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Abstract. Optimal control problems of tracking type for a class of linear systems

with uncertain parameters in the dynamics are investigated. An affine tracking

feedback control input is obtained by considering the minimization of an energy-

like functional depending on a finite ensemble of training/sample parameters. It is

computed from the nonnegative definite solution of an associated differential Ric-

cati equation. Simulations are presented showing the tracking performance of the

computed input for trained as well as untrained parameters.

1. Introduction

Tracking problems over a finite time-horizon T > 0 for linear autonomous control

systems in the form

ẏ = Ay +Bu, y(0) = y◦,

are investigated, with state y(t) ∈ H, for time t ∈ [0, T ], and ẏ := d
dty. The state space H

is a separable Hilbert space, A is the infinitesimal generator of a semigroup S(t)t≥0,

and B : U 7→ H is a bounded linear operator. The control space U is another separable

Hilbert space. The initial condition y◦ ∈ H is given and the choice of the control

input u ∈ L2(0, T ;U) is at our disposal.

In many situations the dynamics depends on uncertain or unknown parameters. Thus,

we address the design of a robust feedback control operator for parameter-dependent

systems of the form

ẏσ = Aσyσ +Bu, yσ(0) = y◦, (1.1)

with an uncertain/unknown parameter σ in a given set S ∈ RS , for some positive

integer S. More precisely, we aim at driving the state yσ as close as possible to a given

target function g. For this purpose, if we knew the exact value of σ, we could follow a
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classical strategy by considering the minimization of energy-like functionals as

J1(yσ, u) =
1

2

∫ T

0

(
‖yσ(t)− g(t)‖2H + ‖u(t)‖2U

)
dt+

1

2
‖yσ(T )− g(T )‖2H , (1.2)

subject to (1.1). In this way we would obtain a feedback control input u(t) = K(t, yσ(t)),

with the input feedback operator K = Kσ depending on σ, arriving at

ẏσ(t) = Aσyσ(t) +BKσ(t, yσ(t)), yσ(0) = y◦.

If we do not know σ, we could try to use a guess (or an estimate) σ for it. Applying

the feedback corresponding to the guess, we would arrive at

ẏσ(t) = Aσyσ(t) +BKσ(t, yσ(t)) = Aσyσ(t) +BKσ(t, yσ(t)) + (Aσ −Aσ)yσ(t)

If our estimate is good enough so that Aσ − Aσ is small, then, we can hope that this

feedback input will provide good tracking properties.

However, finding a good estimate and subsequently computing the optimal input

feedback Kσ can be a time consuming task and can be impractical for real time appli-

cations. So, we propose to design an input control operator K = KΣ , depending on an

a priori fixed finite subset Σ ⊂ S, but independent of a particular realization of σ.

1.1. Related literature. We could not find works, in the literature, on finite time-

horizon (i.e., 0 < T < +∞) tracking optimal feedback control problems for a general

target g under uncertainty. Here we propose and analyze a feedback input control

operator inspired by the strategy in [11], for the case g = 0 in the case of infinite

time-horizon, T = +∞.

The strategy in [11] applies classical optimal control theory for linear systems to an

auxiliary extended system depending on an ensemble of sample parameters Σ. In the

context of tracking objectives we use the optimal control theory developed, for example,

in [14] and [23, Ch. 8.3]. As we shall recall later, after a change of variables as x := y−g,

the problem of tracking g, under linear dynamics for y, is reduced to the problem of

tracking 0, under affine dynamics for x, leading us to the theory in [3, Part IV, Ch. 1,

Sect. 7.1].

The addressed problem falls into the larger class of optimization under uncertainty,

see, for example [1, 10, 16, 20] treating open-loop optimal control problems or station-

ary optimization problems. The present work focuses on optimal control problems in

feedback form.

We underline that the uncertainty enters the system through the operator Aσ, thus it

does not necessarily enter in an affine manner as Aσy = Ay+ η(σ). Noise η(σ) entering

the dynamics in an affine manner is for instance investigated in [17, Ch. 3.6] and [8,

Ch. III].

Controlled systems with uncertainties entering the system operator Aσ arise, for

instance, in the case of parabolic equations with uncertain diffusion, reaction, or con-

vection coefficients. Another case is that of damped wave-like equations with uncertain

damping coefficients.
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In the context of stabilization (i.e., T = +∞), examples of research towards feedback

controls for parameterized systems include [25], where robustness criteria for linear sys-

tems, and error bounds are obtained for the perturbed system and control matrices

under which a Riccati based nominal feedback law remains stable. In [12, 15] online-

offline strategies are proposed to stabilize a parameter-dependent controlled dynamical

system. See also [4], where stabilizability is investigated for an ensemble of Bloch equa-

tions, and [21], where a bilinear stabilizing feedback is constructed for an ensemble of

oscillators.

In the context of controllability, at/in a given time T , 0 < T < +∞, the concept of

ensemble controllability (controllability of ensembles of systems; simultaneous control-

lability), is discussed in [6, 13, 18], [19, Ch. 5], [24, Ch. 11.3]. In [26] the notion of

averaged controllabity, is discussed and a Kalman-type rank condition is derived; see

also [5].

1.2. Contents and notation. The manuscript is structured as follows. In Section 2.1

we consider an extended system with N copies of the dynamics corresponding to the

parameters in a finite training ensemble Σ ⊂ S and construct a time-dependent feedback

input operator KΣ : [0, T ] × HN → U for this extended system in Section 2.2. Then,

in Section 2.3 we use KΣ to construct a feedback control KΣ : [0, T ] × H → U for

the original system. Subsequently, we compare the cost of this later feedback with the

optimal one in case we knew the uncertain parameter in Section 3; see Corollary 3.5.

Besides, in Section 4 we also compare the corresponding trajectories and control inputs;

see Corollary 4.5. Finally, results of numerical experiments are reported in Section 5.

Concerning notation, given real numbers r < s and separable Banach spaces X and Y,

the space of continuous functions from [r, s] into X is denoted by C([r, s];X ) and the

Bochner space of strongly measurable square integrable functions from the interval (r, s)

into X is denoted by L2(r, s;X ) and we also denote the subspace W (r, s;X ,Y) := {v ∈
L2(r, s;X ) | v̇ ∈ L2(r, s;Y)}. Since the time horizon T > 0 will be fixed throughout

this manuscript, to shorten the exposition, sometimes we shall denote

XT := L2(0, T ;X ) and WT (X ,Y) := W (0, T ;X ,Y). (1.3)

By L(X ,Y) we denote the space of linear continuous mappings from X into Y, and

in case X = Y we use the shorter L(X ) := L(X ,X ).

2. Feedback controls for tracking objectives

We fix a positive integer N and a finite ensemble Σ := (σi)
N
i=1 ⊆ S. Further, we

consider a more general version of (1.2) as follows; see [3, Part IV, Ch. 1, Eq. (1.2)].

We fix two more separable Hilbert spaces, Y and Z, and two bounded linear opera-

tors Q : H → Y and P : H → Z. Then, we look for a control input u ∈ L2(0, T ;U),
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which minimizes

J (yΣ , u) :=

∫ T

0

(
1

2
‖u(s)‖2U +

1

2N

N∑
i=1

‖Qyσi(s)−Qg(s)‖2Y

)
ds

+
1

2N

N∑
i=1

‖Pyσi(T )− Pg(T )‖2Z ,

(2.1)

with yΣ := (yσ1 , yσ2 , . . . , yσN ) and each pair (yσi , u) subject to (1.1) with σ = σi.

We can find the minimizing control input in feedback form uσ(t) = K(t, yσ(t)), t ∈
[0, T ], where K = KΣ is affine on the difference yσ(t) − g(t), with a translation part

depending on the residual of the target g when plugged into the uncontrolled system.

We aim at a robust feedback K, in the sense that by applying K for parameters σ ∈ Σ,

we should observe the desired tracking property towards g. With such a feedback input,

for any given fixed σ ∈ S, system (1.1) reads

ẏσ(t) = Aσyσ(t) +BK(t, yσ(t)), yσ(0) = y◦,

We shall assume that the state space H is a pivot space, that is, we will identify

it with its continuous dual, H = H ′. Further, we assume that U is isomorphic to

a closed subspace of H, so that we can consider U as a pivot space as well, U =

U ′. These identifications are common and convenient in (optimal) control applications

(cf. introductory notation in [24, Ch. 4]).

2.1. Extended system. For each σ ∈ S, it is assumed that Aσ is the infinitesimal

generator of a C0-semigroup Sσ(t)t≥0 of bounded linear operators on H. The adjoint

operator to Aσ in H is denoted by A∗σ. Equipping the domain D(Aσ) of Aσ in H with

the inner product 〈u, v〉D(Aσ) := 〈u, v〉H+〈Aσu,Aσv〉H , u, v ∈ D(Aσ), with the topology

induced by the graph norm, D(Aσ) becomes a Hilbert space, and Aσ ∈ L(D(Aσ), H).

Next, let us consider the Cartesian product HN := ×Ni=1H with the usual inner

product 〈h, h̃〉HN :=
∑N
i=1(hi, h̃i)H , for h = (h1, h2, . . . , hN ) and h̃ = (h̃1, h̃2, . . . h̃N ).

Further, we define the extension operator E := EN as

E : H → HN , z 7→ (z, z, . . . , z).

Its adjoint E∗ : HN → H is given by

E∗ : HN → H, (w1, w2, . . . , wN ) 7→
N∑
i=1

wi.

Using the ensemble of operators Aσi , σi ∈ Σ, we introduce the ensemble operator

AΣ : D(AΣ) ⊆ HN → HN , w 7→ (Aσ1w1,Aσ2w2, . . . ,AσNwN ), (2.2)

where D(AΣ) =×Ni=1D(Aσi). We also define, for a given Hilbert space X and an

operator L ∈ L(H,X),

Le ∈ L(HN , XN ), (w1, w2, . . . , wN ) := (Lw1, Lw2, . . . , LwN ).
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Now, we can reformulate the problem of minimizing (2.1) with each (yσi , u) subject

to (1.1), for all σ ∈ Σ, as:

minimize J (yΣ , u) =

∫ T

0

(
1

2
‖u(s)‖2U +

1

2N
‖QeyΣ(s)−QeEg(s)‖2Y N

)
ds

+
1

2N
‖(PeyΣ(T )− PeEg(T )‖2ZN (2.3a)

subject to ẏΣ(t) = AΣyΣ(t) + Bu(t), yΣ(0) = y◦, (2.3b)

where y◦ = Ey◦ ∈ HN and B = EB : U → HN .

We observe that AΣ , defined in (2.2), is the infinitesimal generator of the C0-semigroup

SΣ(t) : HN → HN , z 7→ (Sσ1
(t)z1, Sσ2

(t)z2, . . . , SσN (t)zN )

of bounded linear operators on HN .

2.2. Optimal control input for the extended system. Based on existing results for

Riccati equations, in this section we ensure the existence and uniqueness of a feedback

control for problem (2.3).

For this purpose we introduce the cone Ω(HN ) of bounded, linear, self-adjoint, and

nonnegative operators in HN endowed with the norm of L(H). The Riccati opera-

tors will be sought as strongly continuous operator-valued functions in the set S :=

Cs([0, T ],Ω(HN )), which is endowed with the topology of strong convergence, i.e., Fn →
F if and only if ∀x ∈ HN there holds Fnx→ Fx in C([0, T ];HN ), see e.g., [3, Part IV,

Section 2.1]

For simplicity, we shall transform our problem of tracking g to a problem of tracking 0

(subject to an inhomogeneous state equation). In this manner we can more directly profit

from existing theory on Riccati equations.

Let the target satisfy g ∈W 1,2(0, T ;H)
⋂
L2(0, T ;

⋂N
i=1D(Aσi)). Denoting

xΣ := yΣ − Eg and f := AΣEg − E ġ, (2.4)

problem (2.3) becomes the problem

minimize J (xΣ , u) =

∫ T

0

(
1

2
‖u(s)‖2U +

1

2N
‖QexΣ(s)‖2Y N

)
ds

+
1

2N
‖PexΣ(T )‖2ZN (2.5a)

subject to ẋΣ(t) = AΣxΣ(t) + f(t) + Bu(t), xΣ(0) = x◦, (2.5b)

with x◦ := y◦ − Eg(0).

Consider, for time t ∈ (0, T ), the operator differential Riccati equation

Π̇Σ = ΠΣAΣ + A∗ΣΠΣ −ΠΣBB∗ΠΣ +
1

N
Q∗eQe, ΠΣ(0) =

1

N
P ∗e Pe. (2.6)
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The dynamics equation in (2.6) is understood in the sense that for any x,y ∈ D(AΣ)

the function t 7→ 〈ΠΣ(t)x,y〉HN is differentiable and satisfies for almost all t ∈ (0, T ),

d

dt
〈ΠΣ(t)x,y〉HN = 〈ΠΣ(t)AΣx,y〉HN + 〈ΠΣ(t)x,AΣy〉HN

− 〈B∗ΠΣ(t)x,B∗ΠΣ(t)y〉U +
1

N
〈Qex, Qey〉Y N .

From [3, Thm. 2.1, Part IV, Ch. 1] we know that (2.6) admits a unique solution in S.

In the following theorem we recall from [3, Thm. 7.1, Part IV, Ch. 1], how to construct

the optimal pair of feedback control and corresponding state of (2.5a) subject to (2.5b)

(and thus for (2.3a) subject to (2.3b)).

Theorem 2.1. Let ΠΣ denote the unique solution of (2.6) in S. Then, there exists a

unique minimizer (x, u) for (2.5). This optimal pair satisfies, for t ∈ (0, T ),

1. u(t) is given in feedback form by

u(t) = −B∗ (ΠΣ(T − t)x(t) + h(t)) ; (2.7)

2. x is the mild solution to the closed-loop system

ẋ(t) = (AΣ −BB∗ΠΣ(T − t)) x(t)−BB∗h(t) + f(t), x(0) = x◦; (2.8)

where

−ḣ(t) = (A∗Σ −ΠΣ(T − t)BB∗) h(t) + ΠΣ(T − t)f(t), h(T ) = 0; (2.9)

3. the optimal cost is given by

J (x, u) =
1

2
〈ΠΣ(T )x◦,x◦〉HN + 〈h(0),x◦〉HN

+

∫ T

0

(
〈h(s), f(s)〉HN −

1

2
‖B∗h(s)‖2U

)
ds.

(2.10)

2.3. From the extended system to the original one. By construction of the feed-

back ΠΣ , we expect that ‖QexΣ‖2L2(0,T ;Y N ) = ‖QeyΣ −QeEg‖2L2(0,T ;Y N ) will be small.

Consequently, we can expect that the component Q(yσ − g) of the difference yσ − g to

the target g will be small for all σ ∈ Σ. By solving the extended system we obtain a

tracking control input for all σ ∈ Σ. In our context this input is of auxiliary nature,

indeed this auxiliary extended state is not available in practice. Rather the goal of this

section is to propose a feedback depending only on the state of the original unknown

system.

We define the feedback input operator KΣ : [0, T ]×H → U which is constructed by

means of KΣ(t, z) := −B∗ (ΠΣ(T − t)z + h(t)) : [0, T ] × HN → U computed for the

extended system, by

KΣ(z) := KΣ(t, z) := −B∗ (ΠΣ(T − t)Ez + h(t)) , for t ∈ [0, T ]. (2.11)

Remark 2.2. In (2.11), the “definition KΣ(z) := KΣ(t, z)” simply means that some-

times, for simplicity of the exposition, we will omit the dependence of KΣ on t.
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Therefore, we arrive at the closed-loop system

ẋΣ,σ = AσxΣ,σ +BKΣ(xΣ,σ) +Aσg − ġ, xΣ,σ(0) = x◦. (2.12)

Defining yΣ,σ := xΣ,σ + g, we find ẏΣ,σ = AσyΣ,σ +BKΣ(yΣ,σ − g), hence

ẏΣ,σ = AσyΣ,σ +BK
[1]
Σ yΣ,σ +BK

[0]
Σ , yΣ,σ(0) = y◦, (2.13a)

with

K
[1]
Σ = −B∗ΠΣ(T − t)E and K

[0]
Σ := B∗ (ΠΣ(T − t)Eg(t)− h(t)) , (2.13b)

Since the linear part BK
[1]
Σ of the affine feedback is strongly continuous, that is,

−BB∗ΠΣ(T − ·)Ez ∈ C([0, T ];H) for each z ∈ H, and the translation term BK
[0]
Σ

is in L2(0, T ;H), the above closed-loop system (2.13) has a unique solution yΣ,σ ∈
C([0, T ];H) for each σ ∈ Σ, (see, e.g., [3, Prop. 3.4, Part II, Ch. 1]). Consequently,

there is a unique solution xΣ,σ ∈ C([0, T ];H) for system (2.12), for any given σ ∈ Σ.

Finally, note that the feedback KΣ can also be applied if the true parameter is not a

member of the training set Σ, provided that g ∈ W 1,2(0, T ;H) ∩ L2(0, T ;D(Aσ)) (cf.,

(2.4)). This will be the generic case in the following sections.

2.4. Order of sequence of training parameters. By construction the matrix AΣ,

defining the free dynamics of the extended auxiliary system as in (2.3b), depends on the

order of the training parameters in the sequence Σ = (σi)
N
i=1. In spite of this fact, we

show that the resulting feedback input KΣ(z) as in (2.11), for the original system, is

independent of that order. In this sense, we can speak about set of training parameters,

instead of sequence of training parameters. Indeed, let ϑ ∈ RN×N be a permutation

matrix ϑ : RN → RN , and let Θ = Θ(ϑ) ∈ L(H)N×N be the permutation Θ: HN → HN

constructed as follows: the entries 1 of ϑ are replaced by the identity operator 1 = 1H

in H and the entries 0 are replaced by the zero operator 0 = 0H in H.

As an example, in case N = 3,

if ϑ =

0 0 1

1 0 0

0 1 0

 , then Θ(ϑ) =

0H 0H 1H

1H 0H 0H

0H 1H 0H

 .
Identifying the sequence Σ with a column vector in RN×1, we permute the parameters

as Σ → ϑΣ. For the permuted/reordered vector, the extended matrix will read

AϑΣ = ΘAΣΘ>

where Θ> := Θ(ϑ>). Recall that, since ϑ and Θ are permutations we have ϑ> = ϑ−1

and Θ> = Θ−1. By (2.6) we find that Rϑ := ΘΠΣΘ> solves

Ṙϑ = ΘΠ̇ΣΘ> = ΘΠΣAΣΘ> + ΘA∗ΣΠΣΘ> −ΘΠΣBB∗ΠΣΘ> +
1

N
ΘQ∗eQeΘ>

= RϑAϑΣ + A∗ϑΣRϑ −RϑΘBB∗Θ>Rϑ +
1

N
ΘQ∗eQeΘ>,

Rϑ(0) =
1

N
ΘP ∗e PeΘ>.
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Now, observe that ΘE = E , which gives us the analogue of (2.6)

Ṙϑ = RϑAϑΣ + A∗ϑΣRϑ −RϑBB∗Rϑ +
1

N
Q∗eQe, Rϑ(0) =

1

N
P ∗e Pe.

Therefore Rϑ is the solution of the Riccati equation for the permuted sequence of param-

eters. Consequently, the feedback input in (2.11) will read, since we also have Θ>E = E

KϑΣ(z) = −B∗ (Rϑ(T − t)Ez + hϑ(t)) = −B∗ (ΠΣ(T − t)Ez + hϑ(t)) ,

where hϑ satisfies the analogue of (2.9),

−ḣϑ(t) = (A∗ϑΣ −Rϑ(T − t)BB∗) hϑ(t) + Rϑ(T − t)fϑ(t), hϑ(T ) = 0, (2.14)

with the analogue of f in (2.4),

fϑ := AϑΣEg − E ġ.

Thus, to show that KϑΣ(z) = KΣ(z), it is enough to show that B∗hϑ = B∗h.

By (2.14), using ΘB = ΘEB = EB = B and Θ>B = Θ>EB = EB = B,

−Θ>ḣϑ(t) =
(
Θ>A∗ϑΣ −Θ>Rϑ(T − t)BB∗

)
hϑ(t) + Θ>Rϑ(T − t)fϑ(t),

=
(
A∗ΣΘ> −ΠΣ(T − t)Θ>BB∗

)
hϑ(t) + ΠΣ(T − t)Θ>fϑ(t),

= (A∗Σ −ΠΣ(T − t)BB∗) Θ>hϑ(t) + ΠΣ(T − t)f(t). (2.15)

Now, by (2.9) and (2.15), we find that d := Θ>hϑ − h solves the linear system

ḋ(t) = − (A∗Σ −ΠΣ(T − t)BB∗) d, d(0) = 0,

hence Θ>hϑ(t)− h(t) = d(t) = 0 for t ∈ [0, T ], which implies B∗hϑ = B∗Θ>hϑ = B∗h.

3. Optimal controls and costs

In this section we investigate the cost associated with the feedback (2.11) and compare

it to the optimal cost associated with the input (2.7) for the extended system (AΣ ,B).

Further, we consider a comparison with the optimal cost for system (Aσ, B), correspond-

ing to the case that the true parameter σ is known. For such comparisons, we shall make

additional assumptions on the family of operators {Aσ | σ ∈ S}.
We will assume that we have another separable Hilbert space V that is continuously

and densely embedded in H, which leads to the Gelfand triplet V ⊂ H ⊂ V ′. We

also assume to be given a family of continuous bilinear forms a(σ; ·, ·), parametrized

by σ ∈ S, each form being V –H coercive, more precisely,

there exists (ρ, θ) ∈ R× R+ such that, for all (σ, v) ∈ S× V,

there holds a(σ; v, v) + ρ‖v‖2H ≥ θ‖v‖2V .
(3.1)

We associate with a(σ; ·, ·) the operator Aσ defined as

D(Aσ) := {v ∈ V | w 7→ a(σ; v, w) is H-continuous},

〈Aσv, w〉H := −a(σ; v, w), ∀v ∈ D(Aσ), ∀w ∈ V.
(3.2)
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The operators Aσ are closed and densely defined in H and can be uniquely extended to

operators Aσ ∈ L(V, V ′). For each σ ∈ S, Aσ generates an analytic semigroup Sσ(t)

on H, which is exponentially bounded (i.e., ‖Sσ(t)‖L(H,H) ≤ eρt).
The following assumption will be made throughout the remainder of the paper.

Assumption 3.1. There exists a family a of bilinear forms satisfying (3.1) such that the

operators Aσ are characterized by (3.2). Furthermore, D(Aσ) is independent of σ ∈ S

and D(Aσ) = D(A∗σ) for all σ ∈ S.

By Assumption 3.1, we can introduce the common domain

DA = D(Aσ) = D(A∗σ), for all σ ∈ S. (3.3)

In particular D(AΣ) = DNA is independent of the ensemble Σ ⊂ S.

Now, recalling the short notation in (1.3), it is known (see, e.g., [3, Thm. 1.1, Part

II, Ch. 2]) that for f ∈ V ′T and x◦ ∈ H there is a unique solution x ∈ WT (V, V ′) ↪→
C([0, T ];H) of ẏ = Ay + f . From Eg ∈WT (DNA , HN ) (as assumed in Sect. 2.2) we find

f = Aσg − ġ ∈ L2(0, T ;H) and f = AΣEg − E ġ ∈ L2(0, T ;HN ). (3.4)

Recall that (from, e.g., [3, Thm. 1.1, Part II, Ch. 2]), we have that

y 7→ (ẏ −AΣy,y(0)), WT (V N , (V ′)N )→ (V NT )′ ×HN (3.5a)

is an isomorphism. Hence, there exists a constant CW > 0 such that

‖y‖WT (V N ,(V N )′) ≤ CW ‖(ẏ −AΣy,y(0))‖(V NT )′×HN . (3.5b)

3.1. Comparing optimal costs. Let us fix σ ∈ S and consider the problem:

minimize J (Exσ, uσ) =
1

2

∫ T

0

(
‖Qxσ(t)‖2H + ‖uσ(t)‖2U

)
dt+

1

2
‖Pxσ(T )‖2H , (3.6a)

subject to ẋσ(t) = Aσxσ(t) +Buσ(t) + f(t), xσ(0) = x◦. (3.6b)

In the following we will use the notation Aσ to denote the operator defined as in (2.2)

with the same parameter σi = σ in each component.

Lemma 3.2. Given a parameter σ ∈ S, let (xσ, uσ) be the unique minimizer of prob-

lem (3.6) and let (xΣ , uΣ) be the unique minimizer of problem (2.5). Then, there holds

J (xΣ − Exσ, uΣ − uσ) ≤ C1‖AΣ −Aσ‖2L(V N ,(V N )′),

where

C1 :=
1

2
CW

(
1 + Cp + CWC

2
H‖B‖2L(U,H) + 2C2

pCW

)
‖(xσ + g, pσ)‖2VT×VT (3.7)

with CW as in (3.5), CH := ‖1‖L(HN ,(V N )′) and

Cp = max{1, CV ‖Qe‖L(HN ,Y N ), C1‖Pe‖L(HN ,ZN )},

where C1 := ‖1‖L(WT (V N ,(V N )′),C([0,T ],HN ) and CV := ‖1‖L(V N ,HN ).
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Proof. Given x◦ ∈ H, the optimality conditions for (2.5), with x◦ = Ex◦, are

ẋΣ = AΣxΣ + f + BuΣ , xΣ(0) = Ex◦, (3.8a)

ṗΣ = −A∗ΣpΣ −
1

N
Q∗eQexΣ pΣ(T ) =

1

N
P ∗e PexΣ(T ), (3.8b)

uΣ = −B∗pΣ , (3.8c)

and for (3.6), they are

ẋσ = Aσxσ + f +Buσ, xσ(0) = x◦,

ṗσ = −A∗σpσ −Q∗Qxσ, pσ(T ) = P ∗Pxσ(T ),

uσ = −B∗pσ.

The reader is reminded that the factor 1
N , in (3.8b), accounts for taking the sum over

the ensemble Σ = {σi | 1 ≤ i ≤ N}; see (2.5a).

Defining

δx := xΣ − Exσ, δp := pΣ −
1

N
Epσ, δu := uΣ − uσ, δA := AΣ −Aσ,

we obtain

˙δx = AΣδx + δAE (xσ + g) + Bδu, δx(0) = 0, (3.9a)

˙δp = −A∗Σδp− δA∗
1

N
Epσ −

1

N
Q∗eQeδx, , δp(T ) =

1

N
P ∗e Peδx(T ), (3.9b)

δu = −B∗δp. (3.9c)

Moreover, we have xΣ ∈ WT (V N , (V N )′) and xσ ∈ WT (V, V ′), and due to δx(0) ∈
V N , we obtain δx ∈ WT (DNA , HN ) ⊂ C([0, T ];V N ), and thus δp ∈ WT (DNA , HN ) ⊂
C([0, T ];V N ) (cf. [3, Thm. 1.4, Part II, Ch. 2]).

Hence, we find the identity

−〈 ˙δp, δx〉HNT = 〈A∗Σδp, δx〉HNT +〈δA∗ 1

N
Epσ, δx〉(V NT )′,V NT

+
1

N
‖Qeδx‖2Y NT (3.10)

and, using 〈δp(0), δx(0)〉HN = 0, we also have

−〈δx, ˙δp〉HNT = 〈 ˙δx, δp〉HNT −
1

N
‖Peδx(T )‖2ZN (3.11)

= 〈AΣδx, δp〉HNT + 〈δAE(xσ + g), δp〉(V NT )′,V NT
+ 〈Bδu, δp〉HNT

− 1

N
‖Peδx(T )‖2ZN

Subtracting (3.10) from (3.11), and using (3.9c), lead us to

δJ :=
1

N
‖Qeδx‖2Y NT + ‖δu‖2UT +

1

N
‖Peδx(T )‖2ZN (3.12)

= − 〈δA∗ 1

N
Epσ, δx〉(V NT )′,V NT

+ 〈δAE(xσ + g), δp〉(V NT )′,V NT

≤ ‖δA‖L(V N ,(V N )′)

(
‖E(xσ + g)‖V NT ‖δp‖V NT +

1

N
‖Epσ‖V NT ‖δx‖V NT

)
. (3.13)

Next, we use a duality argument to estimate the norm of δp. Let us denote by BX :=

{h ∈ X | ‖h‖X ≤ 1} the unit ball in a given Hilbert space X . Let b ∈ B(VT )′ be arbitrary



Tracking optimal feedback control under uncertain parameters 11

and let y = y(b) be the solution of

ẏ = AΣy + b, y(0) = 0,

for time t ∈ (0, T ). Then, we have

‖δp‖V NT = sup
b∈B(VT )′

〈δp,b〉V NT ,(V NT )′ = sup
b∈B(VT )′

〈δp, ẏ −AΣy〉V NT ,(V NT )′

= sup
b∈B(VT )′

(
〈− ˙δp−A∗Σδp,y〉(V NT )′,V NT

+ 〈δp(T ),y(T )〉HN
)

= sup
b∈B(VT )′

(
〈δA∗ 1

N
Epσ,y〉(V NT )′,V NT

+
1

N
〈Q∗eQeδx,y〉HNT

+ 〈 1

N
P ∗e Peδx(T ),y(T )〉HN

)
,

where we used (3.9b). Since WT (V N , (V N )′) ⊂ C([0, T ];HN ) (see, e.g., [7, Thm. 1,

Ch. XVIII]), we have ‖y(T )‖HN ≤ C1‖y‖WT (V N ,(V N )′), for some constant C1 > 0. By

noticing that ‖v‖VT ≤ ‖v‖WT (V,V ′) and recalling the isomorphism in (3.5), we obtain

‖δp‖V NT ≤ sup
‖b‖

(VN
T

)′≤1

Cp‖y‖WT (V N ,(V N )′)

(
1

N
‖δA‖L(V N ,(V N )′) ‖Epσ‖V NT

+
1

N
‖Qeδx‖Y NT +

1

N
‖Peδx(T )‖ZN

)
≤ 1

N
CWCp

(
‖δA‖L(V N ,(V N )′) ‖Epσ‖V NT + ‖Qeδx‖Y NT + ‖Peδx(T )‖ZN

)
, (3.14)

where CW is as in (3.5) and Cp = max (1, CV ‖Qe‖L(HN ,Y N ), C1‖Pe‖L(HN ,ZN )) with CV :=

‖1‖L(V N ,HN ).

Using (3.9a), we will next estimate the term ‖δx‖V NT in (3.13):

‖δx‖V NT ≤ ‖δx‖W (0,T ;V N ,(V N )′) ≤ CW ‖(AΣ −Aσ)E (xσ + g) + Bδu‖(V NT )′ (3.15)

≤ CW ‖δA‖L(V N ,(V N )′)‖E(xσ + g)‖V NT + CWCH‖B‖L(U,HN )‖δu‖UT ,

with CH := ‖1‖L(HN ,(V N )′). By combining (3.13), (3.14), and (3.15), we find, with

CδA := ‖δA‖L(V N ,(V N )′),

δJ ≤ C2
δA

1

N
CpCW ‖E(xσ + g)‖V NT ‖Epσ‖V NT + CδA

1

N
‖Epσ‖V NT ‖δx‖V NT

+ CδA
1

N
Cp CW ‖E(xσ + g)‖V NT

(
‖Qeδx‖Y NT + ‖Peδx(T )‖ZN

)
,
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that is, after multiplication by N and using Young inequalities,

NδJ ≤ C2
δACpCW ‖E(xσ + g)‖V NT ‖Epσ‖V NT + C2

δACW ‖Epσ‖V NT ‖E(xσ + g)‖V NT
+ CδACWCH‖Epσ‖V NT ‖B‖L(U,HN )‖δu‖UT

+ CδACp CW ‖E(xσ + g)‖V NT
(
‖Qeδx‖Y NT + ‖Peδx(T )‖ZN

)
≤ C2

δA CW (Cp + 1) ‖E(xσ + g)‖V NT ‖Epσ‖V NT

+
1

2N
C2
δAC

2
WC

2
H‖Epσ‖2V NT ‖B‖

2
L(U,HN ) + C2

δAC2
p C

2
W ‖E(xσ + g)‖2V NT

+
N

2
‖δu‖2UT +

1

2
‖Qeδx‖2Y NT +

1

2
‖Peδx(T )‖2ZN .

Recalling (3.12), we find

N

2
δJ ≤ C2

δA CW (Cp + 1) ‖E(xσ + g)‖V NT ‖Epσ‖V NT

+
1

2N
C2
δAC

2
WC

2
H‖Epσ‖2V NT ‖B‖

2
L(U,HN ) + C2

δAC2
p C

2
W ‖E(xσ + g)‖2V NT ,

therefore, for J (δx, δu) = 1
2δJ we find

1

2
δJ ≤ 1

2N
C2
δA CW (Cp + 1) ‖(E(xσ + g), Epσ)‖2V NT ×V NT

+
1

2N2
C2
δAC

2
WC

2
H‖B‖2L(U,HN )‖Epσ‖

2
V NT

+
1

N
C2
δAC2

p C
2
W ‖E(xσ + g)‖2V NT

=
1

2
C2
δA CW (Cp + 1) ‖(xσ + g, pσ)‖2VT×VT

+
1

2N
C2
δAC

2
WC

2
H‖B‖2L(U,HN )‖pσ‖

2
VT + C2

δAC2
p C

2
W ‖xσ + g‖2VT

≤ 1

2
C2
δACW

(
1 + Cp + CWC

2
H‖B‖2L(U,H) + 2C2

pCW

)
‖(xσ + g, pσ)‖2VT×VT ,

which ends the proof. �

Next, we compare the value of the optimal costs associated with the ensemble optimal

control problem (2.5) and the single parameter optimal control problem (3.6).

Corollary 3.3. Let (xΣ , uΣ) be the minimizer of (2.5) and let (xσ, uσ) be the minimizer

of (3.6) with xΣ(0) = Exσ(0). Then, there holds

0 ≤ J (Exσ, uσ)− J (xΣ , uΣ) ≤ ‖AΣ −Aσ‖L(V N ,(V N )′)C2

√
3C1,

with C1 as in (3.7) and with

C2 := I(xΣ + Exσ, uΣ + uσ), (3.16)

where I(z, v) :=
1√
2
‖v‖UT +

1√
2N
‖Qez‖Y NT +

1√
2N
‖Pez(T )‖ZN . (3.17)
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Proof. The inequality 0 ≤ J (Exσ, uσ)−J (xΣ , uΣ) holds because (xΣ , uΣ) minimizes J .

To obtain the upper bound we estimate

Jδ := J (Exσ, uσ)− J (xΣ , uΣ)

=
∣∣∣1
2
〈uΣ − uσ, uΣ + uσ〉UT +

1

2N
〈QexΣ −QeExσ, QexΣ +QeExσ〉Y NT

+
1

2N
〈PexΣ(T )− PeExσ(T ), PexΣ(T ) + PeExσ(T )〉ZN

∣∣∣
≤ 1

2
‖uΣ − uσ‖UT ‖uΣ + uσ‖UT +

1

2N
‖Qe(xΣ − Exσ)‖Y NT ‖Qe(xΣ + Exσ)‖Y NT

+
1

2N
‖Pe(xΣ(T )− Exσ(T ))‖ZN ‖Pe(xΣ(T ) + Exσ(T ))‖ZN ,

hence, recalling (3.17), it follows that

Jδ ≤ I(xΣ + Exσ, uΣ + uσ) I(xΣ − Exσ, uΣ − uσ)

≤ I(xΣ + Exσ, uΣ + uσ)
√

3J (xΣ − Exσ, uΣ − uσ).

The claim follows from Lemma 3.2. �

3.2. Cost of the proposed performant feedback control. We compare the minimal

cost associated with the minimizer (xΣ , uΣ) of the extended system problem (2.5) to

the cost associated with the solution xΣ,σ of (2.12) resulting from the feedback control

uΣ,σ = KΣ(t, xΣ,σ(t)) given in (2.11).

The following result quantifies the difference of this feedback control associated to the

single unknown parameter σ compared to the optimal control associated to the ensemble

of training parameters Σ in the sense of the associated costs.

Theorem 3.4. Assume that x0 ∈ V , let (xΣ , uΣ) be the minimizer of (2.5) with x◦ =

Ex◦. Further, let σ ∈ S and let xΣ,σ be the solution of

ẋΣ,σ(t) = AσxΣ,σ(t) +BKΣ(t, xΣ,σ(t)) +Aσg(t)− ġ(t), xΣ,σ(0) = x◦, (3.18)

and let uΣ,σ(t) := KΣ(t, xΣ,σ(t)). Then, there holds

0 ≤ J (ExΣ,σ, uΣ,σ)− J (xΣ , uΣ) ≤ Csubopt‖AΣ −Aσ‖L(DNA ,HN ),

with Csubopt := |ΠΣ | ‖X‖HNT (‖X‖(DNA )T
+ ‖Eg‖(DNA )T

)

+ ‖h‖HNT (‖X‖(DNA )T
+ ‖Eg‖(DNA )T ). (3.19)

Proof. We commence by commenting on the regularity of ExΣ,σ and h which will be used

throughout the proof. Due to (3.3), we have that D(A
1
2
σ ) = V , for all σ ∈ S (see, e.g., [3,

p. 183]). Consequently, it follows by maximal regularity theory that h ∈WT (DNA , HN );

see (1.3) and [3, p. 187]. Further, since x◦ ∈ V , we have ExΣ,σ ∈WT (DNA , HN ) as well.

Next, recalling (2.10), the minimal cost is given by

J (xΣ , uΣ) =
1

2
〈ΠΣ(T )x◦,x◦〉HN + 〈h(0),x◦〉HN

+

∫ T

0

(
〈h(t), f(t)〉HN −

1

2
‖B∗h(t)‖2U

)
dt. (3.20)
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We observe that

〈x◦,ΠΣ(T )x◦〉HN =〈ExΣ,σ(T ),ΠΣ(0)ExΣ,σ(T )〉HN − T1 =
1

N
‖PeExΣ,σ(T )‖2ZN − T1

with T1 :=

∫ T

0

d

dt
〈ExΣ,σ(t),ΠΣ(T − t)ExΣ,σ(t)〉HNdt (3.21)

and, denoting ΠΣ(t) := ΠΣ(T − t), we find

T1 = T1,1 + T1,2 + T1,3, (3.22a)

with T1,1 :=

∫ T

0

〈E ẋΣ,σ(t),ΠΣ(t)ExΣ,σ(t)〉HNdt (3.22b)

T1,2 :=

∫ T

0

〈ExΣ,σ(t),ΠΣ(t)E ẋΣ,σ(t)〉HNdt (3.22c)

T1,3 :=

∫ T

0

〈ExΣ,σ(t), Π̇Σ(t)ExΣ,σ(t)〉HNdt. (3.22d)

Using E ẋΣ,σ = AσxΣ,σ −BB∗(ΠΣExΣ,σ + h) + fσ, where we have abbreviated

fσ(t) := AσEg(t)− E ġ(t), (3.23)

we obtain

T1,1 + T1,2 = T2 + T3, (3.24a)

with T2 :=

∫ T

0

〈(Aσ −BB∗ΠΣ)ExΣ,σ(t),ΠΣ(t)ExΣ,σ(t)〉HNdt

+

∫ T

0

〈ExΣ,σ(t),ΠΣ(t)(Aσ −BB∗ΠΣ(t))ExΣ,σ(t)〉HNdt (3.24b)

and T3 :=

∫ T

0

〈fσ(t)−BB∗h(t),ΠΣ(t)ExΣ,σ(t)〉HNdt

+

∫ T

0

〈ExΣ,σ(t),ΠΣ(t)(fσ(t)−BB∗h(t))〉HNdt (3.24c)

With X := ExΣ,σ and δA = AΣ −Aσ, we find

T2 = −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt

+

∫ T

0

〈X(t), (A∗ΣΠΣ + ΠΣAΣ − 2ΠΣBB∗ΠΣ)X(t)〉HNdt

and, recalling (2.6),

T2 = −
∫ T

0

(〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HN − 〈X(t), Π̇Σ(t)X(t)〉HN )dt

−
∫ T

0

〈X(t), (ΠΣBB∗ΠΣ +
1

N
Q∗eQe)X(t)〉HNdt

and, from (3.22) and (3.24),

T1 = T3 + T2 + T1,3 = T3 −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt

− 2J (X, vX) +
1

N
‖PeX(T )‖2ZN .
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with vX := −B∗ΠΣX(t). Next, recalling (3.20) and (3.21),

2J (xΣ , uΣ) =
1

N
‖PeX(T )‖2ZN − T1

+ 2〈h(0),x◦〉HN +

∫ T

0

(
2〈h(t), f(t)〉HN − ‖B∗h(t)‖2U

)
dt

= −T3 +

∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt+ 2J (X, vX)

+ 2〈h(0),x◦〉HN +

∫ T

0

(
2〈h(t), f(t)〉HN − ‖B∗h(t)‖2U

)
dt.

Hence, with uΣ,σ = uX := −B∗(ΠΣX + h) = vX −B∗h, we use

‖uX‖2U = ‖vX‖2U − 2(vX ,B
∗h)U + ‖B∗h‖2U

to obtain

2δJΣ,σ;Σ := 2J (ExΣ,σ, uΣ,σ)− 2J (xΣ , uΣ) = 2J (X,uX)− 2J (xΣ , uΣ)

= T3 −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt− 2〈h(0),x◦〉HN

− 2

∫ T

0

(
〈h(s), f(s)〉HN + (vX ,B

∗h)U − ‖B∗h(t)‖2U
)

ds.

For T3 as in (3.24), we find, using the symmetry of ΠΣ ,

T3 = 2

∫ T

0

〈fσ(t),ΠΣ(t)X(t)〉HNdt+ 2

∫ T

0

〈B∗h(t), vX(t)〉HNdt

which leads to

2δJΣ,σ;Σ = −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt− 2〈h(0),x◦〉HN (3.25)

+ 2

∫ T

0

(
〈fσ(t),ΠΣ(t)X(t)〉HN − 〈h(t), f(t)〉HN + ‖B∗h(t)‖2U

)
dt.

Recalling system (2.9), satisfied by h, we find

− 〈h(0),x◦〉HN =

∫ T

0

d

dt
〈h(t), X(t)〉HNdt = T4 + T5 (3.26a)

with T4 :=

∫ T

0

〈ḣ(t), X(t)〉HNdt and T5 :=

∫ T

0

〈h(t), Ẋ(t)〉HNdt. (3.26b)

We observe that

T4 = −
∫ T

0

〈(A∗Σ −ΠΣ(t)BB∗) h(t) + ΠΣ(t)f(t), X(t)〉HNdt,

T5 =

∫ T

0

〈h(t), (Aσ −BB∗(ΠΣ(t)X(t) + h)) + fσ〉HNdt

=

∫ T

0

〈(A∗σ −ΠΣ(t)BB∗)h(t), X(t)〉HN + 〈h(t), fσ(t)〉HN − ‖B∗h(t)‖2U dt,
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and

T4 + T5 = −
∫ T

0

(
〈δA∗h(t), X(t)〉HNdt− 〈h(t), fσ(t)〉HN + ‖B∗h(t)‖2U

)
dt

−
∫ T

0

〈ΠΣ(t)f(t), X(t)〉HNdt.

This relation combined with (3.25) and (3.26) gives, with δf = f − fσ,

2δJΣ,σ;Σ = −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HNdt+ 2(T4 + T5)

+ 2

∫ T

0

(
〈fσ(t),ΠΣ(t)X(t)〉HN − 〈h(t), f(t)〉HN + ‖B∗h(t)‖2U

)
dt

= −
∫ T

0

〈X(t), (δA∗ΠΣ + ΠΣδA)X(t)〉HN + 2〈δA∗h(t), X(t)〉HNdt

− 2

∫ T

0

(δf(t),ΠΣ(t)X(t)〉HN + 〈h(t), δf(t)〉HN ) dt

From (3.4) and (3.23), we have that δf = δAσEg(t), hence

2δJΣ,σ;Σ = −2

∫ T

0

〈X(t),ΠΣδAX(t)〉HN + 2〈h(t), δAX(t)〉HNdt

− 2

∫ T

0

〈δAEg(t),ΠΣ(t)X(t)− h(t)〉HNdt.

Finally, denoting |ΠΣ | := ‖ΠΣ‖L∞(0,T ;L(HN )) and by recalling the notation for XT
in (1.3), we obtain the estimate

δJΣ,σ;Σ ≤ Csubopt ‖δA‖L(DNA ,HN )

with Csubopt := |ΠΣ | ‖X‖HNT (‖X‖(DNA )T
+‖Eg‖(DNA )T

)+‖h‖HNT (‖X‖(DNA )T
+‖Eg‖(DNA )T ).

�

The following result is an immediate consequence of Corollary 3.3 and Theorem 3.4.

Corollary 3.5. Given a parameter σ ∈ S, let (xσ, uσ) be the minimizer of (3.6) and

let ExΣ,σ the solution of (3.18) with uΣ,σ(t) = KΣ(t, xΣ,σ(t)). Then, there holds

|J (Exσ, uσ)− J (ExΣ,σ, uΣ,σ)| ≤ C2

√
3C1‖δA‖L(V N ,(V N )′) + Csubopt‖δA‖L(DNA ,HN ),

with δA = AΣ −Aσ, and with the constants C1, C2, Csubopt, as in (3.7), (3.16), (3.19).

3.3. Remarks. Within the statement on Corollary 3.5 we use two operator norms

for the difference δA, namely, ‖δA‖L(V N ,(V N )′) and ‖δA‖L(DNA ,HN ). We may wonder

whether these norms are equivalent in the intersection space L(V N , (V N )′)
⋂
L(DNA , HN ).

We can provide a condition which ensures equivalence as follows.

Let σ ∈ S be as in Corollary 3.5 and assume that Aσ commutes which each operator

with index in the training set Σ. Define Aρ := Aσ−2ρI, with ρ as in (3.1). This operator

generates an analytic semigroup satisfying ‖ exp(Aρt)‖L(H) ≤ exp(−ρt), thus Aρ is an

operator of type (ω,M) for some ω < π
2 and M > 0, and the fractional power (−Aρ)−

1
2

can be expressed as contour integral in the resolvent set of (−Aρ); see [3, p. 167]. From

here it follows that (−Aρ)−
1
2 commutes with every Aσ with σ ∈ Σ.
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As a second preliminary for the following computation we recall that since D(Aρ) =

D(A∗ρ) the mapping (−Aρ)
1
2 is an isomorphism between H and V ′ as well as between

D(Aρ) and V . Thus, there exist constants Ci, i ∈ {1, 2} such that

1

C1
‖w‖H ≤ ‖(−Aρ)

1
2w‖V ′ ≤ C1‖w‖H , and

1

C2
‖w‖DA ≤ ‖(−Aρ)

1
2w‖V ≤ C2‖w‖DA .

For v ∈ V and ς ∈ Σ ∪ {σ} we have

‖Aςv‖V ′ ≤ C1‖(−Aρ)−
1
2Aςv‖H = C1‖Aς(−Aρ)−

1
2 v‖H

≤ C1‖Aς‖L(DA,H)‖(−Aρ)−
1
2 v‖DA ≤ C1C2‖Aς‖L(DA,H)‖v‖V ,

which implies that ‖Aς‖L(V,V ′) ≤ C1C2‖Aς‖L(DA,H).

On the other hand, for v ∈ DA, there holds

‖Aςv‖H ≤ C1‖(−Aρ)
1
2Aςv‖V ′ = C1‖Aς(−Aρ)

1
2 v‖V ′

≤ C1‖Aς‖L(V,V ′)‖(−Aρ)
1
2 v‖V ≤ C1C2‖Aς‖L(V,V ′)‖v‖DA ,

which gives ‖Aς‖L(DA,H) ≤ C1C2‖Aς‖L(V,V ′). Hence, for δAς = AΣ −Aς , we find

1

C1C2
‖δAς‖L(DNA ,HN ) ≤ ‖δAς‖L(V N ,(V N )′) ≤ C1C2‖δAς‖L(DNA ,HN ).

4. Comparing state trajectories

We compare the state trajectories associated to problems (2.5) and (3.6) and to the

system (3.18) under the proposed feedback (2.11).

4.1. Trajectories associated to (2.5) and (3.18). We have the following result.

Theorem 4.1. Let x◦ ∈ V , let (xΣ , uΣ) be the minimizer of problem (2.5) and let xΣ,σ

be the solution of (3.18) with uΣ,σ(t) = KΣ(t, xΣ,σ(t)). Then, for t ∈ [0, T ], we have

‖xΣ(t)− ExΣ,σ(t)‖HN ≤ ‖AΣ −Aσ‖L(DNA ,HN )CT ‖ExΣ,σ + Eg‖L2(0,T ;DNA ), (4.1)

where CT =
√
T max (1, e−ρT )eT (ρ+Cuni) with Cuni := ‖BB∗ΠΣ‖L∞(0,T ;L(HN )).

Proof. With WT (X ,Y) as in (1.3), we have ExΣ,σ ∈ WT (DNA , HN ), due to x◦ ∈ V .

Denoting δx := xΣ − ExΣ,σ, δA := AΣ −Aσ, and fσ := AσEg − E ġ, there holds

˙δx(t) = AΣδx(t) + δAExΣ,σ(t) + f(t)− fσ(t) + B(uΣ −KΣ(t, xΣ,σ(t))),

for t > 0 and δx(0) = 0. Using (2.7) and (2.11), we obtain

uΣ(t)−KΣ(t, xΣ,σ(t)) = −B∗ΠΣ(T − t)δx(t). (4.2)

Thus, recalling (3.4) and (3.23), we have that f(t)− fσ(t) = δAEg(t), and we obtain

˙δx(t) = (AΣ −BB∗ΠΣ(T − t)) δx(t) + δAExΣ,σ(t) + δAEg(t).

We can represent the solution (see, e.g., [3, Prop. 3.4, Part II, Ch. 1]) as

δx(t) =

∫ t

0

SΣ(t− s) (−BB∗ΠΣ(T − s)δx(s) + δA (ExΣ,σ(s) + Eg(s))) ds,
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leading to the estimate

‖δx(t)‖HN ≤
∫ t

0

(
‖SΣ(t− s)‖L(HN )‖BB∗ΠΣ(T − s)‖L(HN )‖δx(s)‖HN

)
ds

+

∫ t

0

(
‖SΣ(t− s)‖L(HN )‖δA‖L(DNA ,HN )‖ExΣ,σ(s) + Eg(s)‖DNA

)
ds

≤
∫ t

0

(
Cunie

ρ(t−s)‖δx(s)‖HN
)

ds

+

∫ t

0

(
eρ(t−s)‖δA‖L(DNA ,HN )‖ExΣ,σ(s) + Eg(s)‖DNA

)
ds

where we took Cuni := ‖BB∗ΠΣ‖L∞(0,T ;L(HN ) and used ‖SΣ(t − s)‖L(HN ) ≤ eρ(t−s).

Multiplication by e−ρt gives

‖e−ρtδx(t)‖HN ≤
∫ t

0

(
Cuni‖e−ρsδx(s)‖HN

)
ds

+ ‖δA‖L(DNA ,HN )

∫ t

0

(
e−ρs‖ExΣ,σ(s) + Eg(s)‖DNA

)
ds.

Then, Gronwall’s lemma gives

‖e−ρtδx(t)‖HN ≤ e
∫ t
0
Cunids‖δA‖L(DNA ,HN )

∫ t

0

(
e−ρs‖ExΣ,σ(s) + Eg(s)‖DNA

)
ds,

and finally we obtain

‖δx(t)‖HN ≤
(
‖δA‖L(DNA ,HN )

∫ t

0

(
e−ρs‖ExΣ,σ(s) + Eg(s)‖DNA

)
ds

)
et(ρ+Cuni)

≤ ‖δA‖L(DNA ,HN )

(∫ t

0

e−2ρsds

) 1
2

‖ExΣ,σ + Eg‖L2(0,t;DNA )e
t(ρ+Cuni)

≤ ‖δA‖L(DNA ,HN )

√
T max (1, e−ρT )‖ExΣ,σ + Eg‖L2(0,T ;DNA )e

T (ρ+Cuni),

where we used the Cauchy–Schwarz inequality in the second step. �

A close inspection of (4.2) reveals the following bound on the difference of the controls.

Corollary 4.2. Under the assumptions of Theorem 4.1, there holds, for t ∈ [0, T ], that

‖uΣ(t)− uΣ,σ(t)‖U ≤ ‖AΣ −Aσ‖L(DNA ,HN )Cuni2CT ‖ExΣ,σ + Eg‖L2(0,T ;DNA ).

with the uniform bound Cuni2 := ‖B∗ΠΣ‖L∞(0,T ;L(HN ,U)), and CT as in Theorem 4.1.

4.2. Trajectories associated to (2.5) and (3.6). We have the following result.

Theorem 4.3. Let (xΣ , uΣ) be the minimizer of (2.5) and let (xσ, uσ) be the minimizer

of (3.6). Then, we have

‖xΣ(t)− Exσ(t)‖HN ≤ max
(

1, e( 1
2 +ρ)T

)
CT2‖AΣ −Aσ‖L(V N ,(V N )′),

with CT2 :=
(
θ−

1
2 ‖E(xσ + g)‖L2(0,T ;V N ) +

√
2C‖B‖L(U,HN )

)
, where ρ and θ are as

in (3.1), and C1 is as in (3.7).
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Proof. Let now δx := xΣ − Exσ, δu := uΣ − uσ, and δA = AΣ −Aσ. Recall that δx

satisfies (3.9a). Thus, with θ and ρ as in (3.1), we find

1

2

d

dt
‖δxΣ‖2HN

= 〈AΣδxΣ , δxΣ〉HN + 〈δAE(xσ(t) + g(t)), δxΣ〉(V N )′,V N + 〈BδuΣ , δxΣ〉HN

≤ ρ‖δxΣ‖2HN − θ‖δxΣ‖
2
V N + ‖δA‖2L(V N ,(V N )′)

1

2θ
‖E(xσ(t) + g(t))‖2V N

+
θ

2
‖δxΣ‖2V N + ‖B‖2L(U,HN )

1

2
‖δuΣ‖2U +

1

2
‖δxΣ‖2HN ,

where we used Young’s inequality ab ≤ a2

2θ + θb2

2 for a ≥ 0, b ≥ 0. Furthermore, with

Gronwall’s lemma and δxΣ(0) = 0, we obtain

‖δxΣ(t)‖2HN ≤
∫ t

0

e(1+2ρ)(t−s)
(
‖δA‖2L(V N ,(V N )′)

1

θ
‖E(xσ(s) + g(s))‖2V N

)
ds

+

∫ t

0

e(1+2ρ)(t−s)
(
‖B‖2L(U,HN )‖δuΣ(s)‖2U

)
ds

≤ ‖δA‖2L(V N ,(V N )′) max
(

1, e(1+2ρ)T
)∫ t

0

1

θ
‖E(xσ(s) + g(s))‖2V Nds

+ ‖B‖2L(U,HN ) max
(

1, e(1+2ρ)T
)∫ t

0

‖δuΣ(s)‖2Uds.

Furthermore, with C1 as in Lemma 3.2 we have
∫ t

0
‖δuΣ(s)‖2Uds ≤ 2J (δx, δu) ≤

2C1‖δA‖2L(V N ,(V N )′). Finally, we conclude that, for all t ∈ [0, T ],

‖δxΣ(t)‖HN ≤ max
(

1, e( 1
2 +ρ)T

)
CT2‖δA‖L(V N ,(V N )′).

with CT2 :=
(
θ−

1
2 ‖E(xσ + g)‖L2(0,T ;V N ) +

√
2C1‖B‖L(U,HN )

)
. �

A similar estimate holds for the difference δu of the corresponding controls, as follows.

Corollary 4.4. Under the conditions of Theorem 4.3, there holds

‖uΣ(t)− uσ(t)‖U ≤ ‖B‖L(U,H)CT3‖AΣ −Aσ‖L(V N ,(V N )′)

with CT3 := max (1, e
T
2

(
‖Qe‖2L(HN,YN )

+2ρ
)
)
√

2C1 + θ−1‖pσ(s)‖2VT , where ρ ∈ R and θ >

0 are as in (3.1), and C1 is as in (3.7).

Proof. Let δx = xΣ−Exσ, δu = uΣ−uσ, and δA = AΣ−Aσ; further, let δp = pΣ−Epσ.

From (3.9b) we find, for t ∈ (0, T ),

d

dt
‖δp(T − t)‖2HN = 2(A∗Σδp(T − t), δp(T − t))HN

+ 2(δA∗
1

N
Epσ(T − t) +

1

N
Q∗eQeδx(T − t), δp(T − t))HN .
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Then, by (3.1), (3.2),

d

dt
‖δp(T − t)‖2HN ≤ 2ρ‖δp(T − t)‖2HN − 2θ‖δp(T − t)‖2V N

+
2

N
‖δA‖L(V N ,(V N )′)‖Epσ(T − t)‖V N ‖δp(T − t)‖V N

+
2

N
‖Qeδx(T − t)‖Y N ‖Qe‖L(HN ,Y N )‖δp(T − t)‖HN

and, by Young’s inequality,

θ‖δp(T − t)‖2V N +
d

dt
‖δp(T − t)‖2HN ≤ (‖Qe‖2L(HN ,Y N )+ 2ρ)‖δp(T − t)‖2HN + Γ(T − t),

with Γ(T − t) := 1
θN2 ‖δA‖2L(V N ,(V N )′)‖Epσ(T − t)‖2V N + 1

N2 ‖Qeδx(T − t)‖2Y N . Then,

with 2R := ‖Qe‖2L(HN ,Y N ) + 2ρ, Gronwall’s lemma and (3.9b) give

‖δp(T − t)‖2HN ≤ max (1, e2RT )

(
‖δp(T )‖2HN +

∫ T

0

Γ(T − s)ds

)

≤ max (1, e2RT )

(
1

N2
‖P ∗e ‖2L(ZN ,HN )‖Peδx(T )‖2ZN +

∫ T

0

Γ(s)ds

)
,

for t ∈ [0, T ]. Further, using Lemma 3.2, we find
∫ T

0
1
N ‖Qeδx(s)‖2Y Nds+ 1

N ‖Peδx(T )‖2ZN ≤
2J (δx, δu) ≤ 2C1‖δA‖2L(V N ,(V N )′), which leads to

N‖δp(T − t)‖2HN ≤ max (1, e2RT )

(
2C1 +

∫ T

0

1

θN
‖Epσ(s)‖2V Nds

)
‖δA‖2L(V N ,(V N )′)

= max (1, e2RT )
(
2C1 + θ−1‖pσ(s)‖2VT

)
‖δA‖2L(V N ,(V N )′).

Finally, (3.9c) gives ‖δuΣ(t)‖U ≤ ‖B∗‖L(HN ,U)‖δp(t)‖HN , for all t ∈ [0, T ]. Hence,

the claim follows from ‖B∗‖L(HN ,U) = ‖B‖L(U,HN ) ≤
√
N‖B‖L(U,H). �

4.3. Trajectories associated to (3.18) and (3.6). The following result is an immedi-

ate consequence of Theorems 4.1 and 4.3, and Corollaries 4.2, and 4.4.

Corollary 4.5. Let x◦ ∈ V , let (xσ, uσ) be the minimizer of (3.6), and let ExΣ,σ the

solution of (3.18) with uΣ,σ(t) := KΣ(t, ExΣ,σt)). Then, we have the estimates

‖Exσ(t)− ExΣ,σ(t)‖HN ≤ C3‖δA‖L(DNA ,HN ) + C4‖δA‖L(V N ,(V N )′),

‖uσ(t)− uΣ,σ(t)‖U ≤ C5‖δA‖L(DNA ,HN ) + C6‖δA‖L(V N ,(V N )′),

for t ∈ [0, T ], where δA = AΣ −Aσ and

C3 = CT ‖ExΣ,σ + Eg‖L2(0,T ;DNA ), C4 = max
(

1, e( 1
2 +ρ)T

)
CT2,

C5 = Cuni2CT ‖ExΣ,σ + Eg‖L2(0,T ;DNA ) C6 = ‖B‖L(U,H)CT3,

with CT as in Theorem 4.1; CT2 as in Theorem 4.3; Cuni2 as in Corollary 4.2; and CT3

as in Corollary 4.4, and ρ ∈ R as in (3.1).
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5. Numerical experiments

We present numerical experiments supporting our theoretical findings discussed in

Section 3. Moreover, for a given target state g, and given a parameter ensemble Σ =

(σi)
N
i=1 the performance of the feedback KΣ , as defined in (2.11), is compared with the

optimal feedback Kσ̄ for the ensemble average σ̄ := 1
N

∑N
i=1 σi of the parameters, that

is we compare the closed-loop systems

ẏσ(t) = Aσyσ(t) +BK(t, yσ(t)− g(t)), yσ(0) = y◦, (5.1)

for test parameters σ ∈ S, and for K ∈ {KΣ ,Kσ̄}, in [0, T ] given by

KΣ(t, yσ(t)− g(t)) = −B∗(ΠΣ(T − t)E(yσ(t)− g(t)) + h(t)), (5.2)

Kσ̄(t, yσ(t)− g(t)) = −B∗(Πσ̄(T − t)(yσ(t)− g(t)) + h(t)), (5.3)

where Πσ̄ solves Π̇σ̄(t) = Πσ̄(t)Aσ̄+A∗σ̄Πσ̄(t)−Πσ̄(t)BB∗Πσ̄(t)+ 1
NQ

∗Q, t ∈ [0, T ] with

Πσ̄(0) = Π◦, and h solves −ḣ(t) = (A∗σ̄ −Πσ̄(T − t)BB∗)h(t)+Πσ̄(T−t)(Aσ̄g(t)−ġ(t)),

t ∈ [0, T ), with h(T ) = 0 (cf. Section 2.2; note also that Πσ̄ = Π{σ̄}).

Given a parameter σ ∈ S, we denote the solution of (5.1) with K = KΣ by yΣ,σ,

and the solution of (5.1) with K = Kσ̄ by yσ̄,σ.

5.1. Oscillator. Let us consider the differential equation

θ̈(t) = −θ(t)− σθ̇(t) + u(t), t ∈ [0, T ], (5.4)

θ(0) = θ◦, θ̇(0) = θ◦,1. (5.5)

Thus, the damping parameter σ is allowed to be uncertain. We consider an ensembleΣ =

(σi)
N
i=1 of possible values of σ, and write the second order equation (5.4), for each σi, as

ẏσi(t) = Aσixσi(t) +Bu(t), t ∈ [0, T ], 1 ≤ i ≤ N,

yσi(0) = y◦, 1 ≤ i ≤ N,
(5.6)

withAσi =

[
0 1

−1 −σi

]
, B =

[
0

1

]
, initial condition y◦ =

[
θ◦

θ◦,1

]
∈ R2, and corresponding

states yσi =
[
θ θ̇

]>
=
[
θσi θ̇σi

]>
. The target function g, is chosen to solve (5.6) with

σ = 1 and initial condition y◦ =
[
1 0

]>
. Further, we set T = 5, Q =

[√
10 0

]>
, and

P = 1R2 , where 1R2 denotes the identity matrix in R2.

The parameter ensembles will be described as

ΣR+1
` :=

{(
− 1 +

2r

R

)
` | 0 ≤ r ≤ R

}
,

where R+1 denotes the cardinality of the ensemble, i.e., the number of parameters σr ∈
ΣR+1
` , 0 ≤ r ≤ R, and ` > 0 determines the range of the parameter set, and hence

resembles the level of uncertaintiy in the problem. The feedback Kσ̄ in (5.3) is not

affected by changes in ` or R ∈ N, since σ̄ = 0.

In Figure 1 the feedback control (5.2) is compared to the feedback control (5.3)

along with the corresponding closed-loop state trajectories yΣ,σ and yσ̄,σ, respectively.

Here, the feedbacks (5.2) and (5.3) are constructed based on the training ensemble Σ5
2 ,
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Figure 1. The feedback controls are computed using Σ5
2 and tested

on Σ6
4 . Left: state trajectories corresponding to the feedback con-

trol (5.2) (left) and the feedback control (5.3) (middle left). Right:
feedback control (5.2) (middle right) and feedback control (5.3) (right).
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Figure 2. Increasing training parameter interval Σ5
` , and increas-

ing test parameter interval Σ6
2` for ` ∈ {0, 1

10 ,
1
2 , 1,

3
2 , 2}. Left:

tracking cost 1
2‖Q(yσ − g)‖2L2(0,T ;Y ). Middle: feedback control

cost 1
2‖u‖

2
L2(0,T ;U). Right: terminal tracking cost 1

2‖P (yσ − g)‖2Z .

and then tested in the systems with parameters σ ∈ Σ6
4 , i.e., 6 test trajectories for

each component (position and velocity) are displayed. It is observed that the feedback

control (5.2) is much more robust with respect to parameter variations than (5.3): the

feedback (5.3) leads to worthless controls, which fail to track the target for the two most

unstable test parameters σ = −4 and σ = −2.4, whereas the feedback (5.2) still steers

the respective states close to the target.

The superior robustness against parameter variations of (5.2) compared to (5.3) is also

reflected in the associated costs, which are displayed for different levels of uncertainty

` ∈ {0, 1
10 ,

1
2 , 1,

3
2 , 2} in Figure 2. Here, the feedbacks (5.2) and (5.3) are constructed

based on the training ensembles Σ5
` , and then tested in the systems with parameters σ ∈

Σ6
2`. It is observed that, with increasing level of uncertainty `, the feedback (5.3) leads

to rapidly increasing tracking cost for the two most unstable test parameters σ = −4

and σ = −2.4, whereas the tracking cost associated with (5.2) grows much slower.

For ` = 2, the largest tracking costs in the parameter test set Σ6
2` are 1

2‖Q(yσ̄,−4 −
g)‖2L2(0,T ;Y ) = 552870 and 1

2‖Q(yΣ5
` ,4
− g)‖2L2(0,T ;Y ) ≈ 51.0, and the terminal tracking

costs are 1
2‖Q(yσ̄,−4 − g)‖2Z = 2115000 and 1

2‖Q(yΣ5
` ,4
− g)‖2L2(0,T ;Z) ≈ 1.4.
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Figure 3. Fixed training parameter interval Σ5
1 , and increas-

ing test parameter interval Σ6
` for ` ∈ { 1

2 , 1, 2, 3, 4}. Left:

tracking cost 1
2‖Q(yσ − g)‖2L2(0,T ;Y ). Middle: feedback control

cost 1
2‖u‖

2
L2(0,T ;U). Right: terminal tracking cost 1

2‖P (yσ − g)‖2Z .

For less extreme test parameters, which result in more stable systems, the tracking

performance of both feedbacks is similar, while the robust feedback in this case comes

at higher control cost, see Figure 2. However, for the two most unstable test parame-

ters σ = −4 and σ = −2.4, the feedback (5.2) also leads to smaller control cost than the

feedback (5.3).

In Figure 3, the feedbacks (5.2) and (5.3) are compared for a fixed training parameter

interval Σ5
1 and increasing test parameter interval Σ6

` for ` ∈ {0.5, 1, 2, 3, 4}. A similar

relationship is observed: for larger levels of uncertainty `, the cost associated with the

feedback (5.3) (in red) is much larger for unstable systems than the cost associated with

the feedback (5.2) (in blue). For stable systems, the tracking performance of the both

feedbacks is again similar. Overall, for this example the robustness of the feedback (5.2)

comes at the possible expense of higher control cost.

Finally, in accordance with Corollary 3.5, the costs converge as the difference of the

test parameters tend to zero, i.e., as ` tends to 0, see Figure 2.

5.2. Convection-diffusion-reaction equation. Let us consider the parameterized

convection-diffusion-reaction equation under Neumann boundary conditions as follows

ẏσ −∇ · (aσ∇yσ) + cyσ +∇ · (byσ) =

Na∑
i=1

ui1Oi (t, s) ∈ (0, T ]×D,

∂yσ
∂n

= 0 (t, s) ∈ [0, T ]× ∂D,

yσ = y◦ (t, s) ∈ {t = 0} ×D,

where T = 5, D = (0, 1) with boundary ∂D = {0, 1} and the functions 1Oi represent

the support of the actuators, which are modelled as the characteristic functions related

to open sets Oi ⊂ D for 1 ≤ i ≤ Na. It is assumed that the reaction coefficient c and the

convection coefficient b are given constants, and that the parameter σ = (σ1, . . . , σNs) ∈
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Figure 4. Five realizations of the random diffusion coefficient (5.7).
Left: training set. Right: test set.
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Figure 5. Cost for a set of N = 5 test parameters. Left:
tracking cost 1

2‖Q(yσ − g)‖2L2(0,T ;Y ). Middle: feedback control

cost 1
2‖u‖

2
L2(0,T ;U). Right: terminal tracking cost 1

2‖P (yσ − g)‖2Z .

RNs enters the diffusion, that is

aσ(s) = ā(s) exp

( Ns∑
j=1

σjψj(s)

)
, (5.7)

for ā ∈ C0(D) and ψj ∈ L∞(D) for all 1 ≤ j ≤ Ns. Assuming that ā(s) > 0 ∀s ∈ D, it

follows that there exist aσ,min and aσ,max depending on σ such that

0 < aσ,min ≤ aσ(s) ≤ aσ,max <∞ for all s ∈ D and σ ∈ RNs .

The representation (5.7) is called a lognormal parameterization, if the parameters σ =

(σj)
Ns
j=1 are independently and identically distributed (i.i.d.) standard normal random

variables, that is (σj)
Ns
j=1 ∼ P :=

⊗Ns
j=1N (0, 1), see, e.g., [2]. Parameterizations of

this form have origins in Karhunen–Loève expansions of lognormal random fields, see,

e.g., [22].

In the numerical experiments Na = 3 actuators are used as O1 = [0.1, 0.3], O2 =

[0.4, 0.6], and O3 = [0.7, 0.9]. In (5.7) the mean field is set to ā = 0.1 and it is assumed

that the diffusion depends on Ns = 100 realizations of i.i.d. standard normal random

variables, and parametric basis functions ψ2j(s) = (2j)−ν sin(jπs) and ψ2j−1(s) = (2j−
1)−ν cos(jπs) with ν = 3

2 , cf. [9]. Further, a constant reaction coefficient c = −1
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Figure 6. Without convection b = 0. Five realizations of state tra-
jectories corresponding to the feedback control (5.2) (bottom) and the
feedback control (5.3) (top).
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Figure 7. Cost for a set of N = 5 test parameters. Left:
tracking cost 1

2‖Q(yσ − g)‖2L2(0,T ;Y ). Middle: feedback control

cost 1
2‖u‖

2
L2(0,T ;U). Right: terminal tracking cost 1

2‖P (yσ − g)‖2Z .

is assumed, and we set Q =
√

10 · PF , where PF is the orthogonal projection in H

onto span(F ), where F =
[
1 cos(πs) cos(2πs)

]>
, and P = 1H in (2.1), where 1H

denotes the identity operator in H, as well as the initial condition y◦(s) = sin(2πs)− 1.

The target g solves the heat equation ġ = 0.1∆g with the same boundary and initial

data.

To construct the feedbacks, 5 training vectors, each containing Ns = 100 realizations

of i.i.d. standard normal random variables, are drawn. In order to investigate different

variance levels in Figures 5 and 7, the training vectors are multiplied by a scalar ` ∈
{0, 1

10 ,
1
2 , 1, 2}. The feedbacks are then tested with 5 different test parameters, each of

which consists of Ns = 100 realizations of i.i.d. standard normal random variables.

Results without convection are displayed in Figure 5 and Figure 6, and results with

convection b = 0.1 are displayed in Figure 7 and Figure 8. In the case without convection

the feedback (5.2) (in blue) has smaller terminal tracking costs than the feedback (5.3)

(in red) for all tested diffusion coefficients, see Figure 5. In addition, it has smaller
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Figure 8. With convection b = 0.1. Five realizations of state tra-
jectories corresponding to the feedback control (5.2) (bottom) and the
feedback control (5.3) (top).

tracking cost for some of the tested diffusion coefficients. The more robust tracking

performance comes at the expense of higher control cost for (5.2).

Similarly, in the case with convection b = 0.1, the feedback (5.2) tracks the target

better than the feedback (5.3): while (5.3) clearly fails to track the target for σ
(2)
test, σ

(3)
test,

and σ
(5)
test, the feedback (5.2) tracks the target much better for the tested realizations of

the diffusion coefficient (5.7), see Figure 8. The improved tracking performance of (5.2)

is reflected in the associated costs in Figure 7 and again comes at the expense of higher

control cost. The control costs are insensitive to changes of the test parameters, such

that no difference between the cost for different test parameters can be seen in Figure 7.

The same phenomenon is observed in Figure 5.

In summary, in both cases the feedback (5.2) is more robust against variations in the

diffusion coefficient at the cost of higher control costs.

Finally, in accordance with Corollary 3.5, the costs converge as the difference of the

test parameters tend to zero, i.e., as ` tends to 0, see Figures 5 and 7.
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