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Abstract Due to simplicity, computational cheapness, and efficiency, the Barzilai and Borwein (BB) gra-
dient method has received a significant amount of attention in different fields of optimization. In the first
part of this paper, based on spectral analysis, R-linear global convergence for the BB-method is proven for
strictly convex quadratic problems posed in infinite-dimensional Hilbert spaces. Then this result is strength-
ened to R-linear local convergence for a class of twice continuously Frećhet-differentiable functions. In the
second part, aiming at problems governed by partial differential equations (PDE), the mesh-independent
principle is investigated for the BB-method. The applicability of these results is demonstrated for three
different types of PDE-constrained optimization problems. Numerical experiments illustrate the theoretical
results.
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1 Introduction

First-order (gradient) methods are progressively getting more attention since it has been realized that for
a suitable choice of the step-length, using the negative gradient as the search direction may give rise to
very efficient algorithmic behavior. As a pioneering work, we can refer to the method proposed by Barzilai
and Borwein in [10] abbreviated as the BB-method. In this work, the authors demonstrated that choosing
an appropriate step-length leads to a significant acceleration over the steepest descent method. The BB-
method incorporates the quasi-Newton property, by approximating the Hessian matrix by a scalar times
the identity which satisfies the secant condition. Despite the simplicity and cheapness, this method has
exhibited a surprisingly efficient numerical behaviour. This stimulated a significant amount of research. In
the original work [10], the authors established R-superlinear convergence for two-dimensional strictly convex
quadratic problems. Later, Raydan [70] and Dai and Liao [25] proved, respectively, global convergence and
R-linear convergence rate of the BB-method for any finite-dimensional strictly convex quadratic problem.
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One of the important feature of this method is the nonmonotonicity in the values of the objective function
and gradient norm. To preserve this feature, some authors [34,71] managed to prove the global convergence
of the BB-method for finite-dimensional unconstrained optimization problems based on the nonmonotone
line search techniques introduced in [33]. A deep analysis of the asymptotic behaviour of the BB-method
was given in [22,28]. In these works, the surprising computational efficiency of the algorithm in relation to
its nonmonotonicity was discussed and several circumstances were presented under which the performance
of the BB-method (without globalization) is competitive, or even, superior to conjugate gradient methods.
This occurs, for instance, when a low accuracy for the solution of problem is required, or when significant
round-off errors are present, and the objective functions is made up of a quadratic function plus a small
non-quadratic term (near quadratic). Since then, inspired by the BB-method, many authors designed and
analysed several step-length rules for the gradient method by investigating the role and behaviour of the
eigenvalues of the Hessian matrix, rather than the decrease of the function values see e.g., [20,22,26,27,29,
47,85,87]. Due to simplicity and efficiency, the BB step-sizes have been being widely used in various fields
of mathematical optimization and applications, including nonsmooth optimization [12,13,46,63,64,69,81,
83], inverse problems [18,32,54,60,65,72,73,79,84] constrained optimization [17,30,44,45,61,86].

In this work we aim to study the BB-method within the scope of PDE-constrained optimization. For
optimization problems governed by partial different equations, every function evaluation is typically carried
out through solving a partial differential equation (state equation). Hence function evaluations can be
computationally very expensive and it is desirable to avoid them as far as possible. Moreover, due to
numerical discretization, the presence of round-off and truncation errors is inevitable and, depending on the
discretization procedure, the finite-dimensional approximation for the gradient of the original problem need
not coincide with the gradient of the finite-dimensional approximation for the original problem (optimization
and discretization do not commute). A wide range of models arising from industry and natural science
are formulated as optimization problems governed by linear and semilinear partial differential equations.
For these problems, the corresponding reduced formulations lead to infinite-dimensional quadratic and
near quadratic unconstrained optimization problems. In this respect, we mention [7,8,9] in which the
BB-method was efficiently employed in the context of the model predictive control for PDEs. In view
of the above discussion, we are motivated to study the BB-method for a more general class of problems,
namely, unconstrained problems posed in infinite-dimensional Hilbert spaces. Here we focus on the following
unconstrained optimization problem

min
u∈H
F(u), (1)

where F : H → R is a twice continuously Fréchet differentiable function defined on an abstract Hilbert
space H with the inner product (·, ·) and its associated norm ‖ · ‖. The Barzilai-Borwein iterations for
solving (1) are defined by

uk+1 = uk −
1

αk
Gk, (2)

where Gk := G(uk) and G : H → H stands for the gradient of F . This gradient is defined by G := R ◦ F ′,
where F ′ : H → H′ is the first derivative of F , and R : H′ → H is the Riesz isomorphism, with H′ denoting
the dual space of H. Thus for every δu ∈ H, we have F ′(u)δu = (G(u), δu), with (·, ·) denoting the inner
product in H. Furthermore, the step-size αk > 0 is chosen according to either

αBB1
k :=

(Sk−1,Yk−1)

(Sk−1,Sk−1)
, or αBB2

k :=
(Yk−1,Yk−1)

(Sk−1,Yk−1)
, (3)

where Sk−1 := uk − uk−1 and Yk−1 := Gk − Gk−1. With these specifications we are prepared to specify
Algorithm 1 which will be investigated in this paper. As mentioned before, numerous results have been
published on the BB-method, but, to the best of our knowledge, for optimization problems posed in infinite-
dimensional spaces, there still does not exist a rigorous theory. Here we take a step in this direction and,
as a first contribution, we analyse the convergence of Algorithm 1. Inspired by the result in [25] and based
on the spectral theorem, we establish the R-linear global convergence of Algorithm 1 when it is applied to
strictly convex quadratic problems defined by bounded uniformly positive self-adjoint operators. Then this
result will be extended to a local convergence result for twice continuously Fréchet differentiable functions.

As the second contribution, we analyse the mesh independence principle (MIP) for Algorithm 1. This
important property roughly states that the algorithm shows a similar convergence behaviour for the infinite-
dimensional problem and its finite-dimensional approximations (discretized problems), independent of the
mesh size. This concept of MIP was initially introduced in [1] for Newton’s method. Since then, MIP was
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Algorithm 1 BB-gradient

Require: Let one of the following initial conditions be satisfied:

– C1: Initial iterates u0, u1 ∈ H with u0 6= u1 have been given.

– C2: An initial iterate u1 ∈ H and an initial step-size α1 with α1 > 0 have been given.

1: Set k = 1.

2: If ‖Gk‖ = 0 stop.

3: If k = 1 and C2 holds go to Step 4, otherwise choose αk equal either αBB1
k or αBB2

k .

4: Set uk+1 = uk − 1
αk
Gk, k = k + 1, and go to Step 2.

studied for many different optimization algorithms and problem formulations. From these, we can mention
generalized equations [2,3,4], Newton methods [48,80], SQP methods [77], shape design problems [57],
constrained Gauss-Newton methods [38], gradient projection methods [52], quasi-Newton methods [49,50,
51], and semi-smooth Newton methods [40,41]. The convergence analysis of Algorithm 1 will show that,
depending on the spectrum of the Hessian, the sequence {‖Gk‖}k can be nonmonotone. This is the main
reason which distinguishes our analysis from that in [49,50,51].

Our theoretical framework is supported by three optimizations problems with partial differential equa-
tions as constraints, including linear elliptic (Poisson equation), second-order linear hyperbolic (wave equa-
tion), and semilinear parabolic equations (viscous Burger equation). We show that our results are applicable
to these problems and report our numerical experience for them.

The rest of paper is organized as follows: In Section 2, we first recall some concepts from the spectral
theory for bounded self-adjoint operators. We then deal with the global convergence analysis for strictly
convex quadratic functions defined by bounded self-adjoint operators. Relying on this analysis, the local
convergence of a class of nonlinear functions is discussed. Section 3 is devoted for developing the mesh-
independent principle for Algorithm 1. In Section 4, the PDE-constrained optimal control problems alluded
to above are investigated. Finally, Section 5 presents the numerical results.

2 Convergence Analysis

In this section, we are concerned with the convergence analysis of Algorithm 1. The section is divided in
two parts. The first part deals with strictly convex quadratic problems defined by bounded self-adjoint
operators. In particular, the case in which the operator is a compact perturbation of the identity will
be treated in more detail. Strictly convex quadratic problems are of great importance, not only in their
own right, but also as a model to study the behaviour of the algorithm for twice continuously Fréchet-
differentiable functions in a neighbourhood of strong minima. In the second part, relying on the analysis of
the first part, we discuss the local convergence of Algorithm 1 for twice continuously Fréchet-differentiable
functions with Lipschitz continuous second derivatives.

2.1 Quadratic Functions

2.1.1 General Case

In this subsection, we are concerned with the following quadratic programming in an abstract Hilbert space
H

min
u∈H
F(u) :=

1

2
(Au, u)− (b, u), (QP)

where A : H → H is a bounded self-adjoint uniformly positive operator and b ∈ H. In this case Gk :=
G(uk) = Auk − b and it can easily be shown that

αBB1
k =

(Sk−1,ASk−1)

(Sk−1,Sk−1)
=

(Gk−1,AGk−1)

(Gk−1,Gk−1)
, (4)

αBB2
k =

(Sk−1,A2Sk−1)

(Sk−1,ASk−1)
=

(Gk−1,A2Gk−1)

(Gk−1,AGk−1)
, (5)
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where we have used that Sk = − 1
αk
Gk. We define the numerical range W(A) ⊂ R of A by

W(A) := {(u,Au) : u ∈ H, ‖u‖ = 1}.

This set is convex and contains all the eigenvalues of A. Moreover using (4), (5), and the fact that

αBB2
k =

(Gk−1,A2Gk−1)

(Gk−1,AGk−1)
=

(Ḡk−1,AḠk−1)

(Ḡk−1, Ḡk−1)
,

with Ḡk−1 := A
1
2Gk−1, we infer that αBB1

k , αBB2
k ∈ W(A) for all k ≥ 1. Therefore, if we define the strictly

positive constants δinf and δsup by

δinf := infW(A), δsup := supW(A),

we can write

αBB1
k , αBB2

k ∈ [δinf , δsup] for all k ≥ 1. (6)

To exclude trivial cases we assume throughout that δinf < δsup. For the following analysis we recall some
facts from spectral theory. The spectrum σ(A) of A is a closed strict subset of the interval [δinf , δsup] with
δinf , δsup ∈ σ(A) and since A is a normal operator, we have W(A) = conv(σ(A)) = [δinf , δsup], where
conv(S) denotes the convex hull of the set S. Hence the interval [δinf , δsup] is completely determined by
the spectrum σ(A).

Further, due to the spectral theorem [37,82], there exists a unique spectral measure E on R which is
supported on σ(A), and whose range is the set of orthogonal projections in H, such that

A =

∫
σ(A)

λ dEλ.

Moreover, for every bounded measurable function f : σ(A)→ R, the operator f(A) is defined by

f(A) =

∫
σ(A)

f(λ) dEλ, (7)

and for every x, y ∈ H we have

(f(A)x, y) =

∫
σ(A)

f(λ)d(Eλx, y), (8)

where d(Eλx, y) stands for the integration with respect to the Borel measure A 7→ (EAx, y) where A ⊆ σ(A)
is an arbitrary Borel set.

From (2) we have

Gk+1 =
1

αk
(αkI − A)Gk for all k = 1, 2, . . . . (9)

For G1 ∈ H we find

G1 =

∫
σ(A)

dEλ G1, and ‖G1‖2 =

∫
σ(A)

d(EλG1,G1).

Using (7) and (9), we have

G2 =
1

α1
(α1 −A)G1 =

∫
σ(A)

1

α1
(α1 − λ) dEλG1,

and, in a similar manner, we obtain

Gk =

∫
σ(A)

k−1∏
p=1

(
αp − λ
αp

) dEλG1 for every k = 1, 2, . . . .
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where
∏0
p=1 = 1. Moreover, we can write for k = 1, 2, . . .

‖Gk+1‖2 =

(
1

αk
(αkI − A)Gk,

1

αk
(αkI − A)Gk

)
=

(
1

α2
k

(αkI − A)2Gk,Gk

)
=

∫
σ(A)

(
αk − λ
αk

)2

d(EλGk,Gk).

(10)

Similarly, we have

‖Gk‖2 =


k−1∏
p=1

(
αp −A
αp

)G1,

k−1∏
p=1

(
αp −A
αp

)G1


=


k−1∏
p=1

(
αp −A
αp

)2
G1,G1

 =

∫
σ(A)

k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1).

(11)

We define γA :=
δsup−δinf
δinf

and ρA :=
δsup−δinf
δsup

. These quantities will be used frequently in the proofs. First

we investigate the special case in which δsup < 2δinf . In this case, it can be shown that γA < 1.

Theorem 1 Let δsup < 2δinf . Then the sequence {uk}k generated by Algorithm 1 converges Q-linearly to
the solution u∗ of (QP) with the rate γA.

Proof Recall that by (10), we have for k ≥ 1 that

‖Gk+1‖2 =

∫
σ(A)

(
αk − λ
αk

)2

d(EλGk,Gk). (12)

Since δsup < 2δinf , it follows for every k ≥ 1 and λ ∈ σ(A) that∣∣∣∣αk − λαk

∣∣∣∣2 ≤ (δsup − δinf

δinf

)2

= γ2
A < 1. (13)

Using (12) and (13), we obtain

‖Gk+1‖2 ≤
(
δsup − δinf

δinf

)2 ∫
σ(A)

d(EλGk,Gk) = γ2
A ‖Gk‖2 for every k ≥ 1. (14)

Therefore, we can conclude that

‖Gk+1‖2 ≤ γ2k
A ‖G1‖2 for every k ≥ 1,

and this completes the proof. ut

If we lift the condition δsup < 2δinf , we attain the following result.

Theorem 2 Let {uk}k be the sequence generated by Algorithm 1 for finding the global minimum u∗ of
(QP). Then either uk = u∗ for a finite k, or the sequence {uk}k converges R-linearly to u∗.

The proof requires several lemmas and will be given in the remainder of this subsection. First, we need
to define some quantities that will be used throughout the results. For any given η > 0, we denote ai :=
δinf + (i− 1)η for every i with 1 ≤ i ≤ nuη , and

bi :=

{
δinf + iη for 1 ≤ i ≤ nuη − 1,

δsup for i = nuη ,

where nuη := b δsup−δinfη c+ 1. Then, clearly, bi−1 = ai for every i = 2, . . . , nuη and we can define the following
family of pairwise disjoint intervals

Ii =

{
[ai, bi) for 1 ≤ i ≤ nuη − 1,

[anuη , bnuη ] for i = nuη .
(15)
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By construction it is clear that |Ii| ≤ η for every i = 1, . . . , nuη , and

σ(A) ⊆ [δinf , δsup] =

nuη⋃
i=1

Ii. (16)

For i = 1, · · · , nuη , we define

(gk+1
i )2 :=

∫
Ii

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1), (17)

and attain

‖Gk+1‖2 =

∫
σ(A)

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) =

∫ δsup

δinf

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

nuη∑
i=1

∫
Ii

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) =

nuη∑
i=1

(gk+1
i )2.

(18)

Moreover, we define

G(k, `) :=
∑̀
i=1

(gki )2 for every k ≥ 1 and 1 ≤ ` ≤ nuη , (19)

where nuη is defined with respect to an interval length η > 0, and gki is defined in (17). Then it is clear that

G(k, nuη) =

nuη∑
i=1

(gki )2 = ‖Gk‖2 for every k ≥ 1.

In the following lemma we show that there exists an index nlη such that the sequences {gki }k with 1 ≤ i ≤ nlη
converge to zero Q-linearly as k tends to infinity.

Lemma 1 For every η ∈ (0, ρAδinf ], there exists a positive integer nlη with 1 ≤ nlη ≤ nuη such that for every

1 ≤ i ≤ nlη , the sequences {gki }k converge to zero Q-linearly with the factor ρA as k tends to infinity.

Proof Choose nlη ∈ {1, · · · , nuη} as the largest integer such that

nlη⋃
i=1

Ii ⊆ [δinf , (1 + ρA)δinf ].

Observe that this is well-defined since η ≤ ρAδinf . Moreover, for every λ ∈ Ii with 1 ≤ i ≤ nlη and every
p ≥ 1 we have the following two cases:

1. If αp − λ ≥ 0, then we have ∣∣∣∣αp − λαp

∣∣∣∣ =
αp − λ
αp

≤ ρA < 1.

2. If αp − λ < 0, then clearly both of αp and λ belong to [δinf , (1 + ρA)δinf ] and we can write∣∣∣∣αp − λαp

∣∣∣∣ =
λ− αp
αp

≤ (1 + ρA)δinf − δinf

δinf
= ρA.

Therefore, we obtain

(gk+1
i )2 =

∫
Ii

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) ≤

∫
Ii

(
αk − λ
αk

)2
k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

≤ ρ2
A

∫
Ii

k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) = ρ2

A(gki )2.

(20)

This concludes the proof. ut
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Next we prove the following useful lemmas, which will be used later.

Lemma 2 For any interval length η ∈ (0, δinf2 ), every integer ` with nlη ≤ ` ≤ nuη , and k ≥ 1, the following
property holds:

If the following condition
G(k + j, `) ≤ ζ‖Gk‖2 for all j ≥ r (21)

holds for some positive r ∈ N and ζ ∈ R+, then there exists an integer ĵ ∈ {r, · · · , r +Θ + 1} such that

(gk+ĵ
`+1 )2 ≤ 2ζ‖Gk‖2,

where Θ = Θ(ζ, r) :=
⌈

log(2ζγA
−2(r+1))

2 log c

⌉
with c := max{ρA, 1

2 + η
δinf
}.

Proof Supposing that
(gk+j
`+1 )2 > 2ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}, (22)

we will show that
(gk+r+Θ+1
`+1 )2 ≤ 2ζ‖Gk‖2.

Due to (17), we have for every k ≥ 1 that

(gk+r+1
`+1 )2 =

∫
I`+1

k+r∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

∫
I`+1

k+r∏
p=k

(
αp − λ
αp

)2
k−1∏

p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

≤
(
δsup − δinf

δinf

)2(r+1) ∫
I`+1

k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

= γ
2(r+1)
A (gk`+1)2 ≤ γ2(r+1)

A ‖Gk‖2.

(23)

Due to Algorithm 1, for every j ∈ {r, · · · , r +Θ} we have one of the cases αk+j = αBB1
k+j or αk+j = αBB2

k+j .
Further, using (9), the fact that A is self-adjoint, and the spectral property (8), we have for every k ≥ 1
and q = 0, 1, 2, that

(Gk,AqGk) =


k−1∏
j=1

(
αp −A
αp

)G1,Aq
k−1∏
p=1

(
αp −A
αp

)G1


=

Aq
k−1∏
p=1

(
αp −A
αp

)2
G1,G1

 =

∫
σ(A)

λq

k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

∫
⋃nuη
i=1 Ii

λq

k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1).

(24)

Now, by using (4), (5), and (24), we can write for j ∈ {r, · · · , r +Θ} that

αBB1
k+j+1 =

(Gk+j ,AGk+j)

Gk+j ,Gk+j)
=

∫⋃nuη
i=1 Ii

λ

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

∫⋃nuη
i=1 Ii

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

, (25)

and

αBB2
k+j+1 =

(Gk+j ,A2Gk+j)

Gk+j ,AGk+j)
=

∫⋃nuη
i=1 Ii

λ2

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

∫⋃nuη
i=1 Ii

λ

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

. (26)
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Moreover, due to (17) and (21), we have

∫
⋃`
i=1 Ii

k+j−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) =

∑̀
i=1

∫
Ii

k+j−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=
∑̀
i=1

(gk+j
i )2 = G(k + j, `) ≤ ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}.

(27)

For every λ ∈
⋃`
i=1 Ii, we have λ ≤ a`+1. Thus, by (27), we can write

∫
⋃`
i=1 Ii

λ

k+j−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) ≤ a`+1

∫
⋃`
i=1 Ii

k+j−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

= a`+1G(k + j, `) ≤ a`+1ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}.

(28)

From (25) and (27), we obtain

a`+1Z
ζ‖Gk‖2 + Z

≤ αBB1
k+j+1 ≤ δsup for all j ∈ {r, · · · , r +Θ}, (29)

where Z :=
∫⋃nuη

i=`+1 Ii

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1). From (26), (28), and the fact that λ ≥ a`+1 for

every λ ∈
⋃nuη
i=`+1 Ii, it follows that

a`+1Z
ζ‖Gk‖2 + Z

=
a2
`+1Z

a`+1ζ‖Gk‖2 + α`+1Z
≤

a`+1

∫⋃nuη
i=`+1 Ii

λ

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

a`+1ζ‖Gk‖2 +
∫⋃nuη

i=`+1 Ii
λ

[∏k+j−1
p=1

(
αp−λ
αp

)2
]
d(EλG1,G1)

≤αBB2
k+j+1 ≤ δsup for all j ∈ {r, · · · , r +Θ}.

(30)

Now, using the fact that

Z ≥
∫
I`+1

k+j−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) = (gk+j

`+1 )2,

and by (22), (29), and (30), we infer that for a chosen αk+j+1 = αBB1
k+j+1 or αk+j+1 = αBB2

k+j+1 that

2

3
a`+1 =

a`+1Z
1
2Z + Z

≤ a`+1Z
1
2 (gk+j

`+1 )2 + Z
≤ a`+1Z
ζ‖Gk‖2 + Z

≤ αk+j+1 ≤ δsup for all j ∈ {r, · · · , r +Θ}. (31)

Now for λ ∈ [a`+1, b`+1] and for j ∈ {r, · · · , r +Θ} we have the following two cases:

1. If αk+j+1 − λ ≥ 0, then by (6) we have∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ =

(
1− λ

αk+j+1

)
≤ ρA < 1.

2. If αk+j+1 − λ < 0, then by (31) and using the fact that λ ≤ b`+1 ≤ a`+1 + η for λ ∈ I`+1, we obtain∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ =

(
λ

αk+j+1
− 1

)
≤

(
b`+1

αk+j+1
− 1

)
≤

(
a`+1 + η

αk+j+1
− 1

)

≤ 3

2
+

η

αk+j+1
− 1 ≤ 1

2
+

η

δinf
< 1,

where in the last inequality we have used that η < δinf
2 .
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Hence, by the fact that c = max{ρA, 1
2 + η

δinf
}, we have for every j ∈ {r, · · · , r + Θ} and λ ∈ [a`+1, b`+1]

that ∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣ ≤ c < 1. (32)

Finally, by using (17) and (32) we obtain for every j ∈ {r, · · · , r +Θ} that

(gk+j+2
`+1 )2 =

∫
I`+1

k+j+1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

∫
I`+1

∣∣∣∣∣1− λ

αk+j+1

∣∣∣∣∣
2
k+j∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

≤ c2
∫
I`+1

k+j∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) = c2(gk+j+1

`+1 )2.

(33)

Using (23), (33), and the definitions of Θ, we obtain

(gk+r+Θ+1
`+1 )2 ≤ c2Θ(gk+r+1

`+1 )2 ≤ c2Θγ2(r+1)
A (gk`+1)2 ≤ c2Θγ2(r+1)

A ‖Gk‖2 ≤ 2ζ‖Gk‖2,

and the proof is complete. ut

Lemma 3 Let δsup ≥ 2δinf . Moreover, assume that for any η ∈ (0, δinf2 ), integer ` with nlη ≤ ` ≤ nuη , and
k ≥ 1, there exist r` ∈ N and ζ` ∈ R+ such that the condition

G(k + j, `) ≤ ζ`‖Gk‖2 for all j ≥ r` (34)

holds. Then we show that for the choice of

ζ`+1 := (1 + 2γ4
A)ζ`, and r`+1 := r` +Θ` + 1,

with Θ` := Θ(ζ`, r`) defined as in Lemma 2, we have

G(k + j, `+ 1) ≤ ζ`+1‖Gk‖2 for all j ≥ r`+1.

Proof First, observe that
G(k + j, `+ 1) = G(k + j, `) + (gk+j

`+1 )2.

Therefore, using (34) we only need to show that for every j ≥ r`+1

(gk+j
`+1 )2 ≤ 2γ4

Aζ`‖Gk‖2. (35)

Due to Lemma 2 for ζ = ζ` and r = r`, there exists an integer j1 ∈ {r`, · · · , r` +Θ` + 1} such that

(gk+j1
`+1 )2 ≤ 2ζ`‖Gk‖2.

Now let us introduce a shifting variable which we initialize by js = j1. Assume that j2 ≥ js = j1 is an
index, for which we have

(gk+j
`+1 )2 ≤ 2ζ`‖Gk‖2 for all j1 ≤ j ≤ j2, (36)

and
(gk+j2+1
`+1 )2 > 2ζ`‖Gk‖2. (37)

Note that if this case does not arise, clearly, (35) holds for all j ≥ js = j1 and since γA ≥ 1 the proof is
finished. Further, we can write

(gk+j+1
`+1 )2 > 2ζ`‖Gk‖2 for all j2 ≤ j ≤ j3 − 2, (38)

where j3 ≥ j2 + 2 is the first integer greater than j2 for which we have

(gk+j3
`+1 )2 ≤ 2ζ`‖Gk‖2. (39)
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Existence of such an index is justified using Lemma 2 for r = j2 and ζ = ζ`. Now, by (38) and using the
same argument as in the proof of Lemma 2, where we have shown that from (22) implies (31), we can infer
that

2

3
a`+1 ≤ αk+j+2 ≤ δsup for every j2 ≤ j ≤ j3 − 2.

Continuing the argument from the proof of Lemma 2 we infer that

(gk+j+3
`+1 )2 ≤ c2(gk+j+2

`+1 )2 for every j2 ≤ j ≤ j3 − 2, (40)

where c := max{ρA, 1
2 + η

δinf
} < 1. Finally, using (17) and (36), we have for r = 1, 2

(gk+j2+r
`+1 )2 =

∫
I`+1

k+j2+r−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

∫
I`+1

k+j2+r−1∏
p=k+j2

(
αp − λ
αp

)2
k+j2−1∏

p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=

∫
I`+1

 r∏
p=1

(
αk+j2+p−1 − λ
αk+j2+p−1

)2
k+j2−1∏

p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

≤
(
δsup − δinf

δinf

)2r ∫
I`+1

k+j2−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) = γ2r

A (gk+j2
`+1 )2.

(41)

Now since c < 1 and γA ≥ 1 due the fact that δsup ≥ 2δinf , we obtain from (36), (40), and (41) that

(gk+j+3
`+1 )2 ≤ γ4

A(gk+j2
`+1 )2 ≤ 2ζ`γ

4
A‖Gk‖2 for every j2 − 2 ≤ j ≤ j3 − 2, (42)

and as a consequence, we obtain

(gk+j
`+1 )2 ≤ 2ζ`γ

4
A‖Gk‖2 for every j2 + 1 ≤ j ≤ j3 + 1. (43)

From (43) and (36) we conclude that (35) holds for every j ∈ {j1, · · · , j3}. Finally, by setting js = j3 and
restart the process for j3 justified in (39) and repeating the same argument, it can be shown that (35) holds
for every j ≥ j1. Recall that j1 ∈ {r`, · · · , r` + Θ` + 1}. Therefore (35) holds for every j ≥ r`+1 and the
proof is finished. ut

In the next lemma, we investigate both of the cases δsup < 2δinf and δsup ≥ 2δinf .

Lemma 4 Let {uk}k be the sequence generated by Algorithm 1 for (QP). Then there exists a positive
integer m depending on δinf and δsup such that we have

‖Gk+m‖ ≤
1

2
‖Gk‖ for all k ≥ 1, (44)

or equivalently,

‖uk+m − u∗‖ ≤
1

2
‖uk − u∗‖ for all k ≥ 1, (45)

for all initial iterates u0, u1 ∈ H with u0 6= u1 in the condition C1, or every initial iterate u1 ∈ H and
every initial step-size α1 > 0 in the condition C2.

Proof If δsup < 2δinf , then γA < 1 and, by (14) in the proof of Lemma 1, we have

‖Gk+1‖ ≤ γA‖Gk‖ for every k ≥ 1.

Therefore, (44) follows for the choice of m :=
⌈
− log 2
log γA

⌉
.
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Now, we consider the case in which δsup ≥ 2δinf . In this case we have for ρA that 1
2 ≤ ρA < 1. First

we decompose the interval [δinf , δsup] into the finite family of intervals {Ii}
nuη
i defined by (15) with a fixed

length η ∈ (0, δinf2 ) ⊂ (0, ρAδinf ]. Then due to (18) and (19), we have for every k ≥ 1

G(k, nuη) =

nuη∑
i=1

(gki )2 = ‖Gk‖2,

where (gki )2 is defined by (17). Moreover due to (20) in the proof of Lemma 1, there exists an integer nlη > 0

such that for every ` with 1 ≤ ` ≤ nlη, we have

(gk+j
` )2 ≤ ρ2j

A (gk` )2 for every j ≥ 0 and k ≥ 1.

By summing over all ` with 1 ≤ ` ≤ nlη, we obtain

G(k + j, nlη) ≤ ρ2j
AG(k, nlη) ≤ ρ2j

A ‖Gk‖
2 for every j ≥ 0 and k ≥ 1.

Now for the choice of rnlη :=
⌈ log ζ

nlη

2 log ρA

⌉
for any given ζnlη > 0, we have

G(k + j, nlη) ≤ ζnlη‖Gk‖
2 for every j ≥ rnlη and k ≥ 1,

and thus, by choosing ζnlη := 1
4 (1 + 2γ4

A)−(nuη−n
l
η) we are in the position to use Lemma 3. By using this

lemma we have for ` with nlη ≤ ` ≤ nuη − 1 that

ζ`+1 = (1 + 2γ4
A)ζ` =

1

4
(1 + 2γ4

A)`+1−nuη , and r`+1 = r` +Θ` + 1,

where Θ` = Θ(ζ`, r`) has been defined as in Lemma 2. To be more precise, by applying Lemma 3 once, for
the first iteration, we obtain

G(k + j, nlη + 1) ≤ ζnlη+1‖Gk‖
2 = (1 + 2γ4

A)ζnlη‖Gk‖
2 =

1

4
(1 + 2γ4

A)1−(nuη−n
l
η)‖Gk‖2

for all j ≥ rnlη+1 := rnlη + Θnlη + 1. Applying this lemma repeatedly we conclude after (nuη − nlη) − 1

iterations that

‖Gk+j‖2 = G(k + j, nuη) ≤ ζnuη ‖Gk‖
2 =

1

4
‖Gk‖2 for all j ≥ rnuη .

By putting m = rnuη , (44) holds.
Moreover, the equivalence of (44) with (45) is justified due the fact that, similarly to (9) for Gk, it can

easily be shown that

(uk+1 − u∗) =
1

αk
(αkI − A)(uk − u∗) for all k = 0, 1, 2, . . . . (46)

Hence, the same machinery can be used to derive (45) and this completes the proof. ut

Proof of Theorem 2. We need only to consider the case in which for every k ≥ 0 we have uk 6= u∗. In
this case, we will show that uk → u∗ R-linearly. Due to (46) and with a similar argument as in (10), we
can write

‖uk+1 − u∗‖2 =

∫
σ(A)

(
αk − λ
αk

)2

d(Eλ(uk − u∗), (uk − u∗))

≤ γ2
A

∫
σ(A)

d(Eλ(uk − u∗), (uk − u∗)) = γ2
A
∥∥uk − u∗∥∥2

for every k ≥ 1.

(47)

Moreover, due to (45) in Lemma 4, we obtain

‖ujm+1 − u∗‖ ≤ (
1

2
)j‖u1 − u∗‖ for all j ≥ 0, (48)
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where m has been defined in Lemma 4. Now for every k ≥ 1, there exists an integer j such that 1 + jm ≤
k < 1 + (j + 1)m. Therefore, it follows that k − (jm + 1) < m and j ≥ k

m − 1. Using (47) and (48), we
obtain

‖uk − u∗‖ ≤ γmA ‖ujm+1 − u∗‖ ≤ γmA (
1

2
)j‖u1 − u∗‖ ≤ γmA (

1

2
)
k
m
−1‖u1 − u∗‖

= c1c
k
2‖u1 − u∗‖ for all k ≥ 1,

where c1 := γmA (1
2 )−1 and c2 := (1

2 )
1
m < 1, and this completes the proof.

Remark 1 If σ(A) is finite, we can infer that σ(A) = {λi : i = 1, . . . ,m} with λi+1 > λi for i = 1, . . . ,m−1,

λ1 = δinf , and λm = δsup. Then for every arbitrary η > 0 and partitioning {Ii}
nuη
i=1 of [δinf , δsup], we obtain

for k ≥ 1 that

‖Gk+1‖2 =

∫ δsup

δinf

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1) =

nuη∑
i=1

∫
Ii

 k∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1)

=
m∑
i=1

 k∏
p=1

(
αp − δinf

αp

)2
 ‖E{λi}G1‖2 =

m∑
i=1

(gk+1
i )2,

(49)

where (gk+1)2
i :=

[∏k
p=1

(
αp−δinf
αp

)2
]
‖E{λi}G1‖2. Then the statements of Lemma 1 is true for nlη = 1.

Further, Lemma 4 and Theorem 2 are applicable. Moreover, in the proof of Lemma 2, similarly to (49),
all the integrations are replaced by finite sum and it follows that c := max{ρA, 1

2}. See [25,70] for more
details.

Remark 2 Note that, due to Theorem 1, the numerical behaviour of Algorithm 1 is strongly depending
on σ(A). In fact, this relation can be explained based on the value of the spectral condition number

κ(A) := ‖A‖‖A−1‖ =
δsup
δinf

. It can be seen that γA = κ(A)− 1 and ρA = 1− 1
κ(A) < 1. Further, depending

on the value of κ(A), we can summarize the following cases:

1. κ(A) < 2 : In this case, due to Theorem 1, Algorithm 1 is Q-linearly convergent with the rate γA < 1.
Moreover, from (14), we infer that the sequence {‖Gk‖}k in monotone decreasing.

2. κ(A) ≥ 2 : This case is more delicate. Recall from (18) that for every fixed η ∈ (0, δinf2 ), and k ≥ 1, we

have ‖Gk+1‖2 =
∑nuη
i=1(gk+1

i )2 where the values (gk+1
i )2 with i = 1, . . . , nuη are defined by

(gk+1
i )2 =

∫
Ii

(
1− λ

αk

)2
k−1∏
p=1

(
αp − λ
αp

)2
 d(EλG1,G1). (50)

Due to Lemma 1, there exists an index nlη ≥ 1 such that the sequences {|gki |}k with i = 1, . . . , nlη
are Q-linearly monotonically decreasing with factor ρA < 1. Therefore it remains only to consider the
values of |gki | for i = nlη + 1, . . . , nuη . From (50), it can be shown that for every interval Ii with αk ∈ Ii
it holds that |gk+1

i | ≤ η
αk
|gki | < 1

2 |g
k
i |. On the other hand, if for an interval Ii it holds that ai > 2αk,

then we obtain |gk+1
i | > |gki |. Further, for the last interval Inuη , we have

|gk+1
nuη
|

|gk
nuη
| ≤ κ(A)− 1. These facts

explain the potential nonmonotonic behaviour of the sequence {‖Gk‖}k and its dependence on κ(A).

Remark 3 (Preconditioning) Due to Remark 2, the convergence of Algorithm 1 depends strongly on κ(A).
Analogously to the case of the conjugate gradient methods, the problem (QP) can, by using an appropriate
uniformly positive, self-adjoint, and continuous operator C : H → H, be transformed to the following
equivalent problem

min
z∈H
F̃(z) :=

1

2
(Ãz, z)− (b̃, z),

where Ã := C−
1
2AC−

1
2 , b̃ := C−

1
2 b and z := C

1
2 u. Clearly, σ(Ã) = σ(C−1A) and, as a consequnce, the

spectrum of Ã is completely determined by C and A. Thus, the operator C can be chosen such that the
application of Algorithm 1 yields faster convergence. In [67], preconditioning has been studied for Algorithm
1 in the case of the Euclidean space Rn. For the case of infinite-dimensional Hilbert spaces, preconditioning
methods have been studied for the conjugate gradient methods. Among them we can mention [5,6,31,39,
66].
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2.1.2 The Case of a Positive Compact Perturbation

In many situations of practical importance, we are faced with problems of the form (QP), in which A :
H → H is a compact perturbation of the identity. Therefore, it is of interest to consider this case separately.
Here, we have

A := T + βI (poco)

with a positive self-adjoint compact operator T : H → H and a constant β > 0. In this subsection we
show how the special form of the spectrum of operators with the form (poco) allows us to simplify the
proof of Theorems 1 and 2 of the previous section. For T as above we have σ(T ) = {0} ∪ ΣT , where
ΣT := {δi : i ∈ N} admits an enumeration for a countable set N . This set contains an ordered sequence
of nonzero pairwise distinct eigenvalues, i.e, δi+1 < δi for i ∈ N . Moreover δ1 = ‖T ‖ and for every i ∈ N ,
we have dim(ker(δi − T )) < ∞ where ker(L) := {u ∈ H : Lu = 0} for a given linear operator L : H → H.
Further, if N is infinite, δn → 0 and N can be taken to be N := {1, 2, 3, . . . }. Then we have

T =
∑
i∈N

δiE{δi},

where E{δi} is the orthogonal projection to the space ker(T −δi). In the case that N is finite, the convergence
can be proven as explained in Remark 1, therefore we assume here that N is infinite. Then, due to spectral
mapping Theorem, we have

σ(A) = {β} ∪ {λi : λi = δi + β for i ∈ N}, (51)

where β is a cluster point of the spectrum with λi → β, and λi+1 < λi for ever i ≥ 1. Then, for every
measurable function f : σ(A)→ R, the operator f(A) is defined by

f(A) =

∫
σ(A)

f(λ) dEλ =
∞∑
i=1

f(λi)E{λi} + f(β)E{β},

where E{β} is the orthogonal projection to the space ker(T ). Note that E{β} = 0 unless zero is an eigenvalue
of T . For convenience in notation, we denote λ0 = β. Then we have

f(A) =
∞∑
i=0

f(λi)E{λi}, (52)

and similarly, for every x, y ∈ H we have

(f(A)x, y) =

∫
σ(A)

f(λ)d(Eλx, y) =
∞∑
i=0

f(λi)(E{λi}x, y). (53)

Due to structure of A and the definition of δinf and δsup, we have

δinf = λ0 = β, δsup = λ1 = ‖T ‖+ β. (54)

Moreover, due to (52) and (53), for G1 ∈ H we can write

G1 =
∞∑
i=0

E{λi}G1 and ‖G1‖2 =
∞∑
i=0

(E{λi}G1,G1) =
∞∑
i=0

‖E{λi}G1‖2.

Using (9) and (52), we have

G2 =
1

α1
(α1 −A)G1 =

∞∑
i=0

1

α1
(α1 − λi)E{λi}G1,

and, in a similar manner by induction, we obtain for every k ≥ 1 that

Gk =

∞∑
i=0

k−1∏
p=1

(
αp − λi
αp

)E{λi}G1 and ‖Gk‖2 =
∞∑
i=0

k−1∏
p=1

(
αp − λi
αp

)2
 ‖E{λi}G1‖2. (55)
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For every i ≥ 0 and k ≥ 1 we define

(gki )2 :=

k−1∏
p=1

(
αp − λi
αp

)2
 ‖E{λi}G1‖2 =

k−1∏
p=1

(
αp − λi
αp

)2
 (g1

i )2, (56)

and conclude that

‖Gk‖2 =
∞∑
i=0

(gki )2 and (gk+1
i )2 =

(
αk − λi
αk

)2

(gki )2. (57)

Using (6) and (55), we can write for every k ≥ 1 and any chosen αp = αBB1
p or αp = αBB2

p with
p = 1, 2, . . . , k that

‖Gk+1‖2 =
∞∑
i=0

 k∏
p=1

(
αp − λi
αp

)2
 ‖E{λi}G1‖2 ≤ γ2

A

∞∑
i=0

k−1∏
p=1

(
αp − λi
αp

)2
 ‖E{λi}G1‖2 = γ2

A‖Gk‖2. (58)

Hence, analogously to Theorem 1, we can conclude that for (QP) with an operator A of the form (poco),
Algorithm 1 is Q-linearly convergent, provided that δsup < 2δinf . Next we consider the general case. In a
similar manner as in the previous subsubsection, we define

G(k, `) :=
∑

i∈{0}∪{i:i≥`}

(gki )2 for every `, k ≥ 1.

Then, by (55) we have

G(k, 1) =
∑

i∈{0}∪{i:i≥1}

(gki )2 =
∞∑
i=1

(gki )2 = ‖Gk‖2 for every k ≥ 1. (59)

First, analogously to Lemma 1, we will show that that there exists an index nu depending on δinf and δsup

such that the sequences {gki }k with i ≥ nu converge to zero Q-linearly.

Lemma 5 There exists a positive integer nu such that for any i ∈ {0} ∪ {i : i ≥ nu}, the sequences {gki }k
converge to zero Q-linearly with the factor ρA as k tends to infinity and we also have

lim
k→∞

G(k, nu) = 0. (60)

Proof Since {λi}i is a positive and decreasing sequence and λi → β = δinf , there exists a positive integer
nu such that for every i ≥ nu we have λi − δinf ≤ ρAδinf . For every i ∈ {0} ∪ {i : i ≥ nu} and k ≥ 1, we
have the following two cases:

1. If αk − λi ≥ 0 then we have ∣∣∣∣αk − λiαk

∣∣∣∣ =

(
1− λi

αk

)
≤ ρA < 1.

2. If αk − λi < 0 then we have αk ∈ [δinf , λi) and thus∣∣∣∣αk − λiαk

∣∣∣∣ =
λi − αk
αk

≤ λi − δinf

δinf
≤ ρA.

Therefore, by using (56) and (57), we can infer for every k ≥ 1 and i ∈ {0} ∪ {i : i ≥ nu} that

(gk+1
i )2 =

(
αk − λi
αk

)2

(gki )2 ≤ ρ2
A(gki )2 ≤ · · · ≤ ρ2k

A (g1
i )2. (61)

Now due to (61), we conclude that the sequences {gki }k converge to zero Q-linearly for all i ∈ {0}∪ {i : i ≥
nu}. Moreover, using (61) and summing up for every i ∈ {0} ∪ {i : i ≥ nu} we obtain for every k ≥ 1 that

G(k + 1, nu) =
∑

i∈{0}∪{i:i≥nu}

(gk+1
i )2 ≤ ρ2k

A
∑

i∈{0}∪{i:i≥nu}

(g1
i )2 = ρ2k

A ‖G1‖2.

Thus (60) follows. ut
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Next, we consider results which are analogous to Lemmas 2 and 3 for the special case (poco).

Lemma 6 For each integer ` with 1 < ` ≤ nu, and k ≥ 1, the following property holds:
If the condition

G(k + j, `) ≤ ζ‖Gk‖2 for all j ≥ r (62)

holds for some positive r ∈ N and ζ ∈ R+, then there exists an integer ĵ ∈ {r, · · · , r +Θ + 1} such that

(gk+ĵ
`−1 )2 ≤ 2ζ‖Gk‖2,

where Θ = Θ(ζ, r) is defined as in Lemma 2 with c := max{ρA, 1
2}.

Proof Similarly to the proof of Lemma 2, we assume that

(gk+j
`−1 )2 > 2ζ‖Gk‖2 for all j ∈ {r, · · · , r +Θ}, (63)

and we show that
(gk+r+Θ+1
`−1 )2 ≤ 2ζ‖Gk‖2.

By Algorithm 1, for every j ∈ {r, · · · , r+Θ} we have either αk+j = αBB1
k+j or αk+j = αBB2

k+j . Using (4), (5),
and (53), we can write for every j ∈ {r, · · · , r +Θ} that

αBB1
k+j+1 =

∑∞
i=0(gk+j

i )2λi∑∞
i=0(gk+j

i )2
, and αBB2

k+j+1 =

∑∞
i=0(gk+j

i )2λ2
i∑∞

i=0(gk+j
i )2λi

. (64)

Using (62) and (64), we obtain for every j ∈ {r, · · · , r +Θ} that

λ`−1

∑`−1
i=1 (gk+j

i )2

ζ‖Gk‖2 +
∑`−1
i=1 (gk+j

i )2
≤ αBB1

k+j+1 ≤ δsup. (65)

Moreover, using (62) and the fact that λ`−1 ≥ λi for every i ∈ {0} ∪ {i : i ≥ `}, we obtain∑
i∈{0}∪{i:i≥`}

(gk+j
i )2λi ≤ λ`−1G(k + j, `) ≤ λ`−1ζ‖Gk‖2 for every j ∈ {r, · · · , r +Θ}. (66)

Then by using (62) and (64), we have for every j ∈ {r, · · · , r +Θ} that

λ`−1

∑`−1
i=1 (gk+j

i )2

ζ‖Gk‖2 +
∑`−1
i=1 (gk+j

i )2
=

λ2
`−1

∑`−1
i=1 (gk+j

i )2

λ`−1(ζ‖Gk‖2 +
∑`−1
i=1 (gk+j

i )2)
≤

λ`−1

∑`−1
i=1 (gk+j

i )2λi

λ`−1ζ‖Gk‖2 +
∑`−1
i=1 (gk+j

i )2λi

≤ αBB2
k+j+1 ≤ δsup.

(67)

From (63), (65), (67), and the fact that
∑`−1
i=1 (gki )2 ≥ (gk`−1)2, it follows, with a computations similar to

those in the proof of Lemma 2 which leads to (31), for a chosen αk+j+1 = αBB1
k+j+1 or αk+j+1 = αBB2

k+j+1

that
2

3
λ`−1 ≤ αk+j+1 ≤ δsup for all j ∈ {r, · · · , r +Θ}. (68)

Moreover, considering separately the cases
λ`−1

αk+j+1
< 1 and

λ`−1

αk+j+1
≥ 1, we obtain due to (68) that∣∣∣∣∣1− λ`−1

αk+j+1

∣∣∣∣∣ ≤ c < 1 for all j ∈ {r, · · · , r +Θ}, (69)

where c = max{1
2 , ρA}. Using (57) and (69) we conclude that

|gk+j+2
`−1 | =

∣∣∣∣∣1− λ`−1

αk+j+1

∣∣∣∣∣ |gk+j+1
`−1 | ≤ c|gk+j+1

`−1 | for all j ∈ {r, · · · , r +Θ}. (70)

Finally, by (57) and (70) we obtain

(gk+r+Θ+1
`−1 )2 ≤ c2Θ(gk+r+1

`−1 )2 ≤ c2Θγ2(r+1)
A (gk`−1)2 ≤ c2Θγ2(r+1)

A ‖Gk‖2 ≤ 2ζ‖Gk‖2,

and the proof is complete. ut
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Next since we have

G(k + j, `− 1) = G(k + j, `) + (gk+j
`−1 )2 for every k, j ≥ 1,

with a similar argument as in the proof of Lemma 3, the following lemma can be proven.

Lemma 7 Let δsup ≥ 2δinf . Moreover, assume that for any integer ` with 1 < ` ≤ nu, and k ≥ 1, there
exist positive numbers r` and ζ` such that (62) holds for r = r` and ζ = ζ`. Then for the choice of
ζ`−1 := (1 + 2γ4

A)ζ` and r`−1 := r` +Θ` + 1, we have

G(k + j, `− 1) ≤ ζ`−1‖Gk‖2 for all j ≥ r`−1.

Finally by using Lemma 5 and 7, we can prove Lemma 4 for the special case in which A is a compact
perturbation of the identity. For the case of δsup < 2δinf the proof is similar to the proof of Lemma
4. Here we give some hints about the other case, namely, δsup ≥ 2δinf . First, due to Lemma 5, for

ζnu := 1
4 (1 + 4γ2

A)1−nu there exists an integer rnu > 0 such that

G(k, nu) ≤ ζnu‖Gk‖2 for all k ≥ rnu ,

where nu = nu(δinf , δsup) > 0 is defined in Lemma 5. Then, similarly to the proof of Lemma 4, by induction
and using Lemma 7, we have for ` with 2 ≤ ` ≤ nu that

ζ`−1 = (1 + 2γ4
A)ζ` =

1

4
(1 + 2γ4

A)1−(`−1), and r`−1 = r` +Θ` + 1.

Therefore, due to (59), (44) holds for m := r1.
Now we can conclude that Theorems 1 and 2 hold for (poco).

Remark 4 The explanations in Remark 2 also apply for operators A of the form (poco). Due to (57), the
case κ(A) < 2 is analogous to that in Remark 2. For the case κ(A) ≥ 2, we can gain more information since
the spectrum of σ(A) is discrete. Due to the right equality in (57) we have

|gk+1
i | =

∣∣∣∣αk − λiαk

∣∣∣∣ |gki |. (71)

Therefore, for i = 0, 1, . . . we obtain gk+1
i = 0 if αk = λi. Moreover, due to Lemma 5, there exists an index

nu ≥ 1 such that the sequences {|gki |}k with i ∈ {0} ∪ {i : i ≥ nu} are Q-linearly convergent with factor
ρA < 1. Therefore, we need only to consider the values of |gki | with i = 1, . . . , nu− 1. From (71), for any λi
close to αk we have a significant reduction and |gk+1

i | � |gki |, while for λi > 2αk, we obtain |gk+1
i | > |gki |.

These facts clarify the potential nonmonotonic behaviour in the sequence {‖Gk‖}k. In fact, for αk close to
λ1, the coefficients gi decrease in modulus, but the changes in gi with i ∈ {0} ∪ {i : i ≥ nu} are negligible
provided that κ(A) is large. Furthermore, small values of αk, tend to diminish the components |gki | for
small i 6= 0 and thus, enhance the relative contribution of components for large i.

2.2 General Objective Function

In this section, we will prove the local R-linear convergence of Algorithm 1, in the case that this algorithm
is applied for finding a local minimum u∗ ∈ H of a not necessarily quadratic function F : H → R. More
precisely, F is twice continuously Fréchet-differentiable at u∗ with Lipschitz continuous second derivative F ′′
in a neighbourhood of u∗ ∈ H. Then if we identify the first derivative F ′ by its corresponding representation
G, we have the following first-order optimality condition

G(u∗) = 0 in H. (EP)

Due to the continuity of the bilinear map F ′′(u∗), the exists a positive constant δsup such that

F ′′(u∗)(v, u) ≤ δsup‖v‖‖u‖ for all u, v ∈ H. (72)

Moreover, we assume that the continuous bilinear map F ′′(u∗) is uniformly positive, that is

δinf‖v‖2 ≤ F ′′(u∗)(v, v) ≤ δsup‖v‖2 for all v ∈ H, (73)
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where δsup ≥ δinf > 0. Then, due to the Riesz representation theorem, there exists a unique self-adjoint
bounded operator AFu∗ (see [19][Theorem 2.2, page 31] ) such that

F ′′(u∗)(v, u) = (AFu∗v, u) for all v, u ∈ H.

Similarly to the analysis of [24,62], the R-linearly convergence result is proven by comparing the sequences
{uk}k and {ûk}k which are generated by Algorithm 1 applied to, respectively, F and its second-order
Taylor approximation F̂ defined by

F̂(u) = F(u∗) +
1

2
(AFu∗(u− u∗), u− u∗). (74)

Throughout this section, all notations with the accent “ ˆ ” are related to the quadratic approximation
(74). For instance with Ĝ(·) and α̂k, we denote the gradient and the step-sizes of Algorithm 1 applied to
F̂ , respectively.

Since F ′′ : H → L(H,L(H,R)) is locally Lipschitz continuous and F ′′(u∗) : H×H → R is continuous
and uniformly positive, there exist a ball Bτ (u∗) centered at u∗ with a radius τ , positive constants αinf ,
αsup depending on τ , and L such that

‖G(u)−AFu∗(u− u∗)‖ ≤ L‖u− u∗‖2 for all u ∈ Bτ (u∗), (L1)

and

αinf‖v‖2 ≤ F ′′(u)(v, v) ≤ αsup‖v‖2 for all v ∈ H and u ∈ Bτ (u∗). (L2)

Moreover, due to the mean value theorem we have

αinf ≤ αBB1
k , αBB2

k ≤ αsup, (75)

provided that uk and uk−1 belong to Bτ (u∗). Moreover if the iterations of Algorithm 1 applied to F̂ lie in
Bτ (u∗), we will also have

αinf ≤ δinf ≤ α̂BB1
k , α̂BB2

k ≤ δsup ≤ αsup. (76)

Further, by the fundamental theorem of calculus, we infer that

αinf‖u− u∗‖ ≤ ‖G(u)‖ = ‖G(u)− G(u∗)‖ ≤ αsup‖u− u∗‖ for all u ∈ Bτ (u∗). (77)

In the next lemma we study the distance of the sequences {uk}k and {ûk}k.

Lemma 8 Let u∗ be a local minimizer of F with F ∈ C2(H,R) and assume that L1 and L2 hold for
a radius τ and constants αinf and αsup, and for the bilinear form F ′′(u∗) estimate (73) holds with the
constants δsup and δinf . Further, let {uj}j be a sequence generated by Algorithm 1 applied to F , and {ûkj }j
be the sequence generated by Algorithm 1 applied to the quadratic approximation (74) of F at u∗ with an
initial iterate uk and an initial step-size αk with k ≥ 1. Then for any fixed positive integer m, there exist
positive constants η ≤ τ and λ such that the following property holds:

If uk ∈ Bη(u∗), αk ∈ [αinf , αsup], and if for some ` ∈ {0, . . . ,m}, the following condition holds

‖ûkj − u∗‖ ≥
1

2
‖uk − u∗‖ for all j ∈ {0, . . . ,max{0, `− 1}}, (78)

then we have

uk+j ∈ Bτ (u∗) and ‖uk+j − ûkj ‖ ≤ λ‖uk − u∗‖2 (79)

for all j ∈ {0, . . . , `}.

Proof The proof is given in Appendix A.1. ut

In the next theorem, we present the main result of this section which is the local R-linearly convergence
of Algorithm 1 applied to twice continuously Fréchet differentiable objective functions.
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Theorem 3 Let u∗ be a local minimizer of a twice continuously Fréchet differentiable function F , with a
locally Lipschitz continuous second-derivative. Further suppose that the bilinear mapping F ′′(u∗) satisfies
estimate (73) for constants δsup and δinf . Then there exist positive constants ζ, λ1, λ2, and θ < 1 such that
the sequence {uk}k, generated by Algorithm 1, satisfies

‖uk − u∗‖ ≤ λ1θ
k‖u1 − u∗‖ for all k ≥ 1, (80)

and

‖Gk‖ ≤ λ2θ
k‖G1‖ for all k ≥ 1, (81)

for all initial iterates u0, u1 ∈ Bζ(u∗) ∈ H with u0 6= u1.

Proof The assumptions on F imply that L1 and L2 are satisfied for a radius τ and constants αinf and
αsup. The proof relies on Lemma 4 and Lemma 8 in an essential manner. By Lemma 4, which we use for
the sequences {ûkj }j , for every initial iterate ûk0 := uk and initial step-size α̂k0 := αk with

αinf ≤ αk = α̂k0 ≤ αsup, (82)

we have

‖ûkm − u∗‖ ≤
1

2
‖uk − u∗‖. (83)

Given the constants η ≤ τ and λ from Lemma 8 we define ζ := min{η, τ1}, where τ1 is chosen such that
c2 := 1

2 + λτ1 < 1. Then, due to Lemma 8, for the fixed integer m, if uk ∈ Bζ(u∗), if αk satisfies (82), and
if

‖ûkj − u∗‖ ≥
1

2
‖uk − u∗‖ for all j ∈ {0, . . . ,max{0, `− 1}} with ` ≤ m, (84)

then we have

uk+j ∈ Bτ (u∗) and ‖uk+j − ûkj ‖ ≤ λ‖uk − u∗‖2 for all j ∈ {1, · · · , `}. (85)

Next we show by induction that there exists a subsequence of indices {ki}i with k1 = 1, for which we
have

ki+1 − ki ≤ m and ‖uki+1
− u∗‖ ≤ c2‖uki − u

∗‖, (86)

for all i = 1, 2, . . . .
For any u0, u1 ∈ Bζ(u∗) ⊂ Bτ (u∗) and k1 = 1, due to L2 we obtain

αinf ≤ α1 = α̂1
0 ≤ αsup.

Due to Lemma 4 and (83), there exists a smallest integer j1 ≤ m such that

‖ûk1
j1
− u∗‖ ≤ 1

2
‖ûk1

0 − u
∗‖ =

1

2
‖uk1

− u∗‖. (87)

Defining k2 := k1 + j1 > k1, and using (85) and (87), we have

‖uk2
− u∗‖ = ‖uk1+j1 − u

∗‖ ≤ ‖uk1+j1 − û
k1
j1
‖+ ‖ûk1

j1
− u∗‖

≤ λ‖uk1
− u∗‖2 +

1

2
‖ûk1

0 − u
∗‖

≤ λτ1‖uk1
− u∗‖+

1

2
‖uk1

− u∗‖ ≤ c2‖uk1
− u∗‖,

(88)

and hence (86) follows for i = 1. By (88) and the fact that uk1
= u1 ∈ Bζ(u∗), it follows that uk2

∈
Bζ(u∗) ⊂ Bτ (u∗). Together with the inclusion in (85) we obtain that uk ∈ Bτ (u∗) for all k ∈ {0, 1, . . . , k2}.

To carry out the induction step we assume that for an index ki we have uki ∈ Bζ(u
∗) and, uk ∈ Bτ (u∗)

for all k ∈ {0, 1, . . . , ki}. We will show that there exists an index ki+1 > ki with ki+1 − ki ≤ m such that
uki+1

∈ Bζ(u∗), uk ∈ Bτ (u∗) for all k ∈ {0, 1, . . . , ki+1}, and (86) holds.
Since uki , uki−1 ∈ Bτ (u∗) we have αki ∈ [αinf , αsup]. Moreover, due to (83), there is an integer ji ≤ m

with the property that

‖ûkiji − u
∗‖ ≤ 1

2
‖ûki0 − u

∗‖ =
1

2
‖uki − u

∗‖.
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Due to (85), by defining ki+1 = ki + ji > ki and using the similar argument as in (88), we can show that
(86) holds and, consequently, we have uki+1

∈ Bζ(u∗), and uk ∈ Bτ (u∗) for all k ∈ {0, 1, . . . , ki+1}.
Now, due to (163), there is a positive constant c1 such that

‖uk+j − u∗‖ ≤ c1‖uk − u∗‖ for all j ∈ {1, . . . ,m}, (89)

where c1 depends only on m and the constants αsup and αinf which have been defined in L2. Further, for
every k ≥ 1, there exists an integer i ≥ 1 such that ki ≤ k < ki+1 with k ≤ ki+m−1 and ki ≤ m(i−1)+1.
Therefore, i ≥ k

m and also by (89), we obtain

‖uk − u∗‖ ≤ c1‖uki − u
∗‖ ≤ c1(c2)i−1‖uk1

− u∗‖ ≤ c1(c2)
k
m
−1‖uk1

− u∗‖.

By setting θ := (c2)
1
m < 1, and λ1 := c1

c2
, we can conclude (80).

We turn to verification of (81). By using the fact that for every k ∈ N the sequence {uk}k lies in Bτ (u∗),
the property (77), and (80), we obtain

‖Gk‖ ≤ αsup‖uk − u∗‖ ≤ αsupλ1θ
k‖u1 − u∗‖ ≤

αsupλ1

αinf
θk‖G1‖.

By setting λ2 :=
αsupλ1

αinf
we complete the proof. ut

3 Mesh Independence Principle

In this section, we investigate finite-dimensional approximations of Algorithm 1. More specifically we inves-
tigate the dependence of the iteration count of the algorithm to achieve a desired accuracy of the residue
under finite-dimensional approximations. We note that our objective here is not to estimate the error
between the solutions of the discretized problem and continuous one.

Thus let {Hh}h be a family of finite-dimensional Hilbert spaces indexed by some real number h > 0,
and endowed with inner products and their associated norms denoted by (·, ·)h and ‖ · ‖h, respectively. Let
Gh : Hh → Hh denote continuous nonlinear mappings which will be required to approximate G in a sense
to be made precise in Assumption A2 below. We then consider the family of problems:

Find u∗h ∈ Hh such that Gh(u∗h) = 0. (EPh)

Throughout this section we pose the following assumption:

A0: The assumptions of Theorem 3 in Section 2.2 hold and we denote by {uk}k the sequence generated by
Algorithm 1 which enjoys the properties asserted in Theorem 3.

In particular, it is assumed that ‖u0 − u∗‖ and ‖u1 − u∗‖ are sufficiently small (< ζ with ζ defined in
Theorem 3) unless F is a strictly convex quadratic function. For the case of strictly convex quadratic
functions, u0 and u1 can be chosen from the whole of H.

To describe the family of approximating sequences we choose uh0 , u
h
1 ∈ Hh and update uhk , for k = 1, . . .

by

uhk+1 = uhk −
1

αhk
Ghk , (90)

where Ghk := Gh(uhk) and the step-size αhk is chosen according to either

αBB1,h
k :=

(Shk−1,Yhk−1)h

(Shk−1,Shk−1)h
, or αBB2,h

k :=
(Yhk−1,Yhk−1)h

(Shk−1,Yhk−1)h
. (91)

Here we have set Shk−1 := uhk − uhk−1 and Yhk−1 := Ghk − Ghk−1. We should point out that the inner product

on Hh will typically reflect the norm on H. It should not be thought of as the canonical inner-product in
RN(h).

Let us now formulate some additional notation and assumptions that we require for the main result of
this section. Suppose that {Ph}h is a family of linear ‘prolongation’ operators

Ph : Hh → H.
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We use the following notion of convergence in the space H. A sequence uh ∈ Hh is H-convergent to u ∈ H
if

lim
h↓0
‖Phuh − u‖ = 0.

We have to assume that the discrete inner products approximate the original one in the following sense:

A1: If uh
H→ u and zh

H→ z for u, z ∈ H, then

lim
h↓0

(uh, zh)h = (u, z). (92)

Moreover we need the following approximation property of G by the family Gh.

A2: Suppose that G(u∗) = 0. Then, if uh
H→ u with u in a neighborhood of u∗, then

Gh(uh)
H→ G(u). (93)

Remark 5 In applications it can occur that the convergence specified in (93) requires additional regularity
of u and G(u). In this case one assumes the existence of a subspace W in H of more regular functions, and
one needs to assure that the limit of the iterations remains in W. In this case Assumption A2 is replaced
by A2’ below. For details we refer to [49], for instance.

A2’: There is u∗ ∈ W with G(u∗) = 0, such that G is well-defined for all u ∈ W sufficiently near u∗ with

respect to the H-norm. Moreover, if u ∈ W with ‖u−u∗‖ sufficiently small and uh
H→ u, then G(u) ∈ W

and

Gh(uh)
H→ G(u).

Theorem 4 Suppose that Assumptions A0-A2 hold. Moreover, let uhi
H→ ui for i = 0, 1 with u1 6= u0 and

uh1 6= uh0 . Then for any k′ ≥ 1, we have

lim
h↓0

max
1≤k≤k′

‖Phuhk − uk‖ = 0. (94)

Proof Using (90) and the triangle inequality we obtain

‖Phuhk+1 − uk+1‖ ≤ ‖Phuhk − uk‖+

∣∣∣∣∣ 1

αhk
− 1

αk

∣∣∣∣∣ ‖PhGhk ‖+

∣∣∣∣ 1

αk

∣∣∣∣ ‖PhGhk − Gk‖, (95)

for every k ≥ 1. Then, proceeding by induction, using (92) and (93), and passing the limit in (91) and (95),
it can be shown that (94) is true for every k′ ≥ 1. ut

The termination condition for EPh is based on the norm of the gradients for the approximated and the
original problem. Thus for ε > 0 the iteration is terminated according to

‖Ghk ‖h < ε, and ‖Gk‖ < ε, (96)

where ε is a sufficiently small positive number. In order to investigate the behaviour of convergence of the
approximated problem with respect to the original problem, we consider the following quantities:

k∗(ε) := min{k ∈ N : ‖Gk‖ < ε}, k∗h(ε) := min{k ∈ N : ‖Ghk ‖h < ε},

where k∗(ε) and k∗h(ε) are the smallest iteration numbers for which the norm of corresponding gradients is
less than ε. In the following we study the relation between k∗(ε) and k∗h(ε).

Theorem 5 Suppose that Assumptions A0-A2 hold. Further, let uhi
H→ ui for i = 0, 1 with u1 6= u0 and

uh1 6= uh0 . Then for any given numbers ε > 0 and δ > 0, there exists a number hδ,ε > 0 such that

k∗(ε+ δ) ≤ k∗h(ε) ≤ k∗(ε) (97)

for every h ∈ (0, hδ,ε].
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Proof Due to (94) and A2, we have for every k that

Ghk
H→ Gk (98)

and by A1, we obtain

lim
h↓0
‖Ghk ‖h = ‖Gk‖. (99)

Now, we show that ‖Ghk ‖h < ε for a sufficiently small h > 0, provided that ‖Gk‖ < ε holds for an iterate k.
Since ‖Gk∗(ε)‖ < ε, there exists a positive number ζ := ζ(ε) such that ‖Gk∗(ε)‖ + ζ < ε. Moreover, due to
(99), there exists a positive number hε > 0 such that for every h ∈ (0, hε] we have∣∣∣‖Ghk∗(ε)‖h − ‖Gk∗(ε)‖∣∣∣ ≤ ζ. (100)

Hence, for every h ∈ (0, hε], we obtain

‖Ghk∗(ε)‖h = ‖Gk∗(ε)‖+ ‖Ghk∗(ε)‖h − ‖Gk∗(ε)‖ ≤ ‖Gk∗(ε)‖+ ζ < ε,

and, thus, we have

k∗h(ε) ≤ k∗(ε) for every h ∈ (0, hε],

which implies the second inequality in (97). Now assume that δ > 0 be given. Then due to (99) we have

lim
h↓0

max
1≤k<k∗(δ+ε)

∣∣∣‖Ghk ‖h − ‖Gk‖∣∣∣ = 0. (101)

By the definition of k∗(δ + ε), we have

‖Gk‖ ≥ δ + ε for all k < k∗(δ + ε). (102)

Moreover due to (101), there exists a positive number hδ such that∣∣∣‖Ghk ‖h − ‖Gk‖∣∣∣ ≤ max
1≤k′<k∗(δ+ε)

∣∣∣‖Ghk′‖h − ‖Gk′‖∣∣∣ ≤ δ for all h ∈ (0, hδ] and k < k∗(δ + ε). (103)

Using (102) and (103) we infer for every h ∈ (0, hδ] and k < k∗(δ + ε) that

‖Ghk ‖h ≥ ‖Gk‖ − δ ≥ δ + ε− δ = ε,

and, thus, k∗h(ε) ≥ k∗(δ + ε) for every h ∈ (0, hδ]. Now for the choice of hδ,ε := min{hδ, hε}, the relation
(97) holds for every h ∈ (0, hδ,ε] and we are finished with the proof.

ut

Theorem 6 Suppose that Assumptions A0-A2 hold. Further assume that uhi
H→ ui for i = 0, 1 with u1 6= u0

and uh1 6= uh0 . Then for each ε > 0 there exists hε > 0 such that

k∗(ε)− ` ≤ k∗h(ε) ≤ k∗(ε) for every h ∈ (0, hε],

where the integer ` > 0 is independent of h and ε.

Proof Theorem 3 implies R-linear convergence of uk → u∗. It can be shown as in the proof of Theorem
3 that there exist a positive integer m, positive numbers c2 < 1 and ζ ≤ τ , and a subsequence of indices
{ki}i ∈ N with k1 = 1, for which we have

uk ∈ Bζ(u∗) for every k ≥ k1, (104)

and

ki+1 − ki ≤ m and ‖uki+1
− u∗‖ ≤ c2‖uki − u

∗‖, for all i ≥ 1. (105)

Moreover, as mentioned in the proof of Theorem 3, there exists a number c1 > 0 such that

‖uk+j − u∗‖ ≤ c1‖uk − u∗‖ for all j ∈ {1, . . . ,m} and any k ≥ k1. (106)
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Let us first denote the integer q∗ as the smallest integer for which cq
∗

2 < αinf

c1αsup
holds. The existence of

such q∗ is guaranteed since c2 < 1. Next, we show for every k ≥ k1 that there exists a positive integer
i+(k) ≤ m(q∗ + 1)− 1 =: ` such that

‖Gk+i+(k)‖ < ‖Gk‖. (107)

For every k ≥ k1, the exists an index i such that ki ≤ k < ki+1. Due to (77), (105), (106), and the definition
of q∗, we obtain

‖Gki+q∗+1
‖ ≤ αsup‖uki+q∗+1

− u∗‖ ≤ αsupc
q∗

2 ‖uki+1
− u∗‖ ≤ αsupc1c

q∗

2 ‖uk − u
∗‖

≤ αsupc1c
q∗

2

αinf
‖Gk‖ < ‖Gk‖.

By setting i+(k) := ki+q∗+1 − k, we have i+(k) ≤ ` and we are finished with the verification of (107).
Now, due to the definition of k∗(ε), we have ‖Gk‖ ≥ ε for every k < k∗(ε). We will next show that for

every k∗(ε) ≥ ` that
‖Gk‖ > ε for every k < k∗(ε)− `. (108)

Suppose on contrary that there exists an index k̄ < k∗(ε)− ` with ‖Gk̄‖ = ε. Then due to (107) there exists
an integer i+(k̄) ≤ ` such that we have ‖Gk̄+i+(k̄)‖ < ‖Gk̄‖ = ε with k̄ + i+(k̄) ≤ k̄ + ` < k∗(ε), and this
contradicts the definition of k∗(ε). Hence, (108) holds.

Due to (108), for k < k∗(ε)− ` there exist strictly positive numbers {δk}k such that ‖Gk‖ = ε+ δk for
k < k∗(ε)− `. By setting 0 < δ := min{δk : k < k∗(ε)− `}, we obtain

‖Gk‖ ≥ ε+ δ for every k < k∗(ε)− `.

Therefore we conclude that k∗(ε) − ` ≤ k∗(ε + δ). Due to Theorem 5, for ε > 0 and δ > 0, there exists a
number hε > 0 such that we have

k∗(ε)− ` ≤ k∗(ε+ δ) ≤ k∗h(ε) ≤ k∗(ε) for every h ∈ (0, hε]. (109)

This concludes the proof. ut

Remark 6 In the case of quadratic functions (QP), due to Lemma 4, inequality (109) holds for ` = m and
all initial iterates u0, u1 ∈ H with u0 6= u1. In particular, if also δsup < 2δinf , then (109) holds for ` = 1.

Remark 7 In general, the sequence {‖Gk‖}k corresponding to Algorithm 1 is not monotonically decreasing.
This is the reason why we have to introduce ` in Theorem 6 which can possibly be larger than 1. In the
case that δsup < 2δinf , {‖Gk‖}k is monotone decreasing and as a consequence ` = 1.

4 Application to Optimal Control Problems with PDEs

In this section, we will apply Algorithm 1 to optimal control problems which are governed by three types
of partial differential equations, including an elliptic, a hyperbolic, and a parabolic problem. We introduce
these problems in reminder of this section. For the sake of brevity, finite-dimensional approximation is only
discussed for the elliptic case.

4.1 Dirichlet Optimal Control for the Poisson Equation

4.1.1 Continuous Problem

In this subsection, we consider the following elliptic Dirichlet boundary control problem

min
u∈L2(Γ )

J(u, y) :=
1

2
‖y − yd‖2L2(Ω) +

β

2
‖u‖2L2(Γ ), (110)

subject to

{
−∆y = f in Ω,

y = u on Γ,
(111)
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on an open convex bounded polygonal set Ω ⊂ R2 with boundary denoted by Γ := ∂Ω. We assume that
f, yd ∈ L2(Ω) and β > 0. Then, for a given (u, f) ∈ L2(Γ )× L2(Ω), the solution y(u, f) ∈ L2(Q) of (111)
exists in a very weak sense and it satisfies the following variational equation

(y,−∆ϕ)L2(Ω) + (u, ∂νϕ)L2(Γ ) = (ϕ, f)L2(Ω) for all ϕ ∈ H2(Ω) ∪H1
0 (Ω).

The corresponding solution operator defined by (u, f) 7→ y(u, f) is a continuous operator from L2(Γ ) ×
L2(Ω) to L2(Ω). See e.g., [35,36]. Moreover, the linear operators L : L2(Γ )→ L2(Ω) defined by u 7→ y(u, 0),
and Π : L2(Ω)→ L2(Ω) defined by f 7→ y(f, 0) are continuous. Then by defining X := L2(Ω), H := L2(Γ )
and ψ := −Πf + yd, we can express the optimal control problem (110)-(111) as the following linear least
squares problem

min
u∈H
F(u) :=

1

2
‖Lu− ψ‖2X +

β

2
‖u‖2H. (LS)

By a short computation, it can be shown that the problem (110)-(111) can be written in the form of (QP),
where A := L∗L + βI with L∗ : X → H defined as the adjoint operator of L, and b := L∗ψ. Clearly, the
operator A is uniformly positive, bounded, and self-adjoint on the Hilbert space H and thus the existence
and uniqueness of the solution to the problem (110)-(111) can be obtained due the fact that A has a
bounded inverse.

Remark 8 According to [11][Theorem 4.2], for each pair (f, u) ∈ L2(Ω) × L2(Γ ), the solution y(f, u) to

(111) belongs to the space H
1
2 (Ω), which is continuously and compactly embedded to L2(Ω). Therefore

the linear operator L : H → H is compact, and we conclude that A has the form (poco).
For every u ∈ H, the derivative of F at u in direction δu ∈ H can be expressed by

F ′(u)δu = (L∗(Lu− ψ) + βu, δu), (112)

and the gradient of F at u is identified by G(u) = L∗(Lu−ψ)+βu. Alternatively, if we consider the solution
p(u) ∈ H2(Ω) ∩H1

0 (Ω) of the adjoint equation{
−∆p = y(u, f)− yd in Ω,

p = 0 on Γ,
(113)

where y(u, f) ∈ L2(Ω) is the solution of (111), then the directional derivative (112) and the corresponding
gradient G at point u can be rewritten as

F ′(u)δu = (∂νp(u) + βu, δu) for all δu ∈ H, and G(u) = ∂νp(u) + βu in H. (114)

For the global minimizer u∗ ∈ H to (LS), the first-order optimality condition can be expressed as

(L∗L+ βI)u∗ = L∗ψ, (115)

which can be rewritten, equivalently, as the following systems of equations
y∗ = y(u∗, f) in L2(Ω),

∂νp
∗ = −βu∗ in L2(Γ ),

−∆p∗ = y∗ − yd in L2(Ω),with p∗ = 0 on Γ.

4.1.2 Discretized Problem

For the discretization of (110)-(111), we use finite elements. Let us consider the regular family of triangu-
lations {Th}h>0 of Ω with Ω = ∪T∈ThT and the mesh-size defined by h := max{diam(T ) : T ∈ Th}. Let
{xj}1≤j≤N(h) be the nodes which lies on the boundary with the numbering which starts at the origin in
the counterclockwise and xN(h)+1 = x1. Then we define the space of discretized control by

Hh := {uh ∈ C(Γ ) : uh|[xj ,xj+1] ∈ P1 for j = 1, . . . , N(h)},

and, we consider the space V h ⊂ H1(Ω) defined by

V h := {yh ∈ C(Ω̄) : yh|T ∈ P1 for every T ∈ Th},
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where P1 is the space of polynomials of degree less than or equal to 1. Further we set V h0 := V h ∩H1
0 (Ω).

The space Hh is formed by the restriction of the functions of V h to ∂Ω. Clearly, we have Hh ⊂ H and, as a
result, the finite-dimensional space Hh is endowed with the inner product and the norm introduced by the
space H = L2(Γ ). Then, naturally, the prolongation operator Ph : Hh → H is defined to be the canonical
injection operator i.e., Ph(uh) = uh for every uh ∈ Hh. Let us consider the orthogonal projection operator
Πh : H → Hh defined by

(Πhv, uh)H = (v, uh)H for all uh ∈ Hh.

It satisfies the following estimate

‖u−Πhu‖H ≤ ch
1
2 ‖u‖

H
1
2 (Γ )

, (116)

for every u ∈ H
1
2 (Γ ), see, e.g., [11,16]. For every u ∈ H we consider the unique discrete solution yh(u) ∈ V h

satisfying {
(∇yh,∇φh) = (f, φh) for all φh ∈ V h,
yh|Γ = Πhu.

(117)

Then we can define the discrete objective function in H by

Jh(u, yh(u)) :=
1

2
‖yh(u)− yd‖2L2(Ω) +

β

2
‖u‖2L2(Γ ). (118)

The finite-dimensional approximation of (110)-(111) can be expressed as

min
uh∈Hh

Fh(uh) = min
uh∈Hh

Jh(uh, yh(uh)). (119)

Existence of a solution to (119) follows by similar arguments as for the continuous problem. Given u ∈ H
we consider the adjoint state ph(u) ∈ V h0 as the solution of

(∇ph(u),∇ψh)L2(Ω) = (yh(u)− yd, ψh)L2(Ω) for all ψh ∈ V h0 . (120)

In order to compute the gradient of Fh, analogously to the expression (114), we need to characterise a
discrete normal derivative ∂hν p

h(u). For every u ∈ H, similarly to [16][ Proposition 4.2], ∂hν p
h(u) ∈ Hh is

characterized as the unique solution of the following variational problem

(∂hν p
h(u), ϕh)H = (∇ph(u),∇ϕh)L2(Ω) − (yh(u)− yd, ϕh)L2(Ω) for all ϕh ∈ V h,

where ph(u) ∈ V h0 is the solution of (120). Next, we prove the following useful estimate.

Lemma 9 There exists a constant c depending on f and yd, and independent of h such that

‖∂νp(u)− ∂hν ph(v)‖H ≤ c
(
‖u− v‖H + h

1
2 (1 + ‖v‖H)

)
for all u, v ∈ H. (121)

Proof This proof is based on the results from [16], where u ∈ L∞(Ω) was used in the context of semilinear
elliptic equation. First, using a similar argument as in [11,16], one can show that

‖y(u)− yh(u)‖H ≤ c(1 + ‖u‖H)2h
1
2 , (122)

where the constant c depends on f . From (122), it follows that

‖y(u)− yh(v)‖H ≤ c
(
‖u− v‖H + h

1
2 (1 + ‖u‖H)

)
for all u, v ∈ H,

Next, we show that

‖∂νp(u)− ∂hν ph(u)‖H ≤ ch
1
2 (1 + ‖u‖H) for all u ∈ H. (123)

Recall that p(u) ∈ H2(Ω)∩H1
0 (Ω) and therefore ∂νp(u) ∈ H

1
2 (Γ ). For the left hand-side of (123) we obtain

‖∂νp(u)− ∂hν ph(u)‖2H =

∫
Γ

∣∣∣∂νp(u)−Πh∂νp(u)
∣∣∣2 dS +

∫
Γ

∣∣∣Πh∂νp(u)− ∂hν ph(u)
∣∣∣2 dS =: I1 + I2. (124)
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The last term can be equivalently be expressed as

I2 =

∫
Γ

(∂νp(u)− ∂hν ph(u))(Πh∂νp(u)− ∂hν ph(u))dS. (125)

Let wh ∈ V h be the solution of the following variational equation{
(∇wh,∇φh) = 0 for all φh ∈ V h,
wh|Γ = Πh∂νp(u)− ∂hν ph(u).

(126)

Then, by referring to [14][Lemma 3.2], we have the following estimate for (126)

‖wh‖H1(Ω) ≤ c‖Πh∂νp(u)− ∂hν ph(u)‖
H

1
2 (Γ )

, (127)

with a constant c independent of h. Using the definition of ∂hν p
h(u) and Green formula for ∂νp(u), we

obtain

(∂νp(u)− ∂hν ph(u), φh)H = (∇(p(u)− ph(u)),∇φh)L2(Ω) + (yh(u)− y(u), φh)L2(Ω) (128)

for every φh ∈ V h. Using (125), (126), and (128), we find

I2 = (∇(p(u)− ph(u)),∇wh)L2(Ω) + (yh(u)− y(u), wh)L2(Ω).

Moreover, we have
(∇ph(u),∇wh)L2(Ω) = (∇Ihp(u),∇wh)L2(Ω) = 0, (129)

where Ih ∈ L(C(Ω), V h0 ) stands for the classical interpolation operator, see e.g., [15]. Due to (129) and the
definition of wh from (126), we obtain

I2 = (∇(p(u)− Ihp(u)),∇wh)L2(Ω) + (yh(u)− y(u), wh)L2(Ω). (130)

Using (127), the interpolation estimate, and the following inverse estimate (see e.g., [11])

‖uh‖
H

1
2 (Γ )

≤ Ch−
1
2 ‖uh‖H for all uh ∈ Hh,

we infer that

|(∇(p(u)− Ihp(u)),∇wh)L2(Ω)| ≤ ‖∇(p(u)− Ihp(u))‖L2(Ω)‖wh‖H1(Ω)

≤ ch‖p(u)‖H2(Ω)‖wh|Γ ‖H 1
2 (Γ )

≤ ch
1
2 (1 + ‖u‖H)‖wh|Γ ‖H

≤ ch
1
2 (1 + ‖u‖H)

√
I2,

(131)

where the constant c from the third line of (131) depends also on yd. Moreover, due to (122), we can write

|(yh(u)− y(u), wh)L2(Ω)| ≤ ‖yh(u)− y(u)‖L2(Ω)‖wh‖L2(Ω) ≤ ch
1
2 (1 + ‖u‖H)

√
I2. (132)

From (130), (131), and (132), it follows that

I2 ≤ ch(1 + ‖u‖H)2. (133)

Further, using (116) we obtain

I1 ≤ ch‖∂νp(u)‖2
H

1
2 (∂Ω)

≤ ch‖p(u)‖2H2(Ω) ≤ ch(1 + ‖u‖H)2. (134)

Now, from (124), (133), and (134), we conclude (123). Finally, using (123) we can write that

‖∂νp(u)− ∂hν ph(v)‖H ≤ ‖∂νp(u)− ∂νp(v)‖H + ‖∂νp(v)− ∂hν ph(v)‖H

≤ c‖p(u)− p(v)‖H2(Ω) + ch
1
2 (1 + ‖v‖H)

≤ c
(
‖u− v‖H + h

1
2 (1 + ‖v‖H)

)
,

for every u, v ∈ H and we are finished with the verification of (121). ut
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Now we are in the position in which we can verify the assumptions A1-A2 of Section 3. A1 follows from

the definition of Hh and Ph. To verify A2, assume that uh
H→ u with uh ∈ Hh. Similarly to (114), the

directional derivative and its corresponding gradient of Fh of the discretized problem (119) at point uh can
be rewritten as

Fh′(uh)δuh = (∂hν p
h(uh) + βuh, δuh) for all δuh ∈ Hh, and Gh(uh) = ∂hν p

h(uh) + βuh in Hh. (135)

Then by (114), (135), and (121), we obtain

‖G(u)−PhGh(uh)‖H ≤ ‖∂νp(u)−∂hν ph(uh)‖H+β‖u−uh‖H ≤ (c+β)‖u−uh‖H+ch
1
2 (1+‖uh‖H). (136)

Hence, Gh(uh)
H→ G(u) follows by sending h to zero in (136).

Remark 9 Due the fact that ∂νp(u) ∈ H
1
2 (Γ ) for every u ∈ H, using (114) and Step 4 in Algorithm 1, it

is easy to see that for every u0, u1 ∈ H
1
2 (Γ ), the sequence {uk}k stays in the space H

1
2 (Γ ). Moreover, for

given yd, f ∈ Lp
∗
(Ω) with p∗ > 2, we have y ∈ W 1,p(Ω) and p(y, yd) ∈ W 2,p(Ω) for p ∈ (2, p∗] depending

on Ω, see e.g., [16][Theorem 3.4]. Hence, {uk}k ⊂ W 1− 1
p
,p

(Γ ) ⊂ C(Γ ) provided that u0, u1 ∈ W 1− 1
p
,p

(Γ ).

In this case uh0 , u
h
1 can be chosen as IΓh u0, IΓh u1 ∈ Hh where IΓh ∈ L(W

1− 1
p
,p

(Γ ),Hh) is the standard
interpolation operator.

4.2 Neumann Optimal Control for the Linear Wave Equation

Let us consider the optimal control problem

min
u∈L2(Σc)

J(u, y) :=
α1

2
‖y − yd‖2L2(Q) +

α2

2
‖y(T )− zd‖2L2(Ω) +

1

2
‖u‖2L2(Σc), (137)

subject to


ytt −∆y = f in Q,

∂νy = u on Σc,

y = 0 on Σ0,

y(0) = y1
0 , yt(0) = y2

0 on Ω,

(138)

where α1, α2, and β are positive constants, the desired state yd and the desired finial state zd are smooth
enough, Q := (0, T )×Ω, Σc := (0, T )× Γc, Σ0 := (0, T )× Γ0, and Ω ∈ Rn is a bounded domain with the
smooth boundary ∂Ω := Γc ∪ Γ0. Further, two disjoint components Γc, Γ0 are relatively open in ∂Ω.

Before investigating the optimal control problem, we recall some useful results for equation (138).
The operator A : L2(Ω) ⊃ D(A) → L2(Ω) defined by Ah = −∆h is a positive self-adjoint operator with
D(A) := {h ∈ H2(Ω), h|Γ0

= ∂νh|Γc = 0}. Thus, we define the spaces Hα
Γ0

(Ω) := D(A
α
2 ) for 0 ≤ α ≤ 1, and

by (Hα
Γ0

(Ω))∗ we denote the corresponding dual space. These spaces are used throughout this subsection.
We use the following notion of solution [58,59].

Definition 1 (Very weak solution) Let T > 0, and (y1
0 , y

2
0 , u, f) ∈ L2(Ω) × (H1

Γ0
(Ω))∗ × L2(Σc) ×

L2(0, T ; (H1
Γ0

(Ω))∗) be given. A function y ∈ L2(Q) is referred to as the very weak solution of (138), if the
following inequality holds

〈f, ϕ〉(L2(0,T ;(H1
Γ0

(Ω))∗),L2(0,T ;H1
Γ0

(Ω))) =

(g, y)L2(Q) + (y1
0 , ϕt(0))L2(Ω) − 〈y2

0 , ϕ(0)〉((H1
Γ0

(Ω))∗,H1
Γ0

(Ω)) − (u, ϕ)L2(Σ0)

(139)

for all g ∈ L2(Q), where ϕ(g) ∈ C0([0, T ];H1
Γ0

(Ω))∩C1([0, T ];L2(Ω)) is the weak solution of the following
backward in time problem 

ϕtt −∆ϕ = g in Q,

∂νϕ = 0 on Σc,

ϕ = 0 on Σ0,

ϕ(T ) = 0, ϕt(T ) = 0 on Ω.

We have the following existence and regularity results from [55,56,75] for the solution of (138).
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Lemma 10 For every (y1
0 , y

2
0 , u, f) ∈ L2(Ω)× (H1

Γ0
(Ω))∗ ×L2(Σc)×L2(0, T ; (H1

Γ0
(Ω))∗), equation (138)

admits a unique very weak solution y(y1
0 , y

2
0 , u, f) in the space C0([0, T ];L2(Ω)) ∩ C1([0, T ]; (H1

Γ0
(Ω))∗)

satisfying

‖y‖C0([0,T ];L2(Ω)) + ‖yt‖C0([0,T ];(H1
Γ0

(Ω))∗)

≤ c
(
‖y1

0‖L2(Ω) + ‖y2
0‖(H1

Γ0
(Ω))∗ + ‖u‖L2(Σc) + ‖f‖L2(0,T ;(H1

Γ0
(Ω))∗)

)
,

(140)

where the constant c1 is independent of y1
0, y2

0, u, and f . Moreover, the solution operator L : L2(Σc) →
C0([0, T ];H

1
2

Γ0
(Ω)) ∩C1([0, T ];H−

1
2 (Ω)) defined by u 7→ y(0, 0, u, 0) is bounded. Furthermore, the mapping

Π : L2(Ω) × (H1
Γ0

(Ω))∗ × L2(0, T ; (H1
Γ0

(Ω))∗) → C0([0, T ];L2(Ω)) ∩ C1([0, T ]; (H1
Γ0

(Ω))∗) defined by
(y1

0 , y
2
0 , f) 7→ y(y1

0 , y
2
0 , 0, f) is continuous.

By considering the following continuous embeddings

i1 : C0([0, T ];H
1
2

Γ0
(Ω)) ↪→ L2(Q), i2 : C0([0, T ];L2(Ω)) ↪→ L2(Q),

and the continuous operator δT : C0([0, T ];L2(Ω)) → L2(Ω) defined by y 7→ y(T ), we can rewrite the
optimal control problem (137)-(138) in the form (LS), where H := L2(Σc), X := L2(Q)× L2(Ω), and the
linear operator L : H → X and ψ ∈ X are defined as follows

Lu :=

(
α1(i1 ◦ L)(u)
α2(δT ◦ L)(u)

)
, ψ :=

(
α1yd − α1(i2 ◦Π)(y1

0 , y
2
0 , f)

α2zd − α2(δT ◦Π)(y1
0 , y

2
0 , f)

)
. (141)

Similarly to the previous subsection, the optimal control problem (137)-(138), can be also rewritten in the
form of (QP), where A := L∗L+ βI with L∗ : X ∗ → H, and b := L∗ψ. In addition, due the fact that the
operator A is uniformly positive, bounded, and self-adjoint, the existence and uniqueness of the solution
to optimal control problem (137)-(138) can be justified due the fact that A has a bounded inverse.

Remark 10 In the optimal control problem (137)-(138), the operator A is a compact perturbation of the
identity, since L : H → H is compact. Indeed, due to [74][Corollary 5.], the continuous embedding from the

space C0([0, T ];H
1
2

Γ0
(Ω)) ∩ C1([0, T ];H−

1
2 (Ω)) to the space C0([0, T ];L2(Ω)) is compact and this implies

the compactness of δT ◦ L and i1 ◦ L. Therefore, due to (141), L is compact with respect to the product
topology L2(Q)× L2(Ω).

Now assume that u∗ ∈ H is the optimal solution of the optimal control problem (137)-(138). Then, the
first-order optimality condition (EP) can be expressed as (115) where the operator L and the function ψ
were defined in (141). Moreover, it can be shown (see [53,58,68]) that (115) is equivalent to the condition
βu∗ = p∗ on Σc, where p∗ ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1

Γ0
(Ω)) is the weak solution of the following

linear wave equation 
p∗tt −∆p∗ = −α1(y∗ − yd) in Q,

∂νp
∗ = 0 on Σc,

p∗ = 0 on Σ0,

p∗(T ) = 0, p∗t (T ) = α2(y∗(T )− zd) on Ω,

and y∗ = y(y1
0 , y

2
0 , f, u

∗) is the very weak solution of (138).

4.3 Distributed Optimal Control for the Burgers Equation

Here we consider the following optimal control problem which consists of minimizing the performance index

J(y, u) :=
α1

2
‖y − yd‖2L2(Q) +

α2

2
‖y(T )− zd‖2L2(0,1) +

β

2
‖u‖2L2(Q̂), (142)

subject to the Burgers equation with homogeneous Dirichlet boundary condition.
yt − ϑyxx + yyx = Bu+ f, (t, x) ∈ Q,
y(t, 0) = y(t, 1) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, 1).

(143)
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where ϑ, β α1, α2, and T are positive constants, y(t) = y(t, x), u(t) = u(t, x), Q := (0, T ) × (0, 1), and
Q̂ = (0, T ) × Ω̂ where Ω̂ is an open subset of (0, 1). Moreover, y0 ∈ L2(0, 1), f ∈ L2(0, T ;H−1(0, 1)), the
desired states yd and zd are smooth enough, and the extension operator B ∈ L(L2(Ω̂), L2(0, 1)) is defined
by

(Bu)(x) =

{
u(x), x ∈ Ω̂,
0 x ∈ (0, 1)\Ω̂.

Considering the space

W (0, T ) := {φ : φ ∈ L2(0, T ;H1
0 (0, 1)), φt ∈ L2(0, T ;H−1(0, 1))}.

as the space of solutions, we have the following notion of weak solution.

Definition 2 Let (y0, u, f) ∈ L2(0, 1)×L2(Q̂)×L2(0, T ;H−1(0, 1)) be given. Then, a function y ∈W (0, T )
is referred as a weak solution to (143) if y(0) = y0 is satisfied in L2(0, 1) and for almost every t ∈ (0, T ),
the following equality

〈yt(t), ϕ〉H−1,H1
0

+ ϑ(y(t), ϕ)H1
0

+ b(y(t), y(t), ϕ) = 〈Bu(t) + f, ϕ〉H−1,H1
0

for all ϕ ∈ H1
0 (0, 1)

holds, where the continuous trilinear form b : H1
0 (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)→ R+ is defined as

b(ϕ,ψ, φ) =

∫ 1

0

ϕψxφdx for all ϕ,ψ, φ ∈ H1
0 (0, 1).

It is known that, for every triple (y0, u, f) ∈ L2(0, 1)×L2(Q̂)×L2(0, T ;H−1(0, 1)), equation (143) admits
a unique weak solution y(y0, u, f) ∈W (0, T ) and for this weak solution we have the following estimate

‖y‖W (0,T ) ≤ C
(
‖y0‖L2(Ω) + ‖u‖L2(Q̂) + ‖f‖L2(0,T ;H−1(0,1))

)2
, (144)

where the constant C depends only on T and ϑ. Now, by setting X = W (0, T )×H with H := L2(Q̂), and
Y := L2(0, T ;H−1(0, 1))× L2(0, 1), we define e : X → Y by

e(y, u) :=

(
yt − ϑyxx + yyx −Bu− f

y(0)− y0

)
.

The mapping e : X → Y consists of a sum of continuous linear terms and a continuous bilinear term. Hence
it can be shown that it is infinitely Fréchet differentiable. Moreover due to the unique solvability of (143),
for every u ∈ H there exists a unique element y = y(u) ∈ W (0, T ) satisfying e(y(u), u) = 0 and estimate
(144) holds. Therefore the control-to-state u ∈ H 7→ y(u) ∈ W (0, T ) is well-defined. Then we can rewrite
the optimal control problem (142)-(143) in the following form

min
u∈H
F(u) = min

u∈H
J(y(u), u) = min

(y,u)∈X
{J(y, u) : subject to e(y, u) = 0}. (145)

Further, due to estimate (144) and the compact embedding from the space W (0, T ) to the space L2(Q), it
follows from standard subsequential limit arguments that the optimal control problems (142)-(143) admits a
solution, see e.g., [76,78]. Before dealing with the optimality conditions, we refer to the following linearized
Burgers equation at y ∈W (0, T ) and its corresponding backward in time adjoint equation

qt − ϑqxx + (yq)x = φ (t, x) ∈ Q,
q(t, 0) = q(t, 1) = 0 t ∈ (0, T ),

q(0) = q0 x ∈ (0, 1),

(146)


−pt − ϑpxx − ypx = ψ (t, x) ∈ Q,
p(t, 0) = p(t, 1) = 0 t ∈ (0, T ),

p(T, x) = pT x ∈ (0, 1).

(147)
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It can be shown that for every pairs (φ, q0) and (ψ, pT ) in the space Y , the solution operators Sylin : Y →
W (0, T ) of (146), and Syadj : Y → W (0, T ) of (147) defined by (φ, q0) 7→ v and (ψ, pT ) 7→ p, respectively,
are well-defined and continuous. See e.g., [76,78].

Due to the definitions of Sy(u)
lin and ey(y(u), u), we can infer that e−1

y (y(u), u) = Sy(u)
lin and, as conse-

quence, ey(y, u) is continuously invertible. In addition, since e is infinitely continously Fréchet differentiable
[43], the implicit function theorem implies that the control-to-state operator u 7→ y(u) is infinitely contin-
uously Fréchet differentiable and its Fréchet derivatives of all orders are Lipschitz continuous on bounded
sets. Now we are in the position to derive the first-order optimality conditions. First, by using the implicit
function theorem, the first derivative of the mapping u 7→ y(u) at u in direction of an arbitrary δu ∈ H is
given by

y′(u)δu = −e−1
y (x)eu(x)δu, (148)

where x := (y(u), u) ∈ X. Then, by the chain rule we obtain

F ′(u)δu = (G(u), δu) = ((y′(u))∗Jy(x) + Ju(x), δu),

where (y′(u))∗ stands for the adjoint operator of y′(u). Since δu is arbitrary, the first-order optimality
condition (EP) can be written as

G(u∗) = Ju(x∗)− e∗u(x)e−∗y (x)Jy(x∗) = 0. (149)

where x∗ := (y(u∗), u∗). Moreover, by setting (p∗, p̄) := −e−∗y (x)Jy(x∗) with (p∗, p̄) ∈ Y ∗ and p̄ = p∗(0),
the first-order optimality condition (149) can be expressed as the following system of differential equations{

B∗p∗ = βu∗ in L2(Q̂),

p∗ = Sy(u∗)
adj (−α1(y(u∗)− yd),−α2((y(u∗))(T )− zd)).

Next, we compute the second derivative of F . Let (δu, δv) ∈ H × H be arbitrary, then using the implicit
functions theorem, the second derivative of the operator u 7→ y(u) from H to W (0, T ) can be written as

y′′(u)(δu, δv) = −e−1
y (x)eyy(x)(y′(u)δu, y′(u)δv). (150)

Now, by using the chain rule and (150) as in [42,43], we obtain

F ′′(u)(δu, δv) = 〈Jyy(x)y′(u)δu, y′(u)δv〉

+ 〈−e−∗y (x)Jy(x), eyy(x)(y′(u)δu, y′(u)δv)〉+ 〈Juu(x)δu, δv〉H.
(151)

Furthermore, due to the first estimate in (151) and the fact that J : H ×W (0, T ) → R and the control-
to-state operator are infinitely Fréchet differentiable, it follows, clearly, that F ′′ : H → L(H,L(H,R)) is
locally Lipschitz continuous. Then, the uniformly positiveness of F ′′(u∗) can be expressed as

F ′′(u∗)(v, v) : = α1‖q∗‖2L2(Q) + α2‖q∗(T )‖2L2(0,1) + (p∗, 2q∗q∗x)L2(Q) + β‖v‖2H
≥ δinf‖v‖2H for all v ∈ H,

(152)

where δinf > 0, p∗ := Sy(u∗)
adj (−α1(y(u∗)− yd),−α2((y(u∗))(T )− zd) and q∗ := Sy(u∗)

lin (v, 0).

Remark 11 Clearly, the only term in (152) that can spoil the uniformly positiveness of F ′′(u∗) is the term
involving p∗. This term originates from the nonlinear convection term in the state equation. Since∣∣∣(p∗, 2q∗q∗x)L2(Q)

∣∣∣ ≤ c‖p∗‖L2(0,T ;L∞(0,1))‖q∗‖2W (0,T )

for a constant c, the uniformly positiveness of F ′′(u∗) holds, provided that ‖p∗‖L2(0,T ;L∞(0,1)) is small
enough. Indeed, for p∗ = 0, inequality (152) holds for δinf := β . For instance, by setting yd = zd = f = 0,
inequality (152) holds for every initial function y0 with sufficiently small ‖y0‖L2(0,1).



30 Behzad Azmi, Karl Kunisch

5 Numerical Experiments

In order to validate our theoretical findings in the previous sections, we report numerical results correspond-
ing to the optimal control problems introduced in the previous section. We investigate the application of
Algorithm 1 with respect to different strategies for selecting step-sizes and different choices of the discretiza-
tion parameter h, the control cost parameter β, and the tolerance ε in the termination condition (96). For
Algorithm 1, we consider the cases:

BB1: αk := αBB1
k for every k ≥ 1.

BB2: αk := αBB2
k for every k ≥ 1.

ABB: αk :=

{
αBB1
k for odd k ≥ 1,

αBB2
k for even k ≥ 1.

The last case, which is known as the alternating strategy, has already been introduced by e.g., [21,34] in the
context of finite-dimensional unconstrained optimization. Moreover, [23] reports numerical results for the
case of finite-dimensional bound-constrained optimization problems which show that projected ABB works
somewhat better than projected BB1. According to (51) the value β in all the optimal control problems of
the previous section has a direct influence on the spectral condition number of AFu∗ corresponding to F .
To be more precise, as the value of β increases, the value of κ(AFu∗) is getting smaller. Therefore, as its
has been discussed in Remarks 2 and 4, one expects a larger total number of iterations for a smaller value
of β and a fixed tolerance ε. Moreover, according to Remark 6, the number ` depends on the behaviour
(monotonicity versus nonmonotonicity) of {‖Gk‖}k, and consequently also on κ(AFu∗). Hence, the smaller
β is chosen, the larger the value of ` is expected to be. We report the total number of iteration of the
optimization Algorithm for different levels of discretization, or equivalently, different values of mesh-sizes.
Then, for every example and fixed tolerance ε, ` is reported as the maximum of the pairwise differences of
kh(ε) for different choices of h. We have chosen u0 = 0 and α0 = 1 (u1 := −G(0)) as the initial iterates. All
computations were done in the MATLAB platform.

Example 1 (Dirichlet optimal control for the Poisson equation) We consider the problem introduced in
Subsection 4.1 which is posed on the domain Ω := (0, 1)2. For the discretization a uniform mesh was
generated by triangulation. Then over this mesh, the discretization was done by a conforming linear finite
element scheme using continuous piecewise linear basis functions as described in Subsubsection 4.1.2. We

set f(x) = 10 sin(π(x1 + x2)) and yd(x) = (x2
1 + x2

2)
1
3 where x := (x1, x2) ∈ Ω. Table 1 shows the number

of required iterations k∗h(ε) for different step-size strategies, and different values of β, ε, and the mesh-size
h. From Table 1, it can be observed that:

1. For every fixed h, ε, and choice of step-size, decreasing in the value of β implies that the number
of required iterations k∗h(ε) becomes larger and, thus, the convergence is getting slower. This is in
accordance with the fact that there is a trade-off between the magnitude of β and the value of κ(A)

where A = L∗L + βI with L specified in Subsubsection 4.1.1. More precisely, κ(A) =
β+δsup
β+δinf

with

δinf := inf(σ(L∗L)) and δsup := sup(σ(L∗L)). Hence a larger value of β yields a smaller value of κ(A).
That is as expected from the theory, for a larger β Algorithm 1 requires fewer iterations k∗h(ε) for every
fixed h and ε. This behaviour is clearly illustrated in Figure 1 which depicts the convergence of ‖Ghk ‖h
for the choice of BB1 step-sizes, h = 2−9

√
2, and different values of β. As can be seen from Figure

1, the convergence for the cases β = 0.5 and β = 0.2 is Q-linear. For these cases we might conjecture
that κ(A) < 2 with a smaller value of convergence rate γA for β = 0.5 compared to β = 0.2. However,
for the rest of the cases, nonmonotonic behaviour occurs, which corresponds to κ(A) ≥ 2. Apparently,
as β decreases, the nonmonotonic behaviour in the sequences {‖Gk‖}k and, consequently, in {‖Ghk ‖h}k
becomes stronger. As discussed in Remarks 2 and 4, if κ(A) becomes larger, then the changes in the
decreasing components |gki | (for instance i ∈ {0} ∪ {i : i ≥ nu}) are getting smaller compared to
the nondecreasing components. This explains why a decrease in the value β leads to an increase in
nonmonotonicity.

2. Mesh-independence can be observed from Table 1. More precisely, we can see that for every fixed β, ε,
and step-size strategy, the iterations kh(ε) stay almost constant and do not change as the discretezation
levels changes. Moreover, for β = 0.2, β = 0.05, and β = 0.01 we can state that ` ≈ 1, ` ≈ 3, and ` ≈ 6,
respectively. This is also due to the dependence of the spectrum of A = L∗L+ βI on the magnitude of
β (see Remark 6).
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Fig. 1 Convergence of ‖Ghk ‖h for Algorithm 1 applied to Example 1 with BB1 step-sizes, h = 2−9
√

2, and for different
choices of β

To further study the behaviour of Algorithms 1, we consider Table 2 which summarizes the values of
‖Ghk ‖h for the choice of β = 0.01, at the iterations k = 37, . . . , 45, and different levels of discretization. It
can be seen that in any case the sequence {‖Ghk ‖h}k has a nonmonotonic behaviour. For every case the
members of {‖Ghk ‖h}k at which the monotonicity of the sequence is violated, are indicated by bold type.
With the superscript star we denote the members corresponding to k∗h(ε) with ε = 1e− 8.

Example 2 (Neumann optimal control the for the linear wave equation) In this example, we deal with the
optimal control problem (137)-(138). Here, the spatial discretization has been done similarly to the previous
example on the domain Ω := (0, 1)2 with the mesh-size h. Further, for the temporal discretization of the
state equation we used a Petrov-Galerkin scheme based on continuous piecewise linear basis functions
for the trial space and piecewise constant test functions. By doing so, the resulting discretized system is
equivalent to the system first discretized in space followed by the Crank-Nicolson time stepping method
with a step-size ∆t. Since the temporal test functions have been chosen to be piecewise constant, it is
natural to also discretize the adjoint equation and also control by these functions. This implies that the
approximated gradient is consistent with both continuous functional and the discrete functional. Here we
set T = 1, y1

0(x) = sin(πx1) sin(πx2), y2
0(x) = 0, f(t, x) = π2 sin(πx1t) sin(πx2t), zd(x) = 0, and

yd(x, t) =

{
−x1 x1 < 0.5,

x1 x1 ≥ 0.5,

where x := (x1, x2) ∈ Ω. The Neumann control is applied on the subset Γc ⊂ ∂Ω given by {(1, x2) : x2 ∈
(0, 1)}∪{(x1, 1) : x1 ∈ (0, 1)}. In Figure 2, we report the behaviour of the gradient norm for Example 2 for
the choice of BB2 step-sizes, (∆t, h) = (0.0064, 2−7

√
2), and for different values of β. To illustrate the mesh-

independence, we reported the values of k∗∆t,h(ε) for different levels of temporal and spatial discretization.
As it is reported in Table 3, we decreased the mesh-size h and step-size ∆t simultaneously. Clearly, similar
observations as in the previous example are also valid for this example, with the difference that here for
β = 0.5, and β = 0.05, we have ` ≈ 0 and ` ≈ 6, respectively.

Example 3 (Distributed optimal control for the Burgers equation) We consider the optimal control problem
(142)-(143) posed on the interval (0, 1). The spatial discretization was done by the standard Galerkin
method based on piecewise linear basis functions with mesh-size h. For temporal discretization, we used
the implicit Euler method with a step-size denoted by ∆t. Moreover, the resulting nonlinear systems after
the temporal discretization were solved by Newton’s method with the tolerance εn = 10−13. Here the
control acts on the open interval Ω̂ = (0.1, 0.4). Moreover we set ϑ = 0.01, y0(x) = 5 exp(−20(x − 0.5)2),
and yd(t, x) = zd(x) = f(t, x) = 0. Similarly to the previous example, we compute the values of k∗∆t,h(ε)
for different levels of temporal and spatial discretization. These results are gathered in Table 4. Further,
Figure 3 shows the convergence of Algorithm 1 applied to Example 3, for the choice of ABB step-sizes,
(∆t, h) = (2−7, 2−8), and different values of β. As can be seen from Table 4 and Figures 3, despite the
nonlinearity the observations 1 and 2 from Example 1 hold also true for this example.
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The number of required iteration k∗h(ε)

β = 0.2

BB1

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 3 3 3 3 3 3
1e− 4 6 6 6 6 6 6
1e− 6 9 9 9 9 9 9
1e− 8 12 13 13 13 13 13

BB2

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 3 3 3 3 3 3
1e− 4 6 6 6 6 6 6
1e− 6 9 9 9 9 9 9
1e− 8 11 12 12 12 12 12

ABB

H
HHHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 3 3 3 3 3 3
1e− 4 6 6 6 6 6 6
1e− 6 9 9 9 9 9 9
1e− 8 12 12 13 13 13 13

β = 0.05

BB1

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 4 4 4 4
1e− 4 9 9 9 9 10 10
1e− 6 14 16 16 16 16 16
1e− 8 21 21 21 21 21 21

BB2

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 4 4 4 4
1e− 4 9 9 9 9 9 9
1e− 6 14 15 15 15 15 15
1e− 8 19 21 21 21 22 22

ABB

H
HHHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 4 4 4 4
1e− 4 9 9 9 9 9 9
1e− 6 14 14 15 16 16 16
1e− 8 18 21 21 21 21 21

β = 0.01

BB1

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 4 5 5 5
1e− 4 16 16 16 16 16 16
1e− 6 24 28 27 27 27 27
1e− 8 38 39 38 40 38 39

BB2

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 5 5 5 5
1e− 4 13 15 15 15 15 15
1e− 6 26 26 30 31 31 32
1e− 8 39 44 43 45 45 44

ABB

HH
HHHε

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

1e− 2 4 4 5 5 5 5
1e− 4 15 15 16 16 16 16
1e− 6 24 24 28 28 28 28
1e− 8 43 38 43 43 43 40

Table 1 Numerical results for Example 1

A Appendix

A.1 Proof of Proposition 8

For every k ≥ 1, we consider the sequence {α̂kj }j associated to {ûkj }j , which is defined by

α̂kj :=

{
α̂BB1k
j if αk+j = αBB1

k+j ,

α̂BB2k
j if αk+j = αBB2

k+j .
(153)
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The value of ‖Ghk ‖ at an iteration k

BB1

HHH
HHk
h

2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

37 1.29e− 8 1.59e− 8 3.96e− 8 5.25e− 7 1.90e− 7 1.98e− 7
38 9.22e− 9∗ 1.05e− 8 4.26e− 9∗ 1.03e− 7 9.69e− 9∗ 1.39e− 8
39 2.93e− 8 5.17e− 9∗ 3.78e− 9 5.93e− 8 3.88e− 9 8.75e− 9∗

40 1.05e− 7 1.38e− 9 2.38e− 9 7.21e− 9∗ 3.25e− 9 3.46e− 9
41 1.43e− 8 1.08e− 9 6.90e− 9 4.30e− 9 2.02e− 9 1.90e− 9
42 1.46e− 8 1.69e− 9 4.72e− 9 5.76e− 9 2.66e− 9 1.28e− 9
43 7.26e− 10 1.26e− 8 3.74e− 9 1.12e− 9 2.47e− 9 6.74e− 9
44 6.24e− 10 1.55e− 9 2.63e− 10 8.49e− 10 8.46e− 10 1.84e− 8
45 4.09e− 10 1.43e− 9 1.74e− 10 7.33e− 10 1.11e− 9 4.10e− 10

BB2

HH
HHHk

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

37 5.94e− 8 2.91e− 8 7.59e− 8 3.38e− 7 7.83e− 8 2.40e− 7
38 2.52e− 8 2.71e− 8 4.59e− 8 2.19e− 7 6.21e− 8 1.95e− 7
39 4.97e− 9∗ 1.78e− 8 1.28e− 8 2.08e− 7 5.32e− 8 3.46e− 8
40 4.06e− 9 2.87e− 8 1.38e− 7 1.71e− 7 4.72e− 8 2.61e− 7
41 3.52e− 9 6.00e− 8 4.12e− 8 6.06e− 8 1.77e− 8 4.37e− 8
42 4.08e− 9 2.13e− 8 2.63e− 8 1.13e− 6 2.12e− 7 1.40e− 8
43 3.36e− 9 1.23e− 8 1.02e− 9∗ 9.80e− 8 6.14e− 8 1.00e− 8
44 2.38e− 9 1.88e− 9∗ 7.07e− 10 4.43e− 8 1.64e− 8 2.19e− 9∗

45 2.67e− 9 1.78e− 9 4.10e− 10 9.39e− 9∗ 7.97e− 9∗ 2.00e− 9

ABB

HH
HHHk

h
2−5
√

2 2−6
√

2 2−7
√

2 2−8
√

2 2−9
√

2 2−10
√

2

37 5.10e− 8 1.57e− 8 2.93e− 8 3.44e− 8 3.83e− 8 2.55e− 8
38 2.70e− 8 7.44e− 9∗ 1.96e− 8 2.49e− 8 2.94e− 8 1.55e− 8
39 2.37e− 8 5.79e− 9 3.70e− 8 4.67e− 8 2.20e− 8 1.15e− 8
40 2.50e− 8 4.61e− 9 7.85e− 8 1.50e− 7 9.20e− 8 2.21e− 9∗

41 1.50e− 7 1.25e− 8 8.04e− 8 9.71e− 8 1.81e− 7 5.17e− 8
42 1.31e− 8 1.39e− 8 1.06e− 8 1.08e− 8 1.17e− 8 3.26e− 8
43 9.26e− 9∗ 8.82e− 9 2.66e− 9∗ 6.73e− 9∗ 6.90e− 9∗ 1.36e− 8
44 8.76e− 9 1.06e− 9 1.75e− 9 1.90e− 9 6.11e− 9 2.33e− 9
45 4.43e− 9 9.25e− 10 7.39e− 10 1.29e− 9 5.62e− 9 1.90e− 9

Table 2 The values of ‖Ghk ‖h related to Example 1 for β = 0.01 and iterations k = 37, . . . , 45
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Fig. 2 Convergence of ‖G∆t,hk ‖∆t,h for Algorithm 1 applied to Example 2 with BB2 step-sizes, (∆t, h) = (0.0064, 2−7
√

2),
and for different choices of β

for all j ≥ 1. We will show by induction that for every q ∈ {0, . . . ,m}, there exist positive constants λq and ηq such that{
If uk ∈ Bηq (u∗), αk ∈ [αinf , αsup], and if for some ` ∈ {0, . . . , q}, the property (78) holds,

then we have uk+j ∈ Bτ (u∗), and ‖uk+j − ûkj ‖ ≤ λq‖uk − u∗‖2 for all j ∈ {0, . . . , `}.
(Pq)

For the case that q = ` = 0 and the choice of η0 = τ and arbitrary λ0 > 0, property (Pq) holds clearly since ûk0 = uk.
For the case that q = 1, by using (75) and (77), we have

‖uk+1 − u∗‖ ≤ ‖uk − u∗‖+ ‖Sk‖ ≤ ‖uk − u∗‖+
1

|αk|
‖Gk‖ ≤ (1 +

αsup

αinf
)‖uk − u∗‖,

where Sk := uk+1 − uk. Hence, for η1 := τ

1+
αsup
αinf

, we obtain uk+1 ∈ Bτ (u∗). In the case q = 1 we have either ` = 0 or

` = 1. For ` = 0, (79) holds trivially. Therefore, we need to investigate (79) for ` = 1. By L1 and using the facts that
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The number of required iteration k∗∆t,h(ε)

β = 0.5

BB1

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 3 3 3 3 3
1e− 4 7 7 7 7 7
1e− 6 9 9 9 9 9
1e− 8 11 11 11 11 11

BB2

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 3 3 3 3 3
1e− 4 7 7 7 7 7
1e− 6 9 9 9 9 9
1e− 8 11 11 11 11 11

ABB

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 3 3 3 3 3
1e− 4 7 7 7 7 7
1e− 6 9 9 9 9 9
1e− 8 11 11 11 11 11

β = 0.05

BB1

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 7 7 7 7 7
1e− 4 14 14 14 14 14
1e− 6 21 21 21 24 24
1e− 8 28 29 28 29 29

BB2

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 5 5 5 5 5
1e− 4 12 15 15 15 15
1e− 6 19 21 21 21 21
1e− 8 24 25 25 26 26

ABB

PPPPPPPε
(∆t, h)

(0.01, 2−4
√

2) (0.04, 2−5
√

2) (0.016, 2−6
√

2) (0.0064, 2−7
√

2) (0.0026, 2−8
√

2)

1e− 2 5 7 7 7 7
1e− 4 14 14 14 14 13
1e− 6 21 22 24 23 23
1e− 8 28 31 34 29 28

Table 3 Numerical results for Example 2
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Fig. 3 Convergence of ‖G∆t,hk ‖∆t,h for Algorithm 1 applied to Example 3 with ABB step-sizes, (∆t, h) = (2−7, 2−8), and
for different choices of β

uk = ûk0 ∈ Bτ (u∗) and αk = α̂k0 , we can infer that

‖uk+1 − ûk1‖ ≤ ‖uk −
1

αk
G(uk)− (ûk0 −

1

α̂k0
Ĝ(ûk0))‖

≤
1

|αk|
‖G(uk)− Ĝ(ûk0)‖

≤
1

αinf
‖G(uk)−AFu∗ (uk − u∗)‖ ≤

L

αinf
‖uk − u∗‖2,

where Ĝ(u) = AFu∗ (u− u∗). This ends the justification of the induction basis by choosing λ1 := L
αinf

and η1 := τ

1+
αsup
αinf

.
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The number of required iteration k∗∆t,h(ε)

β = 0.5

BB1

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 4 4 4 4 4
1e− 4 8 8 9 9 9
1e− 6 11 11 11 11 11
1e− 8 13 14 14 14 14

BB2

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 4 4 4 4 4
1e− 4 8 8 8 8 8
1e− 6 10 11 11 11 11
1e− 8 14 14 14 14 14

ABB

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 4 4 4 4 4
1e− 4 8 8 9 9 9
1e− 6 11 12 10 10 10
1e− 8 13 13 14 14 14

β = 0.05

BB1

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 12 12 12 12 12
1e− 4 25 24 23 25 24
1e− 6 36 32 32 33 32
1e− 8 43 40 44 42 39

BB2

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 9 9 9 9 9
1e− 4 23 21 24 23 23
1e− 6 31 29 33 34 35
1e− 8 35 41 41 38 40

ABB

PPPPPPPε
(∆t, h)

(2−4, 2−5) (2−5, 2−6) (2−6, 2−7) (2−7, 2−8) (2−8, 2−9)

1e− 2 13 13 13 9 9
1e− 4 24 26 21 21 21
1e− 6 30 32 29 31 35
1e− 8 36 38 42 44 40

Table 4 Numerical results for Example 3

Now, let p be an integer with 2 ≤ p < m such that Property (Pq) holds for q = p and, constants λp and ηp. We will
show that this property holds for q = p+ 1, a positive constant λp+1 ≥ λp, and for the choice of

ηp+1 := min

{
1

4λp
, τ

(
1 +

αsup

αinf

)−(p+1)
}
, (154)

where due to (154), we obtain ηp+1 ≤ ηp.
Now assume that uk ∈ Bηp+1 (u∗) and αk ∈ [αinf , αsup]. First we investigate Property (Pq) for q = p + 1 and ` ≤ p.

That is, we assume that (78) holds for any given ` ≤ p and we show that (79) holds. In this case, since ηp+1 ≤ ηp, we can
use the induction hypothesis (Property (Pq) for q = p ) and conclude, for every j ∈ {0, . . . , `} and λp+1 ≥ λp, that

uk+j ∈ Bτ (u∗) and ‖uk+j − ûkj ‖ ≤ λp‖uk − u∗‖2 ≤ λp+1‖uk − u∗‖2, (155)

and, thus, (79) holds. In the remainder of the proof, we consider the case ` = p + 1. In this case uk ∈ Bηp+1 (u∗),
αk ∈ [αinf , αsup], and

‖ûkj − u∗‖ ≥
1

2
‖uk − u∗‖ for all j ∈ {0, . . . , p}, (156)

and we need to verify that uk+j ∈ Bτ (u∗) for j = {1, . . . , p+ 1} and

‖uk+j+1 − ûkj+1‖ ≤ λp+1‖uk − u∗‖2 for all j ∈ {0, . . . , p+ 1}. (157)

First, suppose that uk+j ∈ Bτ (u∗) for j = 1, 2, . . . , p. By (75) and (77), we have

‖uk+p+1 − u∗‖ ≤ ‖uk+p − u∗‖+ ‖Sk+p‖

≤ ‖uk+p − u∗‖+
1

|αk+p|
‖Gk+p‖ ≤ (1 +

αsup

αinf
)‖uk+p − u∗‖,

and, in a similar manner, it can be shown by induction that

‖uk+p+1 − u∗‖ ≤ (1 +
αsup

αinf
)p+1‖uk − u∗‖.
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Therefore, due to the definition of ηp+1, it follows that u` ∈ Bτ (u∗) for every ` ∈ {1, 2, . . . , p+ 1} and any uk ∈ Bηp+1 (u∗)
and αk ∈ [αinf , αsup]. It remains to verify (157). In fact, due to (156), the induction hypothesis, and the fact that ηq+1 ≤ ηq ,
(157) holds for any arbitrary λp+1 ≥ λp and j ≤ p . Hence, it suffices to show that

‖uk+p+1 − ûkp+1‖ ≤ λp+1‖uk − u∗‖2 (158)

for some λp+1 ≥ λp.
By using (2) and the triangle inequality, we obtain

‖uk+p+1 − ûkp+1‖ ≤ ‖uk+p −
1

αk+p
G(uk+p)− (ûkp −

1

α̂kp
Ĝ(ûkp))‖

≤ ‖uk+p − ûkp‖+
1

|α̂kp |
‖G(uk+p)− Ĝ(ûkp)‖

+

∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ ‖G(uk+p)‖.

(159)

From now on, we define c as a positive generic constant which depends only on τ , αinf , αsup and m , but not on k, and
the choice of αk and uk ∈ Bτ (u∗). We shall show that the following inequalities hold

1

|α̂kp |
‖G(uk+p)− Ĝ(ûkp)‖ ≤ c‖uk − u∗‖2, (160)∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ ‖G(uk+p)‖ ≤ c‖uk − u∗‖2. (161)

Verification of inequality (160): First, by adding and subtracting Ĝ(uk+p), using the triangle inequality, L1 and L2, we
obtain

‖G(uk+p)− Ĝ(ûkp)‖ ≤ ‖G(uk+p)− Ĝ(uk+p)‖+ ‖Ĝ(uk+p)− Ĝ(ûkp)‖

≤ ‖G(uk+p)−AFu∗ (uk+p − u∗)‖+ ‖AFu∗ (uk+p − ûkp)‖

≤ L‖uk+p − u∗‖2 + αsup‖uk+p − ûkp‖ ≤ c‖uk − u∗‖2,

(162)

where Ĝ(u) = AFu∗ (u− u∗). In the last estimate, we have used the induction hypothesis and the fact that

‖uk+p − u∗‖ ≤ ‖uk − u∗‖+

p−1∑
i=0

‖Sk+i‖ ≤

1 +

p∑
i=1

(
αsup

αinf

)i ‖uk − u∗‖
≤

1 +

m∑
i=1

(
αsup

αinf

)i ‖uk − u∗‖.
(163)

Now by using (162) and (76), we can infer that

1

|α̂kp |
‖G(uk+p)− Ĝ(ûkp)‖ ≤

1

αinf
‖G(uk+p)− Ĝ(ûkp)‖ ≤ c‖uk − u∗‖2.

Verification of inequality (161): Here we need only to show that∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ ≤ c‖uk − u∗‖. (164)

Then, thanks to (77), (163), and (164), we obtain∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ ‖G(uk+p)‖ ≤ cαsup‖uk − u∗‖‖uk+p − u∗‖ ≤ c‖uk − u∗‖2.

which implies (161).
Due to (153) we have only these two cases :

1. α̂kp = α̂BB1,k
p and αk+p = αBB1

k+p .

2. α̂kp = α̂BB2,k
p and αk+p = αBB2

k+p .

We investigate the first case. Due to (3), we have

1

αk+p
=

(Sk+p−1,Sk+p−1)

(Sk+p−1,Yk+p−1)
, and

1

α̂kp
=

(Ŝkp−1, Ŝkp−1)

(Ŝkp−1, Ŷkp−1)
. (165)
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Due to (156) and the induction hypothesis i.e., property (Pq) for q = p, we have

‖Sk+p−1 − Ŝkp−1‖ ≤ ‖uk+p − ûkp‖+ ‖uk+p−1 − ûkp−1‖ ≤ 2λp‖uk − u∗‖2, (166)

and, as a consequence, we obtain∣∣∣‖Sk+p−1‖2 − ‖Ŝkp−1‖2
∣∣∣ ≤ ∣∣∣2(Sk+p−1,Sk+p−1 − Ŝkp−1)− ‖Ŝkp−1 − Sk+p−1‖2

∣∣∣
≤ c‖uk − u∗‖3.

(167)

Further, by (76), (156), we have

‖Ŝkp−1‖ =
1

|α̂kp−1|
‖Ĝkp−1‖ ≥

1

αsup
‖AFu∗ (ûkp−1 − u∗)‖ ≥

αinf

αsup
‖(ûkp−1 − u∗)‖

≥
αinf

2αsup
‖(ûk0 − u∗)‖ =

αinf

2αsup
‖(uk − u∗)‖.

(168)

From (167) and (168), it follows that ∣∣∣∣∣∣1− ‖Sk+p−1‖2

‖Ŝkp−1‖2

∣∣∣∣∣∣ ≤ c‖uk − u∗‖. (169)

Now observe that

(Sk+p−1,Yk+p−1)− (Ŝkp−1, Ŷkp−1) = (Sk+p−1,Yk+p−1 − Ŷkp−1) + (Sk+p−1 − Ŝkp−1, Ŷkp−1)

= (Sk+p−1,Yk+p−1 − Ŷkp−1) + (Sk+p−1 − Ŝkp−1,AFu∗ Ŝ
k
p−1).

(170)

Using (166) and L2, we obtain∣∣∣(Sk+p−1 − Ŝkp−1,AFu∗ Ŝ
k
p−1)

∣∣∣
=
∣∣∣(Sk+p−1 − Ŝkp−1,AFu∗Sk+p−1)− (Sk+p−1 − Ŝkp−1,AFu∗ (Sk+p−1 − Ŝkp−1))

∣∣∣
≤ c‖uk − u∗‖3,

(171)

and, by (162) and the induction hypothesis, we have∣∣∣(Sk+p−1,Yk+p−1 − Ŷkp−1)
∣∣∣ ≤ ‖Sk+p−1‖(‖Gk+p − Ĝkp‖+ ‖Gk+p−1 − Ĝkp−1‖) ≤ c‖uk − u∗‖3. (172)

Hence, using (170), (171), and (172), we have∣∣∣(Sk+p−1,Yk+p−1)− (Ŝkp−1, Ŷkp−1)
∣∣∣ ≤ c‖uk − u∗‖3. (173)

Moreover, by using L2, (75), (77), and the facts that uk+p, uk+p−1 ∈ Bτ (u∗) and αk ≤ αsup for all k ≥ 1, we can write
that

(Sk+p−1,Yk+p−1) = (Sk+p−1,Gk+p − Gk+p−1)

≥ αinf‖Sk+p−1‖2 = αinf

∣∣∣∣∣ 1

αk+p−1

∣∣∣∣∣
2

‖Gk+p−1‖2

≥
αinf

α2
sup

‖Gk+p−1‖2 =
αinf

α2
sup

‖G(uk+p−1)− G(u∗)‖2

≥
α3

inf

α2
sup

‖uk+p−1 − u∗‖2.

(174)

Further, by L2, the definition of ηp+1 in (154), (156) and (Pq) with q = p, we have

‖uk+p−1 − u∗‖2 ≥
1

2
‖ûkp−1 − u∗‖2 − ‖uk+p−1 − ûkp−1‖2

≥
1

8
‖ûk0 − u∗‖2 − λ2

p‖uk − u∗‖4

≥ (
1

8
− λ2

pη
2
p+1)‖uk − u∗‖2 =

1

16
‖uk − u∗‖2,

(175)

Combining (174) and (175) we have

(Sk+p−1,Yk+p−1) ≥
α3

inf

α2
sup

‖uk+p−1 − u∗‖2 ≥
α3

inf

16α2
sup

‖uk − u∗‖2. (176)
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From (173) and (176) we can write ∣∣∣∣∣∣1− (Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)

∣∣∣∣∣∣ ≤ c‖uk − u∗‖. (177)

Now, observe that by (165)

∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ ≤
∣∣∣∣∣∣ (Sk+p−1,Sk+p−1)

(Sk+p−1,Yk+p−1)
−

(Ŝkp−1, Ŝkp−1)

(Ŝkp−1, Ŷkp−1)

∣∣∣∣∣∣
=

1

|α̂kp |

∣∣∣∣∣∣∣1−
 (Sk+p−1,Sk+p−1)

(Ŝkp−1, Ŝkp−1)

 (Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)


∣∣∣∣∣∣∣

≤
1

αinf

∣∣∣∣∣∣∣1−
 (Sk+p−1,Sk+p−1)

(Ŝkp−1, Ŝkp−1)

 (Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)


∣∣∣∣∣∣∣

=
1

αinf

∣∣φ1(1− φ2) + φ2

∣∣ ≤ 1

αinf
(|φ1|+ |φ2|+ |φ1φ2|),

(178)

where

φ1 := 1−
(Sk+p−1,Sk+p−1)

(Ŝkp−1, Ŝkp−1)
and φ2 := 1−

(Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)
. (179)

By (169), (177), (178), and (179), we can infer that estimate (164) holds for the case that αk+p = αBB1
k+p and α̂kp =

α̂BB1,k
p are chosen.

Now we deal with the second case, i.e., αk+p = αBB2
k+p and α̂kp = α̂BB2,k

p . First due to (3), we have

1

αk+p
=

(Sk+p−1,Yk+p−1)

(Yk+p−1,Yk+p−1)
, and

1

α̂kp
=

(Ŝkp−1, Ŷkp−1)

(Ŷkp−1, Ŷkp−1)
.

By using the fact that uk+p, uk+p−1, û
k
p−1, û

k
p ∈ Bτ (u∗), and the hypothesis of induction which is applicable due (156),

we can write

‖Yk+p−1 − Ŷkp−1‖ ≤ ‖Gk+p − Ĝkp‖+ ‖Gk+p−1 − Ĝkp−1‖ ≤ c‖uk − u∗‖2. (180)

In addition, by using (77), (163), and the triangle inequality we obtain

‖Yk+p−1‖ = ‖Gk+p − Gk+p−1‖ ≤ ‖Gk+p − G(u∗)‖+ ‖Gk+p−1 − G(u∗)‖
≤ αsup

(
‖uk+p − u∗‖+ ‖uk+p−1 − u∗‖

)
≤ c‖uk − u∗‖.

(181)

From (180), (181), we deduce∣∣∣‖Yk+p−1‖2 − ‖Ŷkp−1‖2
∣∣∣ ≤ ∣∣∣(Yk+p−1,Yk+p−1 − Ŷkp−1) + (Yk+p−1 − Ŷkp−1, Ŷkp−1)

∣∣∣
≤ ‖Yk+p−1‖‖Yk+p−1 − Ŷkp−1‖+ ‖Ŷkp−1‖‖Yk+p−1 − Ŷkp−1‖

≤ c‖uk − u∗‖3,

(182)

where in the last line we have used the fact that

‖Ŷkp−1‖ ≤ ‖Yk+p−1 − Ŷkp−1‖+ ‖Yk+p−1‖. (183)

Furthermore, by using L1, (76), (168), and (183), we obtain

‖Ŷkp−1‖ = ‖AFu∗ Ŝ
k
p−1‖ ≥ αinf‖Ŝkp−1‖ ≥

α2
inf

2αsup
‖(uk − u∗)‖, (184)

and, as a consequence, it follows from (182) and (184) that∣∣∣∣∣∣1− ‖Yk+p−1‖2

‖Ŷkp−1‖2

∣∣∣∣∣∣ ≤ c‖uk − u∗‖. (185)



BB-Method for Optimization Problems in Hilbert Spaces 39

Now similarly to the case for BB1, by (75) we can write∣∣∣∣∣ 1

αk+p
−

1

α̂kp

∣∣∣∣∣ =

∣∣∣∣∣∣ (Sk+p−1,Yk+p−1)

(Yk+p−1,Yk+p−1)
−

(Ŝkp−1, Ŷkp−1)

(Ŷkp−1, Ŷkp−1)

∣∣∣∣∣∣
=

1

|αk+p|

∣∣∣∣∣∣∣1−
 (Yk+p−1,Yk+p−1)

(Ŷkp−1, Ŷkp−1)

 (Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)


∣∣∣∣∣∣∣

≤
1

αinf

∣∣∣∣∣∣∣1−
 (Yk+p−1,Yk+p−1)

(Ŷkp−1, Ŷkp−1)

 (Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)


∣∣∣∣∣∣∣

=
1

αinf

∣∣φ1(1− φ2) + φ2

∣∣ ≤ 1

αinf
(|φ1|+ |φ2|+ |φ1φ2|),

(186)

where

φ1 := 1−
(Yk+p−1,Yk+p−1)

(Ŷkp−1, Ŷkp−1)
and φ2 := 1−

(Ŝkp−1, Ŷkp−1)

(Sk+p−1,Yk+p−1)
. (187)

By (177), (185), (186), and (187), we can infer that (164) holds for the case BB2.

Hence, we are finished with the verification of (161). Now from (159), (160), and (161), estimate (158) follows and, thus,
the property (Pq) holds for q = p+ 1. Since m is fixed and finite, we can choose λ and η independent of k and `, and, thus
the proof is complete.
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