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ABSTRACT. The Kalman(-Bucy) filter is the natural choice for the state reconstruction
of disturbed, linear dynamical systems based on flawed and incomplete measurements.
Taking a deterministic viewpoint this work investigates possible extensions of the concept
to systems with uncertain dynamics and noise covariances. In a theoretical analysis error
bounds in terms of the variance of the uncertainties are derived. The article concludes
with a numerical implementation of two example systems allowing for a comparison of
the estimators.
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1. INTRODUCTION

In this work we aim at reconstructing the state of a linear perturbed dynamical system

of the form

&(t) = Asz(t) + Bu(t) te (0,T),

z(0) = xo + m,
where the disturbances in the dynamics and the initial state are given by v € L?(0,T;R™)
and n € R", respectively. Additionally the system matrix A, depends on a parameter o € 3
representing uncertainties of the system dynamics. We assume access to a measurement of
the system given as

y(t) = Cx(t) +pt) te€(0,T),

affected by the disturbance € L?(0, T;R"). The disturbances are assumed to be unknown
and of deterministic nature. They are associated with parameter dependent positive definite
matrices I'; € R™"™ R, € R™™ and Q, € R™" representing their magnitudes.

Reconstructing a system’s state based on incomplete and disturbed measurements has
a rich history going back at least to Wiener’s seminal work [22], where disturbances are
modeled as random processes. The pioneering works of Kalman and Bucy introduced the
highly celebrated Kalman(-Bucy) filter for time discrete [9] and for time continuous [10]
linear systems with Gaussian noise. Due to its effectiveness it is widely applicable in
practice and it inspired numerous variations to address particularly challenging systems
such as the extended Kalman filter for nonlinear dynamical systems and the ensemble
Kalman filter [6] for systems of very large dimension.

The assumption of normally distributed noise, however, implies state independent
disturbances. Hence exact knowledge of the system dynamics is required and modeling
uncertainties and errors introduced by, e.g., material dependent parameters, moving sensors,
or model reduction, are not addressed explicitly. Similarly, the Kalman filter relies on
exact knowledge on the distribution of the errors, i.e., their respective covariances which, in
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practice, are known only approximately. In [17], see also the monograph [18], the authors
consider time continuous, quadratically stable dynamics subject to bounded uncertainties.
They design an estimator based on solutions of associated Riccati equations and analyze
the asymptotic behavior with respect to time. It is shown that the expected difference of
estimator and disturbed state converges to a neighborhood of zero. For a discussion of
time discrete systems affected by noise with uncertain covariances we refer to [14] and the
references therein, see also [20] for a more recent analysis.

The remainder of the article is organized as follows. Section 2 gives an overview on the
Kalman filter in the stochastic as well as in the deterministic setting. We compare the two
formulations, point out connections, and set up the framework for our investigation. In
Section 3 the uncertainties are formulated mathematically and three designs for Kalman
filters for uncertain systems are proposed and characterized. In part we shall focus on
the estimator which arises as the weighted average of the individual Kalman filters and
minimizes the average energy. Section 4 contains the technical proof that the distances of
the proposed estimators to the Kalman filter associated with the hidden parameter can
be estimated from above in terms of the level of variance in the uncertain matrices. The
article concludes with a numerical investigation of the designs at the hand of two examples
in Section 5.

Throughout the article we use the following notation. We say that a multivariate random
variable X is distributed according to N'(m, ¥), where m € R? and ¥ € R%? is symmetric
and positive definite, if X is normally distributed with mean m and covariance matrix .
In short we write X ~ N (m, ). For a symmetric, positive definite matrix P € R%? the
associated norm of x € RY is defined via ||x||3; = 2T Mz. The cardinality of a finite set
M is denoted by |M]|. Finally, we abbreviate some common LP spaces, Sobolev spaces,
and spaces of continuous functions equipped with their default norms as follows. We set
L2(t1, to; RY) = L2, HY(t1,10;RY) = H2, O([t;12); RY) = €12, and C([0;1];RH) = ¢,
For the spaces of vector valued function the dimension d is suppressed in the notation and
becomes clear from context.

2. THE KALMAN FILTER

We commence with a brief presentation of two different formulations of the Kalman
filter. Even though our proposed Kalman filter for uncertain systems relies only on the
deterministic formulation we include a recap of the stochastic formulation enriching the
interpretation of our approach. For ease of presentation we restrict ourselves to time-
invariant systems. While the concepts and results presented in this section are well known
in the literature we include them for the purpose of a self-contained work.

2.1. The stochastic formulation. We illustrate the stochastic filter based on the original

work [10]. Even though this formulation of the model lacks some mathematical rigor, the

formal representation suffices to illustrate the underlying concept. For a more thorough
treatment based on It6 integrals we refer to [16,24].

Consider the disturbed system with system state X; and measured output Y; modeled

by

44X, =AX,+ BV, te€(0,7),

Y = CXy + Wy, tG(O,T),

where A € R™" describes the linear dynamics of the system, C' € R™" describes the

incomplete measurements taken from the state and B € R™™ encodes how the noise enters

(2.1)
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the dynamics. The white noise affecting the dynamics and the measurement is modeled
by the multivariate Gaussian random variables V; € R™ and W; € R", respectively. They
have zero mean and covariances given by

cov[Vy, Vil = Ro(t — s),
cov[Wy, W] = Q4(t — s),

with given symmetric, positive definite matrices R € R™™ and @ € R™". The Gaussian
distribution of the state at time ¢ is described by X; with initial Gaussian distribution X
with mean xg € R™ and covariance I' € R™", symmetric, positive definite. Finally, V;, W4,
and Xy are assumed to be mutually independent and Y; encodes the distribution of the
output of the system at time ¢.

The objective, as stated in [10], is to optimally estimate the realized state x(t), of the
system based on realized, measured outputs y(s), 0 < s < ¢. Kalman and Bucy find that
the optimal estimate Z(¢) is characterized via

Z(t) = AZ(t) + I()CTQ T (y(t) — Cz(t)) te(0,T),

2.2
#(0) = 0. 22

where II is the unique solution to the differential Riccati equation
TI(t) = AIL(t) + I(t)AT —TI(t)CTQ 'CII(t)+ BRB'  te (0,T), 23

T1(0) =T.

These formulas have since been confirmed by the stochastic community using rigorous
mathematical concepts, see e.g. [16,24]. Interpreting (2.1) as stochastic differential equations
with noise terms defined by Brownian motions and solutions defined via the It6 integral one
characterizes the conditional expectation and covariance. More precisely, given a measured
output the state of the system at time ¢ is distributed according to N(Z(t),II(¢)) where
the mean and covariance are characterized via (2.2) and (2.3), respectively. In particular,
if one uses the mean T as a state estimator the error has zero mean and a covariance
characterized via the Riccati equation (2.3).

We conclude the subsection by introducing some well-known concepts connected to
multivariate normal distributions as presented,

Definition 2.1. Consider a random variable distributed according to N'(m, %) with mean
m € R? and covariance ¥ € R*? and assume X to be reqular. We define the following
concepts associated with it.

(i) The precision matriz [4, Sec. 5.4] P is defined as the inverse of the covariance
matriz, i.e., P = %71,

(ii) The generalized variance [7, Sec. 5] is defined as the determinant of the covariance
matriz. Further the generalized precision p is defined as the reciprocal of the
generalized variance i.e., p = #(2) = det(P).

(iii) For any fized vector ¢ € R? its Mahalanobis distance [13] to the normal distribution
is defined as its distance to the mean weighted by the precision, i.e.,

e = mllp = /(¢ —m) T P(¢ —m).

The precision matrix and generalized precision extend the precision associated with
univariate normal distributions to the multivariate case and the Mahalanobis distance
introduces a distance from a point to a point to a given normal distribution. As described
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above, the Kalman filter can be understood as a time dependent normal distribution.
Hence these concepts enable us to quantify the precision of the Kalman filter as well as the
distance of deterministic points to the Kalman filter.

2.2. The deterministic formulation. In this section we consider a deterministic model
of a disturbed system brought forward by Mortensen in [15]. In his work he considers
possibly nonlinear systems and derives a state estimator based on energy minimization.
Unfortunately the obtained formulas for nonlinear systems rely on access to the value
function arising from the optimal control problem minimizing the energy. While said value
function is formally available as the solution of a Hamilton-Jacobi-Bellman equation its
realization is afflicted by the curse of dimensionality. However, Mortensen notes that, when
applied to linear dynamics, the formulas reduce to the Kalman filter derived in [10]. A
detailed study of this concept for linear systems including a rigorous derivation of the filter
equations is presented by Willems in [23].
The deterministic formulation of the dynamics and the output of the model reads

z(t) = Az(t) + Bv(t) te€(0,7),
z(0) = z9 + 1, (2.4)
y(t) = Cx(t) +p(t)  te(0,T),

where the system matrices A, B, and C' are the same as in the stochastic model (2.1). The
disturbances in the dynamics, initial value, and output are represented by v € L?(0,T;R™),
n € R, and pu € L%(0,T;R"), respectively. They are assumed to be deterministic and
unknown. For the sake of readability throughout the rest of this work for 0 <t; <ty <T
and d € R? we denote Eif = L?(t1,t2;R?). Note that the dimension of the image space is
surpressed in the notation and is explicitly mentioned if not clear from context.

Remark 2.2. On a formal level system (2.4) can be interpreted as a version of the stochastic
model (2.1) in which the random terms have realized but are unknown. As Willems notes,
due to a gap in reqularity this connection can unfortunately not be established in a rigorous
fashion. The assumed L?-reqularity of the errors v and p is essential for the following
analytical treatment. In contrast, realizations of the white noise in the stochastic model
(interpreted as the derivative of a Brownian motion) must be expected to be of significantly
lower regularity, cf. [11].

Willems motivates the construction of the state estimator Z(¢) at time ¢t € (0,7] as
follows. Given measured output data up until time t, i.e., y(s), 0 < s < ¢, one reconstructs
the disturbances 7, and v(s), and p(s), 0 < s <t as the ones that have minimal (weighted)
energy among all possible disturbances that fit the given output in the sense of (2.4)
restricted to (0,¢). Mathematically speaking, for a fixed t € (0, 7] the state estimation at
time ¢ is defined via

t
gl [+ () ds, subject o
x(s) = Ax(s) + Bu(s) s € (0,1), (2.5)
J}(O) = o + 1,
ys) = Cals) + ) se(0.0),

where I' € R™", R € R™™ and @ € R™" are symmetric positive definite matrices and in
the following are referred to as weighting matrices. Denoting the resulting state trajectory
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associated with the minimizing disturbances by z; the estimator at time ¢ is defined as
Z(t) = xf(t). We stress that for 0 <t; <ty < T in general it holds Z(t1) = 7, (t1) # =7, (t1).
Therefore, in order to obtain the state estimate Z(t) for all ¢ € (0, 7] the minimization
must be carried out individually for each time point. Before discussing the derivation of
the Kalman filter equations we comment on the weighting matrices I', R, and Q.

Remark 2.3. While the weighting matrices can, in principal, be chosen freely they cor-
respond to the covariance matrices I';, R, and Q appearing in the stochastic formulation.
The intuitive connection is very straight forward if the covariance matrices are diagonal. If,
e.g., Q is diagonal the r components of the stochastic measurement error Wy in (2.1) are
uncorrelated and their respective variances are found on the diagonal of Q). Weighting the
(distance of the) corresponding deterministic measurement error p (to its zero mean) in
(2.5) with Q= has the following effect. Any component with a small variance (relative to
other components of u and the components of n and v) is weighted with the reciprocal, i.e.,
is strongly penalized in the minimization and the minimizer is promoted to display a small
value in said component. This exactly fits the small variance of the stochastic formulation.
It is well-known that this concept transfers to the case of non-diagonal covariance matrices
', R, and Q allowing for the components of each error to be correlated and it is applied,
e.g., in generalized least squares [1]. To stress this principle, for the remainder of this work
we refer to ', R, and Q as covariance rather than weighting matrices.

In [23] Willems treats the minimization (2.5) directly. While his work considers the
slightly less general setting with fixed @ = Id and R = Id a straight forward extension of
his arguments leads to analogous results for the setting presented here. One finds that the
state estimator 7 is characterized via the Kalman filter equations (2.2)-(2.3), where now zg
denotes the undisturbed initial condition rather than the mean of the initial distribution.

For our purposes we follow Mortensen’s approach and reformulate (2.5) into a problem
of optimal control. More precisely, we insert the identities for 2(0) and y into the cost and
additionally fix a final state £ € R™ for the state trajectory to obtain

1 1 [t
i J(z,v;t,€) = =||z(0) — zo||>- 7/ 2 -C 2 . ds, (2.6
xe;;;}ge% (z,v:t,8) 2Hac'( ) — wollp-1 + 5 J, [v(s)Ig-1 + [ly — Cz(s)[[-2 ds, (2.6)

subject to z(s) = Axz(s) + Buv(s) s € (0,t), (2.7)
z(t) = €. (2.8)

Remark 2.4. We point out that, even though the construction of the estimator is based
on the optimal control problem (2.6)-(2.8) and v takes on the role of a control, we do not

assume any possibility to influence the system. The control formulation at hand is merely a
tool to reconstruct energy minimal disturbances that most likely caused the measured output.

The value function associated with the control problem is defined as
V(t,§) = inf  J(z,v;t,§) subject to (2.7) — (2.8) t e (0,77,

zeHt vell

; 2 (2.9)
V(0,§) = 5”5 — Zol|p-1,

and represents the minimal amount of energy required to ensure that at time ¢ the system
is in the state £. It turns out that for all ¢ € [0, 7] the state estimator Z defined above can
equivalently be defined as

Z(t) = argmin V(t, ).
£eR™
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We now show that the value function can be given explicitly in terms of the solution of the
Kalman filter equations which are
F(t) = A3() + TIOCTQ ! (y(t) — C7(1) e (0.7), 210)
z(0) = o, '
and
TI(t) = AIL(t) + II(t)AT —TI(t)CTQ 'CII(t)+ BRB'  te (0,T),
I1(0) =T.
Even though the following derivations and arguments are based on the deterministic
perspective, we still refer to the solution IT of (2.11) and its inverse II"* = P as the (error)
covariance and the precision matrix associated with the Kalman filter allowing for an
interpretation of our results. Multiplying (2.11) by P(¢) from the left and from the right
we find that the precision matrix is characterized via the differential Riccati equation

(2.11)

P(t)=—-A"P(t)— P(t)A— P(t)BRB'P(t) +CTQ'C, te(0,7T),

PO) =T, (2.12)

Lemma 2.5. Let  and P be given as the solutions of (2.10) and (2.12), respectively.
Then for all t € [0,T] and & € R™ it holds

V(t.6) = (€~ 70) POE-50) + 5 [ o) - Calfds. (213

In particular the value function is quadratic in £ implying that its Hessian is independent
of € and its Hessian VéV(t,g) is given by the solution P of (2.12).

Proof. The result is shown in [2, Sec. 2.3] for continuous outputs y and weighting matrices
I'=1d, R =1d, and Q = Id. A straight forward extension yields the result for the weighted
setting. A standard sensitivity analysis, e.g., via an application of the inverse mapping
theorem to the first order optimality system ensures that V(¢,&) depends continuously on
y € Lh. A density argument completes the proof. O

This representation of the value functions allows for an interesting interpretation of the
energy.

Corollary 2.6. Let T and P be given as the solution of (2.10) and (2.12), respectively.
Then for all t € [0,T] and & € R™ it holds

V(1,6) = V(t,3(0) = 5~ 70

In view of the discussion in Subsection 2.1 we find that the difference in energies of a
state £ at time ¢ and the Kalman trajectory Z(¢) coincides with their squared Mahalanobis
distance.

3. KALMAN FILTERING FOR UNCERTAIN SYSTEMS

The Kalman filter described in the previous section assumes exact knowledge of both
the system dynamics represented by the matrix A and the nature of the occurring noise
represented by the weighting/covariance matrices I', R, and Q. In practical applications,
however, this information may not be available in exact form as the dynamics of the system
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may depend on various uncertain parameters [20]. Further, as described, e.g. in [14], the
covariance matrices associated with the distribution of the noise and the initial state may
be subject to uncertainties.

3.1. Modeling uncertain parameters. We model the uncertainties of the system matrix
A as follows. Let s4 € N and consider a matrix valued function

a: R%4 — R™™.

Further let Ngy € N and ¥4 C R*4 be of cardinality | 4] = N4. Consider the discrete
probability space (X4, P(X4),Pa) , where P4(X4) denotes the power set of ¥4 and for
S C ¥4 we define the probability function P4(S) = NLA\S |. Then the linear dynamics of
the system are characterized by the matrix valued random variable

o a, =alo), Xx— R

and a, denotes the system matrix that realizes with the parameter o € ¥ 4. We analogously
define the uncertain weighting matrices v,, r,, and g, as random variables on X, g,
and ¥ with respective cardinalities and dimensions Nr, sr, Ng, sg, and Ng, sg. The
associated probabilities are defined and denoted analogously to A. We denote N =
NaoNr Nr Ng and s = s4 sr srsg. Then

Y=3aXxXrxXpxXgCR’
has cardinality N and we define the product space (X, F, P), via
F=P(XEA)QPEr)@P(ERr)®P(Eqg) =PEX),
1
P(SA®Sr ®Sr®Sg) = Pa(Sa) Pr(St) Pr(Sr) Po(So) = .
(54 ® Sr @ Sr ® Sq) = Pa(Sa) Pr(Sr) Pr(Sr) Po(5q) 525057 ® 5%

Finally the uncertain system and weighting matrices we work with are defined as random
variables on ¥. Denote o = (04,0r,0R,0¢Q) € ¥ and define

=R, o= Ar =ag,,
=R o—=Ts =,
Y —=R™" 0 Ry =70,
=R, 09 Qs = qog-

Note that they are, by construction, mutually independent. For convenience we denote
the N elements of ¥ by o, kK = 1,..., N and dependencies on o; may be indicated by
indexing k, e.g., Ay, = Aj.

In the following we present three different estimators for the reconstruction of the state
of the uncertain system affected by noise with uncertain covariances.

3.2. The Kalman filter for expected system and covariance matrices. We begin
with the most straight forward and computationally affordable approach. Namely, we form
the expectation of the four uncertain matrices and realize the associated Kalman filter.
More precisely, define
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The associated state estimator is constructed as the solution to
2e(t) = AgZr(t) + Oe(t)CT Q' (y(t) — Cr(t))  te(0,T),

3.1
#(0) = 0. 3

where Il is given via the Riccati equation
s(t) = Aells(t) + (1) g ~ Ts()C Q¢ Clls(t) + BRsB' 1€ (0.T), .

I1(0) = I

3.3. The expected Kalman filter. For the second approach we realize the Kalman
filter associated with each possible parameter o € ¥ allowing for the construction of an
estimator Z, depending on the uncertainty. Formulating the uncertain trajectory as a
random variable its associated expectation yields the state estimator.

To that end for every element oy, € X solve for the associated Kalman filter z), = Z,, via

Zi(t) = ApZi(t) + ()CT Q" (y(t) — CEk(t)) € (0,T),

~ (3.3)
I'k(o) = Zo,
where Il is given via the Riccati equation
i (t) = ARl (t) + () AL — T (H)CTQ, 'CTI(t) + BRyBT  t € (0,T), (3.4)

I1,(0) = Ty

For later reference we denote the associated precision matrix by Py(t) = H,;l(t). It is
given as the unique solution of

Pi(t) = —Al Pe(t) — Pp(t) Ay — Pu(t)BRyB ' Pi(t) + CT Q' C, te (0,7),

Py(0) =T, % (3.5)

Now o) — Zo,, & — {Zp,: 0 € X} C Hg is considered a random variable where the image
space is equipped with its power set as a o-algebra. The state estimator then is defined as
the expectation, i.e.,

_ I .
Ty =E[Z,] = N Z Tk (3.6)
k=1

We point out that, by construction, for any ¢ € [0,7] the estimator Tg(t) minimizes the
expected squared Euclidean distance, i.e., it is the unique solution of

N
1
minIE{ — Z,(t Q}Zmin— — TR(t)]%.
min [l = 3(0)1°) = guin 7 3 - )]
Finally, note that the realization of this option is computationally more demanding than
the one in the previous subsection. Indeed, it requires solving N Riccati equations and

ODEs.

3.4. Minimizing the expected energy. The third and final estimator is defined as the
minimizer of the expected energy. Throughout the rest of this work we use the notation
established in the previous subsection, i.e., X, II;, and P, are the Kalman filter trajectory,
the error covariance, and the precision matrix associated with the matrices Ay, 'y, Ry,
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and Q. Additionally, throughout the remainder of this work we denote the associated
value function according to (2.9) by Vi = V,,. For t € [0,T] we obtain

Ty (t) = argmin Vi (¢, §),
£eRm

and

1

Vi(t,€) = 5(& = 2u(8) " Pelt)(€ = (1)) + % /0 ) - Cox(s)lgrds,  (37)

with Zj and Py given via (3.3) and (3.5), respectively. Note that analogously to T = Z,,
the value function V =V,, can be considered as a random variable. The reader is further
reminded that intuitively speaking Vi (t, &) represents the minimum amount of energy
required to ensure that the system associated with oy at time ¢ is in the state &.

For the uncertain system we now define the expected energy as follows.

Definition 3.1. The expected energy E: [0,T] x R™ — R is defined via

N

B(t,6) =B Vo(t, )] = - > Vilt,6)
k=1

1 N

2N =

(3.8)
(€= 3 PUOE ~a0(0) + [ luls) ~ Caulol 1 ds)

Intuitively, E(t, ) represents the amount of energy that is required in expectation to
ensure that at time ¢ the uncertain system is in the state £&. This motivates the formal
definition of the third state estimator discussed in this work.

Definition 3.2. Fort € [0,T] we define the state estimator as the state minimizing the
expected energy via
ZTg(t) = argmin E(t, §).
EERn

In the following we show that for each t € [0,T] the function E(t,-) admits a unique
minimizer ensuring that Zg is in fact well-defined. We further derive a characterization in
terms of the individual Kalman trajectories Zj = Z,, allowing for a numerical realization
with cost comparable to the realization of Zg.

The representation via the individual value functions shows that E is quadratic in &
allowing for straight forward differentiation of E with respect to &.

Lemma 3.3. For any fized t € [0,T] the mapping & — E(t,§) is of class C*. Its gradient
and Hessian are given as

1 X 1 X
VE(t,&) = N SO Put)(€—F(t), and  V?E(t,§) = N > PBi(t),
k=1 k=1

respectively.

Proof. According to Theorem 3.1 the average energy is a sum of functions quadratic in &
and differentiability follows. The formulas are obtained by differentiation with respect to
£. O

Existence, uniqueness, and the characterization of a minimizer follow directly.
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Proposition 3.4. The state estimator defined in Theorem 5.2 is well-defined and given
in terms of the Kalman filter trajectories and covariance matrices associated with the
individual Kalman filters. For t € [0,T)] it holds

N
Zu(t) =P (t) Y Put) Zp(t), (3.9)
=1

where P(t) = YN Piu(t).

Proof. We fix t € [0,T] and begin by showing uniqueness. Due to the regularity of F
established in the previous lemma any minimizer £* must satisfy VE(t,£*) = 0. Rearranging
the terms in the formula for the gradient yields

ZPk )& —ZPk

For all kK = 1,..., N we have that P is given as the solution to a differential Riccati
equation with positive definite initial value, hence Pg(t) is positive definite for all ¢ € [0, T],
cf. [5, Prop. 1.1]. The positive definiteness then carries over to the to the sum denoted by
P. Hence P is invertible and Zg(t) is the only state satisfying the necessary condition to be
a minimizer. Together with the formula for the Hessian these considerations additionally
ensure positive definiteness of the Hessian and it is shown that Z(¢) is in fact the unique
minimizer. g

Remark 3.5. According to this formula Tg can be interpreted as a generalized weighted
mean of the individual Kalman filter trajectories. Indeed, it is given as the sum of each
Kalman trajectory multiplied from the left by its associated precision matriz. The sum is
then multiplied by the inverse of the sum of those precision matrices. We note that the
expression for Tg as a weighted average of the family Ty resembles the statistical method of
inverse-variance wetghting were a family of random variables is aggregated with the goal to
minimize the variance of the weighted average.

Interestingly Zg not only minimizes the expected energy, but also the expected squared
Mahalanobis distance.

Corollary 3.6. Let t € [0,T] be arbitrary. Then Tg(t) is the unique solution of the
minimization problem

2
min E [[l€ — 20(1)[%, )| = ggigfz €~ 23,0
Proof. The assertion is a direct consequence of Theorem 2.6 and Theorem 3.1. O

Before we turn to the error analysis we mention a fourth estimator.

Remark 3.7. Another possible design for the reconstruction of the state of the uncertain
system is obtained by solving the Kalman filter equation for the mean (3.1) where for the
gain one replaces the solution g of the associated Riccati equation (3.2) by the expected
gain, i.e., %Z{Ll II;. It can be understood as an intermediate option combining the
designs of Subsection 3.2 and Subsection 3.5.
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4. ERROR ANALYSIS

In this section we discuss the error that is introduced by the uncertainty in system and
noise covariances. Our analysis is based on the following premise. If one had access to
the true, hidden parameter ¢ € X the obvious choice for the state estimator would be the
associated Kalman filter 5z with error covariance Il given via

T5(t) = As35(t) + 5 (H)CT Q5 (y(t) — CZ5(t))  te€(0,7),

0) o, (4.1)

and
5 (t) = Asll5(t) + 115 (t) AL — 115 (t)C T Q5 CTlI5(t) + BR;B" te (0,7),

I17(0) = T'5. (42)

Hence the quality of the three estimators presented in Section 3 is measured in terms of
their respective distances to Zz. More precisely, for a given estimator Z and time ¢ € [0, T']
we analyze the distance

|2(t) — 55\6—@)”11;1@) = 1Z(t) — Z5 ()|l p, (1)- (4.3)

The justification for the particular choice of weighted norm lies in the stochastic interpre-
tation. In this case the estimator of the state at time ¢ associated with the true parameter
o is given by a normal distribution with mean Zz(¢) and covariance Il5(t). The weighting
then is motivated by the reasoning illustrated in Theorem 2.3. We further note that in the
spirit of Theorem 2.6 it holds that

SIE) — Fo ()3, ) = Vo (1, 3(0)) — Valt, T 1)),

Hence by estimating the weighted difference we simultaneously estimate the surplus of
energy when compared to the minimal energy.

To facilitate a concise presentation of the results we introduce the following notation. For
a given parameter o the associated four-tuple consisting of system matrix and covariance
matrices is denoted by S, = (A4, Ty, Ry, Qo) € R™™ x R™™ x R™™ x R™". For p € N we
introduce the norm [|So |5 = || As||gn.n + ITollfnn + | Rol[fmm + [|Qo IR and note that
sums of systems are understood componentwise.

4.1. Technical preparations. Consider Z, and II, given as the unique solutions of

T:(t) = A () + IL(OCT Q! (y(t) — CZ(t))  t€(0,T),

S0 — o (4.4)

and
IL(t) = AL (¢) + IL(H)A] —,(H)CTQ 7 CI,(t) + BR,B"  te (0,7),

I1,(0) = T,. (4.5)

These systems will be used with (Z,,I1,) = (Zg, ) and (T4, IL.) = (T, ) to obtain
error estimates for the three state estimators presented in Section 3. In order to derive
an estimate for ||IL, — HC—,HC;m we first link the covariance matrices to the optimal control

problems dual to the state estimation problem. For this purpose we define ¥, () = I1. (7 —t)
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for t € [0, T]. By differentiating t — IL.(T — t) and utilizing the equation for IT, we find
that X, is the unique solution to
Su(t) = —AZ. () - LA + 2.()CTQITCE.(t) — BR.BT  te (0,T),
Y .(T)=T..
This is the Riccati equation associated to the optimal control problem
min o Fetan) = g [, + 1B s+ gleDIE. @0
subject to i(s) = Alx(s) +CTu(s) se(t,T), (4.7)
z(t) = xo,

for ¢t € [0,T). In the following lemma we recall that the associated value function

V*(tv .’E(]) = mu;rtlf(4 7 j*(xvu;t7x0)7

can be represented via the solution of the associated Riccati equation, cf. [21, Thm. 37].

Lemma 4.1. Let 3, be as introduced above. Then for allt € [0,T) and x € R™ it holds

Vot z) = %(m,E*(t):c)

We also define ¥; and J; associated with the state equation #(s) = Al x(s) + CTu(s)
and obtain an analogous representation of the related value function vz in terms of
Y5 = IIz(T — -). Utilizing these characterizations we can represent the difference of
covariance matrices via the difference of value functions.

Lemma 4.2. Let II5 and IL, be the solutions of (4.2) and (4.5), respectively. Then for all
€ (0,7 it holds

1
S IHL(t) = (1)) = Sup (T —t,2) —ve(T — t, x)|
z||=1

where v, and vz are the value functions defined above.

Proof. Since both X, and ¥z are symmetric, the same holds for their difference. For all
t €10, 7] it follows

SIT(®) = T (1) = SIS (T = ) = S5(T = )l = 5 sup |G, (SulT — 1) = So(T ~ 1))
ll=]|=1

1 1
= sup |= (2, 2.(T —t)x) — = (2,55 (T —t)x)| = sup |vu(T —t,z) —vs(T — t,x)|,
lzl|=1 2 ]| =1
and the proof is complete. ]
To obtain the desired estimate for the difference of covariances we now estimate the

difference of value functions. First we summarize some estimates for the solution of the
optimal control problem associated with v.

Lemma 4.3. Let (T, us) be the unique solution to (4.6)-(4.7) with associated adjoint state
p*. There exists c. > 0 independent of t such that

1242 + 1227 + lal2e + Ipal2r + 2127 < ellao]®
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Proof. Since this results can be proven using standard techniques from optimal control, we
only sketch the proof. First note that
Hﬂ*H%tT < 2T (T, Ui t, o) < 2T, (20,051, 20), (4.8)
where ¥ is the unique solution on (¢,7) to
i% = Al 0, i9(t) = xo.

Using standard arguments including an application of Gronwall’s Lemma one can show
the existence of ¢ > 0 independent of ¢ such that Hm0||3{T < c|lwo||*. Together with (4.8)
t

and the continuous embedding H] < C} with constant ¢’ we get

T
ladllZr < [ 1B
t t

The estimate transfers to T, and p, using the state and adjoint equations and arguments
involving Gronwall’s Lemma. ([l

1
Be ds + [2°(D)]* < CIBIP R 2| |lxol* + o *

We now employ the strategy presented in [8, Lem. 3.2] to show the desired estimate for
the value functions.

Lemma 4.4. Lett € [0,T) and o € R™ with ||zo|| < 1. Then there exists a constant
cg > 0 independent of t such that

J5(Ts — T, s — Ug; t, o) < c7||Si — Sa—||§
where (T, us) and (T5,Us) are the optimal pairs associated with J, and Jz, respectively.

Proof. We have v (t,z9) = Ji(Zs, Us;t, o), where (T, us) is the unique minimizer of
(4.6)-(4.7) which is characterized via the optimality system

Z.(s) = Al Z.(s) + CT i, (s), Z4(t) = o,
Pe(8) = —Aupu(s) — BR.B ' Z.(s), ps(T) = T.Z(T),
Ui (s) = —Q, ' Cpa(s),

where the time dependent equations hold for s € (¢,T'). Analogously we have vz (t,zg) =
J5(Z5,uz;t,x0), where (Zz,ugz) is the corresponding unique minimizer characterized via
the optimality system

T5(5) = AL Z5(s) + CTus(s), T5(t) = o,
p5(s) = —Asps(s) — BRz B 35(s), ps(T) = T525(T),

We define
Ty =Ty — T,  Us = Us — Ug, D5 ‘= Dx — D&»
Is=T,-T5  Rs=R.—Rs, Qs1=0Q;'—Qz' As=A.—A;,
and obtain
Ts = A(——Trl‘g + A;;r:f:* + C T us, xs(t) =0,
Ps = —Asps — Asp. — BRzB x5 — BRsB 2.,  ps(T) = Ts5(T) + Ts2.(T),
—Q5'Cps — Q5-1Cp..

us
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Now a combination of standard calculus, Gronwall’s Lemma, the norm bound on xg, and
Theorem 4.3 yield existence of a constant ¢s > 0 depending on T', c., ||Az|l, ||Bll, [|C|l,

||R5||, and ||I'z|| but independent of ¢ such that
lzslZe + llzsl3r < es (145l + lusl2r ) "
IpsllZr + IpsllZe < e (llusllZe + A5l + 1Rl + IT5]12) -

Further, by testing the equation for ps with z5 we find

T T
—/ (ps, xs)ds :/ (Agpg,$5)+(A5p*,JI(;)-F(BR&BTJZ(;,LL’(;)—I—(BR(;BTLE*,:135)dS. (4.10)
t t

On the other hand, with x5(0) = 0 and the identity for ps(7") we find testing the equation
for &5 with ps

T T
~ [ s ) ds = [ (s ps)ds = (s, 25(T))

T
:/t (A7 25,p5) + (As Ty ps) + (Clus, ps) ds — (Dos(T), 25(T)) — (Lo, 25(T)).
(4.11)
By subtracting (4.10) from (4.11), rearranging terms and utilizing the identity for us we
arrive at

T
87 = [ lualld, + 1B a5l ds + l2s(D) I,

T
= —/t (Asps, 25) + (BRsB &, w5) — (Af 24, 05) + (Qotis, Q5-1p) ds
— (L52(T), x5(T)).
Utilizing Theorem 4.3, (4.9), and Young’s inequality it follows that for any € > 0 it holds

T
0J5 < c*/t 1Aslllzsll + 1Bl Rsllllosll + | AsllIps ] + 1|Qz Q51 [l [usll ds

+ el[Tsllllsller

1 2 2, |IB H 2, 2, HQUH2 2, Cx€ 2

<o [ 2lAsl® 4+ ellasl+ SR+ 5 lpall+ 2@+ 5 sl ds

Cy €
+ 5 ITsl* + 5 llzsller

2e Ct
< Ly age 4 EUB ey U9l g+ S 2

€Cs 66*65
+ (cenes + ) (146l + lluslZ2) + = (lluslzy + 14517 + 11 Rs* + | T]1%)
Since

1 T
lusl e < 1Q5 212 [ llusl?, ds,
t t

for a sufficiently small ¢ > 0 all terms on the right hand side depending on us can be
absorbed in the left hand side, and with appropriate constants ¢, co > 0 it follows that

10Tz < c2 (| As] + 1051 + 1 Rsl + 1Qs—11) -
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Finally, note that the mapping F(A) = A~! is continuously differentiable on the open set
of positive definite matrices with derivative DF(A)B = —A~'BA~!. Hence an application
of Taylor’s theorem yields

1Qs—11l = 1R — Q7' < Q517 11@x — Qs l
and the assertion follows. O

With this estimate at hand we are in a position to estimate the difference of value
functions.

Lemma 4.5. Let I1; and IL, be the solutions of (4.2) and (4.5), respectively. Then there
exists a constant cry > 0 such that the following inequality holds

ML = Tz lepn < enl[Se = Ssllr-

Proof. Due to Theorem 4.2 it suffices to estimate the difference of the value functions. For
this purpose let (Z4, u) and (Zz,us) be as in Theorem 4.4, let xy € R™ with [|zg|| = 1, and
let t € [0,T) be fixed. It follows

‘V*(ta 1:0) - Va-(t, :EO)| = |j*(:i'*7 Ux; L, 1:0) - ja—(!fa, ug; t, ZL'())|

1T _ _ _ 1, _
< */t 181, = ald, |+ 1B 2k, — 1B Z5l%, ] ds + Sl 2. (DIIE, — |75 (T)]7, |

2
(4.12)
We estimate the terms on the right hand side individually. For the term involving the
controls consider

T T
[l = el ds < [ 1, Quit) = (i, Qoit)] + (i, Qo) = (i, Q)| ds

T 1 T
<1Qu ~ Qs [ Nl ds+ Q31 [ . +all . — 7allo, d.

With Theorem 4.3 and an analogous result for the solution of the optimal control problem
formulated in terms of J5 with some constant ¢z > 0 we obtain

T 1 T
[ Ml = a1, ds < Q. = Qall + (ver + VaVT Q2] \/ |l = el ds.
Similarly we find

T
| NBTE N~ 1B E | ds

1 T
< el BIPR. = Rs|| + (Ver + Ve )VT |1 B HRﬁH\//t IBT (2. — Z5)|%, ds
and
1
I1Z(T)E, = 1Z(DIE,| < el Tu = Tall + P2 [[(Vex + Vea)|2(T) = 25(T) |,
Hence with (4.12) and ¢; = ¢, max (|| B||?,1) and an appropriate ¢y > 0 it follows
vt o) — va(t, 2o)| < 1 (ITs = Tal| + [|1Re — Rl + [[Q — @5l)

+ 62\/.7&(2_7* — Z5,Us — Us; t, T0).
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Finally with Theorem 4.2 and Theorem 4.4 we obtain
LT = t) = T5(T = t)|| < c1 (I[Tx = Ta || + [ R — Ro| + 1@« — Q5l])
+eyeg (A — As | + [ITx = Ta | + [[Re — Ra|| + 1@« — Q5lD) ,

implying the estimate for ¢ € (0,T]. Due to the initial condition of the Riccati equations
the estimate holds in ¢ = 0 as well and the assertion is shown. O

Combining the estimate for the difference of error covariances with another application
of Gronwall’s Lemma we estimate the difference of the state reconstruction trajectories.

Lemma 4.6. Let Z., I, Tz, and Iz be the solutions of (4.4), (4.5), (4.1), and (4.2)
respectively. Then there exists a constant c,, > 0 independent of t € [0,T] such that

1Z:(8) = Z5 ()| < ca.[|Sx = Szl

Proof. For s € [0,T] denote e(s) = Z.(s) — Zz(s). Subtracting (4.1) from (4.4) and
rearranging terms shows that e is characterized as the unique solution to

é(s) = (A5 ~ T (5)CT Q5 C) els) + (IL(s) ~ T5()) CT Q5" (y(s) — C2.(5))

+ (Au = 45) u(5) + TL()CT (@7 = Q51) (y(s) — CT.(), s € (0,T),
e(0) = 0.

Testing the first equation with e(s) and integrating over (0,t) for some fixed t € (0,7
yields

1 t _
gl\e(t)HQ < /0 (HA&H + HCH?HQ&IHHH&(S)H) le()[1* + 1 As = Az ||[le(s)ll
+[ITLe(s) = () CINQF Iy (s) = CZu(s) | [le(s)]]
+ L) ICNQT = Q7 lly(s) — CZu(s)lllle(s) ]| ds.
With Young’s inequality we find
¢
le()[* < /0 (2||Aa|| +2[|C11Qz M5 ()| + 3) le(s)]|* ds + T As — A5
+ICIP1Q7 1P lly — C2.llZr ML — Il »
HICIP I G lly = CE 7 QT = Q572
and finally Gronwall’s inequality yields
el < e (4 = Agll + 1Q:" = Q5™ + ML — Ty fexn)

for some appropriate constant ¢ > 0. Again we estimate ||Q; ' — Q3| in terms of ||Q« — Q5|
as we did in the proof of Theorem 4.4. The assertion now follows with Theorem 4.5 and
a constant ¢, > 0 depending on T, ||C||, |45, 1Q3 I, lly — Cf*Hﬁg“, HH*HC;,n, and

15 s O

This concludes the technical preparations and we turn to the error estimation for the
three state estimators discussed in Section 3.
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4.2. Worst case error estimation. We begin by estimating the difference of the estimator
Zg introduced in Subsection 3.2.

Proposition 4.7. There exists a constant cg > 0 independent of N such that for all
t € 10,7 it holds
17E(t) — Z5(t)| P, ) < e E[l|So — Sall1] -

Proof. We apply the results of Subsection 4.1 with

1 N
A*:AE:NZAk, I,=Tg=—)Y T
k=1

= 1 Y
R*:RE:Nl;Rka Q*:QE:Nl;Qk,

and Theorem 4.6 yields existence of ¢,, > 0 independent of N such that for any ¢ € [0, T
it holds

1
I1ZE(t) = B ()l Py < I1PF O 17(t) — Za(1)]]
1
< e |1PF O ([Ar = As]l + [ITe = Ts|l + | Bx — Rs | + [|Qr — Q5l]) -

We note that Ps is continuous in [0,7] and hence admits a maximum. Inserting the
definition for Ag, I'g, Rg, and Qg and applying the Cauchy Schwarz inequality yields the
assertion. g

Similar estimates can be established for the reconstruction of the state via Ty and
T as presented in Subsection 3.3 and Subsection 3.4, respectively. For this purpose, let
ke {l,...,N}. Applying the results of Subsection 4.1 with

A* = Aka F* = Fka R* - le Q* = Qk:
we find that Theorem 4.6 yields the existence of ¢,, > 0 such that for any ¢ € [0, 77 it holds
1(8) — Zo()]] < oy (14 — Asll + [Tk — Toll + | R — Roll + Qi — Qo). (4.13)
The estimate for Ty readily follows.

Proposition 4.8. There exists a constant cx > 0 independent of N such that for all
t € [0, T] we obtain that

1Z5(t) = 25 ()l Py < co E[l[Ss = S]]

Proof. Looking at the definition of Ty in (3.6) and utilizing (4.13) we find

_ _ : 1oL _
1T (t) — Zo ()l py ey < 1P (1) IIN > a(t) — Z5 (1)
k=1
1 1 N
<||PZ () N > o, (1As = As| + ITo = Tsll + [|Re — Rall + |Qs — Q511) -
k=1

1
The assertion follows with ¢y = ( max || P2 (t)||> ( max cwk>. O
t€[0,T)] ke{l,..,N}
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Before we can establish an analogous estimate for the minimizer of the expected energy
Ty discussed in Subsection 3.4 we take a closer look at the precision matrices Py (t). In the
following, let P(-) = Y, Py(t) be as in Theorem 3.4.

Lemma 4.9. There exists a constant cp > 0 independent of N such that for allt € [0,T]
it holds

-1 cp
< —.
(O] e

Proof. For all non-trivial z € R™ and ¢ € [0,7] we find

N N

(x,P(t)x) = Z (x, Pp(t)x) > Z min (x, Py(s)x),

=1 =1 s€[0,T7]

where the existence of the minima is ensured by the continuity of the matrices. We denote
the (possibly non-unique) time at which the minimum of the k-th summand is assumed by
sy. In addition we denote by A; > 0 the smallest eigenvalue of Pj(s}), where the positivity
follows from the positive definiteness of the precision matrices. Denoting A = , Jax A >0

=1,...,

it follows
(z,P( Z Aellz]|® > Nz,
k=1

The proof is completed with an application of the Lax-Milgram Lemma [3, Thm. 1.1.3 &
Rem. 1.1.3]. O

We conclude this section with the announced estimate for Zg.

Proposition 4.10. There exists a constant cg > 0 independent of N such that for all
t €10,T) it holds

1Ze(t) = Z5 (D)l £,y < ce E[ISs = S5ll1]-

Proof. With Theorem 3.4 for every t € [0, T] we obtain

1 N
16(t) = Zo (B)ll 2y < IBZ O [PHO| X 1P 12408 = 25 (0]
k=1

The continuity of Py(-) implies existence of M > 0 such that for all ¢ € [0,7] and
k=1,...,N it holds ||P,(t)|| < M. Utilizing (4.13) and Theorem 4.9 yields

1ZE(t) — 25 ()|,

N
< M*HP2 N> (14x — A || + Tk — Toll + || R — Rl + |Qk — Qsl))
k=1
1

and the claim follows with cg = Mcp I%xx | P2 (s)]|. O
s€

The worst case error estimates presented in Theorem 4.7, Theorem 4.8, and Theorem 4.10
immediately imply bounds for the expected errors.
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Corollary 4.11. Let Ty, Tz, and Tg be the estimators introduced in Section 8 and let cg,
¢z, and cg be the constants from Theorem 4.7, Theorem 4.8, and Theorem 4.10, respectively.
For allt € [0,T] it holds

E ||2&(t) - 2 (1)l | < ¢z Eo [Eq IS5 — S5l
E [[22(t) = Zo(O)lp, | < o Eo [Eo [1S5 = S5,
E [IZ6() = Zo(0)p, )] < cr B [Eo (IS, — Sslhll-

Proof. The proof follows by forming the expectation on both sides of the corresponding
worst case error estimates. g

We found that all three state estimators discussed in this work satisfy the same qualitative
worst case error bound. They express the fact that these errors can be quantified by the
level of variance of the parameter-dependent matrices Az, 15, Rs, Qs -

5. NUMERICAL EXPERIMENTS

In this section we numerically realize and compare the three estimators for two examples
of uncertain linear dynamical systems.

5.1. General setup. We consider disturbed uncertain linear systems of the form
&(t) = Asz(t) + Bu(t) te (0,T),
x(0) = zo + 1, (5.1)
y(t) = Ca(t) + p(t) t€(0,7),

where 0 € ¥4 C R*A with |X 4| = N4, as in Subsection 3.1. We associate positive definite
weighting/covariance matrices I', R, and () with the three unknown errors 7, v, and
. Here we do not investigate uncertainties in the noise covariance matrices implying
Nr = Ng = Ng = 1 leading to N = N4.

All ODEs are solved using an equidistant grid 0 = tg < t1 < --- < t1900 = 1" and the
MATLAB® solver ode15s with a relative tolerance of 10~8. In particular, Kalman filter
equations of the form (2.10)-(2.11) are treated as n + n? dimensional ODEs. For systems
of higher dimension n this can certainly be improved upon by taking advantage of the
decoupling of the two equations and utilizing solvers tailored to Riccati equations.

The measured output y € £l is artificially generated as follows. Using the MATLAB®
function normrnd we construct realizations of n ~ N(0,T), v(tx) ~ N (0, R), and pu(ty) ~
N(0,Q) for k = 0,...,1000 from which v € LT, u € LE are obtained via linear interpolation.
Finally, we designate some ¢ € ¥4 to be the true, unknown parameter and obtain y by
solving (5.1) based on the constructed errors and the parameter &.

Remark 5.1. We point out that this realization of the unknown errors based on normal
distributions can only be done rigorously in discrete time. The extension to the continuous
time setting via interpolation is of heuristic nature as a construction in the spirit of
v(t) ~ N(0,R), t € (0,T) leads to the stochastic formulation and the reqularity gap
discussed in Theorem 2.2.

The construction of the estimators requires the realization of the N4 individual Kalman
filters 7. These are independent of each other, and therefore they are computed in parallel
using parfor from the MATLAB® Parallel Computing Toolbox.
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The results of this section were realized in MATLAB® R2024b and the computations
were executed on a Lenovo ThinkPad E14 Intel(R) Core(TM) Ultra 7 155H 1.40 GHz with
32 GB memory. The code is available in [19].

5.2. Harmonic oscillator. As a first example we consider a disturbed harmonic oscillator
modeled as

mz(t) + o2(t) + kz(t) = v(t), te(0,T)

2(0) = o1 +m, 2(0) =02 + M2,
where z(t) represents the position at time ¢ and m > 0, ¢ > 0, and k& > 0 represent
the mass, damping coefficient, and spring constant, respectively. The function v € LI
represents the unknown disturbance in the dynamics. The modeled initial position and
velocity are given by xo1 and xg2 and are subject to the initial errors n; and n2. Further,
we assume access to a disturbed measurement of the position modeled as

y(t) = 2(0) + u(t) e (0,7),
with a deterministic but unknown output error u € £f. In first order form the system
reads

i(t) = [_Ok AR m o(t) te(0,T),
z(0) = wo + 1,
y(®) = [1 0] a(t) + ult) Le(0,7),

with modeled initial state zo = [z, aco,g]—r

For our experiments we fix the mass and spring constant to m = k = 1 and set the
time horizon to T' = 10. As an undisturbed initial state we set zg = [1 O]T and the
covariances of the three errors are given as I' = 0.11d, R = 0.05, and ) = 0.05. The
uncertainty of the dynamics lies in the damping parameter ¢ and we set N = N4 = 101
and ¥4 = {0.1 + Nf_12.9: k=0,...,Ng—1}. We generate two outputs based on the
parameters 6 = 3 and & = 0.1 as described in the previous subsection. The results are
presented in Figure 1 and we observe the following.

We first consider the setting of & = 3, i.e., the underlying true damping parameter is
the largest appearing in the family X 4. In Figure 1a we present the phase plots of the
three estimators Tg, Zg, and Tg resulting from the associated output y and compare them
with the Kalman filter 5 constructed based on the hidden parameter & = 3 and the
associated state trajectory x. The trajectories starting in their respective initial states
marked as crosses stabilize in a region around the origin. As expected, the Kalman filter Z5
successfully approximates the state trajectory x. The plot further illustrates that among the
estimators constructed without knowledge of the hidden parameter the energy minimizer
T yields the best approximation of Zz with respect to the Euclidean distance. In addition
Figure 1c shows that the energy minimizer outperforms the two remaining estimators with
respect to the Mahalanobis distance. We proceed with the results associated with ¢ = 0.1.
Here the true damping parameter is the smallest appearing in ¥ 4. The associated phase
plot presented in Figure 1b shows that all three estimators Ty, T, and Zg noticeably
deviate from the Kalman filter Z5. The associated Mahalanobis differences are displayed
in Figure 1d and we find that, in contrast to the case of ¢ = 3, here the energy minimizer
Zg does not outperform Ty and Zy. Note, however, that the accuracies of the three are
noticeably more similar than in the previous setting.
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In an attempt to interpret these results the reader is reminded of the formulas for T4
and Zg. According to (3.6) the estimator Ty is given as an (unweighted) mean of the
family of Kalman filters z;. On the other hand the energy minimizer Ty is characterized
as a weighted mean where the precision matrices P act as weights. In fact, if all Py
were diagonal, each component of g would be a mean of the associated components of
71, weighted by their respective precisions. In such a setting one expects Tg to strongly
resemble the family members Z) associated with high precisions, while family members
with lower precisions are neglected.

While the precision matrices can not be expected to be diagonal, we do find that for this
example they are diagonally dominant. To illustrate this, for a given parameter o € ¥ 4 we
consider the quantity

o |pj; (t)]
O do)= ;i S ol =
where pij(t) are the entries of P,(t). Note that since the precision matrices are positive
definite, the denominator is non zero. Now P,(t) is diagonally dominant if d,(t) > 0.5
and diagonal if d,(t) = 1. The announced diagonal dominance of the precision matrices is
illustrated in Figure 1f. In Figure le we display the generalized precisions (cf., Theorem 2.1)

Po(t) = det(Fy (1))

to quantify the precisions associated with the family members and find that it depends
monotonously increasing on the damping parameter. This fits the intuition that larger
damping parameters lead to stronger dissipation of errors. Note also that the precisions
increase over time reflecting the fact that the effect of the initial error 1 decreases over
time.

These considerations offer an explanation for the observations made while comparing
the effects of the hidden parameters ¢ = 3 and ¢ = 0.1. Since the precision matrices
are diagonally dominant, we expect the estimators to behave similarly to the setting of
diagonal precision matrices. Hence the weighted mean Ty favors family members with
higher precisions, i.e., trajectories associated with larger damping parameters. Finally, we
note that all three designed estimators display noticeable differences from the Kalman filter
based on the hidden parameter. This, however, is not surprising as the set of damping
parameters leads to a family of system matrices A, representing a wide range of dynamics,
making the state reconstruction a rather challenging task.

5.3. Connected amplidynes. Our second example is given by an electrical circuit that
amplifies a given input. An amplidyne returns an amplified copy of the input signal and
can be modeled as a linear dynamical system, see [12, Ch. 1.12]. We consider a system
given by two connected amplidynes, i.e., the output of the first one serves as an input of
the second one. Hence the resulting circuit consists of four components and the associated
dynamics are modeled as

20 0 0 0] L
ki p2 0 0 Lol 01
)= |1 K m o |T®+ o | Flolv® te@D),
L3 3
0 0o B - 0 0
.’L‘(O) = xo + 1,
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Figure 1 — Harmonic oscillator with uncertain damping

where x(t) € R* describes the current of the four components at time ¢. The positive
parameters p; and L; represent the resistance and inductance of the i-th component,
respectively. Further the constants k; > 0 describe the proportion of the currents x; and
the voltages e; in the components, i.e., for ¢ = 1,2,3,4 it holds e; = k;x;. The known,
time-dependent input entering the first component is denoted by ey and is subject to the
disturbance v. Finally, as an output of the system we measure the output of the second
amplidyne e4 = kqz4. We note that strictly speaking our formulation of the Kalman filter
does not allow for a known forcing term like the input eg of the first amplidyne. This,
however, can be incorporated without any major challenges.
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For our implementation we fix p1 = p3 = 5, po = pg = 10, ky = kg = 20, ko =
ky = 50, L1 = 0.5, T = 10, and eg(t) = 1. The undisturbed initial state is set to
2o =1[05 1 10 20]"
Ly Ls L4]T € R3. We define ¥; = {10,12.5,15,17.5,20}, ¥ = {0.5,0.75,1,1.25, 1.5},
and X3 = {10,17.5,25,32.5,40} and construct ¥4 = {0 € R3: 0}, € Xy, k= 1,...,3}. We
obtain N = N4 = 125 and s4 = 3. The output y is generated as described in Subsection 5.1
according to the covariance matrices

I'=0.25 diag(\mo,l s |$072’, ’1‘0,3‘, ‘1‘0’4|) = diag(0.125, 0.25, 2.5, 5),

R = (0.1]eg(0))? = 0.01,

Q = (0.1 % 400]en(0)])? = 1600,
.

]

and the uncertainty of the system lies in the inductances o =

and the true parameter ¢ = [10 0.5 10] . We note that the covariance matrices are
of different magnitudes to fit the scales of the different components. We illustrate the
relationship between the input ey and the output ksz4 = e4 and the impact of the errors
in Figure 2a and Figure 2b. We observe that the output of the two connected amplidynes
associated with ¢ stabilizes at a copy of ey increased by a factor of 400.

Our focus lies on the investigation of the structural differences to the first example. In
Figure 2c we present the second component of the disturbed trajectory and the various
estimators. Additionally we plot in magenta color the minima and maxima of the family
of Kalman filters denoted by

T_o(t) = i Tro(t d z t) = Tro(t
Too(t) =, min Tpa(t) and  Tyo(t) = max Tpa(t),
illustrating their convex hull. As expected the unweighted average Ty lies in this convex
hull. This is different from the energy minimizer Zo, which for some times ¢ has values
outside this hull. This indicates that the off diagonal entries of the precision matrices Py
play an important role. This corresponds to the fact that the precision matrices are by no
means diagonal dominant. In Figure 2f we present the quantities
domdy ()= min PEOL
k= = . 7 | Ok/1\| =Ly 9
) T, @)
where p3F(t) are the entries of Py, (t) and of, = [10 0.5 10]—r +(k—-1)[25 025 7.5
In particular we have o1 = . Similarly, in Figure 2e we plot the associated generalized
precisions

]

pr(t) = det(Py (t)), k=1,...,5,

and in contrast to the first example we find no monotone dependence of the precision on
the parameters. We conclude that in this example the interpretation of the results is less
straight forward and the system displays a structure noticeably different from the behavior
of the scalar case. The energy minimizer Tg is particularly interesting as its dependence
on the precision matrices becomes apparent. Finally, we point out that, as predicted in
Theorem 3.6, Zx offers the best approximation in terms of expected squared Mahalanobis
distance, cf. Figure 2d.

6. CONCLUSION

In this work Kalman filter based concepts for the state estimation of uncertain linear
systems are introduced, investigated, and numerically implemented. A particular focus
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Figure 2 — Connected amplidynes with uncertain inductances

lies on the minimizer of the expected energy which is characterized as the mean of the
individual Kalman filters weighted with their precision matrices. It is theoretically proven
and numerically illustrated that it minimizes the expected squared Mahalanobis distance to
the Kalman filter arising from the realized, unknown parameter. We find that in particular
settings the described estimator is slightly outperformed by less elaborate approaches which
is not surprising since it is defined as the minimizer of an averaged quantity. This issue
might be addressed by considering more risk averse concepts optimizing metrics other than
the average of the parameter family. Another interesting strain of research is the case
of continuous parameter distributions such as normally distributed uncertain parameters.
One could also investigate the impact of uncertainties on nonlinear systems leading to
(higher order) extended Kalman filters or the so called Mortensen observer.
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