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Abstract

A class of infinite horizon optimal control problems subject to semilinear parabolic equa-
tions is investigated. First and second order optimality conditions are obtained, in the presence
of constraints on the controls, which can be either pointwise in space-time, or pointwise in time
and L? in space. These results rely on a new L> estimate for nonlinear parabolic equations
in an essential manner.
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1 Introduction

We study the optimal control problem

1 [ v [
P i = - w — Ya)* + = 2dxdt
(P) urémald J(u) 5 /0 / (Yo — yaq)” dzdt 5 /0 /w u” da dt,

where v > 0, yq € L?( x (0,00)) N LP(0, 00; L*(Q2)) with p € (11, 00, and
Uad = {u € L*(0,00; L*(w)) : u(t) € Kaq for a.a. t € (0,00)}.

Above K,q denotes a closed, convex, and bounded set in L?(Q2), and vy, is the solution of the
following parabolic equation:

0 .
{ %_Ay+ay+f(xat7y):g+u>(wan:QX(ano)a (11)
Oy =00nX =T x(0,00), y(0) =yo in .

Here (2 is a bounded domain in R™; 1 < n < 3, with a Lipschitz boundary I'; and €2 is an interval if
n = 1, w is a measurable subset of 2 with positive Lebesgue measure, x,, denotes the characteristic
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function of w, a € L*(Q), 0 < a # 0, g € L?(Q), and additionally g € LP(0,00; L?(£2)) with
pE (4 —,00] if n =2 or 3, and yo € L>(Q2). For every u € U,q, the symbol uy,, is defined as

follows:
(’U’Xw)(xﬂf) = { U(J(?), t) if (.Z‘,t) € Qw =w X (O,OO)7

otherwise.
Possible choices for K, 4 include
Ko = {’U S L2 ) HUHLZ(w) < ’y} 0 <y < oo, (1.2)
Kad:{UGLz(w).agv( ) < Bforaa. zcw}l, —c0o<a<f<oo. (1.3)

Concerning the nonlinearity f : @ x R — R we assume that it is a Carathéodory function of
class C'' with respect to the last variable satisfying the following properties:

f(2,t,0) =0, (1.4)
of
IMy > 0 such that 8—(:16715, y) > 0 and f(z,t,y)y > 0 V|y| > My, (1.5)
Y
of
VM > 0 3C)s such that a—y(a:,t,y) < Cuy Yyl < M, (1.6)

for almost all (z,t) € Q. Let us observe that ((1.5) and (1.6)) imply

g—;j(a:,t,y) > —Cy, Yy € R and for a.a. (z,t) € Q. (1.7
Moreover, (1.4) and (1.6)) along with the mean value theorem yield
\(xty\—‘fxtht y‘<C’MMV|y|<Mandforaa(xt) Q. (1.8)

The following inequality will frequently be used

2
Culllmoy < ([ 190 + rPlan) " (1.9
Along this paper we we will assume that
4
pe(f,oo] if n=2o0r3 and pe€[2,00]ifn=1. (1.10)

Remark 1.1. The operator —A can be replaced by any uniformly elliptic operator with L>°(§2) coef-
ficients. The assumption (L.4)) can be relazed by assuming that f(-,-,0) € L*(Q)NL>(0,00; L*(Q2))
and then redefining f and g as f(x,t,y) — f(x,t,0) and g(z,t) — f(x,t,0), respectively.

By investigating (P) we continue our efforts on studying infinite horizon optimal control prob-
lems with semilinear parabolic equations as constraints. In [§] the nonlinearities were chosen of
polynomial type, no constraints were enforced on the controls, and the focus was put on nons-
mooth, sparsity enhancing control costs, which entail that the controls settle down zero once the
states enter into a neighborhood of a stable equilibrium. Later, in [9] the nonlinearity was not
restricted to be a polynomial and the conditions on f were very similar to those imposed in the
present paper. The same type of control constraints were imposed as well. The major step forward



in the current paper compared to [9] consists in an L°°(Q) estimate of the states for feasible con-
trols, i.e. for controls with the property that the associated states y, are in L?(Q). Utilizing this
property, well-posedness and C? regularity of the control-to-state mapping, associating the infinite
horizon controls to the infinite horizon states, can be guaranteed, and a second order analysis of
(P) becomes possible. This was not the case in [9], where the first order conditions of the infinite
horizon problem were obtained as the limit of the associated finite horizon problems, and no second
order analysis was carried out. It can also be pointed out that the second order analysis for optimal
control problems with constraints as in is likely not available even in the finite horizon case.
Along a related, but different line of research we also investigated infinite horizon optimal control
problems with a discount factor on the state, [I1] and [I2]. This allows to treat a larger class of
nonlinearities at the expense of less information of the optimal states as time increases. In [16] a
local sensitivity analysis with respect to the initial conditions in L?(f2) for a class of semi-linear
parabolic equations was developed.

Most of the literature on infinite horizon problems is carried out for ordinary differential equa-
tions. Let us mention some of these contributions. In [7] the importance of infinite horizon
problems in applications is stressed. In general, when formulating optimal control problems, the
time horizon can be subject to ambiguity. In such cases the choice as infinite horizon problem can
be a valuable choice. The first article, focusing on infinite horizon problems may be [I5]. More
recent contributions all in the context of ordinary differential equations are available for instance
in [T 2L [4]. Concerning the literature, pointwise constraints as in have received considerably
more attention than norm constraints as in . However, from a practical point of view
appears to be equally important. In the case of optimal control of Navier-Stokes equations the
suitability of this type of constraints was discussed in [14]. The use of the L' (w) norm replacing the
L?(w) was studied in [I0]. The last two references were devoted to final horizon control problems.

Briefly, the paper is structured in the following way. In Section 2, the existence of optimal
controls and first order optimality conditions are established. Necessary and sufficient second
order conditions for the two choices of K4 in and are obtained in Section 3. Section 4
is devoted to convergence results for the finite horizon problems associated to (P), to the infinite
horizon problem. This is not only of intrinsic interest but also of relevance for numerical realization.
In the Appendix the relevant results for the state equation, and the associated linearized and adjoint
equations are established. The L>(Q) regularity result for the state equation, already mentioned
above, may be of interest beyond its application in optimal control.

2 Existence of an optimal control and first order optimality
conditions

In this section, we prove the existence of an optimal solution of (P) and derive the first order
optimality conditions satisfied by any local minimizer. For this purpose we will also address the
issue of differentiability of the relation control-to-state and of the cost functional J. Let us observe
that Theorem [A22]implies the existence of a unique state y,, for every control u € U,q. However, it
could happen that y, ¢ L?(Q) and, consequently, J(u) = co. Therefore, the assumption about the
existence of a control ug € Uyq such that J(ug) < oo is needed. This issue will not be addressed
in this paper, the reader is referred, for instance, to [3] and [§] for this question. We will say that
u is a feasible control if u € U,q and J(u) < oo.

For 0 < T < oo we set W(0,T) = {y € L*(0,T;H'(Q)) : 2 € L*(0,T; H(Q)*)} with



2 1
) * as norm. It is well known that wo,7),|

yllw.) = (||y||2L2(o,T;H1(Q)) + H%‘ L2O.T5H (@))
lw(o,ry) is a Banach space. In fact, it is a Hilbert space because || - ||y (0,7 is a Hilbertian norm.
Furthermore, the embedding W (0,T) C C([0,7T]; L?(2)) is continuous for T' < oo and W(0,T) is
compactly embedded in L?(0,T; L?(Q2)) if T < oo.

Theorem 2.1. Let us assume that there exists a feasible control ug. Then, (P) has at least one
solution.

Proof. Let {u}32, C Uqq be a minimizing sequence of feasible controls with associated states
{Yuy, 1321 Since J(ug) — inf (P) < oo, then the boundedness of {uy}72, and {yu, }32, in L*(Q.)
and L?(Q), respectively, follows. Then, taking subsequences we can assume that (uy, y,, ) — (4, %)
in L2(Q.,) x L?(Q). Since U,q is a closed and convex subset of L?(Q,,), we infer that @ € U,4. Due
to the weak lower semicontinuity of J with respect to (y,u) in L?(Q) x L?(Q,,), it is enough to
establish that ¥ is the state associated to @ to conclude the proof. For this purpose we have to show
that g satisfies with g+ @ on the right hand side for every T' < co. The only delicate point in
this respect is to prove the convergence of f(z,t,v.,) — f(x,t,7) in L?(Qr) for every T > 0, where
Qr = Q2 x (0,T). Using the boundedness of {(ug, yu, )}32; in [L3(Qu) N L>(0, 00; L (w))] x L*(Q)
we deduce from (A.4)-(A.6) the boundedness of {y,, }72; in W(0,00)NL>(Q) and {f(-, -, yu, )} 724
in L°°(Q)N L?*(Q). Hence, using the compactness of the embedding W (0,T) C L?(Qr) the desired
convergence follows. O O

Hereafter, the following additional hypothesis on f is assumed:
Imy >0, 305 € [0,1), and 3Cy > 0 such that

a—(m,t,s) > —Cyls| — dfa(x,t) V|s| < my and for a.a. (z,t) € Q.
Y

Let us denote for every p satisfying (|1.10))
U, = {u € L*(Q,) N LP(0, 00; L*(w)) such that y, € L*(Q)},

0
Y, = {y € W(0,00) N L®(Q) : 8%{ — Ay +ay € L*(Q) N LP(0, 00; L2())},
and by G, : U, — Y the mapping G,(u) = y,, where y, is the solution of (IL.1). Y, is a
Banach space when endowed with the associated graph norm. We observe that U, C U, for every
p € (++-,00) and Gy is the restriction of G} to Use.

Theorem 2.2. Let us assume that p € (ﬁ,oo] and that U, is not empty. Then, Uy, is an open
subset of L*(Q.) N LP(0,00; L?(w)) and the mapping G, is of class C*. Moreover, given u € U,
and v € L*(Qy) N LP(0,00; L?(w)), 2, = DGp(u)v is the unique solution of
0 0
6—? — Az +az + a—;(m,t,yu)z = VX n Q,
Onz=0o0n%, 2(0)=0 in Q.

(2.2)

Proof. The proof will be based on the implicit function theorem. For this purpose we define the
mapping
Fp Y, x L*(Qy) N LP(0,00; L*(w)) — L*(Q) N LP(0,00; L*(Q)) x L>()

0
Fply,u) = ((.7‘;/ —Ay+ay+ (-, y) — 9 — xwt, y(0) — yo).



By definition of Y, and using (1.8)), we deduce that F,, is well defined and is of class C'. Further,
we have that F,(yu,u) = (0,0) for every u € U, and

aa—];”(yu,u) 1Y, — L*(Q) N LP(0,00; L*(2)) x L™=(Q)
OF, o=

0
Sz = (G~ st ezt Gz s(0)).

Then, %(yu7 u) is an isomorphism if and only if the equation

0z of .
E—Az+az+a—y(x,t,yu)z—h1n Q,

Onz=0o0n 3, z(0) =2z in Q

(2.3)

has a unique solution in Y}, for every (h, 29) € L*(Q) N LP(0, 00; L*(2)) x L>°(Q2) with continuous

dependence. This is an immediate consequence of Theorem with d(z,t,s) = g—z(xﬁ, s) and

Yy = yu € L*=(Q). Finally, the theorem follows by applying the implicit function theorem. 0O O

As a consequence of the above theorem, we have that J : i, — R is well defined. The next
theorem establishes its differentiability.

Theorem 2.3. Assuming that U, is not empty, the functional J is of class C' and for every
u €U, and v € L*(Q,) N LP(0, 00; L?(w)) its derivative is given by

I (u)v = /Q(yu — Yd) 2y dodt + V/

where z,, = G, (u)v and p, € W(0,00) N L>(Q) satisfies

wodrdt = / (pu + vu)vdz dt, (2.4)

w w

Opu of -~ .
- ot _Awu"'_a@u"‘aiy(xvtayu)@u—yu_yd m Q7 (25)

an(pu =0 on 27 hmt%oo H@u(t)||L2(Q) =0.

The fact that .J is of class O is an immediate consequence of Theorem and the chain rule.
Formula is deduced in the standard way from equations and . Concerning the well
posedness of we refer to Theorem [A.4

We conclude this section establishing the first order optimality conditions satisfied by every local
minimizer of (P) and deducing some consequences from them. In this paper, a local minimizer @
is understood in the L?(Q,,) sense and it is assumed that @ € Uy, N Uygq.

Theorem 2.4. Let @ be a local minimizer of (P). Then, there exist §, ¢ € W(0,00) N L>(Q) such
that

0y .. . By i

3¢~ Aytay+ [ tg) =g+ inQ, (2.6)
09 =0 on %, §(0) = yo in 2,

op _ . of NG — 7 ;

~5f ~APHapt 5@t i)e =y —ya in Q. (2.7)

On®@ =10 on X, limy_o0 [|P(t)]| 22(0) = 0,
/ (p+va)(u—1u)dedt >0 Vu € Uyg. (2.8)

w



This theorem is an immediate consequence of Theorem [2.3|and the inequality J'(@)(u —@) > 0
for all u € Uyyq.

Corollary 2.5. Let ¢ and @ satisfy (2.7) and (2.8). If Kuq is given by (L.2), then the following
properties hold for almost all t € (0, 00)

/(gﬁ(t) +va(t))(v—a(t))de >0 Yv e B, (2.9)
if |a(t)]| 22wy < v = &(t) + vu(t) =0 in w, (2.10)
i _ P, 1)
_ 1. _
lallze=@uy < S llellee@u)- (2.12)
In the case that K,q is given by (1.3]), then we have
_ : 1_
u(x,t) = Proj, g (— ;go(:r,t)). (2.13)

In both cases we have that @ € L>(Q).

Proof. For the proof of (2.9) and (2.10]) the reader is referred to [10, Lemma 3.2]. Let us prove
(2.11). First, we assume that ||@(t) +vu(t)| L2y # 0. Then, again from [10, Lemma 3.2] we obtain

(x,t) + va(x,t)

for a.a. .
0 + vl o) or a.a. T €w

_ %)
Ut ==

This yields
(V’y + [|@(t) + I/L_L(t)HL2(w)>’L_L("E,t) = —yp(z,t) for a.a. = € w. (2.14)

Taking the norm in L?(w) in the above expression and using that ||@(t)||2(.) = v we infer
vy + 18(t) + va(t)| 2wy = 8] 22(w)- (2.15)
Identities (2.14)) and (2.15) imply (2.11). In the case ||¢(t) + vu(t)|[12() = 0 and [|a(t)||z2w) = ¥

we have that

1
u(x,t) = ——@(x,t) for a.a. x € w and vy = ||@(t)||L2(w)- (2.16)
v

Therefore, (2.11)) also holds. Let us prove (2.12). If [[u(t)||z2(,) < 7, then (2.10) implies that
u(z, 1) = L@z, )] < (|Gl pe(qu)- If @) r2(w) = 7, the inequality ||@(t)||r2(w) > v follows

from (2.15) and (2.16). Then, (2.11) implies that |u(z,t)| < (@[ p~(q.)-
Finally, the identity (2.13]) is well known.
O O

3 Second order optimality conditions

In this section we address the second order optimality conditions for (P). For this purpose, in
addition to assumptions (1.4)—(1.7) we impose the following hypotheses: f : Q@ x R — R is of



class C? with respect to the second variable and satisfies

365 € [0,1) such that g—gjj(x,t,O) > —dsa(z,t), (3.1)
VM > 03C)s such that ‘gzy‘é(z,t,y)‘ < Cuy Vy| < M, (3.2)
Ve > 0 and VM > 0 Jp. ps such that
Lt - ZL | < <Ml lal < Mowith gz -l < e Y

for almost all (x,t) € Q. We observe that (3.1) and (3.2)) imply (2.1). Indeed, it is enough to select

ms=1 and C; = max aQ—f(zt )
f = f_\s|§1 ayQ yOLY)| -

Then, using the mean value theorem we infer for almost all (x,t) € Q

of O*f of
— > — < .
By (2,t,8) 052 (z,t,0(x,t)s)s + 3y (z,t,0) > —Cfls| — dra(z,t) V|s| < my

Theorem 3.1. Under assumptions (1.4)—(1.7) and (3.1)(3.2) and supposing that U, is not empty
forp € (2,00, Gp : U, — Y, is of class C*. Moreover, given u € U, and vi,vs € L*(Qy) N

LP(0,00; L3 (w)), then zy, v, = G;’(u)(vl, va) 1s the solution of the equation

0z 7] 0?

f f in Q
_ = ———
ot Az +az+ Ay (@, 8, yu)z 0y? (@1, u) 20, 20, 0 Q, (3.4)

Onz=0o0n%, 2(0)=0 in Q,
where z,, = G (u)v; fori=1,2.

The C? differentiability of G follows from the implicit function theorem applied to the mapping
Fp introduced in the proof of Theorem It is enough to observe that now F, is of class C2.
The equation follows differentiating the identity F,(G,(u),u) = 0 twice.

As a consequence of Theorem and the chain rule we have the following corollary.

Corollary 3.2. IfU, is not empty, then the function J : U, — R is of class C* and we have

2
-5

7w (on,uz) = [

(z,t, yu)cpu} Zu, 2o, dx dt + u/ v1ve da dt (3.5)
Q

w

for every u € U and vy, vy € L*(Q.) N LP(0, 00; L?(w)).

Remark 3.3. Under assumptions 7 and 7, for every u € U, the linear form

J'(u) : L*(Qu)NLP(0,00; L?(w)) — R as well as the bilinear form J" (u) : [L?(Q.,)NLP(0, 00; L?(w))]?> —
R can be extended to continuous linear and bilinear forms J'(u) : L?(Q,) — R and J"(u) :
L?(Q.)* — R given by the same expressions and , respectively. Indeed, this is an
immediate consequence of Theorem along with the L>(Q) N L?(Q) regularity of the adjoint

states established in Theorem [A.])

The analysis of second order optimality conditions is carried out in the next two subsections,
where we consider the cases with K,4 given by (1.2]) or (L.3).



3.1 Casel: K,g=B,={ve L*w):|v|w <7}
For this case we consider the Lagrange function

1 o0
0

Theorem and Corollary [3.2] imply that £ is of class C? and we have the expressions

%(u,)\)UZ/ (<pu+uu)vda:dt+l/ )\/uvdxdt, (3.6)
au w Y Jo w
0°L
W('Ih)\)(vlﬂ&)
—/[1_8270( L] ddt+/oo(z/+l)\)/ dz dt (3.7)
= ; By Ty b, Yu)Pu | 2oy 2o, AT ; 5 wvlvg x dt. .

The identities (3.6) and (3.7) define continuous linear and bilinear forms on L?(Q,,) and L?*(Q.)?,
respectively.
Let uw € Uyg NU satisfy the first oder optimality conditions E,' Associated with @

we define A(t) = ||¢(t) + va(t)| r2(w). From Theorem and (2.12)) we get that A € L>(0,00) N
L?(0,00). We also set

L ={te(0,00): [alt)]| 2wy =7} and LI ={te L, :A(t) £ 0}.

The choice of A as Lagrange multiplier associated with the control constraint is suggested by (2.10]).
Actually, next lemma confirms that this is the correct choice.

Lemma 3.4. Let u and ¢ satisfy (2.7) and (2.8). Then we have g—ﬁ(ﬁ,j\)v = 0 for every v €

L*(Qu)-
Proof. Using (3.6), (2.10), (2.11)), and (2.15) we infer

L, < - 1 oo _

%(u, A) —/w(<p+1/u)vdxdt+7/0 )\(t)/wu(t)v(t)dmdt

_ _ 1 _ B

:/I;r/w(go—&—Z/u)vd:vdt—i—Py/l7+ )\(t)/wU(t)v(t> dz dt

- vy Yodedt— [ A [ .

/w/w(@ el ) / 0y @, @) dxdi =0

H O

In order to formulate the second order optimality conditions we introduce the cone of critical
directions associated with w:

_ <0 iftel,
u(t)v(t)dx{ —0 ifterlt }.

Then we have the following second order necessary optimality conditions.

Ca ={v e L*Q,): J(a)v=0and /

w

Theorem 3.5. If @ is a local minimizer of (P), then 25 (u, \)v? > 0 for allv € Cy.



Proof. Since @ is a local minimizer of (P), there exists ¢ > 0 such that J(a) < J(u) for all
u € Ugq N B(u), where B.(u) = {u € L*(Qu) : ||u — ©l|r2(q.) < €}. Due to & € Us and since Us,
is an open subset of L?(Q,,) N L>(0, 00; L?(w)), we can select ¢ small enough so that every control
u € B.(u) satisfying |[u — | Lo (0,00;22(w)) < € belongs to Us.

Let v € Cy N L>(0,00; L?(w)). The assumption v € L (0, 00; L?(w)) will be removed later.
Let us fix an integer

2max{||u Sl pee (0.00: L2 (w 1
ko >maX{ {ll ||L2(Qw)4|| l| oo (0,005 L2 ))}772}7
Ve vy

and set

1

. 2 — 2 2

vp(z,t) = 0 if y* — % < Hu(t)||L2(w) <7 Vi > k.
v(x,t) otherwise

It is obvious that {v}r>k, C L*(Qu) N L*(0,00; L?(w)). Moreover, the convergence vy — v in
L?(Q.,) follows from Lebesgue’s dominated convergence theorem.

For fixed k > kg, we define
min{l,y}e RV, v - % }

2max{||v)lL2(q.)s IVl 0,002 ()} V]l 2o% (0,00:22 ()

ap = min{

and ¢y, : (—ag, +ar) — L*(Qu) N L>(0,00; L?(w)) by

p? _
dr(p) = \/1 - ?HW(QH%%W U+ pug.

By definition of oy, we have z—z||vk(t)||2L2(w) < 1for all k > ko, |p| < ay, and almost all t € (0, 00).
Moreover, |¢i(p)| < |u] + WMM € L*(Q.) N L>=(0,00; L?(w)). Hence, the mapping ¢y is
well defined and it is of class C'°°. Let us prove some properties of this mapping.

I- ¢r(p) € Ugq for all p € (—au,+ay). Let us set u, = ¢i(p). Then, we have for almost all

t € (0,00)

2
p _
Oy = [1 = Sor O |18 sy + 2 Ner(E e

T 2,,\/ 1- ,’;vak(tniw / a(t)or(t) de. (3.8)

In the case t € I,, we have vi(t) = v(t). Then, using that v € Cyz we deduce that the last
integral in the above inequality is less than or equal to zero and, consequently, (3.8 leads to
up )20y <72 T2 = : < [@(t)[172(,) <, then we have vy,(t) = 0 by definition and, hence,
(3.8) implies that ||“p(t)||2L2(w) < ~2. Finally, we assume that Ha(t)HZLQ(w) < 4% — 1. Then, we infer
from the definition of oy

1
[ (D) 2wy < \/727‘5‘ agl|vl Lo (0,00:2(w)) < V-



- l¢r(p) — ullL2(q.,) < . From the definition of ¢ we get

2
1—%—%MUM@

(6% _
7§\|v||ioo(o,oo;m(w))Hu||L2(Qw) + axllvllL2(Q.)-

IN

Px(p) — @l L2(q.) lall2q.) + lolllvell2Qu)

From the definition of oy, and k > kg > ,Y% we obtain

1
Y=/ % 1
k <

ap < < .
[Vl zoe (0,00:22(w)) — BV Lo (0,00522(w))

Moreover, ap < holds. Then, we have

e
2llvll L2 (q.,)

U €
il , €
k24 2

ST
The last inequality is consequence of k > kg > 1/ %.

IIT - ¢1(p) € Us. Arguing as in the previous step and using again the definition of ay, and kg
with [|@][z2(q,,) and ||[v]|z2(q.,) replaced by [|G]| £ (0,00;22(w)) a0 [[V]| oo (0,00;22(w))> TESPECtively, we
infer that [|¢x(p) — @l Lo (0,00;22(w)) < €. Due to the choice of ¢ this implies that ¢y (p) € Une.

Now we define the function ¢y : (—ag,+ar) — R by ¥r(p) = J(¢x(p)). From the local
optimality of @ and the established properties of ¢y we infer that ¢, (0) = J(@) < J(¢dr(p)) = i (p)
for every p € (—au, +ag). Since ¥y is of class C?, we have that 1},(0) = 0 and v (0) > 0. Hence,
we get

9% (p) — @llL2(qu) < <e

0 < 9(0) = J"(61(0))97(0)% + J'(1(0)) 9 (0) = J" (w)wi; + J' (@)¢7.(0)
= /Q {1 - @%(m,t,y)}sz dzdt + u/w vidadt
- 712/00O ||wg(t)|\%2(w) /w(@ + va)udx dt.
Using (2.10), [2.11), (2.15), and (2.16)) we obtain that
| 1ol [ o vmndat

=2
e 2
v dx + v||u(t de¢
/ ” k HLz(w) / H(P( >||L2(w) ” ()||L2(w)>

=1 [ T (= 120z + ) at

=—7[HwﬁWé@Nﬂﬂ+VMﬂhm@&=—fAX@NW@W§@Mt
:—vA O lon (D)2, dt.
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Inserting this in the above inequality we infer with (3.7))

o0%L, -
0 < ¢y(0) = %(U, A)vi.-

Now, the convergence v, — v in L?(Q) implies

2 2
%—uﬁ(ﬂ,;\)v2 = lim a—ﬁ(ﬂj\)vi > 0.

Finally, we remove the assumption v € L®(0,00; L?(w)). Given v € Cy, we define vy(x,t) =

% for every integer k > 1. Then, we have {v;}32, C L*°(0, 00; L?(w)) N L*(Q.) and

v — v in L?(Q,,). Using that v € Cy we get

1 <0 iftel
w(t)vg(t) dz = /ﬂtvtdm{_ : 2
e = e T4 o S5

Identity (2.11)) implies
S(t }
/ @(t)vp(t) dz = —W / u(t)v(t)dt = 0 for a.a. t € L.
Therefore from ([2.10)) and the above relations we deduce

J'(w)v, = /1+ /(@(t) + va(t))vg (t) de dt = 0.

Hence, {v;}72, C Cz N L>®(0,00; L?(w)) holds and, consezquent}y, ‘2,1% (@, A\)vi > 0 for all k > 1.
Finally, passing to the limit as k — oo we conclude that 275(12, Av? > 0. O O
Now, we give a second order sufficient optimality condition.

Theorem 3.6. Let @ € Uyy NUs satisfy the first order optimality conditions (2.6)—(2.8)) and the

gjﬁ (@, p)v? > 0 for every v € Cy \ {0}. Then, there exists k > 0 and € > 0

second order condition
such that e
J(I_L) + EHU — IELH%Q(QW) S J(U) V’Z,L S Uad wzth ||u — ﬂ||L2(Qw) S E. (39)

Proof. We argue by contradiction and assume that (3.9) does not hold. Then, for every integer
k > 1 there exists a control u; € U,4 such that
_ 1 _ 1 9
pr = lluk = allr2Qu) < ¢ and J(uk) < J(@) + o-llur = lz2(q,)- (3.10)

We define v, = i(uk —u). Since [|vg||z2(q,) = 1 for every k, taking a subsequence, we can assume

that v, — v in L*(Q.). From (3.10) we deduce that {y,, }72, is a bounded sequence in L*(Q),
hence {uy}72; C Us. Moreover, given p € (1, 00) we have

p—2 2
[ur = @l Lr(0.00:22(02)) < Ntk = @ll L% (0 00512 () [k = Ul L2 (0,00,22(0)) = 0 88 k= oo

11



Then, y,, = Gp(ur) — Gp(a) = § in Y,. Consequently, there exists a ball B,.(a) C L?(Q,) N
LP(0,00; L?(w)) and ko > 1 such that {ug}r>k, C U,. The rest of the proof is split into three
steps.

Step I - v € Cy. From (2.4) and (2.8) we infer that

0 < J(a)vy = / (¢ + va)vg do dt — (¢ + vu)vdzdt = J'(a)v. (3.11)
w Qu

Using the differentiability of the mapping J : U, — R we infer with the mean value theorem

and ((3.10)
J —-J
/ (¢o,, + vug, )vp dodt = J'(ug, Jvp = Juw) = (@) <Phyy,
Qw pk 2k

where 65, € [0,1], up, = @+ 0 (up — @), and pp, is the adjoint state corresponding to wug,. Since
Yo, = Gplug,) = Gp(u) = § in Y,, we deduce from Theorem that g, — @ in Y, as k — oc.
Then, it is straightforward to pass to the limit in the above expression and to get J'(u@)v < 0. This
inequality and (3.11)) imply that J'(@)v = 0.

Next, taking into account that [|ux(t)||z2() < v for almost all ¢ > 0, we have for almost every
tel,

/wﬂ(t)vk(t) dt = pik[/wa(t)uk(t) dt—/wﬁz(t) dt] < pikfy[||uk(t)um(w) fﬂ <0.

We define the function ¢ € L*°(0,00) by ¢(t) = 1 if f t)dx > 0 and 0 otherwise. Then,
from the convergence vy — v in L?(Q,,) and the fact that qbu 6 L2 (Qw) we infer from the above
inequality

/I gb(t)/wﬂ(t)v(t) dxdt:klim A q/)(t)/wﬂ(t)vk(t) dzdt <0.

— 00
~

This is possible if and only if f v(t)dz < 0 for almost all ¢t € I,. Finally, we prove that this
integral is 0 if ¢ € L. For this purpo&e we use Lemma 3.4 H (3-6), and the fact that J'(a)v =0 as
follows

OL 2 L[5 i L/ a(t)v(t)dz
0= "S5 (@A) = 7' )v-l—;/o )\(t)/wu(t)v(t)dxdt— W/I /\(t)/w (t)o(t) dz dt,

~

which implies that [ a(t)v(t)dz = 0 for almost all t € I, and thus v € Cy.
Step IT - & E(u )\)v < O First we observe that

/Oo‘<>||uk<>||p(w dt = /'()Huk()lle(w)dt

/A (D122, dt = / ABI(t) 22, dt.

This inequality and (3.10]) imply
< - 1
L(ug, A) < L(u,A) + ﬁ”uk — allZ2(q.)

12



Performing a Taylor expansion and using again Lemma we infer for some ¥ € [0, 1]

102L _
5w(z‘wﬂk(uk—fa),/\)(uk—ﬂ)z

oL, - 1k - i
:%(u,)\)(ukfu) 5 ou 2(u+z9k(uk—u) A)(Uk*u)2

_ _ 1 _
= L(up, ) = £, 1) < oo — @l3x(q).

2
Dividing the above inequality by % we get

82

o 2(u+19k(uk —a), v <

(3.12)

e

Denoting by uy, = @ + Uy (ur — @), yg, its associated state, and ¢y, the corresponding adjoint

state, we get from ((3.7)

0L - 0?
G2 (a+ g (ur — @), )\)v,% = /Q [1 — a—é(r,t,ym)wgk ngﬂ)k dzx dt

+V‘|vk”%2(Qw) +

| A0l (3.13)

2

where zy, ., satisfies the equation

0zy,, of i
T;Uk — A2y, v T 29, 0, + iy(x7t7yﬂk)zﬂkﬂ)k = VkXw In @, (3.14)

Onz9, v, =000 %, 29, . (0)=0in Q.

Now, we study the lower limit of (3.12). From Theorem and the boundedness of {v,}7°,
and {yg, }72, in L*(Q.) and L>(Q), respectively, we infer the boundedness of {zy, », }32; in
W(0,00). Therefore, we can extract a subsequence, that we denote in the same way, such that
{29, v } 32 converges weakly in W (0, 00). Moreover, the convergence ug, — @ in LP(0, 00; L?(w))
implies yy, = Gp(ug,) — G,() = § in Y,. Using this and the convergence vy — v in L*(Qy), it
is straightforward to pass to the limit in and to deduce that zy, ., — 2, in W(0, 00), where
Zp is the solution of . Further, the convergence of yy, — ¥ in Y}, implies the convergence in
LP(0,00; L2(2)) N L™ (Q) Then, from Theorem we infer that @y, — @ in W(0,00) N L>(Q).
Indeed, subtracting the equations satisfied by ¢y, and @ we get for Y, = g, — @

p) 0
_% — Ay + ary, + a—;(:v,t@)wk

= Y9, — y+ {%(ZE,L@) - %(zﬂf?yﬂk) P in Q’
Onthr =0 on X, limyye0 |9k ()| L2(0) = 0.

Then, using , the established convergence yy, — ¥, (A.21)), and (A.22)) we get the claimed
convergence of {¢y, }72, to @.

Now, we take the lower limit in . For this purpose we take into account that zy, ., — 2y
in L2(Q), vi, — v in L?(Q.), and A € L>(Q) with A(t) > 0 for almost all ¢t € (0,00). Hence, we
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get by (3.12)

2

.. 0L L
0211klglorgfw(u+19k(uk—u),)\)v,%

o2f
.. 2 .. 2
> liminf {|zg, 0, 72 () +hkrgl£f/Q—W(%t,ym)wkzm,vk dzdt
1 [~
lim inf 2 liminf — MOk ()32, dt
+liminfyfvg|zz(q,) +limin 7/0 Ollor(®)Iz2(w)
> ||zu]132(0y + lim inf _2f t 2 dadt
2 |lzolz2(q) +limin ; 8y2(x, Y9, )P0 2, 0, AT

1 [

Below we prove that

82 2

. f 2
kinc}o o ayQ (Iv ) yﬂk)wﬂk Zﬂlmvk x Q

Thus, and (3-15)-(B16) yield 24 (a, \)v? < 0.

Let us prove (3.16]). Givene > 0, implies the existence of T, > 0 such that ||@(t)||r2) < €
for every t > T.. Further, the convergence zy, ,, — 2, in W(0,00) implies the convergence
29, o, — 2v in L2(Qr,). Using these properties and with M = |7l L (q) we get

afyjzc(x, t,9)@ze d dt. (3.16)

2

82f 2 0 f =\ 72
/Q’ayg(‘rvt7yi9k)9019kzq9k,vk - aiyg(xvtay)wzv dzdt

02 f L et m)ol2
< o ‘ain(%t,yﬂk)‘Pm - ain(xahy)@‘Zﬁk,vk dzdt

)/
Q.
2

< |24 o0 rp0. ~ 2kt

an —\ = 2 2 > azf —\ = 2 2
ain(x7tﬂy)(p‘|Z’l9k,Uk - Zv|dwdt+ - o ’aiyg((E?tay)(p |Z19k,vk - Zv|dxdt

2
L (Q) ||Z’l9kvvk HL2(Q)

+ Cumll@ll oo (@) 120k 00 — 20llL2(@r) 120400 + 20llL2(Qr,)
+ CME/ 120, 00 — 2ollL2(@) 120400 + ZollL2ydt = Th + Io + I3

TE

The convergence (yg,,¢9,) — (¥, ) in L>(Q)? and the boundedness of {zg, v, }72; in W(0,00)
imply that Iy — 0 as & — oco. The convergence zy, v, — 2, in LQ(QTE) implies that Iy — 0 as
well. For I3 we have

o0
13| < CchE/ 205,00 — 2ollL2() 12040 + 20llL2(0) dE

TE

< C1Cwmel| 29, o — 2ollL2(@) 1204 00 + 20ll22(@) < Coe,

where we have used again the boundedness of {zy, ., }7>; in W(0,00). Since € > 0 is arbitrarily
small, we deduce the convergence Is — 0 as k — oc.
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Step III - Final contradiction. The facts proved in Steps I and II along with the assumption
2 -
9L (@, \)v? > 0 for every v € Cy \ {0} lead to v = 0 and 2, = 0. Therefore, looking at the relations

Au2
(3.15) we obtain with (3.16)) and |lvx||z2(q,) =1

2

.. L0°L N 2
0 > liminf =5 (@ + Jx(ur — @), A)v 2 liminf v|jvil|z2(q,,) = v,

which contradicts the assumption v > 0. O O]

3.2 Casell: K,y ={veL*w):a<uv(zr)<pfor aa. recuw}

In this case, the cone of critical directions is defined by

>0 if a(z,t)

Cy = {’U S Lz(Qw) : J’(ﬂ)v =0 and ’U((ﬂ,t) { ; 0 if ﬂ(a?,t)

s b

Analogously to Theorem [3.5] we have the following result.
Theorem 3.7. If 4 is a local minimizer of (P), then J"(w)v? > 0 for allv € Cy.

Proof. Since % is a local minimizer of (P), there exists € > 0 such that J(a) < J(u) for all
u € Uyq N Be(), where B.(u) = {u € L*(Qu,) : |lu — tl|r2(q.) < €} Given p € ({2, 00) we have
for every u € Uyq N B.(@)

LN
< o

_ —z 2 _
Hu - u||LP(0,00;L2(w) < (6 - a)l P ”u - u”L?(Qw) < (5 - a)l EP.

Therefore, we select € > 0 small enough, such that Uaq N B: (@) C U, holds. Now, given v € Cy we
define for every integer k > 1 the function vy by

vg(z,t) Z{

It is obvious that {v;}72, C L®(Qw) N L*(Q.) and vy — v in L*(Q.) as k — oco. Further, if

we set pp = min{k—g, *B*TO‘, W}, then @ + pvg, € Uyq N Be(u) for every p € (0, pg). In view
L2(Qu

of (2.13)), it is straightforward to check that the condition J'(@)v = 0 in the definition of Cj is

equivalent to (@ + va)(x, t)v(z,t) = 0 for almost all (z,t) € Q.. Using this fact, it is immediate

that J'(@)vr, = 0 for every k. Then, performing a Taylor expansion we get for every p € (0, pi)

0 ifa<ﬂ(x,t)<a+%orﬂ_%<ﬂ($7t)<ﬁ,
Proji_j, 4x(v(z,t)) otherwise.

2 2
0 < @+ pow) = J (1) = pJ' @ + 0" (@4 Oy pvn)of = 57" (04 0y ppuiof.

Dividing by é we deduce J" (@ + 6, kpvi)vi > 0. Since 4 + 0, xpvr, — @ in LP(0,00; L*(w)) as
p — 0, we deduce J”(#)vi > 0. Moreover, since vy, — v in L*(Q,) we infer from Theorem [A.3
that 2z,, — z, in L?*(Q,,). Hence, we can pass to the limit in the previous inequality and obtain
J" (@)v? > 0. O O

Now, we establish the sufficient second order conditions for local optimality.

Theorem 3.8. Let u € Ugg NUs satisfy the first order optimality conditions (2.6)—(2.7)) and the
second order condition J"(u)v? > 0 for every v € Cyz \ {0}. Then, there exists k > 0 and € > 0
such that

J(@) + gHu — 22,y < J() Vu € Usg with [[u— a2, < e (3.17)
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The proof of this theorem follows by contradiction similarly to the proof of Theorem with
the obvious simplifications due to the constraints under consideration in this second case for Ugq.
For the proof of these results for finite horizon control problems the reader is also referred to [5],[13].
The difficulties resulting from the infinite horizon can be overcome by following the arguments used
in the proof of Theorem [3.6]

4 Approximation by finite horizon problems

In this section we consider the approximation of (P) by finite horizon optimal control problems and
provide error estimates for these approximations. For every 0 < T' < oo we consider the control
problem

P in J

(Pr) Join 7(u),

u(t) € Koq for a.a. t € (0,T)},

where Ur qq = {u € L*(Qrw) : u(
1
2

Jr(u) = / (yT,u — yd)2 dx dt + g / uw?dz dt

QT QT,w

with Q7 = Q % (0,T), Qrw =w x (0,T), and yr, denotes the solution of the equation

9y .
3¢ ~ Ay tay+ flety) =g+ uxe in Qr, (4.1)
Opy=0o0n Xy =T x (0,7), y(0) =yo in Q.

For every control u € LQ(QT,W) with associated state yr, and adjoint state ¢r, we define
extensions to @, and @, denoted by 4, 7., and @7, by setting (i, ¢r,.)(x,t) = (0,0) if t > T
and yr,, is the solution of associated with the extension 4. In this section, we assume that
0 € Koq. Hence, if u € Up o4, then @ € Uyq holds. Given a local minimizer ur of (Pr), we denote
by yr and o7 its associated state and adjoint state, respectively. Then, (ur,yr, ) satisfies the
optimality conditions established in Theorem with @ and @, replaced by Q7 and Qr,,. As a
consequence, Corollary is also satisfied by (ur,yr,¢7) with the same changes.

In case Uaq is given by (1.2), we define Ar(t) = |lor(t) + vur(t)||r2(w) for t € (0,T) and the
Lagrange function

Lr: LP(0,T; L*(w)) x L*°(0,T) — R
1 T
Lalu,N) = Jnlu) + 5- / O ()22, dt,

for every p € (ﬁ, o0]. Arguing as in Lemma we also have

oL
a—uT(uT, Ar)v =0 Yove L*(Qru). (4.2)
The next two theorems establish the convergence of the approximating problems (Pr) to (P)
as T'— oo.

Theorem 4.1. For every T > 0 the control problem (Pr) has at least one solution ur. If (P) has a
feasible control ug, then the extensions {ir }r>0 of any family of solutions are bounded in L?(Q.,).
Every weak limit @ in L*(Qu) of a sequence {ar, }32, with Ty, — 0o as k — oo is a solution of
(P). Moreover, strong convergence Gz, — @ in LP(0,00; L?(w)) holds for every p € [2,00).
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Proof. Since Uy 44 is not empty, the existence of solution for (Pr) is a classical result. Actually, one
can easily adapt the existence proof of solution for (P) to (P7). We denote by §r the extension of
y7 by zero in Qx (T, 00). We point out that g7 # §r. Let y° be the solution of corresponding
to ug. By definition of feasible control we have that J(ug) < oo. Using the optimality of up we
obtain

1, . vV . 1
§||Z/T - de%%Q) + §||UT||%2(QM) = Jr(ur) + §||yd||%2(T,oo;L2(Q))

1 1
< Jr(uo) + 5”%”%’4‘(@) < J(uo) + 5“%”%2@) VT > 0.

This proves the boundedness of {ir}7r>0 and {Jr}r=o in L?(Q.) and L?(Q), respectively. Let
{(ar,,91,)}32, be a sequence with Tj, — oo as k — oo converging weakly to (@, %) in L?(Q,) x
L2(Q). Since {ir, }32, C Usq and Uyg is closed in L%*(Q,,) and convex, we infer that 4 € Uggq.
Moreover, we can apply Theorem to the equation and deduce the existence of a constant
M independent of k such that for all £k > 1

lyzllr2 0,1 (9) + Y1 22 (Qry ) < M1 = C(HQ + U7, Xwl|L2(Q)

+ 119 + Gr, Xoll Lr (0,002 (9)) F 1Mol Lo () + sup 97N z2(@) + Mf)~

From this estimate and we get the existence of a constant Ms such that
£ G ymllzz@a,) + 1 G ym) e @r) < M2 VE > 1.
The two above estimates and imply that
lyrllw o1 + lyrllLoe(@q,) < Ms V=1
for a constant independent of k. Using the convergence of ¢, — ¥ in L?(Q), the compactness of

the embedding W (0,T) C L?(Qr) for every T' < oo, and the above estimate, it is obvious to pass
to the limit in the equation

0 .
(97:;/ - Aka + ayr, + f(fE,t,ka) =g+ un,Xw 1 Qr,
Oy =00nXp =T x(0,T), yr,(0) =yo in

for each T, > T, and to deduce that g is the solution of associated to @ for arbitrary
0 < T < oo. This proves that 3 is the solution of corresponding to u. Further, since
7 € L*(Q), we deduce that 4 € U,,. Let us prove that @ is a solution of (P). For every feasible
control u of (P) we have

1
J () Sliminf(i/(zjn —yd)deng/ @3, dzdt)
Q Qu

k—o0

k—o0

1
< lim sup (5 /Q@Tk —ya)? dadt + ;/Q g, dx dt)

. 1 .
= lim sup (JTk (ur,) + §\|yd||2L2(Tk7OO;L2(Q))> < limsup Jr, (u) = J(u).

k—o0 k—ro0
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This proves that @ is a solution of (P). Moreover, replacing u by @ in the above inequalities we
infer

1
lim (f/(ng—yd)zdxdt—kZ/ a2, dwdt) :/(g—yd)2dxdt+5/ @2 dz dt.
2/ 2Jq, " Q 2

k—o0 Qw

This convergence along with the weak convergence (fiz,, 1, ) — (4, %) in L?(Q.) x L*(Q) implies
the strong convergence. Finally, for any p € (2,00) we have

p=2 2
[z, — @l Lr (0,002 (w)) < ldm, = ll L% (0,00, 12w 107 = Ull 72, = O
O O

Theorem 4.2. Let @ be a strict local minimizer of (P). Then, there exist Ty € (0,00) and a family
{ur}rsT, of local minimizers to (Pr) such that the convergence iy — u in LP(0, 00; L?(w)) holds
as T — oo for every p € [2,00).

Proof. Since @ is a strict local minimizer of (P), there exists p > 0 such that J(a) < J(u) for every
u € Ugg N B,(w) with u # 4, where B,(a) is the closed ball in L?*(Q.,) centered at % and radius
p > 0. We consider the control problems

P i J d (P i Jr(u),
(Py) e (u) and (Pr,) wem r(u)

where By ,(4) = {u € L*(Qrw) : |[u—1ll12(0r.) < p}- Obviously @ is the unique solution of (P,,).
Existence of a solution ur of (Pr,,) is straightforward. Then, arguing as in the proof of Theorem 4.1
and using the uniqueness of the solution of (P,), we deduce the convergence 7 — 4 in L*(Q,,) as
T — oo. This implies the existence of 7o > 0 such that [|ur —@l[z2(q,,, < [l4r —@llz2(q,) < p for
all T > Ty. Hence, uy is also a local minimizer of (Pr) for T > Ty. The strong convergence dir — 4
in LP(0, 00; L?(w)) follows from the convergence in L*(Q,,) and the fact that ||dr]| Lo (0,00;02(w0)) < ¥
for every T > 0. O

In the previous theorem we proved the existence of local minimizers {ur}r~p, of problems
(Pr) converging to @ assuming that @ is a strict local minimizer of (P). Moreover, in the proof of
the theorem, the existence of an L?(Q,,)-closed ball B,(u) such that the minimum of Jz on the
set Uyqg N B, () is achieved at the local minimizer ur was established. In particular, this implies
that Jp(ur) < Jp(a) for every T' > Tp. In the next theorem the following question is addressed: if
{ur}r>T1, i3 @ sequence of local minimizers of problems (P7) converging to @, does the inequality
Jr(ur) < Jr(a) hold for T large enough? The positive answer to this question is also important
to establish the estimates in Theorem 4] below.

Theorem 4.3. Suppose that Uyq is defined by or , Let @ be a local minimizer of
(P) satisfying the second order sufficient optimality condition given in Theorems and
respectively. Let {ur}rsT, be a sequence of local minimizers of problems (Pr) such that 47 — @
strongly in L?(Q.,). Then, there exists Ty € (Ty, o) such that Jr(ur) < Jr(@) for every for every
T>1T5.

Proof. The proof is carried out under the assumption that U,q is given by (1.2)). It is similar, even
easier, if Uy,q is given by (1.3). First, we observe that the convergence @i — 4 in L?(Q,,) and the
fact that ||Gr(¢)||r2(w) < 7 for almost every ¢ > 0 implies that i — @ strongly in LP(0, co; L?(w))
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for every p < oo. Then, for fixed p > ﬁ, there exists 7' > T, such that i € U, for every T' > T.
This yields g7 = Gp(lr) = Gp(4) = §in Y, as T — co. Given the adjoint state ¢ associated
with ur, we denote by ¢r its extension by 0 for ¢t > T.

We proceed by contradiction. If the statement fails, then there exists a sequence {ur, }3°, with
T, — oo as k — oo such that

N _ 1 _
llar, —allr20.,) < z and Jp (2) < Jp, (up,)- (4.3)

Let us set px = ||Ur, — @l/2(q,) and vy, = pik(ﬁTk_ — u). Taking a subsequence, denoted in the
same way, we have vy, — v in L*(Q,,).

Now, we split the proof in three steps.

Step I - o7 — @ in W(0,00) N L>®(Q) as T — oo. Let us set Y = $r — @ and denote by xr
the real function taking the value 1 if ¢ € [0, 7] and 0 otherwise. Then, ¢r satisfies the equation

_8575 — AYr + apr + Z—ch(x,tﬂ)w
— (8 (wst.9) — Bt ) |+ xr(r = ) = (1= xa)(@ — ) n Q.

Ontr =0 on X, limyoq [[97(t)]L2() = 0.

Since gr — ¥ in Y,, we deduce that gr — § in L9(0,00; L3(2)) N L>°(Q) for every ¢ > 2.
Hence, with the mean value theorem and (3.2)) we obtain that [af (x,t,9) — 85 (x,t yT)] — 0 in
L9(0, 005 L2(€2)). Moreover, from Theoremand the fact that ys € L2(Q) N LP(0, 00; L2(9)), we
get that ¢ is bounded in W (0, 00) N L>°(Q). Therefore the first term of the right hand side in the
above partial differential equation converges to 0 in L%(0, c0; L?(©2)). The same convergence is true
for the second term x7(§7 —¥). The third term (1 — x7)(y —ya) converges to 0 in L9(0, oo; L2(£2))
for ¢ = pif p < oo and ¢ < oo arbitrary if p = oo. Then, from Theorem [A] the claimed
convergence @ — @ in W(0,00) N L>(Q) follows.
Step II - v € Cy. Using the local optimality of u we get

J'(@)v = lim J'(@)vr, = lim iJ( )(tr, —u) > 0.

k—o0 k—o00 Pk

On the other side, using the convergence established in Step I and the convergence 7, — « in
L?(Q,,) along with the local optimality of ur, we infer

J'(u)v = kli_}rn (pr, + viip, v, dedt
o0 QW

T 1
= lim —/ / o1, + vur,)(ur, — @) dedt = hﬁm p —Jr, (up,)(ur, —u) <0.
oo Pk

The last two inequalities imply that J'(@)v = 0. Now, the proof continues as in the Step I of the
proof of Theorem [3.6]

Step III - Contradiction. Since (ur,, ¢, ) satisfies (2.10), we deduce the inequality L7, (@, Ap,,) <
Lr, (ur,, A1) with and the fact that Ap, (t)[|a(t)||z2w) < A (0)y = A () lur, (8|22 ()
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Hence, performing a Taylor expansion and using (4.2)) we infer

oL
0> L1, (@ Ar,) — L1 (ur,, Ar,) = — (umy,, A, ) (@ — um,)

Ju
10%L

2 8u§k (ﬂ + ek(uTk —u), /\Tk)('a - uTk)2
_ 18257%

2 Ou?
Dividing the above expression by pi /2 we get
0L,

ou?

(ﬂ + Hk(UTk — ’U,), /\Tk)(’lj — uTk)2.

(1_1, + Gk(uTk - ﬂ), )\Tk)v%k < 0.
We observe that for k — oo
AT, = Allz2(0,00) < 07, — @llL2(0,00) + VN, — 1l 22(0,00) = O-
Setting ug, = @+ O (ur, — @), we denote by yg, the solution of (4.1)) corresponding to the control
ug, and by g, the corresponding adjoint state in Qr, ... Then, putting 1, = @9, — ¢ we have

o of,
= [%(l',t, g) - %i(xﬂtvgek)] (ﬁek + XTy, (?30k - g) - (]— - XTk)(g - yd) in Q7

Onthr = 0 on 3, limys oo [[9k(t) ]| 22(2) = 0-

Arguing as in Step I we obtain that ¥ — 0 in W(0,00) N L*°(Q). Then, arguing as in Steps
II and IIT of the proof of Theorem and using the established convergences, we infer that

325 (@, \)v? < 0 and the contradiction follows. O 0

Under an extra assumption on f, the following theorem provides estimates for the difference
U — U.
Theorem 4.4. Suppose that Uyq is defined by (1.2)) or (1.3) and that @ is a local minimizer of (P)
satisfying the second order sufficient optimality condition. We assume that g—i(x,uy) > 0 holds

for ally € R and almost all (x,t) € Q. Let {ur}r>1, be a sequence of local minimizers of problems
(Pr) such that ig — 4 in L*(Qy). Then, there exist T* € [T, 00) and a constant C' such that for
every T'> T

lar — allz2(q.) + 197 — Tllw(0,00) <

C(lyr (@l + lvaliaoesiz@) + gl zmonzay). (44)

Proof. We use the inequalities (3.9) or (3.17). For this purpose, we take T* € [T, c0) such that
Jar — 1 L2(g,) < & for all T > T*, where Ty is introduced in Theorem [4.3] Then, given T' > T*,
(13.9) or (3.17), and Theorem yield

K. _ N _ _

Sllar = l72(q.,) < J(ar) — J(@) = Jr(ur) — Jr(a)

1 [ . 1 _
5 [ e = wa Ol de = 5 [ 19(0) ~ val) e
T T

v

> 2 1 > 2
5 [ Nl e < g [ 1) - na®lfae
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which leads to )
ltr —llL2q.) < ﬁllﬁT = YallL2(1,00:22(2))- (4.5)
To prove the first estimate of (4.4) we observe that g satisfies the equation
9
% — Agr + ayr + f(z,t,97) = g in Q x (T, 00),
Onyr =0on T x (T,00), §7(T) = yr(T) in .

Testing this equation with §r, and using that f(z,¢,97r)jr > 0 due to the monotonicity of f
with respect to y and (1.4)), it follows that

1 R o0 R R 1 o0 R
or @l + [ [ Ve +agldzds < Jlor(DlEae + [ [ girdot
T Jo T Jo
From this inequality we infer with (1.9) that

971 L2700 L2 () < C/(H?JT(T)HL?(Q) + HQHLQ(T,oo;L?(Q)))

This inequality and (4.5) imply the estimate of the controls in (4.4). To get the estimate for the
states we observe that ¢ = 7 — ¥y satisfies the equation

13) 0 . _ .
% — Adr + adpr + 875(:6’75’ yr.0)07r = (Ur — U)X in Q,

8TL¢)T =0on E, d)T(O) =01in 97
where yrg = § + 0r(gr — g) with 07 : Q@ — [0, 1] measurable. Then, applying Theorem [A.3

and Remark [5.2{ we infer ||¢r|/w(0,00) < K3||tir — 1l £2(g,,). Combining this estimate with the one
established for the controls we deduced (4.4). O O

5 Appendix

Here we prove L>®(Q) estimates for the solution of the following equation
@—A +ay+ f(r,t,y) =g in Q
Iny =0on X, y(0) =yo in Q,

assuming that yo € L>°(Q) and g € L?(Q) N LP(0, 0o; L?(2)) with p satisfying (1.10).

DEFINITION A.1. We call y a solution to (A1) if y € L2 (0,00; HY(Q)), and for every T > 0

loc

the restriction of y to Qp = Q x (0,T) belongs to W(0,T) N L>®(Qr) and satisfies the following
equation in the variational sense

Jy .
{ E_Ay—"_ay—i_f(xaty):ganT? <A2)
Ony =0 on X, y(0) = yo in .
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Since y € L*(Qr), we observe that (1.8) implies for My = ||y|p=(g,) and for almost all
(xat) € QT
(st y(a, 1)) < Crip Mr. (A.3)

THEOREM A.2. Under the assumption (L.4])-(1.6]), equation (A.1)) has a unique solution y. In
addition, if y € L*(Q), theny € W(0,00)NL>®(Q) and f(-,-,y) € L*(Q)NL>(Q) holds. Moreover,
the following estimates are satisfied

Ivlle < Ki (lollz) + lglza@) + Ilz@) ), (A.4)
I9llz~ @)
< Kz (Jlyll 2@ + Ioll o) + gl 2@ + 9] poo.eizzc@) + M ) (A.5)
IfC )o@ < Crallyllze@), 1G9l < Crollvllize @), (A.6)
Jin fly (@[22 @) = 0, (A.7)
o0

where My is given by (L.5), Koo = ||lyllz~(q), Ck.. as in (1.6) with M = K, and

=

2
Il = (1% = 0.c0sz200) + W30 0cstrrcan)

Proof. The existence and uniqueness of a solution y of is a consequence of [I0, Theorem 2.1].
Now, we assume that y € L?(Q). The proof is split into several steps.

Step I -y € L*(0,00; HY(Q)) N L>(0, 00; L?(£2)). Testing equation with y, integrating in
(0,t) with ¢ € (0,T), using (L.5), and arguing as in we get

1 t
Sl + [ [ 190 + ay?] doas
0 JQ

1 t t
< sl + [ [ gyazas+ [ [ iftylpldeds
0 Q 0 Qf(t)

1
< 5”:90“%2(9) + ||9||L2(Q)Hy||L2(Q) + CMf”yH%Q(Q)a

where Qs(t) = {& € Q : |y(z,t)] < My}. This inequality along with proves that y €
L2(0,00; H1(£2)) N L*°(0, 00; L2(£2)) and holds.

Step II - y € L>=(Q). Let us first observe that without loss of generality we may suppose that
Yo € HY(2). Indeed, if this is not the case we use the fact that f(-,-,y) € L*(Qr) by and
g € L*(Qr) to deduce that y € C([Tp, T); H(Q)) for each 0 < Ty < T < oo; see, for instance,
[I8, Corollary III.2.4]. Since y € L*>°(Qg,) for each 0 < Ty < oo, it is enough to prove that
y € L*°(Q x (Tp,00)). Then there is no loss of generality if we assume that yo € H'(f2) and,
consequently, y € H(Qr) for every T' < oo; see [18, Proposition I11.2.5].

For every real number p > max{||yol| = (q), My}, My given by (L5), we introduce the function
Yo(x,t) = y(x,t) — Proj_, . j(y(x,t)). Then, we still have that y, € H'(Qr) for all T < co. We
set A,(t) = {x € Q:|y(z,t)| > p} for every t € (0,00).

First we prove the result for n = 2 or 3. Let us choose a number o € ( pn__n ) Observe

2p—4° n—2
that ;25 < -2 obviously holds if n = 2 and it is also true for n = 3 due to the assumption

2p
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p > 7. Note that « satisfies o € (1,00) in case n = 2, and o € (2,3) in case n = 3. We will

denote a = 2.
Testing equation (A.2) with y,, integrating in (0,¢) with ¢ € (0,7, and using that %yp =

%yp, Vy - Vy, =|Vy,|?, and f(x,t,9)y, > 0 due to (L.5) and p > M, we infer

1 t t
wmw@@+//m%ﬁmﬁmms/lg%mw

1
< ||g||LP(OooL2(Q)) / Hyp ||L2(Ap(s))ds)
a1

< gl oo morr2(o) /H% W,y 4o (5)] 37 )7

’

¢ =
gagmmwmm(/|%@MMWM)</h4 '@MM)
0

p—2

02 ¢ 2 012 2 ¢ PR R P
< 7/0 lyp ()51 () ds + 2Cg||g||Lp(0,oo;L2(Q))(/O [Ap(s)]*"@=2 ds) )

where C, is given by (1.9) and C; is the embedding constant of H'(2) C L?*(2). The above
estimate leads to

t
MWW%m+@AH%®ﬁmm®

p—2

C(12 2 ¢ —L2— 13
< Gl sy (| 140075 ds) 7

From the above inequalities we get

T p=2
_p» S
Ispller < Callgliro.maian ([ 145075 ds) (A%8)
with Cs independent of T" and p.
On the other hand, taking x = 1+ 20/ (p 2 p= 0/3?52)’ and ¢ = 2k we get 1 + 2 Z. Then,

using [I7, Formula II-(3.2)] we obtain the ex1stence of a constant Cj 1ndependent of T Such that

lyll 20,7000y < CallyllQr- (A.9)

For every j =0,1,2,... we set k; = p(2 —277). We observe that p < k; < 2p, A,(t) = Ay, (t) D
Ap,(t) D Ap,(t) D ..., and Ay, (t) D Ag,(t) for every j > 0. Then, we have

T
Yk, L7 (0,7500(0)) = (/0 ”ykj”Eq(Akj ®)) dt)

1 1
T

T

T T T ps
> (/O ks 2, o) dt) > (kjt1 —kj) (/O | Ak, ()] dt)

a’(p—2)
Spr

T
= (kj+1 - kj) </ |Ak1+1( )lal(p*Z) dt)
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Combining this inequality with (A.8) and (A.9) we deduce

o/ (p—2)

T » 2pr
</ |Aky+1( )|al(p_2) dt)

CyC T _p o
< %HQHLP(O,oo;L?(Q)) </ | Ak, (t)]~"@=2 dt) :
Ny 0

p—2
j+1

Using that kj 1 — k; = p2~ U+ we infer

p—2

T » 2p
(/ menwwmw)

205C T ks T _p = =
< { 2U3 ||g||LP(0,oo;L2(Q))i (2 ol )J { / |Akj (t)| o’ (p—2) dt } .
P 0

p=2

Setting

2

205C é% e T L, =5
= [ ; 3i|g||LP(0,oo;L2(Q)):| ,b=2w, & = (/ | Ay, ()| 7@ dt)
0

for j > 0, we have ;411 < ijffi’ for 5 > 0. Moreover, since a > 21’)’24 we get that § = %5 > 1.
Then, from [I7, Lemma I1-5.6] we obtain

gloy Bl 1o @
& < hs—n2 ~ B- 50 . (A.lO)

Let us estimate &. For this purpose we distinguish two cases. First, we assume that n = 2 and
€ (2,4]. Using that |A,(t)| < p%Hy( M2 () We get

p—2

T . N 50\~ (C o
&:</I&ﬁwamQ <o ([ wenETa) < (Sivle)™
0 pe’ \Jo p

The last inequality follows from the fact y € L?(Q) N L*°(0, 00; L%()) and
€ (1,5) and § < B

additionally M < 6 if n = 3. Now, we argue as follows

ﬁ > 2 because

5 for p < 4. For the remaining cases we observe that W > 1 and

p=2 p=2

T » 2p 1 T 2p
o= [ ) < [ IO gt
0 p P 0 L™ p (A1)
Cy p2 Cy B2z
< (5 Ilzeearon) T < (THlle)

Selecting
1
p=Cyb@07 |yl +2C2C3]|gl| Lr (0,00;2(22)) + Yol Lo (02) + M
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we get with (A.10)
¢ < [cﬁ%lbw—ll)zgo]ﬁjc—ﬁ%lb* DTy E < A BT AT o 0

as j — oo. Finally, we get

T , ST
(/ [ Ay (t)] =2 dt> < lim & =0.
0 Jj—o0

Hence, |A2,(t)| = 0 for almost every ¢t € (0,T) holds. Since T' > 0 was arbitrarily selected and all
the constants above are independent of T, we deduce that |y(z,t)| < 2p for almost all (z,t) € Q

and (A.5)) follows with (A.4)).

Now, we explain the changes in the proof for the case n = 1. To get an analogous inequality to
(A.8), we use the following Gagliardo-Nirenberg inequality

1 1
191l @) < CllyllFr o 1911 Z2(q);

see, for instance, [6, Page 233]. Then, we have with Holder and Young inequalities

()13 Q>+//|Vyp|2+ay dxds<//gypdxds

1
< gl z20,00:22(2)) /IIy,J(s)||2L2(AP(S))ds)2

Ot %
< ||9||L2(o,oo;L2(Q))(/ IIyp(S)IlzLoo(Q)|Ap(s)|ds>

0 . .
< Cllgllza(o,00:22600) ( / 9o (3)l1 12 190 ()71 |4, (5) s )

, t 1
< Cllgllz0,00:52 () 195150 0,005 ) 190 £ 20,0 0 / |4, (s)]? ds)
< E(Hyp”Lx(Opo;LQ(Q)) + ||yp||L2(0,oo;H1(Q )

t
4
+C€||g||%2(0,oo;L2(Q))</O |Ap(3)|2d3)

From here we infer

T 1
4
Illar < Collgl s sz [ 145001 ds)

On the other side, we apply (A.9) with » = 8 and ¢ = 4 and arguing as for the cases n =2 or
3 we obtain

1 T =\
Ik lar 2 - (kiss — k) ( | 1 o dt)
3 0
1 r 2
— b= k) [ [ 1A 0P ar
3 0
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Thus we get

3 2
r > Callglla0.00:2 T 1
2 < L2(0,00;L2%(2)) 2 2
</0 [ Ak (1)] dt) = T ket — Ky ( ; | Ag; ()] ds) ,

To estimate & we use again that y € L2(Q) N L>(0, c0; L?(Q2)) and proceed as follows

T 2 1 T 3 C 2
= 2 < = 1, < (= :
eo (/ 14,() dt) < ([ 0w a) < (Sivle)

The rest of the proof follows as for the cases n = 2 or 3.

Step III - Proof of (A.6) and (A.7)). The inequalities of (A.6]) are an immediate consequence
of (1.4)), (1.6, and the mean value theorem:
of

Fos by, ) = \ayu,ue(x,t)y(x,t))\ (e, 1), (A11)

with 0 < 0(z,t) < 1.

Since y € L?(0,00; HY(9)), we have that Ay € L?(0,00; H}(Q)*). From the state equation and
g, f(,-y) € L?(Q) we infer that € L*(0,00; H'(Q)*) and, hence, y € W (0,00). Finally, the
fact that y € W (0, 00) implies ; see [9, Theorem 2.4] for details. O O

Remark 5.1. The proof of the boundedness of y in Q follows some ideas of the proof of [17,
Theorem III-7.1]. In that theorem, the boundedness is established for finite time horizon and the
L>(Qr) estimates depend on time T. In our theorem, we have avoided the dependence with respect
to time exploiting the fact that y € L*(Q), which was used to estimate &. By a simple modification
of our proof, the L*>(Q) estimate of y can be also obtained in terms of ||g| L+ (0,00;L4(0)) if%—i—Qﬂq < 1.
We observe that the assumption y € L?(Q) is natural in the context of our optimal control problem
due to the structure of its cost functional. Another difference of our estimates with respect to [17,
Theorem I11-7.1] concerns the choice of the boundary condition. Here we have treated the Neumann
case while the Dirichlet case was considered in the mentioned reference. The only difference in our
proof for the Dirichlet case consists in the definition of p that should include the L°(X) norm of
the Dirichlet datum, if it is not zero.

Now, we analyze the following linear equation

% —Az+az+d(x,t,y)z =hin Q, (A.12)
Onz=0o0n 3, z(0) =z in Q.
We assume that
y € L¥(Q) and Jim [ly(0)]12@) = 0. (A.13)
and that d : @ x R — R is a Carathéodory function satisfying
VM > 03C) such that |d(z,t,s)| < Cuy V|s| < M, (A.14)
Img > 0, 364 € [0,1), and ICy > 0 such that (A.15)
d(l’,t,S) > _Od|3| - (Sda(l',t) V|S| < mq, '

for almost all (z,t) € Q.
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THEOREM A.3. Under assumptions (A.13)-(A.15)), equation (A.12) has a unique solution
z € W(0,00) for every h € L?(0,00; H'(Q)*) and 2o € L?(2), which satisfies

12w o.00) < Koy (110l 20005t 0) + l20llz2(), (A.16)

where K3, depends on |||z~ (q). In addition, if h € L?(Q) N LP(0,00; L?(R2)) with p € (ﬁ, 00
and zg € L*(Q), then z € L™(Q) and the estimate

2]l (@) < K4,y(Hh||L2(Q) F 1Al e (0,00;22(02)) + ||ZOHL<>°(Q>) (A.17)

holds for a constant Ky, also depending on ||y||Le(q)-

Proof. Due to the fact that y € L*°(Q) and we have that d(-,-,y) € L*°(Q), and hence the
existence and uniqueness of z € W(0,T) N L>®(Qr) holds for every T' < oco. Let us prove that
z € W(0,00). We put K = [|y|p=(q) and Cx = [|d(-,-,y)||L=(q)- Given é4 € [0,1) we know that
there exists a constant Cy 5, such that

1
2

Ca’(sdeHHl(Q) < (/ [|Vw|2 + (1 — 5d)aw2] dx) Yw € Hl(Q) (A.18>
Q

C2
We select £ > 0 such that max{Cy, %}Cfs < “f‘i , where mg and Cy are given in (A.15)) and C

is the embedding constant for H'(Q) ¢ L*(2). Using (A.13) we deduce the existence of T, > 0
such that

ly(t)llL2) <& Vt>Te.. (A.19)

For ¢ > 0 we set Q,,,(t) = {x € Q: Jy(z,t)] < mq}. Now, we test (A.12]) with z and integrate over
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Q x (T.,t) for every t > T, use assumption (|A.15| , and -
e Olay + sy [ 1Ol n ey @
L2(Q) a,84 z( )||H1(Q) s
2 T
1 t 1
< SOt + [ [ 197 + (1= 8z deds < (Tl

¢ ¢ t
—|—/ (h(s),z(s)>ds+0d/ / S dxds—i—CK/ / 22 dxds
T. L, (1) LS\, (1)

1
§||Z(Te)ll2m + 12l 2 (0,005 ()

max{Cy, — }/ /|y|z dz ds

[|2(T: )||L2 +C Hh||LzoooH1(Q))+

a,8q

IN

Z||L2 T. t; H1(2))

< —222 || 20| (1 o1 )

N =

Ck !
+ max{Cy, *}/ ly(s)llz2 @) l12() 1240y ds
mq T.

1 1
< S12(T)Z2 ) + mr—I1PlL2 0,000 (0
g etz + g ~MlIze .00 @)

Ca(s t C t
=50 [ el gy ds + CPmax(Ca, e [ ()]s oy ds
T. Md -~ Jr1.

<

|~

1 Cis, [*
12T 720y + Az 1PN 20,000 (00)- +7’d/ 121131 ds.
Mz + gz Wiz + =5 [ Flin@

This implies

t
2
21720 + Cﬁ,gd/T 21y ds < 12(T2) 172 () + o 1122 (0,00 (2
e a,0q

Since z solves (A.12)) in (0,7.), we have z € W(0,7) and |z|lw,7.) can be estimated by
2]l £2(0,00; 51 (2)%) + | 20| L2 () - This along with the above estimate implies the desired estimate of z
in L2(0, 00; H'(€2))NL>®(0, 00; L*(€)). From the equation (A-12) we infer that 22 € L2(0, oo; H'()*)
and estimate (A.16]) follows.

Finally, under the additional regularity of A and zy, applying Theorem to the equation

% —Az+az=g=h—d(z,ty)z € LP(0,00; L*(Q)) N L*(Q)
with f =0 and My = 0 there, we infer that z € L>°(Q) and (A.17) holds. Here we have used that
L>(0,00; L2(Q)) N L*(Q) C LP(0, 00; L?(2)) for every p > 2. O O

We finish this appendix by analyzing the following adjoint equation

Oy i
{ 55 Ap + acpi +d(z,t,y)p =hin Q, (A.20)
Onp =0 on 3, limyoo [[(8)]| 2(0) = 0.
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THEOREM A.4. Under assumptions (A.13)-(A.15)), equation (A.20) has a unique solution
0 € W(0,00) for all h € L?(0,00; H'(Q)*) which satisfies

lellw (0,00) < Ks gyl L2(0,00;1 (20)%)5 (A.21)

where K5, depends on ||y||r=(q). In addition, if h € L*(Q) N LP(0, 00; L2()) with p € (12, 0c],
then ¢ € L*°(Q) and the estimate

lell=(@) < Kﬁ,y(||h||L2(Q) + Hh||LP(o,oo;L2(Q))) (A.22)
holds for a constant Kg , also depending on ||yl (q)-

Proof. First, we prove uniqueness. For this purpose we establish that the unique solution to (A.20)
with h =0 is ¢ = 0. Indeed, in this case, we take z € W (0, 00) solution to (A.12)) with h = ¢ and
zp = 0. Then we have,

/|cp|2dxdt:/[%—Az—i—az—l—d(x,t,y)z}godxdt

= / z[—a—(p —Ap+ap+d(z,t,y)e] dedt = 0.
Q ot

To prove the existence of a solution we denote by pr € W(0,T) the solutions of

Opr .
ot Apr + apr +d(z,t,y)er = h in Qr, (A.23)
Oner =0o0n 7, or(T)=01in Q.

The existence and uniqueness of ¢ is known because the function d(z,t, y(z,t)) is bounded. We
extend @7 by 0 to (0,00) and estimate this extension in L?(0,00; H!(2)) independently of T For
this purpose we take ¢ € L?(0,00; H(Q)*) arbitrary and denote by z the solution of with
h = ¢ and zg = 0. Then, we have with

e T T
|t eroyar= [ totrerenae= |G - Astax et diatzen di

T T

0

= / (——gj — Apr + apr + d(x, t,y)pr, 2) dt = / (h,z)dt
0 0

oo
= / <h72> dt < ”hHL?(O,oo;Hl(Q)*)
0

S K3,y

2| L2(0,00;11(02))

|2l 22(0,00: 1 () | 01| L2 (0,005 21 (2) %) -

This implies that
lo7llL2(0,00:11 (02)) < KzyllbllL20,00;m1(0)) VT > 0.
From (A.23) and the above estimate we deduce the boundedness of {¢r}7rs0 in W(0,00). Then,

there exists a sequence {T}}7°, with T} — oo and a function ¢ € W (0, 00) such that ¢, — ¢
in W(0,00) as k — oo. It is obvious that we can pass to the limit in (A.23) and deduce that ¢

satisfies (A.20) and estimate (A.21]) holds.
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To prove that ¢ € L*(Q) under the additional regularity assumption on h we introduce the
functions zp(z,t) = @r(x, T —1t) for every T' > 0. Then zp € W(0,T) and it satisfies (A.12) in Qr
with zo = 0 and hr(x,t) = h(z, T —t). Since

||ZTHL2(QT) = ||<PT||L2(QT) < ||90T||L2(o,oo;H1(Q)) < Ks,y||h\|L2(o,oo;H1(Q)*),
||hT||L2(QT = ||h||L2(QT) < Hh”L?(Q) and ||hT||Lp(O7OO;L2(Q)) < ||h||Lp(O7OO;L2(Q)), we infer from

Theorem that {@r}r>0 is uniformly bounded in L*°(Q) and, consequently, estimate (A.22)
holds. O O

Remark 5.2. If the function f in satisfies %(:L’ﬂf, y) > 0 for every y € R and almost all
(z,t) € Q, then the term |y||z2(q) in the estimat a can be removed. Under this
assumption on f, the constants My and Cpr, in (L.5) and (L.7) are zero. Then, it is enough to
use this in the proof of Theorem[A.3 to get the independence of the estimates with respect to y.
Moreover, by an analogous argument, if the assumptions 7 are replaced by
y € L=(Q) and VM > 03Cy; such that 0 < d(x,t,s) < Cp Y|s| < M

and almost all (z,t) € Q, then the constants Ks, until K¢, in the estimates (A.16), (A.17),
(A.21)), and (A.22) can be chosen independently of y.
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