that
the last term in (6) becomes zero. We do not use such a condition since the box constraints on the missing
data guarantees the existence of a maximizer for the said term. We also mention that imposing constraints
on the missing data has been mentioned in [30] , however, to best of our knowledge, the analysis with such
constraints has not been done and implemented numerically, regardless of shape optimization.

We also mention that apparently in the articles dealing with no-regret and low-regret problems for optimal
control their implementation and consequently their behavior in numerical practice, have not been addressed.
Numerically verifying that the low-regret and no-regret formulations are effective for problems with missing
data for shape optimization is therefore a main innovative step of this research, besides the fact that these
techniques were not analyzed for shape optimization before. Formulating the shape optimization problem
by means of minimizing with respect to deformation fields, is convenient for a function space analysis of
the problem and the numerical gradient method can be conveniently combined with a Barzilai–Borwein
line-search method.

Beyond the connections to optimal control and regret-based formulations, the present work is also closely
related to inverse problems, particularly those concerned with shape identification under partial or uncertain
observations. Indeed, reconstructing the shape of a domain subject to PDE constraints with missing bound-
ary data naturally falls within the scope of inverse problems. A classical inverse approach would attempt to
recover both the domain and the unknown boundary data, often leading to ill-posed formulations, see e.g.,
[11] and the references therein. In contrast, our no-regret and low-regret formulations offer an alternative by
optimizing deformation fields that are robust across all admissible realizations of the missing data, without
explicitly reconstructing it. The approach is relevant in settings such as electrical impedance tomography
(EIT), where the shape and boundary inputs are both sources of uncertainty. Our work thus serves as a
bridge between control theory and inverse problems, demonstrating that no-regret-based shape optimization
can serve as a viable and numerically effective framework for addressing PDE-constrained inverse problems
with partial data. To the best of our knowledge, this is the first implementation and numerical investigation
of low-regret methods in this context. We also comment on its close connection as a special case of conduc-
tivity reconstruction problems. Such inverse problems have been analyzed as shape optimization problem by
e.g,. [38], and were extensively studied also in e.g., [2, 3, 15, 21]. Of course, our current problem is a much
simplified version of the mentioned inverse problems. Nevertheless, we look at this article as a precursor into
further analysing such problems with the regret-based approach.

For shape optimization much research has also been directed to shape optimization under uncertainty
where the unknown quantity, in our case gδ is treated as a stochastic random force with known probability
distribution. In this case the solution to the state equation becomes a stochastic variable as well. In [16, 17],
for example, the resulting optimization problems minimizing the expectation over the probability space of
appropriately defined cost-functionals were investigated. This is a different setting from the one followed
here, were we concentrate on a worst case scenario. Worst case parametric and shape optimization problems
for stationary elliptic systems were also investigated in e.g [4] but not in a (low)-regret type formulation and
not for setting represented by (1)-(2). Abstract calculus of variation techniques were used in [8] to investigate
worst case scenarios for cost functionals with specific structure, as for instance the Dirichlet energy.

The remainder of this article is structured as follows: in Section 2, we provide the existence of solutions
to the low-regret and no-regret problems. This encapsulates establishing the existence of solutions to the
governing state equations and provides the appropriate topology for the deformation fields. Section 3 is
dedicated to show convergence of solutions of the low-regret problem to a solution of the no-regret problem
using properties of the Fenchel transform. We show the Gâteaux differentiability of the objective functional
of the low-regret problem in Section 4, where we also provide a first-order necessary condition for the optimal
deformation field. Numerical examples are provided in Section 5 where we observe the convergence of the
free optimal boundary Γ as we take ε → 0, and compare the solutions of the low-regret problem to the
solutions we get when gδ is set to a specific value. Concluding remarks and possible future works are given
in Section 6.
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2 Existence Analysis

In this section, we establish the existence of minimizing deformation fields for the low-regret and no-regret
problems. Also included in the analysis is showing the continuity of the deformation-to-state map under an
appropriate closed topology.

Before we proceed, we note that the reformulation of both problems gives rise to the adjoint variable w.
This implies that the regret problems have two governing equations, namely, given φ ∈ O(Ω) we want to
find (u(φ), w(φ)) that solves{

−∆u(φ) = f in Ω(φ), u(φ) = 0 on Γ(φ), u(φ) = gr on Σ.

−∆w(φ) = (u(φ)− ud)χω in Ω(φ), w(φ) = 0 on ∂Ω(φ).
(8)

We then write the no-regret problem as

min
φ∈O(Ω)

sup
gδ∈Q

[
J̃(φ)− J̃( ◦

φ) +

∫
Σ

(∂νw(
◦
φ)− ∂νw(φ))gδ ds

]
subject to (8), (9)

where the functional J̃ : O(Ω)→ R is defined as

J̃(φ) =

∫
ω

|u(φ)− ud|2 dx,

which also satisfies J̃(φ) = J(φ, 0). On the other hand, the low-regret problem is written as

min
φ∈O(Ω)

[
J̃(φ)− J̃( ◦

φ) + F∗
ε(∂νw(

◦
φ)− ∂νw(φ))

]
subject to (8). (10)

2.1 Analysis on the governing equations

To help us in proving the existence of the solution to the governing equations we will rely on the following
assumptions:

Assumption 1. The domain Ω, source function f , given boundary data gr and the desired profile ud satisfy
the following:

i. Ω is of class C2,1;

ii. f ∈ L2(D), gr ∈ H
3
2 (Σ), and ud ∈ H1(ω).

To establish the existence of minimizing deformation fields for the optimization problems (9) and (10)
we must first discuss the existence of weak solutions to the one-way coupled system

−∆ũ = f +∆ugr in Ω,

−∆w = (ũ+ ugr − ud)χω in Ω,

ũ = w = 0 on ∂Ω,

(11)

where Ω ⊂ D is an arbitrary domain that is of class C2,1 and ugr ∈ H2(D) is a function which satisfies
ugr |Σ = gr whose existence is guaranteed by the surjectivity of the trace operator and satisfies

∥ugr∥H2(D) ≤ c∥gr∥H 3
2 (Σ)

,

for some constant c > 0. To be specific, we choose ugr ∈ H2(D) which solves

−∆ugr = 0 in D, ugr = gr on Σ. (12)
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Remark 2. Given a strong solution ũ ∈ H1
0 (Ω) ∩H2(Ω) to (11), we see that

u = ũ+ ugr ∈ H2(Ω) (13)

solves the first equation in (8).

To aid us in the analysis, we also recall the following uniform Poicaré inequality, which is due to the
monotonicity of the eigenvalues of the Dirichlet problem with respect to domains and the minima of the
Rayleigh quotient, see Proposition 3.1.17 and Corollary 4.7.4 in [26] or Theorem 2.1 of [19, page 412].

Lemma 1. There exists a constant cP > 0 such that for each Ω ⊂ D

∥u∥2L2(Ω) ≤ cP ∥∇u∥
2
L2(Ω)d , ∀u ∈ H1

0 (Ω). (14)

We say that (ũ, w) ∈ H1
0 (Ω)

2 is a weak solution to (11) if it solves the variational problem∫
Ω

∇ũ · ∇ψ1 dx+

∫
Ω

∇w · ∇ψ2 dx =

∫
Ω

fψ1 dx−
∫
Ω

∇ugr · ∇ψ1 dx+

∫
ω

(ũ+ ugr − ud)ψ2 dx, (15)

for all ψ1, ψ2 ∈ H1
0 (Ω).

The following proposition gives us the existence of the unique weak solution of (11).

Proposition 1. Let Ω ⊂ D, f , gr and ud satisfy Assumption 1. Then there exists a unique weak solution
(ũ, w) ∈ H1

0 (Ω)
2 to (15) such that

∥∇ũ∥L2(Ω)d + ∥∇w∥L2(Ω)d ≤ c(∥f∥L2(D) + ∥gr∥H 3
2 (Σ)

+ ∥ud∥L2(ω)), (16)

for some constant c > 0 independent of Ω ⊂ D.

The independence of the constant c > 0 in (16) is possible due to Lemma 1.

Remark 3. It can be easily shown that the assumptions on the data can be reduced, e.g. Ω ⊂ D is Lipschitz,
f ∈ H−1(Ω), g ∈ H 1

2 (Σ) and ud ∈ L2(ω), to establish the existence of the weak solution to (11). In fact, the
present assumption gives us more regular solutions, i.e., ũ ∈ H1

0 (Ω)∩H2(Ω) and w ∈ H1
0 (Ω)∩H3(Ω) by the

classical elliptic regularity, whose norms – in their respective spaces – are bounded above by the right-hand
side of (16). We deemed it necessary to assume such properties now as they are needed for the subsequent
analyses (existence and sensitivity analysis) on the shape optimization.

Next, we address the issue of continuity of the deformation-to-solution map, i.e. given a sequence
(φn) ⊂ O(Ω) converging to φ∗ ∈ O(Ω), can we prove some convergence of (ũ(φn), w(φn)) ∈ H1

0 (Ω(φn))
2

to (ũ(φ∗), w(φ∗)) ∈ H1
0 (Ω(φ

∗))2? Here we used the notation (ũ(φ), w(φ)) ∈ H1
0 (Ω(φ)) to denote the weak

solution of (11) in the domain Ω(φ).
The question above highlights two different convergences that we should tackle: 1. with which topology

do we endow O(Ω); and 2. what notion of convergence is meant for the convergence of states. We first discuss
the issue on the convergence of the deformation fields. The compact embedding C2,1(D;Rd) ↪→ C2(D;Rd)
implies that there exists φ∗ ∈ C2(D;Rd) such that φn → φ∗ in C2(D;Rd). The uniform bound on the
elements of O(Ω) implies that φ∗ ∈ O(Ω). Having this in mind, when we talk about convergence of sequence
in O(Ω), we refer to the topology induced by the space C2(D;Rd) in which the set O(Ω) is closed.

Definition 1. Let (φn) ⊂ O(Ω) be a sequence and φ ∈ O(Ω). We say that the sequence (φn) converges to φ
in O(Ω) — denoted as φn → φ in O(Ω) — if and only if the sequence converges with the C2(D;Rd)–topology.

To address the second issue, we first notice that since each φn ∈ O(Ω) is a diffeomorphism of order C2,1,
each Ωn := Ω(φn) ⊂ D is a domain of class C2,1 and satisfies the uniform cone property [26, Theorem 2.4.7].
This implies the existence of linear and continuous extension operators En : H1

0 (Ωn)
2 → H1(D)2 such that

sup
n∈N
∥En∥L(H1

0 (Ωn)2;H1(D)2) ≤ K1, (17)
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where K1 > 0 is independent on Ωn. The extension operator can also be defined such that

∥En(u,w)∥L((H2(Ωn)∩H1
0 (Ωn))2;H2(D)2) ≤ K2, (18)

with K2 independent of n, see e.g. [14, Theorem II.1]. Another implication of the uniform cone property is
the following compactness of the characteristic functions corresponding to the domains Ω(φ) for φ ∈ O(Ω).

Lemma 2. Let (φn) ⊂ O(Ω) be a sequence converging to φ∗ ∈ O(Ω). Then a subsequence of the char-
acteristic functions (χΩn

) ⊂ L2(D) of Ωn = Ω(φn) converges strongly to χΩ∗ ∈ L2(D), which is a.e. the
characteristic function corresponding to Ω∗ := Ω(φ∗).

Proof. From the uniform cone property and [14, Theorem III.1], there exists a subsequence of (χΩn
) ⊂ L2(D),

which we denote in the same way, and an element χΩ∗ ∈ L2(D) such that χΩn
→ χΩ∗ in L2(D). From [14,

Proposition III.5], χΩ∗ is a.e. the characteristic function of

Ω∗ :=
⋂
m∈N

Gm, where Gm =
⋃

n≥m

Ωn.

One can easily show that Ω(φ∗) = Ω∗, which concludes the proof.

Since ∥χΩn∥L∞(D) ≤ 1 the previous lemma also implies that χΩn → χΩ∗ in Lp(D), for any 1 ≤ p < +∞.
We are now in position to lay down the promised continuity of the deformation-to-state map.

Proposition 2. Suppose that (φn) ⊂ O(Ω) is a sequence converging to φ∗ ∈ O(Ω). Then there exists
(u∗, w∗) ∈ H1(D)2 such that En(ũ(φn), w(φn)) ⇀ (u∗, w∗) in H1(D)2. Furthermore, (u∗, w∗)|Ω(φ∗) =
(ũ(φ∗), w(φ∗)) ∈ H1

0 (Ω(φ
∗))2.

Proof. From Proposition 1 and (17), we see that

∥En(ũ(φn), w(φn))∥H1(D)2 ≤ c(∥f∥L2(D) + ∥gr∥H 3
2 (Σ)

+ ∥ud∥L2(ω)), (19)

for some c > 0 independent of n. We thus infer the existence of (u∗, w∗) ∈ H1(D)2, such that a subsequence of
(En(ũ(φn), w(φn))) ⊂ H1(D)2, denoted in the same way, satisfies En(ũ(φn), w(φn))⇀ (u∗, w∗) in H1(D)2.

The compact embedding H1(D)2 ↪→ Lq(D)2, for q ∈ [1, 6), further implies that En(ũ(φn), w(φn)) →
(u∗, w∗) in Lq(D)2. By Lemma 2 (1 − χΩn

) → (1 − χΩ∗) in L2(D). From these facts, we get by virtue of
Fatou’s Lemma ∫

D

(1− χΩ∗)|u∗|2 dx ≤ lim inf
n→+∞

∫
D

(1− χΩn)|u∗|2 dx

≤ lim inf
n→+∞

∫
D

(1− χΩn
)|u∗ − un|2 dx

≤ lim
n→+∞

∥1− χΩn
∥L2(D)∥u∗ − un∥L4(D) → 0.

Here we used the notation (un, wn) = En(ũ(φn), w(φn)). Using the same argument for w∗, we infer that
(u∗, w∗) = 0 almost everywhere in D\Ω(φ∗), whence (u∗, w∗) ∈ H1

0 (Ω
∗)2.

We now verify that (u∗, w∗) ∈ H1
0 (Ω

∗)2 satisfies (15) with Ω = Ω∗. Let (ψ1, ψ2) ∈ C∞
0 (Ω∗)2 be an

arbitrary test pair. Since Ω∗ =
⋂
m∈N

⋃
n≥m

Ωn, we see that there exists m ∈ N such that for each n ≥ m we get

(ψ1, ψ2) ∈ C∞
0 (Ωn)

2. For each n ≥ m, we get∫
D

∇un · ∇ψ1 dx+

∫
D

∇wn · ∇ψ2 dx =

∫
D

χΩnfψ1 dx−
∫
D

χΩn∇ugr · ∇ψ1 dx+

∫
ω

(un + ugr − ud)ψ2 dx.

Passing to the limit with convergences we have in hand allows us to thus have∫
D

∇u∗ · ∇ψ1 dx+

∫
D

∇w∗ · ∇ψ2 dx =

∫
D

χΩ∗fψ1 dx−
∫
D

χΩ∗∇ugr · ∇ψ1 dx+

∫
ω

(u∗ + ugr − ud)ψ2 dx.
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Because (u∗, w∗) = 0 almost everywhere in D\Ω(φ∗) and (u∗, w∗) ∈ H1
0 (Ω

∗)2, we further infer that∫
Ω∗
∇u∗ · ∇ψ1 dx+

∫
Ω∗
∇w∗ · ∇ψ2 dx =

∫
Ω∗
fψ1 dx−

∫
Ω∗
∇ugr · ∇ψ1 dx+

∫
ω

(u∗ + ugr − ud)ψ2 dx. (20)

By the density of C∞
0 (Ω∗) in H1

0 (Ω
∗), we therefore conclude that (u∗, w∗)|Ω(φ∗) = (u(φ∗), w(φ∗)).

Remark 4. From Remark 3 w(φn) ∈ H1
0 (Ω(φn)) ∩ H2(Ω(φn)), for any n ∈ N. Furthermore, we observe

that ∂νw(φn) = ∂νwn on Σ, where wn is such that (un, wn) = En(ũ(φn), w(φn)). According to trace theorem
and (18), we have

∥∂νw(φn)∥
H

1
2 (Σ)

≤ ∥E(ũ(φn), w(φn))∥H2(D)2 ≤ c(∥f∥L2(D) + ∥gr∥H 3
2 (Σ)

+ ∥ud∥L2(ω)).

As a consequence, we get the strong convergence

∂νw(φn)→ ∂νw(φ
∗) in L2(Σ) and a.e. on Σ. (21)

Similarly, the convergence of the solutions ũ(φn) can be inherited by u(φn) = ũ(φn) + ugr .

2.2 Existence of minimizing deformation fields

In this section, we will prove the existence of solutions to the no-regret and low-regret problems. We will
first establish the existence of a solution to the low-regret problem because, as we will see later, the lower
bound of the functional for the no-regret problem depends on the minimum value of the low-regret problem.

Let us use the notation

Jε(φ) := J̃(φ)− J̃( ◦
φ) + F∗

ε(∂νw(
◦
φ)− ∂νw(φ))

for the functional of the low-regret problem (10). The following theorem gives us the existence of the
minimizing deformation field for the low-regret problem.

Theorem 1. Suppose that Assumption 1 holds. There exists φε ∈ O(Ω) that minimizes Jε.

Proof. For any φ ∈ O(Ω), we know that −J̃( ◦
φ) ≤ J̃(φ) − J̃( ◦

φ). Furthermore, we claim that F∗
ε(∂νw(

◦
φ) −

∂νw(φ)) is uniformly bounded below by some constant.
Indeed, assuming without loss of regularity that the sets

Σ1(φ) = {s ∈ Σ : ∂νw(
◦
φ)(s)− ∂νw(φ)(s) < εga},

Σ2(φ) = {s ∈ Σ : εga ≤ ∂νw(
◦
φ)(s)− ∂νw(φ)(s) ≤ εgb},

Σ3(φ) = {s ∈ Σ : εgb < ∂νw(
◦
φ)(s)− ∂νw(φ)(s)},

(22)

are of positive measure, we can write F∗
ε(∂νw(

◦
φ)− ∂νw(φ)) as follows

F∗
ε(∂νw(

◦
φ)− ∂νw(φ)) =

3∑
i=1

⟨∂νw(
◦
φ)− ∂νw(φ), g⟩Σi(φ) −

ε

2
∥g∥2L2(Σi(φ)),

where g = argmaxg∈Q ⟨∂νw(
◦
φ)− ∂νw(φ), g⟩Σ −

ε
2∥g∥

2
L2(Σ), which —referring to Remark 1— is given by

g = P[ga,gb]

(
1

ε
(∂νw(

◦
φ)− ∂νw(φ))

)
.

Thus, by momentarily writing W (φ) = ∂νw(
◦
φ)− ∂νw(φ), we have

F∗
ε(W (φ)) = ⟨W (φ), ga⟩Σ1(φ) −

ε

2
∥ga∥2L2(Σ1(φ)) +

1

2ε
∥W (φ)∥2L2(Σ2(φ)) + ⟨W (φ), gb⟩Σ3(φ) −

ε

2
∥gb∥2L2(Σ3(φ))

≥⟨(W (φ)− εga), ga⟩Σ1(φ) +
ε

2
∥ga∥2L2(Σ1(φ)) +

1

2ε
∥W (φ)∥2L2(Σ2(φ)) +

ε

2
∥gb∥2L2(Σ3(φ)).
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As the terms on the right-hand side of the expression are non-negative, we infer that Jε(φ) is bounded from
below for any φ ∈ O(Ω). We thus find a sequence (φn) ⊂ O(Ω) such that

lim
n→+∞

Jε(φn) = inf
φ∈O(Ω)

Jε(φ) =: J∗
ε . (23)

From the Arzelà-Ascoli theorem, we get the existence of φε ∈ O(Ω) such that — up to a subsequence — the
convergence φn → φε in C2(D;Rd) holds true.

From Proposition 2, Remark 4 and the weak lower semicontinuity of the L2 norm we get

J̃(φε) ≤ lim inf
n→+∞

J̃(φn). (24)

For the term involving the Fenchel transform, we claim that the fact that ∂νw(φn)→ ∂νw(φε) in L
2(Σ) and

a.e. on Σ implies

F∗
ε(W (φn))→ F∗

ε(W (φε)). (25)

Indeed, we note that due to the constraints on the elements of Q we find cQ > 0 such that ∥g∥L2(Σ) ≤
cQ for any g ∈ Q. Let g(φn) = P[ga,gb](

1
εW (φn)) and g(φε) = P[ga,gb](

1
εW (φε)) be the maximizers of

⟨W (φn), g⟩Σ − ε
2∥g∥

2
L2(Σ) and ⟨W (φε), g⟩Σ − ε

2∥g∥
2
L2(Σ), respectively. This gives us

F∗
ε(W (φn))−F∗

ε(W (φε)) = ⟨W (φn), g(φn)⟩Σ −
ε

2
∥g(φn)∥2L2(Σ) −

(
⟨W (φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

)
≤ ⟨∂νw(φε)− ∂νw(φn), g(φn)⟩Σ ≤ cQ∥∂νw(φε)− ∂νw(φn)∥L2(Σ).

Similarly, we have

F∗
ε(W (φε))−F∗

ε(W (φn)) = ⟨W (φε), g(φε)⟩Σ −
ε

2
∥g(φε)∥2L2(Σ) −

(
⟨W (φn), g(φn)⟩Σ −

ε

2
∥g(φn)∥2L2(Σ)

)
≤ ⟨∂νw(φε)− ∂νw(φn), g(φn)⟩Σ ≤ cQ∥∂νw(φε)− ∂νw(φn)∥L2(Σ).

The estimates above and (21) imply (25).
Combining (24) and (25) implies that φε ∈ O(Ω) is a minimizer of Jε.

For the no-regret problem, we note that due to the linearity of the operator [g 7→ ⟨∂νw(
◦
φ)−∂νw(φ), g⟩Σ] :

Q → R and the constraints in Q, given φ ∈ O(Ω) we find g∗(φ) ∈ Q such that

g∗(φ) = arg max
gδ∈Q
⟨∂νw(

◦
φ)− ∂νw(φ), gδ⟩Σ.

So the no-regret problem (9) is now translated into finding the minimizing deformation field for the
functional

J∗(φ) := J̃(φ)− J̃( ◦
φ) + ⟨∂νw(

◦
φ)− ∂νw(φ), g∗(φ)⟩Σ.

The theorem below asserts the existence of a minimizing element.

Theorem 2. Suppose that Assumption 1 holds. Then there exists φ∗ ∈ O(Ω) that minimizes J∗ and hence
the no-regret problem admits a solution.

Proof. We get the lower bound for J∗(φ) as follows: first by definition of g∗(φ) ∈ Q

J∗(φ) ≥ J̃(φ)− J̃( ◦
φ) + ⟨∂νw(

◦
φ)− ∂νw(φ), g⟩Σ −

ε

2
∥g∥2L2(Σ) ∀g ∈ Q .

By choosing g = P[ga,gb]

(
1
ε (∂νw(

◦
φ)− ∂νw(φ))

)
∈ Q and using the fact that φε is a minimizer for Jε we get

J∗(φ) ≥ J̃(φ)− J̃( ◦
φ) + F∗

ε(∂νw(
◦
φ)− ∂νw(φ))

≥ J̃(φε)− J̃(
◦
φ) + F∗

ε(∂νw(
◦
φ)− ∂νw(φε)) = Jε(φε).

(26)
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Having been able to establish the boundedness of J∗ from below, we find an infimizing sequence (φn) ⊂
O(Ω) such that

lim
n→+∞

J∗(φn) = inf
φ∈O(Ω)

J∗(φ). (27)

Again, the Arzelá-Ascoli theorem implies that, up to a subsequence, φn → φ∗ in C2(D;Rd) for some
φ∗ ∈ O(Ω). The weak lower semicontinuity of the L2 norm and Proposition 2 imply

J̃(φ∗)− J̃( ◦
φ) ≤ lim inf

n→+∞
J̃(φn)− J̃(

◦
φ).

Remark 4 implies ⟨∂νw(
◦
φ) − ∂νw(φn), g

∗(φn)⟩Σ → ⟨∂νw(
◦
φ) − ∂νw(φ∗), g∗(φ∗)⟩Σ. Indeed, since g∗(φn) =

argmax
g∈Q
⟨∂νw(

◦
φ)− ∂νw(φn), g⟩Σ, we get

⟨∂νw(
◦
φ)− ∂νw(φ∗), g∗(φ∗)⟩Σ − ⟨∂νw(

◦
φ)− ∂νw(φn), g

∗(φn)⟩Σ ≤ ⟨∂νw(φn)− ∂νw(φ∗), g∗(φ∗)⟩Σ
≤ cQ∥∂νw(φn)− ∂νw(φ∗)∥L2(Σ).

Similarly, because g∗(φ∗) = argmax
g∈Q
⟨∂νw(

◦
φ)− ∂νw(φ∗), g⟩Σ, we have

⟨∂νw(
◦
φ)− ∂νw(φn), g

∗(φn)⟩Σ − ⟨∂νw(
◦
φ)− ∂νw(φ∗), g∗(φ∗)⟩Σ ≤ ⟨∂νw(φ∗)− ∂νw(φn), g

∗(φn)⟩Σ
≤ cQ∥∂νw(φn)− ∂νw(φ∗)∥L2(Σ).

The computations above sum up to the following estimate

|⟨∂νw(
◦
φ)− ∂νw(φn), g

∗(φn)⟩Σ − ⟨∂νw(
◦
φ)− ∂νw(φ∗), g∗(φ∗)⟩Σ| ≤ cQ∥∂νw(φn)− ∂νw(φ∗)∥L2(Σ).

The right-hand side goes to zero per Remark 4, which proves our claim. Therefore, φ∗ is a minimizer for
J∗.

3 From low-regret to no-regret

In this section, we provide one of the main results of this paper. That is, we show that as ε→ 0, the sequence
(φε) ⊂ O(Ω) of minimizing deformations for the low-regret problem converges to a deformation field that
minimizes J∗.

We begin by looking at the gap between the minimum values of Jε and J∗.

Lemma 3. Suppose that φε ∈ O(Ω) and φ∗ ∈ O(Ω) are minimizers for Jε and J∗, respectively. Then we
have the following estimate

|J∗(φ∗)− Jε(φε)| ≤ cε, (28)

for some c > 0 not dependent on ε > 0.

Proof. Let us first underline the fact that, due to (26), J∗(φ∗) ≥ Jε(φε). This implies that

|J∗(φ∗)− Jε(φε)| = J∗(φ∗)− Jε(φε) ≤ J∗(φε)− Jε(φε)

= ∥u(φε)− ud∥2L2(ω) + ⟨∂νw(
◦
φ)− ∂νw(φε), g

∗(φε)⟩Σ

−
(
∥u(φε)− ud∥2L2(ω) + ⟨∂νw(

◦
φ)− ∂νw(φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

)
= ⟨∂νw(

◦
φ)− ∂νw(φε), g

∗(φε)⟩Σ −
(
⟨∂νw(

◦
φ)− ∂νw(φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

)
,
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where

g∗(φε) = arg max
gδ∈Q
⟨∂νw(

◦
φ)− ∂νw(φε), gδ⟩Σ and

g(φε) = arg max
gδ∈Q

(
⟨∂νw(

◦
φ)− ∂νw(φε), gδ⟩Σ −

ε

2
∥gδ∥2L2(Σ)

)
.

The desired estimate is obtained as follows:

|J∗(φ∗)− Jε(φε)| ≤ ⟨∂νw(
◦
φ)− ∂νw(φε), g

∗(φε)⟩Σ −
(
⟨∂νw(

◦
φ)− ∂νw(φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

)
≤ ⟨∂νw(

◦
φ)− ∂νw(φε), g

∗(φε)⟩Σ −
(
⟨∂νw(

◦
φ)− ∂νw(φε), g

∗(φε)⟩Σ −
ε

2
∥g∗(φε)∥2L2(Σ)

)
≤
c2Q
2
ε.

Due to the compactness of O(Ω) with respect to the C2(D;Rd)-topology, we see that the sequence
(φε)ε>0 ⊂ O(Ω) has a subsequence converging to some φ0 ∈ O(Ω), i.e. φε → φ0 in O(Ω) as ε → 0. Our
main result shows that φ0 ∈ O(Ω) minimizes J∗.

Theorem 3. The deformation field φ0 ∈ O(Ω) is a minimizer for the no-regret problem.

Proof. Knowing that φ∗ is a minimizer for J∗, we prove that φ0 is also a minimizer by showing that
J∗(φ0) = J∗(φ∗). Let

g∗(φ0) = arg max
gδ∈Q
⟨∂νw(

◦
φ)− ∂νw(φ0), gδ⟩Σ.

Hence, we have by Lemma 3

|J∗(φ∗)− J∗(φ0)| ≤ |J∗(φ∗)− Jε(φε)|+ |Jε(φε)− J∗(φ0)| ≤ cε+ |Jε(φε)− J∗(φ0)|.

The following computations give us estimates for the second term on the right-hand side above: first, we
obtain

Jε(φε)− J∗(φ0) = ∥u(φε)− ud∥2L2(ω) + ⟨∂νw(
◦
φ)− ∂νw(φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

−
(
∥u(φ0)− ud∥2L2(ω) + ⟨∂νw(

◦
φ)− ∂νw(φ0), g

∗(φ0)⟩Σ
)

≤ ⟨u(φε)− u(φ0), u(φε) + u(φ0)− 2ud⟩ω + ⟨∂νw(φ0)− ∂νw(φε), g(φε)⟩Σ
≤ c∥u(φε)− u(φ0)∥L2(ω) + cQ∥∂νw(φ0)− ∂νw(φε)∥L2(Σ),

where c > 0 is a constant dependent only on the terms in the right hand side of (16) and is independent of
ε. Similarly, we have

J∗(φ0)− Jε(φε) = ∥u(φ0)− ud∥2L2(ω) + ⟨∂νw(
◦
φ)− ∂νw(φ0), g

∗(φ0)⟩Σ

−
(
∥u(φε)− ud∥2L2(ω) + ⟨∂νw(

◦
φ)− ∂νw(φε), g(φε)⟩Σ −

ε

2
∥g(φε)∥2L2(Σ)

)
≤ ⟨u(φ0)− u(φε), u(φ0) + u(φε)− 2ud⟩ω + ⟨∂νw(φε)− ∂νw(φ0), g

∗(φ0)⟩Σ +
c2Q
2
ε

≤ c∥u(φ0)− u(φε)∥L2(ω) + cQ∥∂νw(φε)− ∂νw(φ0)∥L2(Σ) +
c2Q
2
ε,

where c > 0, as in the previous case, is not dependent on ε. Summing up the estimates imply

|J∗(φ∗)− J∗(φ0)| ≤ c∥u(φ0)− u(φε)∥L2(ω) + cQ∥∂νw(φε)− ∂νw(φ0)∥L2(Σ) +
c2Q
2
ε.

Taking ε→ 0, from Proposition 2 and (21) the expression on the right-hand side tends to zero.
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4 Optimality condition for the low-regret problem

For a fixed Ω ⊂ D we consider the functional j : O(Ω) ⊂ C1,1(D;Rd) → R. We say that it has a Gâteaux
derivative at φ ∈ C1,1(D;Rd) in the direction δφ ∈ C1,1(D;Rd) if the following limit exists:

dφj(φ)δφ = lim
t↘0

j(φ+ tδφ)− j(φ)
t

. (29)

The functional j is said to be Gâteaux differentiable at φ ∈ C1,1(D;Rd) if the derivative exists for any
direction δφ ∈ C1,1(D;Rd) and the map δφ 7→ dφj(φ)δφ is linear and bounded.

We note that the derivative defined above has been discussed in [19, Chapter 9 Section 3.3], and can be
related to the so-called shape derivatives—both in the context Eulerian and Hadamard semiderivatives—for
shape functionals, see [19, Theorem 9.3.4].

Let Ω ∈ PΣ := {Ω ∈ P(D) : Ω is an annular domain with Σ ⊂ ∂Ω and of class C2,1}. With (11) in
mind, we define the operator E[Ω] : H1

0 (Ω)
2 → H−1(Ω)2 by

⟨E[Ω](ũ, w), (ψ1, ψ2)⟩H1
0 (Ω)2 =

∫
Ω

∇ũ · ∇ψ1 dx+

∫
Ω

∇w · ∇ψ2 dx

−
∫
Ω

fψ1 dx+

∫
Ω

∇ugr · ∇ψ1 dx−
∫
ω

(ũ+ ugr − ud)ψ2 dx.

We can thus define the design-to-state operator S : PΣ → H1(D)2 by S(Ω) = (ũ, w) ∈ H1
0 (Ω)

2 ⊂ H1(D)2 if
and only if E[Ω](ũ, w) = 0 in H−1(Ω)2.

Function space parametrization. Let Ω ⊂ D be fixed. For any φ ∈ C2,1(D;Rd) with ∥φ∥C2,1 ≤ c < 1
we use the transformation τφ = I + φ and the notation Ω(φ) = τφ(Ω), and define the function space
parametrizations (see c.f. [35, Section 2.3.1 Lemmata 3.1–3.2] and [35, Section 2.3.6 Corollary 3.1])

H1
0 (Ω) = {ψ ◦ τφ : ψ ∈ H1

0 (Ω(φ))}, L2(Ω) = {ψ ◦ τφ : ψ ∈ L2(Ω(φ))}.

We now define the transformed operator EΩ : O(Ω)×H1
0 (Ω)

2 → H−1(Ω)2 as

EΩ[φ, (ũ, w)] = (E[τφ(Ω)](ũ ◦ τ−1
φ , w ◦ τ−1

φ )) ◦ τφ.

We can express the action of EΩ as follows:

⟨EΩ[φ, (ũ, w)], (ψ1, ψ2)⟩H1
0 (Ω)2 =

∫
Ω

A(φ)∇ũ · ∇ψ1 dx+

∫
Ω

A(φ)∇w · ∇ψ2 dx

−
∫
Ω

b(φ)f̂(φ)ψ1 dx+

∫
Ω

A(φ)∇ûgr (φ) · ∇ψ1 −
∫
ω

b(φ)(ũ+ ûgr (φ)− ud)ψ2 dx,

(30)

for (ψ1, ψ2) ∈ H1
0 (Ω)

2, where A(φ) = b(φ)Dτ−1
φ (Dτ−1

φ )⊤, b(φ) = det(Dτφ), f̂(φ) = f ◦ τφ and ûgr (φ) =
ugr ◦ τφ.

To proceed we impose additional assumptions on the source function f , the given Dirichlet data gr, and
the desired profile ud.

Assumption 2. We assume that f ∈ H1(D) and gr ∈ H
5
2 (Σ), which implies that ugr is in H3(D).

Furthermore, we assume that (ud ◦ τφ)|ω = ud, for all φ ∈ O(Ω).

We now define the transformed deformation-to-state map SΩ : O(Ω)→ H1
0 (Ω)

2 as SΩ(φ) = S(Ω(φ))◦τφ ∈
H1

0 (Ω)
2, which satisfies EΩ[φ,SΩ(φ)] = 0 in H−1(Ω)2. Indeed, we have

EΩ[φ,SΩ(φ)] = E[Ω(φ)]S(Ω(φ)) ◦ τφ = 0.
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Taking into consideration (30) and the differentiability of A(φ), b(φ), f̂(φ) and ûg(φ) it can be shown
that the operator EΩ is continuously Fréchet differentiable in both of its arguments. In fact, its derivative
with respect to the first argument at φ ∈ O(Ω) in direction δφ ∈ O(Ω) can be written as

⟨dφEΩ[φ, (ũ, w)]δφ, (ψ1, ψ2)⟩H1
0 (Ω)2 =

∫
Ω

A′(φ)δφ∇ũ · ∇ψ1 dx+

∫
Ω

A′(φ)δφ∇w · ∇ψ2 dx

−
∫
Ω

b′(φ)f̂(φ)ψ1 dx+

∫
Ω

A′(φ)∇ûgr (φ) · ∇ψ1 −
∫
ω

b′(φ)(ũ+ ûgr (φ)− ud)ψ2 dx

−
∫
Ω

b(φ)f̂ ′(φ)δφψ1 dx+

∫
Ω

A(φ)∇[û′gr (φ)δφ] · ∇ψ1 −
∫
ω

b(φ)û′gr (φ)δφψ2 dx,

where f̂ ′(φ)δφ = (Dτ−1
φ )⊤∇f̂(φ)·δφ ∈ L2(D) and û′gr (φ)δφ = (Dτ−1

φ )⊤∇ûgr (φ)·δφ ∈ H1
0 (Ω). Its derivative

with respect to its second argument at (ũ, w) ∈ H1
0 (Ω)

2 in direction (δu, δw) ∈ H1
0 (Ω)

2 is given by

⟨d(ũ,w)EΩ[φ, (ũ, w)](δu, δw), (ψ1, ψ2)⟩H1
0 (Ω)2 (31)

=

∫
Ω

A(φ)∇δu · ∇ψ1 dx+

∫
Ω

A(φ)∇δw · ∇ψ2 dx−
∫
ω

b(φ)δuψ2 dx. (32)

Above, we have A′(φ)δφ = Dτ−1
φ [−DδφDτ−1

φ − (Dτ−1
φ )⊤(Dδφ)⊤ + Itr(Dτ−1

φ Dδφ)](Dτ−1
φ )⊤det(Dτφ) and

b′(φ)δφ = tr(Dτ−1
φ Dδφ)det(Dτφ), where we use Jacobi’s formula.

From the discussion above, we now obtain the differentiability of the deformation-to-state operator.

Proposition 3. Suppose that Assumptions 1 and 2 hold. Then the map SΩ : O(Ω)2 → H1
0 (Ω)

2 is differen-
tiable. Its first derivative at φ ∈ O(Ω) in the direction δφ ∈ O(Ω) is given by (z, v) = S′

Ω(φ)δφ which solves
the system

−div(A(φ)∇(z + û′gr (φ)δφ)) = b′(φ)δφf̂ + b(φ)f̂ ′(φ)δφ+ div(A′(φ)δφ∇u) in Ω,

−div(A(φ)∇v)− χωb(φ)(z + û′gr (φ)δφ) = b′(φ)δφ(u− ud)χω + div(A′(φ)δφ∇w) in Ω,

z = 0, v = 0 on ∂Ω,

(33)

where u = ũ+ ûgr ∈ H2(Ω), and (ũ, w) = SΩ(φ).

Proof. Let φ0 ∈ O(Ω) and (u0, w0) ∈ H1
0 (Ω) be such that EΩ[φ

0, (u0, w0)] = 0. Since the operators A
and b are of class C∞, we see that EΩ ∈ C∞(O(Ω) × H1

0 (Ω)
2;H−1(Ω)2). Following similar arguments as

in Proposition 1, d(u,w)EΩ[φ
0, (u0, w0)] ∈ L(H1

0 (Ω)
2;H−1(Ω)2) is an isomorphism. The implicit function

theorem (see e.g. [36]) thus imply that there exist neighborhoods O0 ⊂ O(Ω) and V0 ⊂ H1
0 (Ω)

2 centered at

φ0 and (u0, w0), and an operator S̃0 ∈ C∞(O0;V0) such that EΩ[φ, S̃0(φ)] = 0 for all φ ∈ O0. From the

definition of the deformation-to-state operator SΩ = S̃0 in O0. From the arbitrary nature of φ0 ∈ O(Ω) and
(u0, w0) ∈ H1

0 (Ω)
2, SΩ is differentiable.

Using chain rule, we thus get S ′Ω(φ)δφ = −(d(ũ,w)EΩ[φ,SΩ(φ)])−1dφEΩ[φ,SΩ(φ)]δφ which can be easily
shown, by integration by parts, solves (33).

To aid us in solving the derivative of the objective functional, we consider the following adjoint system:

⟨d(ũ,w)EΩ[φ,SΩ(φ)](ψ1, ψ2), (p, q)⟩H1
0 (Ω)2

= (χωb(φ)(SΩ,1(φ) + ûgr (φ)− ud), ψ1)Ω − (A(φ)∇ψ2,∇q) + (b(φ)qχω, ψ1),
(34)

for all (ψ1, ψ2) ∈ H1
0 (Ω), where (SΩ,1(φ),SΩ,2(φ)) = SΩ(φ), q ∈ H1(Ω) is such that q|Γ = 0 and

q|Σ = −P[ga,gb]

(
1

ε
[∂νSΩ,2(

◦
φ)− ∂νSΩ,2(φ)]

)
∈ H 1

2 (Σ). (35)
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Note that – with similar arguments as in Remark 4 – SΩ,2(φ), ∂νSΩ,2(
◦
φ) ∈ H1

0 (Ω) ∩ H3(Ω) and thus

∂νSΩ,2(
◦
φ)− ∂νSΩ,2(φ) ∈ H

3
2 (Σ).

Now, we write the objective functional Jε as follows:

Jε(φ) =
1

2

∫
Ω

χω|SΩ,1(φ) + ûgr (φ)− ud|2b(φ) dx−
1

2

∫
Ω

χω|SΩ,1(
◦
φ) + ûgr (

◦
φ)− ud|2b(

◦
φ) dx

+ F∗
ε(∂νSΩ,2(

◦
φ)− ∂νSΩ,2(φ)).

Before we proceed in the computation of the derivative of the functional Jε, let us discuss the Fréchet
differentiability of the Fenchel transform F∗

ε.

Lemma 4. For y ∈ L2(Σ), the Fenchel transformation F∗
ε has a Fréchet derivative at y denoted as dF∗

ε(y) :
L2(Σ)→ R whose action is given by

dF∗
ε(y)δy =

〈
P[qa,qb]

(
1

ε
y

)
, δy

〉
Σ

∀δy ∈ L2(Σ).

Proof. Let us define g = P[ga,gb](
1
εy) and gδ = P[ga,gb](

1
ε (y + δy)) so that F∗

ε(y) = ⟨y, g⟩Σ − ε
2∥g∥

2
L2(Σ) and

F∗
ε(y + δy) = ⟨y + δy, gδ⟩Σ − ε

2∥gδ∥
2
L2(Σ). This implies that

F∗
ε(y + δy)−F∗

ε(y)−
〈
P[ga,gb]

(
1

ε
y

)
, δy

〉
Σ

= ⟨y + δy, gδ⟩Σ −
ε

2
∥gδ∥2L2(Σ) −

(
⟨y, g⟩Σ −

ε

2
∥g∥2L2(Σ)

)
− ⟨g, δy⟩Σ

≤ ⟨y + δy, gδ⟩Σ −
ε

2
∥gδ∥2L2(Σ) −

(
⟨y, gδ⟩Σ −

ε

2
∥gδ∥2L2(Σ)

)
− ⟨g, δy⟩Σ

= ⟨δy, gδ − g⟩Σ ≤ ∥δy∥L2(Σ)∥gδ − g∥L2(Σ).

Since the projection operator is nonexpansive [27, Lemma 1.10], we further get

F∗
ε(y + δy)−F∗

ε(y)−
〈
P[ga,gb]

(
1

ε
y

)
, δy

〉
Σ

≤ 1

ε
∥δy∥2L2(Σ).

Using similar arguments, we can get a lower bound for the term on the left-hand side in the form− 1
ε∥δy∥

2
L2(Σ).

This implies

1

∥δy∥L2(Σ)

∣∣∣∣F∗
ε(y + δy)−F∗

ε(y)−
〈
P[ga,gb]

(
1

ε
y

)
, δy

〉
Σ

∣∣∣∣→ 0 as ∥δy∥L2(Σ) → 0.

Let us now present the differentiability of the objective functional Jε.

Theorem 4. Suppose that Assumption 1 holds, and let φ ∈ O(Ω). The functional Jε is Gâteaux differentiable
at φ. The derivative in the direction δφ ∈ O(Ω) is denoted and expressed as

dφJε(φ)δφ =

∫
Ω(φ)

[
1

2
χω|S1(Ω(φ)) + ugr − ud|2 + fp̂+ χω(S1(Ω(φ)) + ugr − ud)q̂

]
div(δφ ◦ τ−1

φ ) dx

+

∫
Ω(φ)

Â∇S1(Ω(φ)) · ∇p̂ dx+

∫
Ω(φ)

Â∇S2(Ω(φ)) · ∇q̂ dx+

∫
Ω(φ)

∇f · (δφ ◦ τ−1
φ )p̂ dx,

(36)
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where (p̂, q̂) ∈ H1
0 (Ω(φ))×H1(Ω(φ)) is the solution for the system

−∆p̂− χω q̂ = χω(S1(Ω(φ)) + ugr − ud) in Ω(φ),

−∆q̂ = 0 in Ω(φ),

p̂ = q̂ = 0 on Γ(φ),

p̂ = 0, q̂ = −P[ga,gb]

(
1

ε
[∂νSΩ,2(

◦
φ)− ∂νS2(Ω(φ))]

)
on Σ,

(37)

(S1(Ω(φ)),S2(Ω(φ))) = S(Ω(φ)) ∈ H1
0 (Ω)

2∩H2(Ω)2, and Â = [D(δφ◦τ−1
φ )+(D(δφ◦τ−1

φ ))⊤−Idiv(δφ◦τ−1
φ )].

Proof. The differentiability of the objective functional follows from the differentiability of the deformation-
to-state operator and the Fenchel tranform. By the chain rule we thus have

dφJε(φ)δφ =
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx+

∫
Ω

χωb(φ)(ũ+ ûgr (φ)− ud)(z + û′gr (φ)δφ) dx

+

∫
Σ

P[ga,gb]

(
1

ε
[∂νSΩ,2(

◦
φ)− ∂νw]

)
∂νv ds

=
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx+

∫
Ω

χωb(φ)(ũ+ ûgr (φ)− ud)(z + û′gr (φ)δφ) dx

−
∫
Ω

A(φ)∇v · ∇q dx−
∫
Ω

div(A(φ)∇v)q dx,

where (ũ, w) = S(φ), (z, v) = S ′(φ)δφ. We note that to achieve the second equality, we used the fact that
Dφ|Σ = 0, which implies that A(φ) = I on Σ, and thus from (35) we infer that∫

Σ

P[ga,gb]

(
1

ε
[∂νSΩ,2(

◦
φ)− ∂νw]

)
∂νv ds = −

∫
Σ

q(A(φ)∇v) · ν

= −
∫
Ω

A(φ)∇v · ∇q dx−
∫
Ω

div(A(φ)∇v)q dx.

From the adjoint system (34), we further get

dφJε(φ)δφ =
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx+ ⟨d(ũ,w)EΩ[φ,SΩ(φ)](z + û′gr (φ)δφ, v), (p, q)⟩H1
0 (Ω)2

−
∫
Ω

div(A(φ)∇v)q dx−
∫
Ω

b(φ)(z + û′gr (φ)δφ)qχω dx.

(38)

From (31), integration by parts, and since (p, q) ∈ H1
0 (Ω)

2 we see that

⟨d(ũ,w)EΩ[φ,SΩ(φ)](z + û′gr (φ)δφ, v), (p, q)⟩H1
0 (Ω)2

= −
∫
Ω

div(A(φ)∇(z + û′gr (φ)δφ))p dx−
∫
Ω

div(A(φ)∇v)q dx−
∫
Ω

b(φ)(z + û′gr (φ)δφ)qχω dx.
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Plugging this into equation (38) and using (33) will give us

dφJε(φ)δφ =
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx−
∫
Ω

div(A(φ)∇(z + û′gr (φ)δφ))p dx

−
∫
Ω

div(A(φ)∇v)(q + q) dx−
∫
Ω

b(φ)(z + û′gr (φ)δφ)(q + q)χω dx

=
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx+

∫
Ω

b′(φ)δφf̂(φ)p dx+

∫
Ω

b(φ)f̂ ′(φ)δφpdx

+

∫
Ω

div(A′(φ)δφ∇(ũ+ ûgr (φ)))p dx+

∫
Ω

div(A′(φ)δφ∇v)(q + q) dx

+

∫
Ω

b′(φ)δφ(ũ+ ûgr (φ)− ud)(q + q)χω dx.

Another integration by parts on the terms on the second line of the right-hand side above, together with the
fact p = q + q = 0 on Γ and Dδφ = 0 on Σ, lead to

dφJε(φ)δφ =
1

2

∫
Ω

χω|ũ+ ûgr (φ)− ud|2b′(φ)δφdx+

∫
Ω

b′(φ)δφf̂(φ)pdx+

∫
Ω

b(φ)f̂ ′(φ)δφpdx

−
∫
Ω

A′(φ)δφ∇(ũ+ ûgr (φ)) · ∇pdx−
∫
Ω

A′(φ)δφ∇w · ∇(q + q) dx

+

∫
Ω

b′(φ)δφ(ũ+ ûgr (φ)− ud)(q + q)χω dx.

(39)

Lastly, for any u1, u2 ∈ H1(Ω), we use the following identities:∫
Ω

b′(φ)δφu1 dx =

∫
Ω(φ)

(u1 ◦ τ−1
φ ) div(δφ ◦ τ−1

φ ) dx; and∫
Ω

A′(Ω)δφ∇u1 · ∇u2 dx = −
∫
Ω(φ)

Â∇(u1 ◦ τ−1
φ ) · ∇(u2 ◦ τ−1

φ ) dx,

to facilitate the change of the integrals from Ω to Ω(φ) in (39) which gives us (36), with (p̂, q̂) = (p, q+q)◦τ−1
φ .

By a change of variables we transform the integral from Ω to Ω(φ) in the adjoint system (34) and deduce
that (p̂, q̂) solves(37).

Zolésio-Hadamard structure. We write the derivative of the objective function as a boundary integral
on the variable boundary Γ(φ). In this way, we can get the expression for the shape gradient, which is often
referred to as the Zolésio-Hadamard structure [19, page 479].

Corollary 1. Suppose that the assumptions in Theorem 4 hold. Then the derivative of Jε at φ ∈ O(Ω) in
the direction δφ ∈ O(Ω) can be expressed as

dφJε(φ)δφ =

∫
Γ(φ)

[
1

2
χω|u(φ)− ud|2 +∇u(φ) · ∇p̂+∇w(φ) · ∇q̂

]
(δφ ◦ τ−1

φ · ν) ds. (40)

where (u(φ), w(φ)) = (S1(Ω(φ)) + ugr ,S2(Ω(φ))).

Proof. We note that for any u, v ∈ H1(Ω(φ)) with u = v = 0 on Γ(φ)∫
Ω(φ)

Â∇u · ∇v dx =

∫
Γ(φ)

(∇u · ∇v)[θ · ν] ds−
∫
Ω(φ)

∆u[θ · ∇v] + ∆v[θ · ∇u] dx,

where we used the notation θ := δφ ◦ τ−1
φ , and ∆u,∆v ∈ L2(Rd) in the sense of distributions (see e.g. [19,

pages 487–488]). From the identity above and using the notation (u(φ), w(φ)) = (S1(Ω(φ))+ugr ,S2(Ω(φ)))
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we get

dφJε(φ)δφ =

∫
Ω(φ)

[
1

2
χω|u(φ)− ud|2 + fp̂+ χω(u(φ)− ud)q̂

]
divθ dx+

∫
Ω(φ)

(∇f · θ)p̂ dx

−
∫
Ω(φ)

∆u(φ)[θ · ∇p̂] + ∆p̂[θ · ∇u(φ)] dx+

∫
Γ(φ)

(∇u(φ) · ∇p̂)[θ · ν]

−
∫
Ω(φ)

∆w(φ)[θ · ∇q̂] + ∆q̂[θ · ∇w(φ)] dx+

∫
Γ(φ)

(∇w(φ) · ∇q̂)[θ · ν]

=

∫
Ω(φ)

[
1

2
χω|u(φ)− ud|2 + fp̂+ χω(u(φ)− ud)q̂

]
divθ dx+

∫
Ω(φ)

(∇f · θ)p̂ dx

+

∫
Ω(φ)

f [θ · ∇p̂] + (χω q̂ + χω(u(φ)− ud))[θ · ∇u(φ)] dx+

∫
Γ(φ)

(∇u(φ) · ∇p̂)[θ · ν]

+

∫
Ω(φ)

χω(u(φ)− ud)[θ · ∇q̂] dx+

∫
Γ(φ)

(∇w(φ) · ∇q̂)[θ · ν].

To simplify even further, we have by integration by parts:

•
∫
Ω(φ)

χω|u(φ)− ud|2divθ dx =

∫
∂Ω(φ)

χω|u(φ)− ud|2(θ · ν)− 2

∫
Ω(φ)

χω(u(φ)− ud)(θ · ∇u(φ)),

•
∫
Ω(φ)

fp̂ divθ dx = −
∫
Ω(φ)

(∇f · θ)p̂ dx−
∫
Ω(φ)

f(θ · ∇p̂ ),

•
∫
Ω(φ)

χω(u(φ)− ud)q̂ divθ dx = −
∫
Ω(φ)

χω(u(φ)− ud)(θ · ∇q̂ )−
∫
Ω(φ)

χω q̂(θ · ∇u(φ) ).

Therefore, we get (40)

We end this subsection with the following classical first-order necessary condition.

Proposition 4 (First Order Necessary Condition). Let φ∗ ∈ O(Ω) be a local minimizer of Jε. Then
dφJε(φ

∗)(φ− φ∗) ≥ 0 for any φ ∈ O(Ω).

5 Numerical resolution

In this section, we discuss the numerical implementation of the low-regret problem (10). We are especially
interested in the effect of missing information of the Dirichlet data on the nature of the solutions, or at least
on the optimal values of the cost-functional. We also numerically investigate the effect of the parameter
ε > 0 in the low-regret formulation on the numerical solutions.

Let us recall from Corollary 1 that the derivative can be written in the form

dφJε(φ)δφ =

∫
Γ(φ)

∇Jε(φ)ν · (δφ ◦ τ−1
φ ) ds

with ∇Jε(φ) = 1
2χω|u(φ)− ud|2 +∇u(φ) · ∇p̂+∇w(φ) · ∇q̂.

The intuitive choice for a descent direction would then be δφ = −(∇Jε(φ)ν) ◦ τφ on Γ(φ) so that

dφJε(φ)δφ = −∥∇Jε(φ)ν∥2L2(Γ(φ))d ≤ 0.

We employ the so-called traction method [5, 40, 41] that smoothly extends −∇Jε(φ)ν over Ω(φ). For this
purpose, we compute the solution G(φ) : Ω(φ)→ Rd of the system

α∆G = 0 in Ω(φ),

α∂νG+G = −∇Jε(φ)ν on Γ(φ),

G = 0 on Σ,

(41)
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where α > 0 is sufficiently small. We can then choose δφ = G◦τφ, so that δφ|Γ(φ) ≈ −(∇Jε(φ)ν)◦τφ. We note

that if f ∈ H1(D) and gr ∈ H
5
2 (Σ) then G ∈ W 3,∞(D;Rd) and consequently δφ = G ◦ τφ ∈ W 3,∞(D;Rd),

as required by O(Ω). In the numerical realisation we shall use P1-elements so that this regularity will not
be supported. We expect that this does not have a qualitatively strong effect on the solution.

An advantage of having the shape parametrized by the deformation field is that it allows us to use
numerical methods that have been successfully utilized for optimal control problems. We look for minimizing
deformation field iteratively, beginning with φ0 = 0, and generate the minimizing sequence (φk) by φk+1 =
φk + tkδφk, where δφk = G(φk) ◦ τφk . The step size tk−1 is chosen by a modified Barzilai–Borwein method
[7], i.e.,

tk = σk ×



∫
Γ
(φk−1 − φk−2) · (δφk−1 − δφk−2)

∥δφk−1 − δφk−2∥2L2(Γ)

if k is odd,

∥φk−1 − φk−2∥2L2(Γ)∫
Γ
(φk−1 − φk−2) · (δφk−1 − δφk−2)

if k is even,

(42)

where σ ∈ (0, 1) is a fixed scaling parameter. The power in the scaling parameter is added so as to make sure
that the deformed domain Ω(φk) does note have a boundary Γ(φk) that crosses itself. Since the computation
of tk requires two previous steps, we need to also define φ1 before entering the iterative computation of the
solution.

Summarizing, we have the following algorithm:

Algorithm 1 Gradient method with a weighted Barzilai–Borwein step size

Initialize: 0 < tol << 1, test = 1, 0 < σ < 1
φ0 = 0, δφ0 = G(φ0), φ1 ← φ0 + 0.5× δφ0, δφ1 ← G(φ1) ◦ τφ1 and set k = 2

while test ≥ tol do
identify tk by (42)
φk+1 ← φk + tkδφk and compute δφk+1 ← G(φk+1) ◦ τφk+1

test← max{|Jε(φk+1)− Jε(φk)|, ∥δφk+1∥L2(Γ)}
k ← k + 1

end while

5.1 Initial set-up

To find the minimizing deformation field, we are tasked to solve three equations (the state equations (11),
adjoint equations (37), and the deformation field equations (41)). We use the finite element method —
through the open-source software FreeFem++ [25] — to approximate the solutions of these equations using
P1 finite elements.

The initial domain Ω ⊂ D is defined as the annular region that is bounded by Σ = {(x1, x2) ∈ R2 :
x21 + x22 = 4} and Γ = {(x1, x2) ∈ R2 : x21 + x22 = (3/4)2}. The subdomain ω ⊂ Ω is defined as ω =
{(x1, x2) ∈ R2 : 1 ≤ x21 + x22 ≤ (7/4)2}.

Throughout the implementation, we shall use two profiles for the function ud : ω → R. Namely, ud is the
restriction to ω of the solution of the problem

−∆v = f in Ωd,

v = 0 on Γd,

v = gr on Σ,

(43)

where f ∈ L2(D) is the source function in (11), gr ∈ H
1
2 (Σ) is a given Dirichlet-data and Ωd is an annular

domain whose exterior boundary is the same Σ defined above, and its interior boundary Γd is one of the
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following cases:

Γd =

{
(x1, x2) ∈ R2 : (x1 − 0.1)2 + x22 =

1

16

}
,

Γd =
{
(x1, x2) ∈ R2 : x1 = 0.4(cos(t) + 0.4 cos(2t)), x2 = 0.3 sin(t), t ∈ [0, 2π]

}
,

which we respectively will refer to as Γd (circle) and Γd (arrow head). Throughout the remaining part of
this manuscript, we use the functions f = 1 and gr = 0.1 cos(2πx1) sin(2πx2). We refer to the target profile
derived from Γd (circle) and Γd (arrow head) as ud (circle) and ud (arrow head), respectively.
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Figure 2: Initial set-up of the boundaries Σ, Γ(φ0) and Γd and the triangulation of the domains ω, Ω(φ0)
and Ωd with Γd (circle) (A) and Γd (arrow head) (B).

The discretization of Γd is done by dividing the interval [0, 2π] by n = 80 points. The boundary Γ(φ0) is
then discretized by dividing the interval [0, 2π] with n = 100 points and use its parametrization. Similarly,
the interior and exterior boundaries of ω, and Σ are discretized using their polar coordinate parametrization
and dividing the interval [0, 2π] respectively with n = 120, n = 140 and n = 160 points. Each region bounded
by two consecutive boundaries is then triangulated via Delaunay. See Figure 2 for visualization, where the
initial domain Ω(φ0) is the region with the red and blue triangulations, while Ωd is the domain consisting
of the the regions with red, blue and green triangulations. To visualize the behavior of the deformation
fields, we shall only show the plots of the deformation of the boundary Γ, i.e. if φ is a deformation that is
of interest we shall show the boundary Γ(φ).

For the box constraints on the missing data gδ, we use ga = −0.2 and gb = 0.2.

5.2 The nominal deformation

In this section, we discuss the construction of the nominal deformation field
◦
φ. Since the solutions of the

low-regret optimization problem that we are looking for are supposed to correspond to missing Dirichlet data
around the given Dirichlet profile gr, we deemed it reasonable to define

◦
φ in such a way that it corresponds
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to gr. To be specific,
◦
φ solves the optimization problem

min
φ∈O(Ω)

J̃(φ) =
1

2

∫
ω

|u− ud|2 dx (44)

subject to
−∆u = f in Ω(φ),

u = 0 on Γ(φ),

u = gr on Σ.

(45)

The optimization problem (44)–(45) is well-known and numerical techniques have been well studied, see for
example [18, 19, 26, 33]. In our case, we use the the gradient method discussed above.

This minimization problem also serves as a test for the performance of the Barzilai–Borwein method:
since the state equation (45) has the same Dirichlet profile as the Poisson equation from which we derive
our target profile ud, the gradient method should be able to give us a boundary Γ(

◦
φ) that is close to Γd.

We observe from Figure 3 that this is indeed the case. In Figure 3, blocks (A) and (C) show the boundaries
Γd, Γ(

◦
φ), Γ(φ0), and the interior boundary of ω. Additionally, we plotted the points of discretization of the

boundaries Γ(φk) that converge to Γ(
◦
φ). Meanwhile, blocks (B) and (D) depict the close-up comparison

between Γd and Γ(
◦
φ). We see in Figure 3 (B) that the boundary Γ(

◦
φ) is close to Γd, where the difference

can be attributed to the limited access to the data and/or due to machine error. On the more nuanced Γd

(arrow head), we observe that our method is not able to identify the left side of the arrow which exhibits
non-convexity of the region inside Γd. This phenomena is not exclusive to our method. Indeed, there are
works dedicated to identifying shapes that have non-convexity, see for example [37].

5.3 Low-regret solutions

We now solve the low-regret problem at specific values of ε > 0. Beginning with ε = 0.5, Figure 4 (A1) and
Figure 4 (B1) show the evolution of the initial boundary Γ(φ0) towards the solution Γ(φε) with ud (circle)
and ud (arrow head) as target profiles, respectively. We see that the boundary Γ(φε) for both target profiles
is considerably farther from the boundary Γd than the boundary Γ(

◦
φ). This is due to the fact that the

low-regret problem takes into account the missing data gδ which is compensated by the Fenchel transform.
Figure 4 (A2) and Figure 4 (B2) show the progression of the objective function values at each iteration.

As expected from the Barzilai–Borwein method, the iterations of Jε tend to a neighborhood of zero in
a non-monotone fashion. We observe that the value of the tracking part of the cost become small as
k → ∞, which behaves similarly as Jε. This relates to the fact that ∥g(φε)∥L2(Σ) = 5.035 × 10−8 and
∥g(φε)∥L2(Σ) = 3.419 × 10−7 for the cases where the target profiles are ud (circle) and ud (arrow head),
respectively. As a consequence, this gives small value for the evaluation of the Fenchel transform.

To illustrate the effects of varying the value of ε > 0 on the boundary Γ(φε), the values of the objective
functional, the tracking functional and the L2(Σ)-norm of g(φε) we have Figure 5. We observe that for higher
values of ε, the boundaries Γ(φε)—as shown in Figure 5 (A1) and (B1)— converge towards Γ(

◦
φ). This is

due to the fact that higher values of ε > 0 allow only small values of ∥g(φε)∥L2(Σ). In fact, Figure 5 (A4)
and (B4) show that the norm of g(φε) tends to zero as ε increases. On the other hand, we see from Figure 5
(A1) and (B1) that as ε decreases, the boundaries go farther from Γ(

◦
φ). As expected from the result in

Section 3, we observe convergence of the boundaries Γ(φε) as ε→ 0. Specifically, the boundaries are visually
indistinguishable when ε ≤ 0.125 for the target profile ud(circle) and when ε ≤ 0.0625 for ud(arrow head).
We also see that as ε→ 0, ∥g(φε)∥L2(Σ) increases and eventually plateaus due to the box constraints imposed
on the missing data. The behaviour of g(φε) is also reflected in the behaviour of the tracking functional:
as illustrated in Figure 5 (A3) and (B3) it decreases as ε increases, and increases up to a certain bound as
ε→ 0.

For ε → 0 the value of the tracking functional appears to plateau as a consequence of the fact that the
constraints become active, while the value of the cost functional can still increase as reflected by the term
on the right hand side of the above expression. According to (26) it is bounded by the optimal value of the
no-regret problem.
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Figure 3: The evolution of the initial boundary Γ(φ0) towards Γ(
◦
φ) with target profile ud (circle) (A) and

ud (arrow head) (C), and the zoomed-in comparison of the boundaries Γd and Γ(
◦
φ) with ud (circle) (B) and

ud (arrow head) (D).

5.4 Testing the regret

We now compare the low-regret solutions to the solutions of shape optimization problem (1)–(2) with specific
values of the data gδ ∈ Q. In the examples that we shall show, we use the functions

giδ(x1, x2) = min

(
0.2,max

(
−0.2, x1x2

30(1− (0.099)i)
+ 0.02 cos(4πx1) cos(4πx2)

))
,

for i = 1, 2, . . . , 10, and x = (x1, x2) ∈ Σ, which is designed to converge to a bang-bang type data as we
increase the index i.

We use the notation J i
δ(·) = J(·, giδ), and denote by φi

δ the minimizer of J i
δ, and test the case where

the target profile is ud (bullet) since similar observations can be inferred from the other target profile. We
see from Figure 6 (A) that J i

δ(φ
i
δ) ≤ J i

δ(φε), as expected. We also notice that as the index i increases, the
evaluations J i

δ(φ
i
δ) and J

i
δ(φε) increase. This is attributed to the fact as the index gets higher the Dirichlet

data satisfied by the state equation gets farther from the reference Dirichlet profile gr.
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Figure 4: The evolution of the initial boundary Γ(φ0) towards Γ(φε) with target profile ud (circle) (A1) and
ud (arrow head) (B1); the trend of the objective function value with respect to the iteratiosn with ud (circle)
(A2) and ud (arrow head) (B2); and the trend of the tracking functional with respect to the iteratiosn with
ud (circle) (A3) and ud (arrow head) (B3).

Another inference we can get from Figure 6 (A) is that the evaluations J i
δ(φε) do not depart too far from

the optimal value J i
δ(φ

i
δ). To see this clearly, and additionally to understand the effect of ε, we plotted the

difference J i
δ(φε) − J i

δ(φ
i
δ) against the parameter ε in Figure 6 (B). We notice first that the difference, for

any i and ε, does not exceed 11× 10−3. We can thus agree that the solutions φε are indeed of ‘low-regret’.
In the same figures, we can also reflect on behaviour of J i

δ(φε) − J i
δ(φ

i
δ) as the regularizing parameter

ε is varied. Decreasing this parameter from ε = 8 towards 0, the value of the difference first gets smaller,
before it starts to increases again at about ε = 0.225. As an attempt to explain this behavior we can expect
that for large values of ε the effect of the regularisation term ε

2∥gδ∥
2
L2(Σ) is dominating. The difference

decreases as ε is decreased until an optimal balance between regularisation and the min− sup term in the
low regret formulation (4) is reached. Decreasing ε even further the possible ill-posedness of the no-regret
formulation shows effect. In our case it is dampened as a consequence of the constraints on gδ. This effect
of the parameter ε on the regret formulations is quite comparable to the one of the regularisation parameter
in ill-posed inverse problems. This has led to a vast literature on optimal parameter-choice strategies in
the context of inverse problems, see e.g [20] and the literature cited there. It might also be of interest
to carry out investigations for the optimal choice of ε for low-regret problems. We finally underline that
in our test problem the no-regret solution (obtained as ε → 0) provides a deformation field leading to a
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Figure 5: Comparison of the boundaries Γ(φε) for varying values of ε with target profile ud (circle) (A1) and
ud (arrow head) (B1); the optimal value of the objective function Jε(φε) plotted against ε with ud (circle)
(A2) and ud (arrow head) (B2); the value of the tracking functional at the optimal deformation plotted
against ε with ud (circle) (A3) and ud (arrow head) (B3); and the value of ∥g(φε)∥L2(Σ) against ε with ud
(circle) (A4) and ud (arrow head) (B4).

respectable boundary Γ(φε), as seen from the fact that the highest difference to the optimal cost does not
exceed 11× 10−3.

6 Conclusion and outlook

A tracking-type shape optimization problem with missing Dirichlet boundary data gr was investigated. To
address the challenge of missing data, the optimization problem was reformulated into low-regret and no-
regret problems. The low-regret problem is a regularized version of the no-regret problem. This reformulation
introduced a new governing state equation with a one-way coupling, which we proved to be well-posed.
Furthermore, we demonstrated that both the low-regret and no-regret problems admit solutions by employing
convexity arguments. While the solution to the no-regret problem is not necessarily unique, we established
that solutions to the low-regret problem converge to a solution of the no-regret problem as the regularization
parameter ε tends to zero.

Additionally, a sensitivity analysis is provided, deriving the Gâteaux derivative of the objective function
for the low-regret problem. This allowed to design a gradient-based method to numerically solve the opti-
mization problem. In our numerical examples, we demonstrated the convergence of the low-regret solutions
as ε → 0. Moreover, we showed convergence as ε → +∞, which corresponds to the case where the missing
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data is zero.
We also explored how the solutions to the low-regret problem compare to those of the original optimization

problem for specific choices of the data gδ. The results are promising, as the objective functional, evaluated
at the solutions of the low-regret problem, remains close to the optimal value. Furthermore, we observed a
threshold behavior: the difference between the objective values starts increasing when moving toward smaller
values from ε ≈ 0.225 on, and it also increases as ε grows larger.

In future work it can be of interest to investigate the concept of low-regret problems in context of inverse
problems – which includes problems with measurements only on the surface – with missing data and to
analyze the asymptotics as the regret parameter ε and the noise level of the data tend to zero. Another line
of investigation could be the derivation of the optimality system for the no-regret problem. This includes
analyzing the derivative of the objective functional for the low-regret problem as ε→ 0.

We also note that if the non-convexity of the arrow head Γd becomes more pronounced the accuracy of
the low-regret approach will suffer. This can be considered to be a limitation of the method. It is thus a
challenge for future work to propose methods which simultaneously take into consideration missing data and
the reconstruction of objects with a complicated geometry.
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tions aux limites en théorie des plaques minces. Theses, Normandie Université, December 2021.
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