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Abstract

A tracking type optimal control problem for a nonlinear and nonlocal kinetic Fokker-
Planck equation which arises as the mean field limit of an interacting particle systems that
is subject to distance dependent random fluctuations is studied. As the equation of interest
is only hypocoercive and the control operator is unbounded with respect to the canonical
state space, classical variational solution techniques cannot be utilized directly. Instead,
the concept of admissible control operators is employed. For the underlying nonlinearities,
local Lipschitz estimates are derived and subsequently used within a fixed point argument
to obtain local existence of solutions. Again, due to hypocoercivity, existence of optimal
controls requires non standard techniques as (compensated) compactness arguments are not
readily available.
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1 Introduction

We consider the following nonlinear nonlocal controlled Fokker-Planck equation

∂tf + v · ∇xf + U ∗ ρvf · ∇vf = U ∗ ρf∇v · (∇vf + vf) + u(α · ∇vf)

f(0, x, v) = f0(x, v),
(1)

where α ∈ L2(Rd) ∩ L∞(Rd) only depends on x ∈ Rd, u ∈ L∞(0, T ) is a scalar time-dependent
control and

ρf (t, x) =

∫
Rd

f(t, x, v) dv, ρvf (t, x) =

∫
Rd

vf(t, x, v) dv,

where ρf (t, x) ∈ R and ρvf (t, x) ∈ Rd. Throughout the manuscript, we shall also consider ρf and
ρvf as time-independent functions, e.g., when f is fixed for a specific time t. For u ≡ 0, equation
(1) has been introduced in [16] and shown to arise as a mean-field limit of the (stochastically
perturbed) particle system

dxi = dvi dt

dvi =

m∑
i=1

U(∥xj − xi∥)(vj − vi) dt+

√√√√2µ

m∑
j=1

U(∥xj − xi∥) dWi

(2)
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where (xi, vi) ∈ Rd × Rd, i = 1, . . . ,m model the evolution of the position and velocity of a
collection of particles, e.g., birds that communicate with each other via the distance potential or
communication rate U . The model (2) is a generalization of the classical Cucker-Smale model from
[14] and has been analyzed in [19] for a non-integrable distance potential U . In [16], the noiseless
model from [19] has been augmented by random fluctuations of the particles which depend on the
strength of their underlying density. Here, we follow [16] and assume the potential U = U(x) to
be continuous and to satisfy

U(x) = U(∥x∥) ≥ 0,

∫
Rd

U(x) dx = 1.

It is well-known and can easily be verified that a steady state solution to the uncontrolled equation
(1) is given by the Maxwellian function

µ = µ(v) = (2π)−
d
2 e−

∥v∥2
2 . (3)

In fact, for initial values f0 close to µ, the unique solution to (1) with u ≡ 0 asymptotically
converges algebraically to µ as t→ ∞, see [16, Theorem 1.1].

Since its introduction in [14], many works dealing with the analysis, control and numerical sim-
ulation of particle systems, and with the PDEs describing their associated densities have appeared
in the literature [7]. In view of equation (1), let us for example mention the early work [9] where
the authors prove a global existence result for a nonlinear nonlocal Vlasov-Poisson-Fokker-Planck
system which, similar to (1), exhibits both parabolic (in the variable v) and hypberbolic (in the
variable x) behavior, a property often found in so-called hypocoercive equations [28]. We also refer
to [10, 11] where other nonlinear Fokker-Planck type equations have been analyzed w.r.t. global
existence and uniqueness of solutions as well as [22] which, in contrast to (1), however, deals
with nonlinearities not entering the highest order differential operator. For the noiseless version
of (1), an optimal control problem has been studied in [25], and [4] considers deterministic and
non-deterministic control problems for mean-field PDEs depending only on the position variable
x.

In addition to its nonlinear and nonlocal nature, the analysis of (1) is challenging due to the
above mentioned hypocoercivity which does not allow for standard coercivity arguments when
studying the long-time behavior of solutions. For a general overview on hypocoercive equations, let
us refer to, e.g., the monographs [20, 28] as well as the survey article [24]. For linear (uncontrolled)
Fokker-Planck equations, a detailed treatise of hypocoercivity results can be found for example in
[12, 18] and, more recently, also in [5]. In [2] the long time behavior of linear hypocoercive Fokker-
Planck equations is analyzed with a modified entropy method. Recently in a series of papers of
which we cite [1] short and long term decay rates were analyzed using the hypocoercivity index.
In [8], we have considered an (infinite-horizon) control problem for a linear hypocoercive Fokker-
Planck equation which bears resemblance to a linearization of (1) around the Maxwellian µ, cf. the
subsequent perturbation discussion below.

With regard to the above literature, our contribution is twofold. On the one hand, the in-
troduction of a control interaction in (2) and thus also (1), e.g., by an opinion leader requires
the analysis of a nonlinear nonlocal nonhomogeneous hypocoercive PDE that is not availabe else-
where. Using the control theoretic concept of admissibility in combination with a fixed point
strategy (cf. also [21] for an abstract bilinearly controlled Cauchy problem), for small (close to the
Maxwellian µ) initial data f0 and small control u, in Theorem 10 we will obtain the local existence
of a mild solution to (1). In contrast to the existence result (for the uncontrolled solution) from
[16], we do not require smooth initial data but only assume f0 square integrable on R2d with
respect to the canonical invariant measure characterized by µ. On the other hand we cannot
assert uniqueness for the resulting notion of weak solutions. Our second main result concerns the
existence of a locally optimal solution to a quadratic tracking type cost functional, see Theorem
12, and the uniqueness of the associated optimal state, cf. Proposition 13.

While we concentrate here on a concrete nonlinear kinetic Fokker-Planck equation, some of
the concepts that we employ could be useful for the study of other optimal control problems
for different nonlinear kinetic equations as well. These include the combination of semigroup

2



and variational techniques, the use of admissible control operators, and the treatment of optimal
control problems where the control to state mapping is not necessarily unique.

The structure of the manuscript is as follows. For the analysis of (1) it will be convenient
to consider variables evolving locally around the Maxwellian µ. Therefore we next derive an
equation, equivalent to (1), for the perturbation variable y. This section ends with an introduction
of the notation used throughout the remainder of the manuscript. Section 2 analyzes a suitable
linearization by means of semigroup as well as variational techniques similarly as utilized in [8].
The nonlinear equation is studied in section 3. Here, Lipschitz estimates for the nonlinearities
appearing in (1) are derived and the local existence of solutions by a fixed point argument is
established. In section 4, we discuss a quadratic tracking type cost functional for which we discuss
existence of an optimal control as well as uniqueness of its associated state. The manuscript ends
with a conclusion and an outlook of potential future research questions in the context of (1).

A perturbed version of (1). Subsequently, we will derive an equation equivalent to (1) by

considering the dynamics in relation to the steady state µ(v) = (2π)−
d
2 e−

∥v∥2
2 . For this purpose

as well as for several calculations throughout the manuscript, let us mention the following useful
property of µ:

∇vµ+ vµ = (2π)−
d
2 e−

∥v∥2
2 · (−2v

2 ) + v · (2π)−
d
2 e−

∥v∥2
2 = 0. (4)

Similar to [16] but with a different form of the perturbation, let us consider

f = µ+ µy (5)

with the goal of deriving an equation for y from (1). In the following, we address all terms in (1)
individually. We obviously have that

∂tf = ∂t(µ+ µy) = µ∂ty. (6)

The second term on the left hand side then is given by

v · ∇xf = v · ∇x(µ+ µy) = µv · ∇xy. (7)

Before we turn to the convolution operators in (1), observe that

ρvf =

∫
Rd

vf dv =

∫
Rd

v(µ+ µy) dv =

∫
Rd

vµdv︸ ︷︷ ︸
=0

+

∫
Rd

µvy dv = ρµvy

ρf =

∫
Rd

f dv =

∫
Rd

µ+ µy dv =

∫
Rd

µdv︸ ︷︷ ︸
=1

+

∫
Rd

µy dv = 1 + ρµy

(8)

where in the first line we used that µ is positive symmetric and v is antisymmetric w.r.t. the
origin. We continue with the third term on the left hand side

U ∗ ρvf · ∇vf = U ∗ ρµvy · ∇v(µ+ µy) = U ∗ ρµvy · (∇vµ+ y∇vµ+ µ∇vy)

= U ∗ ρµvy · (−µv − µvy + µ∇vy).
(9)

Finally, we use (4) to derive

∇v · (∇vf + vf) = ∇v · (∇v(µ+ µy) + v(µ+ µy)) = ∇v · (∇v(µy) + µvy)

= ∇v · (µ∇vy + y∇vµ+ µvy) = ∇v · (µ∇vy)

= µ∆vy +∇vµ · ∇vy = µ∆vy − µv · ∇vy.

This, together with (8) now yields

U ∗ ρf∇v · (∇vf + vf) = U ∗ (1 + ρµy)µ(∆vy − v · ∇vy)

= (1 + U ∗ ρµy)µ(∆vy − v · ∇vy)
(10)
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where in the last step we used that U ∗ 1 =
∫
Rd U(x) dx = 1. Combining (6),(7),(9),(10) and

eliminating the common factor µ, for u ≡ 0, we arrive at

∂ty + v · ∇xy + U ∗ ρµvy · (∇vy − yv − v)

= ∆vy − v · ∇vy + U ∗ ρµy(∆vy − v · ∇vy).
(11)

In particular, the above system takes the form

∂ty = Ay +Dy − h1(y)− h2(y) (12)

where A,D, h1 and h2 are given as

Ay = ∆vy − v · ∇vy − v · ∇xy, Dy = U ∗ ρµyv · v,

h1(y) = U ∗ ρµyR0y, h2(y) = U ∗ ρµyv · (∇vy − yv),

R0y = −∆vy + v · ∇vy.

(13)

In particular, note that R0 is formally self-adjoint and non negative w.r.t. the L2
µ inner product,

see [8, Remark 2.2]. For later reference, we point out that the formal L2
µ adjoint of A is given by

A∗y = ∆vy − v · ∇vy + v · ∇xy. (14)

Now we turn to the control operator in (1). For fixed u, the transformation corresponding to
(5) is given by

u(α · ∇v(µ+ µy)) = u(α · ∇vµ+ yα · ∇vµ+ µα · ∇vy)

= µu(−α · v − yα · v + α · ∇vy).

Consequently, the controlled analogue of (12) is given by

∂ty = Ay +Dy − h1(y)− h2(y) + uNy +Bu (15)

where N ∈ L(Y, V ′
v), see [8, Eq. (3.4)] and B ∈ Y are defined as

Ny = −yα · v + α · ∇vy, B = −α · v, (16)

and the mappings hi were defined in (13). In section 2 we start by first analyzing the linearization
of (12).

Notation. By C∞
0 (R2d) we denote the set of all functions in C∞(R2d) with compact support in

R2d. For a linear closed, densely defined operator A with domain D(A) in a Hilbert space Z, we
write A : D(A) ⊂ Z → Z. For D(A) endowed with the graph norm and the Hilbert space adjoint
A∗ of A in Z, the associated duality pairing ⟨·, ·⟩D(A∗),[D(A∗)]′ will simply be denoted as ⟨·, ·⟩D.
Throughout the paper, we will extensively use the weighted (Hilbert) spaces

Y =L2
µ(R2d)=

{
y : R2d→R | µ 1

2 y ∈ L2(R2d)
}
, ∥y∥Y =

(∫
R2d

µy2 dxdv

) 1
2

,

V =H1
µ(R2d)=

{
y : R2d→R | y ∈ Y,∇y ∈ Y 2d

}
, ∥y∥V =

(
∥y∥2Y + ∥∇y∥2Y 2d

) 1
2 ,

Vv=H
1
µ,v(R2d)=

{
y : R2d→R | y ∈ Y,∇vy ∈ Y d

}
, ∥y∥Vv

=
(
∥y∥2Y +∥∇vy∥2Y d

) 1
2 ,

where ∇vy =
(
∂y
∂v1

, . . . , ∂y∂vd

)⊤
.
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2 The linear equation

In this section we focus on the abstract linear system

ẏ(t) = (A+D)y(t) + g(t), y(0) = y0 ∈ Y (17)

with g ∈ L2(0, T ;V ′
v). Later on g will be replaced by the control terms and the nonlinear terms

h1, h2, cf. (15).
From [13, Theorem 2.1] for vanishing potential (Φ ≡ 0 in the notation used therein), it follows

that A generates a contraction semigroup on Y . In the following lemma it will be argued that
D ∈ L(Y ). Consequently A + D as well generates a semigroup e(A+D)t, see, e.g., [15, Theorem
3.2.1].

Lemma 1. For Dy = U ∗ ρµyv · v it holds that D ∈ L(Y ).

Proof. Let us first consider ρµyv for which we have

∥ρµyv∥(L2(Rd))d =

(∫
Rd

∥ρµyv(x)∥2Rd dx

) 1
2

=

(∫
Rd

∥∥∥∥∫
Rd

vµ(v)y(x, v) dv

∥∥∥∥2
Rd

dx

) 1
2

.

An application of the Minkowski integral inequality yields

∥ρµyv∥(L2(Rd))d ≤
∫
Rd

(∫
Rd

∥vµ(v)y(x, v)∥2Rd dx

) 1
2

dv

=

∫
Rd

∥vµ 1
2 (v)∥Rd

(∫
Rd

|µ 1
2 (v)y(x, v)|2 dx

) 1
2

dv.

The Cauchy-Schwarz inequality for the v variable now leads to

∥ρvµy∥(L2(Rd))d ≤
(∫

Rd

∥vµ 1
2 (v)∥2Rd dv

) 1
2
(∫

Rd

∫
Rd

|µ 1
2 (v)y(x, v)|2 dxdv

) 1
2

≤
√
d

(∫
Rd

∫
Rd

µ(v)|y(x, v)|2 dxdv
) 1

2

=
√
d∥y∥Y ,

(18)

where we have used that∫
Rd

∥vµ 1
2 ∥2Rd dv =

∫
Rd

v · vµdv = −
∫
Rd

v · ∇vµdv =

∫
Rd

divv(v)µ dv = d.

Consequently, with Young’s convolution inequality we obtain

∥U ∗ ρµyv∥(L2(Rd))d ≤ ∥U∥L1(Rd)∥︸ ︷︷ ︸
=1

ρµyv∥(L2(Rd))d ≤
√
d∥y∥Y .

Finally, we arrive at

∥Dy∥2Y =

∫
Rd

∫
Rd

|(U ∗ ρµyv)(x) · v|2µ(v) dxdv

≤
∫
Rd

∫
Rd

∥(U ∗ ρµyv)(x)∥2 · ∥v∥2µ(v) dx dv

=

∫
Rd

∥U ∗ ρµyv(x)∥2 dx
∫
Rd

∥v∥2µ(v) dv ≤ ∥y∥2Y .
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On C∞
0 (R2d), let us consider the operator R defined by

Ry := −∆vy + v · ∇vy + y.

Note that utilizing (4) we obtain

⟨Ry, y⟩Y =

∫
R2d

−µy∆vy + µyv · ∇vy + µy2 dxdv

=

∫
R2d

∇v(µy) · ∇vy + µyv · ∇vy + µy2 dxdv

=

∫
R2d

µ∇vy · ∇vy + y∇vµ · ∇vy + µyv · ∇vy︸ ︷︷ ︸
=0

+µy2 dx dv

= ∥∇vy∥2Y d + ∥y∥2Y = ∥y∥2Vv
= ⟨y,Ry⟩Y

(19)

showing that R is symmetric and coercive on C∞
0 (R2d). It is therefore closable as an operator

in Y , see [17, Chapter II, Proposition 3.14 ], and we may consider R. In fact, this operator R is
self-adjoint in Y . This can be verified utilizing [23, Problem V.3.17]. For this it suffices to show
that range(R − iζ) is dense in Y , for some positive and some negative ζ. For the case of the
classical Fokker-Planck operator with y only depending on one variable and a smooth potential
V (v), given by V (v) = 1

2∥v∥
2 in our case, we can refer to [6, Corollary 3.2.2, Appendix A.5]. The

desired density in the case with y a function of x and of v can then be obtained by observing that
for {φj}∞j=1 dense in L2

µ(R) and {ψk}∞k=1 dense in H1
µ(R), the set {

∑n,m
j=1,k=1 φj(x)ψk(v) : n ∈

N,m ∈ N} is dense in Vv .
From, e.g., [15, Examples A.4.2/A.4.3] and [23, Problem V.3.32, Theorem V.3.35] it is well-

known that R
−1 ∈ L(Y ) is also a (uniformly) positive self-adjoint operator for which there exists

a (uniformly) positive self-adjoint square root R
− 1

2 := (R
−1

)
1
2 . In fact, we also have that R

− 1
2 =

(R
1
2 )−1, where R

1
2 is the unique (uniformly) positive self-adjoint square root of R, i.e., Ry =

R
1
2R

1
2 y and D(R

1
2 ) ⊃ D(R).

Since R
−1 ∈ L(Y ), we know that R

− 1
2 ∈ L(Y ). We even have R

− 1
2 ∈ L(Y, Vv). Indeed, for

y ∈ Y , consider z = R
− 1

2 y and note that

∥y∥2Y = ⟨y, y⟩Y = ⟨R
1
2 z,R

1
2 z⟩Y = ⟨Rz, z⟩Y

(19)
= ∥z∥2Vv

= ∥R− 1
2 y∥2Vv

.

We then also obtain (R
− 1

2 )′ ∈ L(V ′
v , Y ) which, since (R

− 1
2 )′ = ((R

1
2 )−1)′ = ((R

1
2 )′)−1 and R

1
2 is

self-adjoint finally implies R
− 1

2 ∈ L(V ′
v , Y ).

Let us return to (17) which after the above considerations we interpret as

ẏ(t) = (A+D)y(t) +R
1
2w(t)

where w(t) = R
− 1

2 g(t). In particular, we emphasize that w ∈ L2(0, T ;Y ) and R
1
2 ∈ L(Y, V ′

v).

The following result asserts that while R
1
2 is not bounded w.r.t. the state space Y , it is never-

theless compatible with the semigroup generated by A +D in the sense of admissibility. For an
introduction to this control theoretic concept, we refer to, e.g., [27].

Lemma 2. R
1
2 is an admissible control operator for e(A+D)t.

Proof. Since D ∈ L(Y ), with [27, Theorem 5.4.2] it follows that R
1
2 is admissible for e(A+D)t if

and only if R
1
2 is admissible for e(A−αI)t for any α ∈ R. Since infinite-time admissibility implies

admissibility, we may use [27, Theorem 5.1.1 (d)] to prove the assertion. For this purpose, observe
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that for arbitrary z ∈ C∞
0 (R2d) it holds that

⟨z,A∗z⟩Y = ⟨Az, z⟩Y =

∫
R2d

(z∆vz − zv · ∇vz − zv · ∇xz)µdx dv

=

∫
R2d

−µ∥∇vz∥2Rd − z∇vz · ∇vµ︸︷︷︸
=−vµ

−µzv · ∇vz − µzv · ∇xz dxdv

= −
∫
Rd

µ∥∇vz∥2Rd +
1

2
µzv · ∇xz +

1

2
µzv · ∇xz dxdv

= −
∫
Rd

µ∥∇vz∥2Rd +
1

2
µzv · ∇xz −

1

2
µ(∇xz · v)z dx dv

= −
∫
Rd

µ∥∇vz∥2Rd dx dv,

where in the second to last step we used that µ and v are independent of x. For R
1
2 ∈ L(Y, V ′

v),

consider (R
1
2 )′ ∈ L(Vv, Y ). From [8, Lemma 2.3, Lemma 3.2] (applied with G ≡ 0) we have that

D(A∗) ⊂ Vv and that C∞
0 (R2d) is dense in D(A∗). With the above computations we thus obtain

for α = ∥(R
1
2 )′∥2L(Vv,Y ) and for all z ∈ D(A∗) that

⟨αz, (A− I)z⟩Y = −α(∥z∥2Y + ∥∇vz∥2Y d) = −α∥z∥2Vv
= −∥(R

1
2 )′∥2L(Vv,Y )∥z∥

2
Vv

≤ −∥(R
1
2 )′z∥2Y .

Since αI ≻ 0, [27, Theorem 5.1.1 (d)] shows that (R
1
2 )′ is an infinite-time admissible observation

operator for e(A−αI)∗t. Consequently, (R
1
2 )′ is an admissible observation operator for e(A+D)∗t

and with [27, Theorem 4.4.3] this is equivalent to R
1
2 being an admissible control operator for

e(A+D)t.

Following [27, Definition 4.1.1], for g ∈ L2(0, T ;Y−1), we refer to y as a solution of (17) in
Y−1 := D(A∗)′ if y ∈ L1(0, T ;Y ) ∩ C([0, T ];Y−1) and it satisfies for every t ≥ 0

y(t)− y0 =

∫ t

0

(A+D)y(s) + g(s) ds in Y−1, (20)

which is equivalent to

⟨y(t)− y0, ψ⟩D =

∫ t

0

[⟨y(s), (A+D)∗ψ⟩Y + ⟨g(s), ψ⟩D] ds (21)

for every t ≥ 0 and every ψ ∈ D(A∗), see [27, Remark 4.1.2]. If y is a solution in Y−1, then y is
given by

y(t) = e(A+D)ty0 +

∫ t

0

e(A+D)(t−s)g(s) ds, (22)

see [27, Proposition 4.1.4].

Corollary 3. For every y0 ∈ Y, g ∈ L2(0, T ;V ′
v) the initial value problem

ẏ(t) = (A+D)y(t) + g(t), y(0) = y0 (23)

has a unique solution y ∈ C([0, T ];Y ) ∩H1(0, T ;Y−1). Moreover, there exists a constant C, only
depending on T such that

∥y∥L∞(0,T ;Y ) ≤ C(∥y0∥Y + ∥g∥L2(0,T ;V ′
v)
).
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Proof. First, we observe that V ′
v ⊆ D(A∗)′. This follows from [8, Lemma 2.3] by setting G ≡ 0

and L = A∗ therein. Since R
1
2 ∈ L(Y, V ′

v) is admissible, we can consider the controllability map

Φt : w 7→ Φtw =

∫ t

0

e(A+D)(t−s)R
1
2w(s) ds

which satisfies Φt ∈ L(L2(0, t;Y ), Y ). Setting w(t) = R
− 1

2 g(t), this implies that (23) admits a
unique solution with the specified regularity properties, see [27, Proposition 4.2.5].

Since a solution y ∈ Y−1 is also a mild solution, we obtain

y(t) = e(A+D)ty0 +

∫ t

0

e(A+D)(t−s)g(s) ds = e(A+D)ty0 +Φt(R
− 1

2 g)

with R
− 1

2 ∈ L(V ′
v , Y ) as before. It is known that controllability maps are non decreasing [27,

Proof of Proposition 4.2.4] in the sense that

∥Φt1∥L(L2(0,t1),Y ) ≤ ∥Φt2∥L(L2(0,t2),Y ), (24)

for all t1 ≤ t2. We therefore arrive at

∥y(t)∥Y ≤ ∥e(A+D)ty0∥Y + ∥Φt(R− 1
2 g)∥Y

≤ ∥e(A+D)ty0∥Y + ∥Φt∥L(L2(0,t;Y ),Y )∥R
− 1

2 g∥L2(0,t;Y )

≤ c1∥y0∥Y + c2∥R
− 1

2 ∥L(V ′
v ,Y )∥g∥L2(0,T ;V ′

v)

where in the last step we used (24).

For the remainder of the manuscript, we define

�y� := ∥y∥L2(0,T ;Vv) + ∥y∥L∞(0,T ;Y ).

Proposition 4. Let y denote the solution to (23) from Corollary 3. Then, for all T > 0 there

exists a constant Ĉ = Ĉ(T ) s.t.

max(�y�, ∥ẏ∥L2(0,T ;Y−1)) ≤ Ĉ
(
∥y0∥Y + ∥g∥L2(0,T ;V ′

v)

)
. (25)

Proof. For the proof, we can follow the arguments provided in the proof of [8, Proposition 3.3].
For this purpose, we define Aε ∈ L(V, V ′) as

Aε := A+ ε∆x

where ε > 0 and recall from [8] that it generates an analytic semigroup in Y which in particular
satisfies

⟨Aεy, y⟩V ′,V = −∥∇vy∥2Y − ε∥∇xy∥2Y (26)

for all y ∈ V . We next consider the perturbed equation

ẏε(t) = (Aε +D)yε(t) + g(t), yε(0) = y0. (27)

Taking the inner product with µyε, integrating over R2d and following similar calculations as in
[8], utilizing (26), we arrive at

1
2

d
dt∥yε∥

2
Y ≤ − 1

2∥∇vyε∥2Y − ε∥∇xyε∥2 + ∥D∥L(Y )∥yε∥2Y + 1
2∥g∥

2
V ′
v
+ 1

2∥yε∥
2
Y .

This implies that

∥yε(t)∥2Y + ∥∇vyε∥2L2(0,t;Y ) + 2ε∥∇vyε∥2L2(0,t;Y )

≤ ∥yε(0)∥2Y + (2∥D∥L(Y ) + 1)∥yε∥2L2(0,t;Y ) + ∥g∥2L2(0,t;V ′
v)
.

By Gronwall’s inequality this implies that

max(∥yε∥L∞(0,T ;Y ), ∥∇vyε∥L2(0,T ;Y )) ≤ C(∥y0∥Y + ∥g∥L2(0,T ;V ′
v)
).

Now we can pass to the limit ε→ 0 as in [8] and we arrive at the assertion.
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3 The nonlinear equation

In this section existence of a solution to the nonlinear equation (11) and the controlled equation
(15) completed with the initial condition y(0) = y0 are proven. We first provide estimates for h1
and h2.

Lemma 5. Let y, z ∈ Vv. Then it holds that

∥h1(y)− h1(z)∥V ′
v
≤ ∥U∥L2(Rd)(∥y∥Y ∥y − z∥Vv

+ ∥y − z∥Y ∥z∥Vv
),

∥h2(y)− h2(z)∥V ′
v
≤

√
d∥U∥L2(Rd)(∥y∥Y ∥y − z∥Y + ∥y − z∥Y ∥z∥Y ).

The proof is given in the appendix. The following lemma follows easily from the previous one.

Lemma 6. For y, z ∈ L2(0, T ;Vv) ∩ L∞(0, T ;Y ) the following estimates hold:

∥h1(y)− h1(z)∥L2(0,T ;V ′
v)

≤ ∥U∥L2(Rd)

(
∥y∥L∞(0,T ;Y )∥y − z∥L2(0,T ;Vv)

)
+ ∥y − z∥L∞(0,T ;Y )∥z∥L2(0,T ;Vv))

≤ ∥U∥L2(Rd)(�y�+ �z�)�y − z�,
∥h2(y)− h2(z)∥L2(0,T ;V ′

v)
≤

√
d∥U∥L2(Rd)

(
∥y∥L∞(0,T ;Y ) + ∥z∥L∞(0,T ;Y )

)
∥y − z∥L2(0,T ;Y )

≤
√
d∥U∥L2(Rd)(�y�+ �z�)�y − z�.

We are now prepared to assert the existence of a solution to the nonlinear equation under a
smallness assumption on the initial data.

Proposition 7. For y0 ∈ Y such that ∥y0∥Y ≤ µ := 3

32
√
d∥U∥Ĉ2

there exists a solution y ∈
C([0, T ];Y ) ∩ L2(0, T ;Vv) ∩W 1,2(0, T ;Y−1) to

ẏ(t) = (A+D)y(t)− h1(y(t))− h2(y(t)), y(0) = y0 (28)

which for every t ∈ [0, T ] satisfies

y(t)− y0 =

∫ t

0

((A+D)y(s)− (h1(y(s)) + h2(y(s)))) ds in Y−1. (29)

Proof. The statement will be shown utilizing a classical fixed point argument. For this purpose,
let us define the set

F :=

{
y ∈ L2(0, T ;Vv) ∩ C([0, T ];Y )

∣∣∣∣∣�y� ≤ κ :=
1

8
√
d∥U∥Ĉ

}
.

We further define the mapping T : F → L2(0, T ;Vv)∩C([0, T ];Y ), z 7→ yz, where yz is the solution
to

ẏz(t) = (A+D)yz(t)− h1(z(t))− h2(z(t)), yz(0) = y0.

It is well-defined by Proposition 4 with g = −(h1(z) + h2(z)), using that Lemma 6 implies
hi(z) ∈ L2(0, T ;V ′

v), i = 1, 2. In addition, by the choice of µ and κ we have the estimate

�yz� ≤ Ĉ(∥y0∥Y + 2
√
d∥U∥�z�2) ≤ Ĉ(µ+ 2

√
d∥U∥κ2) ≤ κ.

Next, for z1, z2 ∈ F , the difference e := yz1 − yz2 satisfies

ė(t) = (A+D)e(t)− (h1(z1(t))− h1(z2(t)))− (h2(z1(t))− h2(z2(t))), e(0) = 0

which, again by Proposition 4 and Lemma 6 yields

�yz1 − yz2� ≤ 4
√
dĈ∥U∥κ�z1 − z2� ≤ 1

2�z1 − z2�.
Consequently, T is a contraction on F and implies the existence of a unique solution to (28) in
the set F .

Since y ∈ L2(0, T ;Vv), we know that h1(y) + h2(y) ∈ L2(0, T ;V ′
v) such that Corollary 3 yields

y ∈W 1,2(0, T ;Y−1).
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We now turn to the controlled nonlinear equation (15). It will be convenient to introduce the
space

X := C([0, T ];Y ) ∩ L2(0, T ;Vv) ∩W 1,2(0, T ;Y−1). (30)

Definition 8. We call y a solution to (15) in Y−1 if y ∈ X and it satisfies

y(t)− y0 =

∫ t

0

(A+D)y(s) +Ny(s)u(s) +Bu(s)− (h1(y(s)) + h2(y(s))) ds (31)

in Y−1.

The following result will later be used for the optimal control problem and builds upon the
existence of solutions to (15) satisfying an L2(0, T ;Vv) bound.

Proposition 9. For y0 ∈ Y, with ∥y0∥ ≤ k0, u ∈ L2(0, T ) with ∥u∥L∞(0,T ) ≤ k1, and y ∈ X a solu-

tion to (31) with ∥y∥L2(0,T ;Vv) ≤ k2, for constants k0, k1, k2 ∈ there exist C(k0, k1, k2), C̃(k0, k1, k2)

such that ∥y∥L∞(0,T ;Y ) ≤ C(k0, k1, k2) and ∥y∥W 1,2(0,T ;Y−1) ≤ C̃(k0, k1, k2) with the property that
for each k2 > 0 fixed, C(k0, k1, k2) → 0 for k0 + k1 → 0.

Proof. Similar to the proof of Corollary 3, we consider the following controllability maps

Φt1 : w 7→ Φt2w =

∫ t

0

e(A+D)(t−s)R
1
2w(s) ds

Φt2 : u 7→ Φt1u =

∫ t

0

e(A+D)(t−s)Bu(s) ds

and recall that sinceR
1
2 ∈ L(Y, V ′

v) andB ∈ L(R, Y ) are admissible we have Φt1 ∈ L(L2(0, t;Y ), Y )
and Φt2 ∈ L(L2(0, t), Y ). With reference to (31), we set w = Nyu + h1(y) + h2(y) and estimate
for t ∈ [0, T ]

∥y(t)∥Y ≤ ∥e(A+D)ty0∥Y + ∥Φt1R
− 1

2Nyu∥Y + ∥Φt1R
− 1

2h1(y)∥Y

+ ∥Φt1R
− 1

2h2(y)∥Y + ∥Φt2u∥Y

≤Meωt∥y0∥Y + c1∥R
− 1

2N∥L(Y )∥yu∥L2(0,t;Y ) + c2∥u∥L2(0,t)

+ c1∥R
− 1

2 ∥L(V ′
v ,Y )(∥h1(y)∥L2(0,t;V ′

v)
+ ∥h2(y)∥L2(0,t;V ′

v)
)

for constants c1 and c2 independent of y and u.
Applying Lemma 5, we obtain

∥y(t)∥Y ≤Meωt∥y0∥Y + c1∥R
− 1

2N∥L(Y )∥y∥L2(0,t;Y )∥u∥L∞(0,t) + c2∥u∥L2(0,t)

+ 2c1
√
d∥U∥∥R− 1

2 ∥L(V ′
v ,Y )

(∫ t

0

∥y(s)∥2Y ∥y(s)∥2Vv
ds

) 1
2

≤ C(k0, k1, k2) + C

(∫ t

0

∥y(s)∥2Y ∥y(s)∥2Vv
ds

) 1
2

.

Squaring both sides yields

∥y(t)∥2Y ≤ 2C(k0, k1, k2)
2 + 2C2

∫ t

0

∥y(s)∥2Y ∥y(s)∥2Vv
ds

and by Gronwall’s inequality we obtain

∥y(t)∥2Y ≤ 2C(k0, k1, k2)
2e

2C2∥y∥2
L2(0,T ;Vv)

for all t ∈ [0, T ]. The estimate on the W 1,2(0, T ;Y−1) norm of the solution can now be obtained
by Proposition 4 and Lemma 5.
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In the following theorem a sufficient condition on u and y0 is given under which existence of
a solution to (31) is guaranteed.

Theorem 10. For all y0 ∈ Y and u ∈ L2(0, T ) sufficiently small in the respective norms, there
exists a solution y ∈ X to the nonlinear controlled equation (31).

Proof. We follow the proof of Proposition 7. Let us thus define

κ := min((Ĉ(4
√
d∥U∥+ 1))−1, (16

√
d∥U∥Ĉ)−1)

and

F :=
{
y ∈ L2(0, T ;Vv) ∩ C([0, T ];Y ) |�y� ≤ κ

}
endowed with the norm of the space L2(0, T ;Vv) ∩ C([0, T ];Y ). We further define the mapping
T : F → L2(0, T ;Vv) ∩ C([0, T ];Y ), z 7→ yz, where yz is the solution to

ẏz(t) = (A+D)yz(t) +Nz(t)u(t) +Bu(t)− h1(z(t))− h2(z(t)), yz(0) = y0.

We now apply Proposition 4 and Young’s inequality to estimate

�yz� ≤ Ĉ(µ+ (2
√
d∥U∥+ 1

2
)κ2)

with

µ = ∥y0∥Y + ∥Bu∥L2(0,T ;Y ) +
1

2
∥N∥2L(Y,V ′)∥u∥

2
L2(0,T ) ≤

κ

2Ĉ
. (32)

By definition of κ we observe that

Ĉ(µ+ (2
√
d∥U∥+ 1

2
)κ2) ≤ Ĉ(µ+ (2

√
d∥U∥+ 1

2
)(4

√
d∥U∥+ 1)−1Ĉ−1κ) = Ĉµ+

1

2
κ ≤ κ

and consequently T is mapping F to itself. For z1, z2 ∈ F and the difference e = yz1 − yz2 we
then obtain

ė(t) = (A+D)e(t)− (h1(z1(t))− h1(z2(t)))− (h2(z1(t))− h2(z2(t))) +Ne(t)u(t),

e(0) = 0

for which we estimate

�e� ≤ Ĉ(
√
d∥U∥4κ+ ∥u∥L2(0,T )∥N∥L(Y,V ′

v)
)�z1 − z2�

≤ 1

4
�z1 − z2�+ Ĉ∥u∥L2(0,T )∥N∥L(Y,V ′

v)
�z1 − z2� ≤ c�z1 − z2�

with c < 1 provided that Ĉ∥u∥L2(0,T )∥N∥L(Y,V ′
v)
< 3

4 . Hence, T is a contraction in F .
Summarizing, Banach’s fixed point theorem is applicable if

∥y0∥Y + ∥Bu∥L2(0,T ;Y ) +
1

2
∥N∥2L(Y,V ′)∥u∥

2
L2(0,T )

≤ min((Ĉ(4
√
d∥U∥+ 1))−1, (16

√
d∥U∥Ĉ)−1)

2Ĉ

and Ĉ∥u∥L2(0,T )∥N∥L(Y,V ′
v)
< 3

4 .
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4 An optimal control problem

The objective of this section is to show that the solution concept for the state equation is appro-
priate to consider certain optimal control problems. Concretely we shall investigate the problem

inf
u∈Uad

J (u) :=
1

2

∫ T

0

∥y(u; t)− y d(t)∥2Vv
dt+

β

2

∫ T

0

u(t)2 dt, (33)

where y(u; ·) is a solution to

ẏ = Ay +Dy − h1(y)− h2(y) + uNy +Bu, in Y−1, with y(0) = y0, (34)

Uad := {u ∈ L∞(0, T ) | umin(t) ≤ u(t) ≤ umax(t) for a.e. t ∈ [0, T ]},

and y d ∈ L2(0, T ;Vv), u
min and umax ∈ L∞(0, T ) with umin(t) ≤ 0 ≤ umax(t). We also recall the

definitions of the operators N and B from (16) characterizing the control action of the system.
Further, throughout this section we assume that

Assumption 11. U ∈W s+1,1(Rd) ∩Hs(Rd) for s > d
2 .

We have the following existence theorem.

Theorem 12. If Assumption 11 holds and y0 is sufficiently small, then there exists an optimal
control ū to (33).

The proofs for this theorem and the following result are given in the appendix.
While the previous theorem asserts existence of an optimal control for (33) there is no guarantee

for its uniqueness due to the nonlinearity of the state equation. Moreover the state y associated
to an optimal may not be unique globally. The following result, however, guarantees that the
state associated to an optimal control-state pair is unique.

Proposition 13. Let Assumption 11 hold and let ū be an optimal control of (33). If umin, umax

and y0 are sufficiently small, in the sense that

∥y0∥ ≤ µ

u∞ := max(∥umin∥L∞(0,T ), ∥u∞∥L∞(0,T )) ≤ 1

8dĈ2∥U∥2L2(Rd)(1 + ∥N∥)(2∥yd∥+ κ)C(∥y0∥, u∞, κ+ 2∥yd∥) ≤
1

2

4
√
dĈ2∥U∥L2(Rd)(1 + ∥N∥)

(
∥y0∥+ (2∥yd∥+ κ)u∞∥N∥

)
<

1

2

where C, µ, Ĉ and κ denote the constants from Proposition 4, Proposition 7, Proposition 9 and
Theorem 10, then there exists exactly one solution ȳ = y(ū) to (34) with minimal cost.

We now commence with the analysis which is required to obtain the existence result. For the
following results, for given y, we introduce the notation

u(s, x) = (U ∗ ρµy(s))(x) =
∫
Rd

U(x− x̃)

∫
Rd

y(s, x̃, v)µ(v) dv dx̃, (35)

v(s, x) = (U ∗ ρµy(s)v)(x) =
∫
Rd

U(x− x̃)

∫
Rd

y(s, x̃, v)µ(v)v dv dx̃. (36)

Similarly, we use un, vn for a given yn. First some continuity properties of the functions hi
characterizing the nonlinearities are obtained.

Proposition 14. Let {yn} be bounded in X and let Assumption 11 hold. Then there exist ynk
and

y such that ynk
⇀ y ∈ L2(0, T ;Vv)∩W 1,2(0, T ;Y−1) and

∫ t
0
⟨hi(ynk

(s))− hi(y(s)), ψ⟩V ′
v ,Vv

ds→ 0

for every ψ ∈ Vv with ψ(x, v) = 0 for x /∈ Ω, for arbitrary compact subsets Ω ⊂ Rd, and every
t ∈ [0, T ].
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The proof of this proposition depends on the next lemma, whose proof is also provided in the
Appendix.

Lemma 15. Under the assumptions of Proposition 14, it holds that un → u in L2(0, t;C(Ω̄)) and
vn,i → vi in L

2(0, t;C(Ω̄)), i = 1, . . . , d for every pre-compact subset Ω ⊂ Rd and every t ∈ [0, T ].

Proof of Theorem 12. First we observe that by Proposition 7, for y0 sufficiently small u ≡ 0 is
a feasible control. Let {un} ∈ Uad denote a minimizing sequence for (33) with associated states

yn = y(un). The feasibility of un implies the boundedness of un in L∞(0, T ). Thus un
∗
⇀ ū for

a subsequence denoted in the same manner and ū satisfying umin(t) ≤ ū(t) ≤ umax(t). By the
choice of J , yn is bounded in L2(0, T ;Vv) so that with Proposition 9, yn is bounded in X as well.
Therefore there exist a weakly convergent subsequence, also denoted by yn and ȳ ∈ X such that
yn ⇀ ȳ in L2(0, T ;Vv) ∩W 1,2(0, T ;Y−1).

Next, we argue that ȳ = y(ū), the solution to (34) with u = ū. For this purpose, we pass to
the limit in

⟨yn(t)− y0, ψ⟩D =

∫ t

0

⟨yn(s), (A+D)∗ψ⟩Y + ⟨Nyn(s)un(s) +Bun(s), ψ⟩D

− ⟨h1(yn(s)) + h2(yn(s)), ψ⟩D ds

(37)

for every t ∈ [0, T ], and every ψ ∈ D(A∗) with ψ(x, v) = 0 for x /∈ Ω, and Ω ⊂ Rd an arbitrary
compact subset. Since yn ⇀ ȳ in W 1,2(0, T ;Y−1) it follows that ⟨yn(·), ψ⟩D ⇀ ⟨ȳ(·), ψ⟩D in
W 1,2(0, T ). By compactness of W 1,2(0, T ) in C([0, T ]), we obtain

⟨yn(·), ψ⟩D → ⟨ȳ(·), ψ⟩D in C([0, T ]). (38)

Recall that N ∈ L(Y, V ′
v). By density of D(A∗) in Y , there exists gk ∈ D(A∗) such that gk → N ′ψ

in Y . We estimate

|⟨ȳ, N ′ψ⟩Y − ⟨yn, N ′ψ⟩|L2(0,T )

≤ |⟨ȳ, N ′ψ − gk⟩Y |L2(0,T ) + |⟨ȳ − yn, gk⟩Y |L2(0,T ) + |⟨yn, gk −N ′ψ⟩Y |L2(0,T ).

Taking first the limit w.r.t. k and subsequently w.r.t. n and using (38) for the second term on the
right hand side, we obtain

⟨ȳ, N ′ψ⟩Y → ⟨yn, N ′ψ⟩ in L2(0, T ). (39)

Clearly this convergence also holds in L2(0, t) for every t ∈ [0, T ]. Similarly, we have yn ⇀ ȳ in
L2(0, t;Vv) and un ⇀ ū in L2(0, t) for every t ∈ [0, T ]. Utilizing (38) and (39) and Proposition
14, we can pass to the limit in (37) to arrive at

⟨ȳ(t)− y0, ψ⟩D =

∫ t

0

⟨ȳ(s), (A+D)∗ψ⟩Y + ⟨Nȳ(s)ū(s) +Bū(s), ψ⟩D

− ⟨h1(ȳ(s)) + h2(ȳ(s)), ψ⟩D ds,

(40)

for every t ∈ [0, T ], and every ψ ∈ D(A∗) with ψ(x, v) = 0 for x /∈ Ω, and Ω ⊂ Rd an arbitrary
compact subset.

Due to the fact that C∞
0 (R2d) is a core for D(A∗) and N ′ ∈ L(D(A∗), Y ), a density argument

implies that (40) holds for all ψ ∈ D(A∗).
Finally, since ȳ ∈ L2(0, T ;Vv) ∩ L∞(0, T ;Y ) and ū ∈ L2(0, T ), we can apply Corollary 3 with

g = −(h1(ȳ) + h2(ȳ)) +Nȳū+ Bū ∈ L2(0, T ;V ′
v) to obtain ȳ ∈ C([0, T ];Y ). Thus ȳ = y(ū;u) is

a solution corresponding to ū.
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Concerning optimality, we have the following estimates

J (ū) =
1

2

∫ T

0

∥ȳ − y d(s)∥2Vv
ds+

β

2

∫ T

0

ū(s)2 ds

≤ lim inf
n→∞

1

2

∫ T

0

∥yn − y d(s)∥2Vv
ds+ lim inf

n→∞

β

2

∫ T

0

un(s)
2 ds

≤ lim inf
n→∞

(
1

2

∫ T

0

∥yn − y d(s)∥2Vv
ds+

β

2

∫ T

0

un(s)
2 ds

)
= inf
u∈Uad

J (u).

Consequently, ū is an optimal control for (33).

Proof of Proposition 13. From Theorem 12, it follows that there exists at least one optimal control
ū to (33). Assume there were two solutions y1(ū), y2(ū) with minimal cost Jmin. Since ũ ≡ 0 is
a feasible control, for i = 1, 2 it follows that

1

2
∥yi(ū)− y d∥2L2(0,T ;Vv)

+
β

2
∥ū∥L2(0,T ) ≤

1

2
∥y(ũ)− y d∥2L2(0,T ;Vv)

so that ∥yi − y d∥L2(0,T ;Vv) ≤ ∥y(ũ)− y d∥L2(0,T ;Vv). By Theorem 10 we therefore also obtain

∥yi(ū)∥L2(0,T ;Vv) ≤ ∥yi(ū)− y d∥L2(0,T ;Vv) + ∥y d∥L2(0,T ;Vv) ≤ κ+ 2∥y d∥L2(0,T ;Vv) (41)

for i = 1, 2. By Proposition 4 for i ∈ {1, 2}

�yi(ū)� ≤ Ĉ(∥y0∥Y + ∥g̃∥L2(0,T ;V ′
v
), (42)

holds, where g̃ = −h1 + h2 + uNyi, and hence by Lemma 5

∥h1(yi)∥L2(0,T ;V ′
v)

≤ ∥U∥L2(Rd)∥yi∥C([0,T ];Y )∥yi∥L2(0,T ;Vv)

≤
√
d∥U∥L2(Rd)∥yi∥C([0,T ];Y )∥yi∥L2(0,T ;Vv)

∥h2(yi)∥L2(0,T ;V ′
v)

≤
√
d∥U∥L2(Rd)∥yi∥C([0,T ];Y )∥yi∥L2(0,T ;Y )

≤
√
d∥U∥L2(Rd)∥yi∥C([0,T ];Y )∥yi∥L2(0,T ;Vv).

Thus by Proposition 9, for i, j ∈ {1, 2}, we have

∥hj(yi)∥L2(0,T ;V ′
v)

≤
√
d∥U∥L2(Rd)C(∥y0∥, u∞, κ+ 2∥y d∥)∥yi∥L2(0,T ;Vv).

From (42) and ∥yi(ū)∥L2(0,T ;Vv) ≤ κ+ 2∥y d∥L2(0,T ;Vv) it thus follows

�yi(ū)� ≤ Ĉ
(
∥y0∥+ 2

√
d∥U∥L2(Rd)C(∥y0∥, u∞, κ+ 2∥y d∥)∥yi∥L2(0,T ;Vv)

+ u∞∥N∥L(Y,V ′
v)
∥yi∥L2(0,T ;Vv)

)
≤ Ĉ

(
∥y0∥+ (κ+ 2∥y d∥L2(0,T ;Vv))(2

√
d∥U∥L2(Rd)C(∥y0∥, u∞, κ+ 2∥y d∥)

+ u∞∥N∥L(Y,V ′
v)
)
) (43)

where in the last inequality we used (41). We now set e = y1 − y2 and observe that e satisfies

ė(t) = Ae(t) +De(t) + g(t), e(0) = 0,

with
g(t) = −(h1(y1(t))− h1(y2(t))) + h2(y1(t))− h2(y2(t)) + ū(t)N(y1(t)− y2(t)).

By Lemma 6 we find

∥g∥L2(0,T ;V ′
v)

≤ 2
√
d∥U∥L2(Rd)(�y1�+ �y2�)(�e�+ ∥N∥L(Y,V ′

v)
u∞∥e∥L2(0,T ;Y )).
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Proposition 4 implies that

�e� ≤ Ĉ∥g∥L2(0,T :V ′
v)

≤ 2
√
d∥U∥L2(Rd)Ĉ(�y1�+ �y2�)�e�(1 + ∥N∥L(Y,V ′

v)
u∞).

Combining this estimate with (43) yields

�e� ≤ 2
√
d∥U∥L2(Rd)Ĉ�e�(1 + ∥N∥L(Y,V ′

v)
)·

2Ĉ

(
∥y0∥+ (κ+ 2∥y d∥L2(0,T ;Vv))

(
2
√
d∥U∥L2(Rd)C(∥y0∥, u∞, κ+ 2∥y d∥) + u∞∥N∥L(Y,V ′

v)

))
where we used u∞ ≤ 1. This, together with the assumptions

8dĈ2∥U∥2L2(Rd)(1 + ∥N∥)(2∥yd∥+ κ)C(∥y0∥, u∞, κ+ 2∥yd∥) ≤
1

2

4
√
dĈ2∥U∥L2(Rd)(1 + ∥N∥)

(
∥y0∥+ (2∥yd∥+ κ)u∞∥N∥

)
<

1

2

implies the uniqueness claim.

5 Conclusion

We have analyzed local existence of solutions to a specific nonlinear and nonlocal kinetic Fokker-
Planck equation. Due to a lack of coercivity of the underlying operators, standard (variational)
solution techniques were not directly applicable and we instead resorted to the concept of admis-
sible control operators and suitable Lipschitz estimates for the nonlinearities which were utilized
in a fixed point technique. We subsequently introduced and analyzed a quadratic tracking type
cost functionals for which we showed the existence of a local solution and the uniqueness of its
associated state.

Several questions remain open and deserve a further detailed analysis. For example, while
the existence of optimal controls obviously calls for first order necessary optimality conditions,
a corresponding sensitivity analysis appears to be far from straightforward as the uniqueness of
solutions (other than the ones corresponding to the optimal control) is not clear at this point.
Furthermore, a study of the optimal control problem on an infinite-horizon or the construction of
feedback controls seem interesting follow up research questions. Similarly, discretization strategies
both of the uncontrolled equation as well as the optimal control problem apparently have not
received particular attention for hypocoercive problems and could be the focus of future work. It
would further be of interest whether Assumption 11 concerning extra regularity of the potential
U could be overcome by the velocity averaging effect of the first order hyperbolic operator ∂ty +
v · ∇xy, see, e.g., [26]. This would be the case if the nonlocal operators ρµy and ρµyv had local
support in the v variable.

Appendix

Proof of Lemma 5. Assume that w, w̃ ∈ Vv. We consider U ∗ρµwR0w̃ and begin with an estimate
for U ∗ ρµw. Young’s inequality for convolutions yields

∥U ∗ ρµw∥L∞(Rd) ≤ ∥U∥L2(Rd)∥ρµw∥L2(Rd).

We further have that

∥ρµw∥L2(Rd) =

(∫
Rd

|ρµw(x)|2 dx
) 1

2

=

(∫
Rd

∣∣∣∣∫
Rd

µ(v)w(x, v) dv

∣∣∣∣2 dx
) 1

2

.

With the Minkowski integral inequality, we then obtain

∥ρµw∥L2(Rd) ≤
∫
Rd

(∫
Rd

|µ(v)w(x, v)|2 dx
) 1

2

dv =

∫
Rd

µ(v)
1
2

(∫
Rd

µ(v) |w(x, v)|2 dx
) 1

2

dv.
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Applying Cauchy-Schwarz w.r.t. the v variable shows that

∥ρµw(t)∥L2(Rd) ≤
(∫

Rd

µ(v) dv

) 1
2

︸ ︷︷ ︸
=1

(∫
Rd

∫
Rd

µ(v)|w(x, v)|2 dxdv
) 1

2

︸ ︷︷ ︸
=∥w∥Y

. (44)

Up to this point, we conclude that

∥U ∗ ρµw∥L∞(Rd) ≤ ∥U∥L2(Rd)∥w∥Y (45)

which then implies that

∥U ∗ ρµwR0w̃∥V ′
v
= sup

∥ψ∥Vv=1

∣∣∣∣∫
Rd

∫
Rd

µ(v)(U ∗ ρµw)(x)R0w̃(x, v)ψ(x, v) dxdv

∣∣∣∣
≤ ∥U ∗ ρµw∥L∞(Rd) sup

∥ψ∥Vv=1

|⟨R0w̃, ψ⟩Y |

≤ ∥U∥L2(Rd)∥w∥Y sup
∥ψ∥Vv=1

|⟨R0w̃, ψ⟩Y |.

For almost all ψ ∈ C∞
0 (R2d), let us note that with (4) we have

⟨R0w̃, ψ⟩Y =

∫
R2d

µψ(v · ∇vw̃ −∆vw̃) dxdv

=

∫
R2d

µψv · ∇vw̃ +∇vw̃ · ∇v(µψ) dxdv

=

∫
R2d

µψv · ∇vw̃ + µ∇vw̃ · ∇vψ + ψ∇vw̃ · ∇vµdx dv

=

∫
R2d

µ∇vw̃ · ∇vψ dx dv = ⟨∇vw̃,∇vψ⟩Y 2d .

By density of C∞
0 (R2d) in Vv, which can be argued by classical approximation techniques, see for

instance [3, Section 3], the above equality holds for all ψ ∈ Vv. We finally arrive at

∥U ∗ ρµwR0w̃∥V ′
v
≤ ∥U∥L2(Rd)∥w∥Y sup

∥ψ∥Vv=1

|⟨R0w̃(t), ψ⟩Y |

≤ ∥U∥L2(Rd)∥w∥Y sup
∥ψ∥Vv=1

∥∇vw̃(t)∥Y 2d∥∇vψ∥Y 2d

≤ ∥U∥L2(Rd)∥w∥Y ∥∇vw̃∥Y .

The first assertion now follows from

h1(y)− h1(z) = U ∗ ρµyR0y − U ∗ ρµzR0z

= U ∗ ρµyR0y − U ∗ ρµyR0z + U ∗ ρµyR0z − U ∗ ρµzR0z

= U ∗ ρµyR0(y − z) + U ∗ ρµ(y−z)R0z.

Let us next turn to U ∗ρvµw ·(∇vw̃−w̃v). We observe that with Young’s inequality for convolutions
and (18), it holds that

∥U ∗ ρvµw∥(L∞(Rd))d ≤ ∥U∥L2(Rd)∥ρvµw∥(L2(Rd))d ≤
√
d∥U∥L2(Rd)∥w∥Y . (46)

Before we continue, recall that with (4) we have the identity

µ−1∇v(µw̃) = µ−1(w̃∇vµ+ µ∇vw̃) = µ−1(−w̃vµ+ µ∇vw̃) = ∇vw̃ − w̃v.
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Hence, we obtain

∥U ∗ ρvµw · (∇vw̃ − w̃v)∥V ′
v

= sup
∥ψ∥Vv=1

∣∣∣∣∫
Rd

∫
Rd

µ(v)(U ∗ ρvµw)(x) · (∇vw̃(x, v)− w̃(x, v)v)ψ(x, v) dxdv

∣∣∣∣
= sup

∥ψ∥Vv=1

∣∣∣∣∫
Rd

∫
Rd

(U ∗ ρvµw)(x) · ∇v(µ(v)w̃(x, v))ψ(x, v) dxdv

∣∣∣∣ .
Using (46) we find that

∥U ∗ ρvµw · (∇vw̃ − w̃v)∥V ′
v

≤ ∥U ∗ ρvµw∥L∞(Rd) sup
∥ψ∥Vv=1

∥∥∥∥∫
Rd

∫
Rd

∇v(µ(v)w̃(x, v))ψ(x, v) dx dv

∥∥∥∥
Rd

≤
√
d∥U∥L2(Rd)∥w∥Y sup

∥ψ∥Vv=1

∥∥∥∥∫
Rd

∫
Rd

µ(v)w̃(x, v)∇vψ(x, v) dxdv

∥∥∥∥
Rd

≤
√
d∥U∥L2(Rd)∥w∥Y sup

∥ψ∥Vv=1

∫
Rd

∫
Rd

|µ(v) 1
2 w̃(x, v)| · ∥µ 1

2 (v)∇vψ(x, v)∥Rd dxdv.

Applying Cauchy Schwarz on L2(R2d) allows to conclude that

∥U ∗ ρvµw · (∇vw̃ − w̃v)∥V ′
v

≤
√
d∥U∥L2(Rd)∥w∥Y sup

∥ψ∥Vv=1

∥µ 1
2 w̃∥L2(R2d)︸ ︷︷ ︸
=∥w̃∥Y

∥µ 1
2∇vψ∥(L2(R2d))d︸ ︷︷ ︸

=∥∇vψ∥Y d

≤
√
d∥U∥L2(Rd)∥w∥Y ∥w̃∥Y .

Finally, we obtain the second assertion since

h2(y)− h2(z) = U ∗ ρµyv · (∇vy − yv)− U ∗ ρµzv · (∇vz − zv)

= U ∗ ρµyv · (∇vy − yv)− U ∗ ρµyv · (∇vz − zv)

+ U ∗ ρµyv · (∇vz − zv)− U ∗ ρµzv · (∇vz − zv)

= U ∗ ρµyv · (∇v(y − z)− (y − z)v) + U ∗ ρµ(y−z)v · (∇vz − zv).

Proof of Proposition 14. The assumed boundedness of {yn} implies the existence of a weakly
convergent subsequence ynk

⇀ y in X . Subsequently, the second subscript k will be dropped.
Step 1. We first consider h1. Let t > 0 and ψ ∈ Vv be as announced. It then holds that∫ t

0

⟨h1(yn(s))− h1(y(s)), ψ⟩V ′
v ,Vv ds

=

∫ t

0

⟨U ∗ ρµ(yn(s)−y(s))Ryn(s), ψ⟩V ′
v ,Vv

ds+

∫ t

0

⟨U ∗ ρµy(s)R(yn(s)− y(s)), ψ⟩V ′
v ,Vv

ds

=

∫ t

0

⟨(un(s)− u(s))Ryn(s), ψ⟩V ′
v ,Vv

ds︸ ︷︷ ︸
=I

+

∫ t

0

⟨R(yn(s)− y(s)), u(s)ψ⟩V ′
v ,Vv

ds︸ ︷︷ ︸
=II

.

We already know from (45) that

∥un(s, ·)∥L∞(Rd) ≤ ∥U∥L2(Rd)∥yn(s)∥Y

for all s ∈ [0, T ]. Since {yn} is bounded in L∞(0, T ;Y ), we can find a constant C such that
|un(s, x)| ≤ C for all (s, x) ∈ [0, T ] × Rd. Analogously we obtain |u(s, x)| ≤ C for all (s, x) ∈
[0, T ]× Rd.
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Now we turn to II. First, we observe that uψ ∈ L2(0, T ;Vv). Since yn ⇀ y in L2(0, T ;Vv), it
follows that Ryn ⇀ Ry in L2(0, T ;V ′

v) and consequently II tends to 0 as n→ ∞.
Next, we turn to I and observe that for ψ ∈ L2(0, T ;Vv) with ψ(s, x, v) = 0 for x /∈ Ω, it holds

that ∫ t

0

⟨(un(s)− u(s))Ryn(s), ψ⟩V ′
v ,Vv ds

=

∫ t

0

∫
Rd

(un(s, x)− u(s, x))

∫
Rd

ψ(x, v)Ryn(s, x, v)µ(v) dxdv ds

=

∫ t

0

∫
Ω

(un(s, x)− u(s, x))

∫
Rd

ψ(x, v)Ryn(s, x, v)µ(v) dv dx ds

≤
∫ t

0

∥un(s)− u(s)∥C(Ω̄)

∫
Rd

∫
Rd

|ψ(x, v)Ryn(s, x, v)µ(v)|dv dxds

≤
∫ t

0

∥un(s)− u(s)∥C(Ω̄)|⟨Ryn(s), ψ⟩|V ′
v ,Vv

ds

≤ ∥un − u∥L2(0,T ;C(Ω̄))∥ψ∥Vv
∥Ryn∥L2(0,T ;V ′

v)
.

Since from Lemma 15 we have un → u in L2(0, T ;C(Ω̄)) and Ryn is bounded in L2(0, T ;V ′
v), I

tends to 0 as n→ ∞.
Step 2. Next we consider h2. From (46) we conclude that

∥vn(s, ·)∥(L∞(Rd))d ≤ C∥yn(s)∥Y

which, together with the boundedness of {yn} in L∞(0, T ;Y ) ensures the existence of a constant
C such that ∥vn,i(s, x)∥ ≤ C for almost all (s, x) ∈ [0, T ] × Rd and i = 1, . . . , d. An analogous
estimate holds true for vi, i = 1, . . . , d.

For what follows, we introduce the notation Sy = ∇vy − yv. With derivations similar to the
ones in the proof of Lemma 6, one can show that (Sz)i ∈ L(Y, V ′

v). Indeed, observe that

∥ei · Sz∥V ′
v
= sup

∥ψ∥Vv=1

|⟨ei · Sz, ψ⟩V ′
v ,Vv

|

= sup
∥ψ∥Vv=1

∣∣∣∣∫
Rd

∫
Rd

ei · ∇v(µ(v)z(x, v))ψ(x, v) dxdv

∣∣∣∣
= sup

∥ψ∥Vv=1

∣∣∣∣∫
Rd

∫
Rd

µ(v)z(x, v)ψvi(x, v) dx dv

∣∣∣∣
≤ sup

∥ψ∥Vv=1

∫
Rd

∫
Rd

|µ(v) 1
2 z(x, v)| · |ψvi(x, v)µ(v)

1
2 |dxdv

≤ sup
∥ψ∥Vv=1

∥z∥Y · ∥∇vψ∥Y d ≤ ∥z∥Y .

With these preparations, we obtain for ψ ∈ Vv∫ t

0

⟨h2(yn(s))− h2(y(s)), ψ⟩V ′
v ,Vv

ds

=

∫ t

0

⟨U ∗ ρµv(yn(s)−y(s)) · Sy(s), ψ⟩V ′
v ,Vv

ds+

∫ t

0

⟨U ∗ ρµvy(s) · S(yn(s)− y(s)), ψ⟩V ′
v ,Vv

ds

=

∫ t

0

⟨(vn(s)− v(s)) · Syn(s), ψ⟩V ′
v ,Vv

ds︸ ︷︷ ︸
=I

+

∫ t

0

⟨v(s) · S(yn(s)− y(s)), ψ⟩V ′
v ,Vv

ds︸ ︷︷ ︸
=II

.
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Let us focus on II first. Note that we have∫ t

0

⟨v(s) · S(yn(s)− y(s)), ψ⟩V ′
v ,Vv

ds =

d∑
i=1

∫ t

0

⟨vi(s)ei · S(yn(s)− y(s)), ψ⟩V ′
v ,Vv

ds

=

d∑
i=1

∫ t

0

⟨ei · S(yn(s)− y(s)), vi(s)ψ⟩V ′
v ,Vv

ds.

Since viψ ∈ L2(0, T ;Vv), yn ⇀ y ∈ L2(0, T ;Vv) and ei · S ∈ L(Y, V ′
v), we conclude that II tends

to 0 as n→ ∞.
Let us turn to I. It holds that∫ t

0

⟨(vn(s)− v(s)) · Syn(s), ψ⟩V ′
v ,Vv

ds

=

d∑
i=1

∫ t

0

⟨(vn,i(s)− vi(s))ei · Syn(s), ψ⟩V ′
v ,Vv ds.

For i = 1, . . . , d, using ψ(x, v) = 0 for x /∈ Ω, we find that∫ t

0

⟨(vn,i(s)− vi(s))ei · Syn(s), ψ⟩V ′
v ,Vv ds

=

∫ t

0

∫
Rd

(vn,i(s, x)− vi(s, x))

∫
Rd

ψ(x, v)ei · Syn(s, x, v)µ(v) dxdv ds

=

∫ t

0

∫
Ω

(vn,i(s, x)− vi(s, x))

∫
Rd

ψ(x, v)ei · Syn(s, x, v)µ(v) dv dx ds

≤
∫ t

0

∥vn,i(s)− vi(s)∥C(Ω̄)

∫
Rd

∫
Rd

|ψ(x, v)ei · Syn(s, x, v)µ(v)|dv dxds

≤
∫ t

0

∥vn,i(s)− vi(s)∥C(Ω̄)|⟨ei · Syn(s), ψ⟩|V ′
v ,Vv

ds

≤ ∥vn,i − vi∥L2(0,T ;C(Ω̄))∥ψ∥Vv
∥ei · Syn∥L2(0,T ;V ′

v)
.

From Lemma 15, we know that vn,i → v in L2(0, T ;C(Ω̄)). This completes the proof.

Proof of Lemma 15. At first we show that {vn,i} is bounded in W 1,2(0, T ;L2(Rd)). Indeed we
estimate

∥vn,i∥2L2(0,T ;L2(Rd)) =

∫ T

0

∫
Rd

∣∣∣∣∫
Rd

U(x− x̃)

∫
Rd

yn(t, x̃, v)µ(v)vi dv dx̃

∣∣∣∣2 dx dt
=

∫ T

0

∥∥∥∥(U ∗
∫
Rd

yn(t, v)µ(v)vi dv

)
(·)
∥∥∥∥2
L2(Rd)

dt

≤ ∥U∥2L1(Rd)

∫ T

0

∫
Rd

∣∣∣∣∫
Rd

yn(t, x, v)µ
1
2 (v)µ

1
2 (v)vi dv

∣∣∣∣2 dxdt
≤ ∥U∥2L1(Rd)

∫ T

0

∫
Rd

(∫
Rd

y2n(t, x, v)µ(v) dv

)(∫
Rd

µ(v)v2i dv

)
dxdt

≤ ∥U∥2L1(Rd)∥µv
2
i ∥L1(Rd)

∫ T

0

∫
Rd

∫
Rd

y2n(t, x, v)µ(v) dv dxdt

= ∥U∥2L1(Rd)∥µv
2
i ∥L1(Rd)∥yn∥2L2(0,T ;Y ).

If U ∈W s,1(Rd), the previous computations can be repeated, using differentiation of convolutions,
to obtain

∥vn,i∥2L2(0,T ;Hs(Rd)) ≤ ∥U∥2W s,1(Rd)∥µv
2
i ∥L1(Rd)∥yn∥2L2(0,T ;Y ).
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For the temporal derivative of vn,i, we continue with

∥v̇n,i∥2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

∣∣∣∣∫
R2d

U(x− x̃)ẏn(t, x̃, v)µ(v)vi dv dx̃

∣∣∣∣2 dxdt

=

∫ T

0

∫
Ω

|⟨ẏn(t), (·)i · U(x− ·)⟩D|2 dxdt

≤
∫ T

0

∫
Ω

∣∣∣∣∣ sup
ϕ∈D(A∗),∥ϕ∥D(A∗)≤1

⟨ẏn(t), ϕ⟩D

∣∣∣∣∣
2

∥(·)i · U(x− ·)∥2D(A∗) dxdt

≤
∫ T

0

∫
Ω

∥ẏn(t)∥2Y−1
∥(·)i · U(x− ·)∥2D(A∗) dxdt

= |Ω|∥ẏn∥2L2(0,T ;Y−1)
sup
x∈Ω

∥(·)i · U(x− ·)∥2D(A∗).

Let us set fx(x̃, v) := viU(x− x̃) for (x̃, v) ∈ R2d, and observe that from (14)

gx := A∗fx = ∆vf
x − v · ∇vf

x + v · ∇x̃f
x = −viU(x− x̃)− viv · ∇x̃U(x− x̃).

If U ∈ H1(Rd), then {fx}x∈Ω and {gx}x∈Ω are uniformly bounded in Y . Together with the
uniform boundedness of {ẏn} in L2(0, T ;Y−1) in n, we obtain that ∥v̇n∥L2(0,T ;(L2(Ω))d) is uniformly
bounded in n.

Next, again differentiation of convolutions allows to repeat the computations to obtain uniform
boundedness of v̇n in L2(0, T ; (Hs(Ω))d) provided that U ∈ Hs+1(Rd).

Let us now argue that vn,i → vi in L
2(0, T ;C(Ω̄)). By (18) and Young’s inequality for convolu-

tions it can be argued that y → vi = U ∗ ρµyvi is an element of L(L2(0, T ;Y ), L2(0, T ; (L2(Rd)))).
Since yn ⇀ y in L2(0, T ;Y ) this implies that vn,i ⇀ vi.

Now let us choose s > d
2 and utilize that U ∈W s+1,1(Rd)∩Hs(Rd). Then due to the compact

embedding of L2(0, T ;Hs+1(Ω))∩W 1,2(0, T ;Hs−1(Ω)) in L2(0, T ;Hs(Ω)), we have that vn,i → vi
in L2(0, T ;Hs(Ω)), by the Aubin-Lions lemma, and consequently in L2(0, T ;C(Ω̄)) since s > d

2 .
Since this holds for each i ∈ {1, . . . , d}, we have vn → v in L2(0, T ; (Hs(Ω))d).

The convergence of un → u can be shown with almost identical arguments, replacing f by
f̃(x̃, v) = 1vU(x− x̃) where 1v(v) = 1 for all v ∈ Rd and using (45) instead of (46).
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[24] T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molec-
ular dynamics, Acta Numerica, (2016), pp. 681–880.
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