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Abstract

A learning approach for selecting regularization parameters in multi-penalty Tikhonov
regularization is investigated. It leads to a bilevel optimization problem, where the
lower level problem is a Tikhonov regularized problem parameterized in the regular-
ization parameters. Conditions which ensure the existence of solutions to the bilevel
optimization problem are derived, and these conditions are verified for two relevant
examples. Difficulties arising from the possible lack of convexity of the lower level
problems are discussed. Optimality conditions are given provided that a reasonable
constraint qualification holds. Finally, results from numerical experiments used to
test the developed theory are presented.

Key words. parameter learning, Tikhonov regularization, bilevel optimization, multi-
penalty regularization

1 Introduction
Tikhonov regularization is a well-known method for regularization of ill-posed inverse
problems, see e.g. [3, 14, 27, 23, 31, 32]. Given only a noisy measurement yδ of some
outcome y† ∈ Y , and assuming that the inverse problem consists in finding u† ∈ Uad such
that

S(u†) = y†, (1.1)
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where S is a mapping from a subset Uad of a Banach space U to a Banach space Y , in
(generalized) Tikhonov regularization a solution to (1.1) is approximated by solving

min
u∈Uad

Jα,yδ(u) ≡ ‖S(u)− yδ‖2 + α ·Ψ(u), (Pα,yδ)

for suitable choices of i) a discrepancy function, here chosen to measure a squared norm
distance to the noisy measurement, ii) a (vector valued) penalty function Ψ: U → [0,∞]r,
and iii) a vector of regularization parameters α ∈ (0,∞)r. Regularization parameters are
used to balance the relative importance of the discrepancy and the penalty term.

Which discrepancy and penalty functions should be chosen depends heavily on the
specific application. For choosing the regularization parameters, many general strategies
have been proposed. They are usually divided into a posteriori, a priori, and heuristic
parameter choice strategies. When discussing parameter choice strategies, it is frequently
assumed that a noise level δ > 0 such that ‖y† − yδ‖2 ≤ δ is known. A posteriori strate-
gies determine regularization parameters based on knowledge of the noisy measurement
and the noise level. A famous example for an a posteriori parameter choice strategy is
Morozov’s discrepancy principle, where regularization parameters are chosen such that for
solutions to (Pα,yδ) the discrepancy is of the same order as the noise level, see e.g. [14,
Section 4.3]. In a priori strategies, regularization parameters are chosen depending only
on the noise level. A popular a priori strategy is to choose regularizations parameters
as certain powers of the noise level, which, under reasonable assumptions, implies that
solutions to (Pα,yδ) converge to so-called Ψ-minimum solutions as the noise level vanishes
and α goes to zero. We refer to [14, Theorem 10.3] for more details. Heuristic strategies
determine regularization parameters based solely on the noisy measurement. Prominent
examples for heuristic strategies are the L-curve method [18, 19], and generalized cross
validation [15]. Most of the existing parameter choice strategies address the case of a sin-
gle regularization parameter, or, in cases where generalizations for determining multiple
regularization parameters exist, become quite involved when one has to deal with a larger
number of parameters.

The learning problem In this paper we consider a basic learning approach for se-
lecting regularization parameters. The idea is to choose these parameters based on their
performance on a training set. In the simplest case, the training set consists of a single
vector (y†, u†, yδ), where (u†, y†) is a ground truth input-output pair, i.e.

S(u†) = y†.

and yδ is the noisy measurement of y† usually available in practice. Given such data, for
every choice of α we can compute the distance between solutions uα to the regularized
problem (Pα,yδ) and the ground truth u†. This is used in the learning process where we
aim at finding the regularization parameter α∗ for which a solution uα∗ to (Pα∗,yδ) has
minimal distance to the ground truth u† over all parameters within a parameter interval
[
¯
α, ᾱ], where 0 <

¯
α < ᾱ <∞ are a-priori chosen r-dimensional bounds. This leads to the

following problem:

” min ”
α∈[

¯
α,ᾱ]
‖u† − uα‖2 s.t. uα ∈ arg min

u∈Uad
‖S(u)− yδ‖2 + α ·Ψ(u). (1.2)

The quotation marks are used, since, if solutions to the Tikhonov regularized problems
(Pα,yδ) are not unique, then it is not a-priori clear which solutions to choose. One pos-
sibility to overcome this difficulty is to look for α such that the minimal distance to the
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ground truth solution over all solutions to (Pα,yδ) is small. This is called the optimistic
position and leads to the following problem:

min
α∈[

¯
α,ᾱ]

min
uα∈Uad

‖u† − uα‖2 s.t. uα ∈ arg min
u∈Uad

‖S(u)− yδ‖2 + α ·Ψ(u). (1.3)

Another possibility is to look for α such that the maximal distance to the ground truth
solution over all solutions to (Pα,yδ) is small. This is called the pessimistic position and
amounts to the following problem:

min
α∈[

¯
α,ᾱ]

max
uα∈Uad

‖u† − uα‖2 s.t. uα ∈ arg min
u∈Uad

‖S(u)− yδ‖2 + α ·Ψ(u). (1.4)

Here, we only consider the optimistic position (1.3). From now on we call (1.3) the learning
problem, since regularization parameters should be learned by solving it. Conceptually,
the learning problem is an optimization problem in two variables, which is constrained
by requiring that one variable is a solution to a lower level (optimization) problem which
is parametrized in the other variable. In the literature, problems of this type are called
bilevel optimization problems, see e.g. [13]. If the training set consists of multiple data
vectors {(y†k, u†k, yδk)}Nk=1, we determine regularization parameters as solutions to

min
α∈[

¯
α,ᾱ]

min
ukα∈Uad, 1≤k≤N

N∑
k=1
‖u† − ukα‖2 s.t. ukα ∈ arg min

u∈Uad
‖S(u)− yδk‖2 + α ·Ψ(u). (1.5)

In this work, except for the numerical experiments, we only analyze the single data case
(1.3). However, the generalization to the case of multiple data vectors is straightforward,

for instance, by considering the product spaces
N∏
k=1

U and
N∏
k=1

Y instead of U and Y ,

respectively.

Related work In terms of learning theory, the discussed method can be viewed as a
supervised learning approach. From the large amount of work on supervised learning,
we discuss only selected papers which are closest to our approach. The present work is
motivated by a parameter learning method for variational image denoising models that
has been studied in [24]. There, both smooth quadratic and non smooth `1 and ` 1

2
type

penalty functionals are analyzed in a finite dimensional setting. For efficient numerical
treatment of the non smooth problems, semi smooth Newton methods are proposed. In a
similar approach presented in [11], a bilevel problem is solved to learn suitable discrepancy
functions. In the statistical sense, this can be interpreted as learning the noise model.
The basic idea is to assume that the discrepancy function can be written as a sum of
discrepancy terms, parametrized by (possibly spatially dependent) weights. The weights
are then chosen based on their performance on a training set.

Following these works, learning regularization parameters for infinite dimensional prob-
lems is studied in [12], with a particular emphasis on image restoration problems. The
authors prove the existence of solutions for a general class of non smooth regularization
operators. Moreover, for a particular class of non smooth penalty functionals (that encom-
passes total variation, total generalized variation, and infimal-convolution total variation),
it is shown that optimal regularization parameters are strictly positive under suitable as-
sumptions. Numerical results are only presented for a finite set of admissible regulariza-
tion parameters. However, in a follow up work [10], using a regularized version of the
non smooth penalty functionals, an optimality system is derived. This optimality system
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is then used to perform numerical experiments in which the quality of obtained image
reconstructions using optimal regularization parameters is compared for different choices
of penalty functions. Finally, in [6], instead of regularizing the non-smooth lower level
problem, it is suggested to replace the lower level problem constraint by a differentiable
update rule, which is given as the n-th step in an iterative procedure to determine an
approximate solution to the lower level problem.

Prior to the above mentioned works, the problem of learning optimal spectral filters
for finite dimensional inverse problems was studied in [8]. This approach contains learning
regularization parameters for standard Tikhonov regularization as a special case. To
evaluate the performance of spectral filters, the authors use a variety of performance
measures. Morever, they give a statistical motivation for their approach, which can be
seen as average empirical (Bayes) risk minimization. This work was extended in [9] to
include generalized Tikhonov regularization.

The problem of choosing penalty functionals from a parametrized class of functions,
based on training data, is studied in [17]. In this work, the authors compare the learning
approach to the Bayesian approach, for which a learning strategy could be used to estimate
the prior probability density function. Finally, we would like to mention that our method
is loosely related to the problem of determining an optimal experimental design, which,
in the context of ill-posed inverse problems, is studied e.g. in [16, 30].

Contributions We extend the approach presented and further developed in [24] and
[12, 10, 9], respectively, to the class of inverse problems, where the aim is to determine
coefficients or controls in partial differential equations (PDEs). One of the novelties of
this paper is, that in addition to continuous linear operators S with non closed range,
we consider the case where S is nonlinear and Uad 6= U . Moreover, in our context, S is
typically only given as an implicit function, which we incorporate by assuming the relation

y = S(u) if and only if e(y, u) = 0 for (y, u) ∈ Y × Uad.

Here, the state equation e : Y × Uad → Z corresponds to the weak-form of a PDE and Z
is another Banach space. We state our hypotheses directly in terms of the state equation
to facilitate the use of the presented results in practice.

A first contribution concerns the existence of solutions to the learning problem (1.3).
We prove that existence of solutions can be established under essentially the same condi-
tions which are typically needed to ensure that the lower level problem is well-posed. To
emphasize this, we first recall some standard results and assumptions needed to show that
the lower level problems has a desired structure. Then, we use these structural properties
to give a simple proof for the existence of solutions.

A main contribution concerns the derivation of an optimality system. The main dif-
ficulty here is the non standard constraint, that feasible points must be solutions to the
lower level problem. In cases where there are no control constraints, i.e. Uad = U , and the
lower level is convex and smooth, this difficulty can be overcome by utilizing that points
are solutions to the lower level problem if and only if they satisfy a first order optimality
condition, which in turn can be written as an equality constraint. However, in our context
the lower level problem can not be expected to be convex, and thus the usual first order
optimality conditions are no longer sufficient. For this reason, some additional work is
required. Our approach can be summarized as follows: First, we provide a theorem which
relates the learning problem (1.3) to a reformulation, in which the first order optimality
condition of the lower level problem arises as a constraint. To be more precise, we show
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that under reasonable assumptions, a solution to the learning problem is at least a lo-
cal solution to the reformulation. As a consequence, the problem of finding optimality
conditions for the learning problem is reduced to finding optimality conditions for local
solutions to the reformulation. To obtain optimality conditions for the reformulation, we
use a Lagrange multiplier approach. For both, deriving optimality conditions and relating
the learning problem to its reformulation, second order sufficient optimality conditions of
the lower level problem are used. This is a natural requirement for such results.

We demonstrate the applicability of our assumptions by verifying them for two ex-
amples of PDE constrained optimization problems. In the first example, S is the linear
solution operator to

− γ∆y + y = u in Ω, and y = 0 on ∂Ω, (1.6)
for a given γ > 0. Choosing quadratic penalty functionals, the corresponding lower level
problem is smooth and convex, and as we will see, the assumptions of our main results
can be verified in a straightforward manner. In the second example, S is the non-linear
solution operator to

−∇ · (u∇ y) = f in Ω, and y = 0 on ∂Ω, (1.7)
where f ∈ L2(Ω) is a given function. For the reader interested in practical applications
of parameter estimation in PDEs we refer to [4] and the references mentioned therein.
While the requirements for existence of solutions can be verified relatively easily, ensuring
the requirements for the results needed to derive optimality conditions is much harder for
this constraint. For this purpose, we present a criterion involving the adjoint state of a
critical point of the lower level problem, which, if satisfied, guarantees that all necessary
requirements hold. This criterion can be interpreted as a smallness condition on the
discrepancy.

Finally, we provide a numerical validation of our approach. Thereby we compute
optimal regularization parameters for weighted H1 regularization of the above examples.
Additionally, for the first example, we create large training and validation sets to test how
well learned regularization parameters are performing on structurally related data.

Structure of the work In Section 2 we provide a precise statement of the learning
problem and introduce some notation. In Section 3 we recall some basic properties of
the lower level problem, i.e. of the Tikhonov regularized problem. These properties
are in turn used in Section 4 to show that the learning problem has a solution under
standard assumptions. In Section 5 we discuss the derivation of optimality conditions for
the learning problem. Examples for possible applications are given in Section 6. Results
from numerical experiments are presented in Section 7. In Section 8, we round off our
contributions with a brief discussion of possible future work.

2 Problem statement
In the following we present the general setting of the learning problem to be considered
in this work.

(LP)



min
α∈[

¯
α,ᾱ], (yα,uα)∈Y×Uad

‖uα − u†‖2Ũ subject to

(yα, uα) ∈ arg min
u∈Uad
y∈Y

{
1

2m
m∑
j=1
‖y − yδj‖2Ỹ + α ·Ψ(u) | e(y, u) = 0

}
,
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where m, r ∈ N, and

• Uad is a subset of a reflexive Banach space U ,

• Y is a reflexive Banach space,

• Ũ is a Hilbert space such that U is continuously embedded in Ũ ,

• Ỹ is a Hilbert space such that Y is continuously embedded in Ỹ ,

• u† ∈ Ũ is the ground truth control, and yδj ∈ Ỹ , 1 ≤ j ≤ m, are noisy measurements
of the ground truth state,

• e : Y × Uad → Z represents equality constraints in a reflexive Banach space Z,

• Ψi : U → [0,∞], 1 ≤ i ≤ r, are penalty functionals, and

Ψ := (Ψ1, . . . ,Ψr)T ,

•
¯
α, ᾱ ∈ Rr are bounds for the regularization parameters with

0 <
¯
α ≤ ᾱ <∞,

where the inequalities should be understood element wise.

Instead of working with an explicit solution operator S, we consider a more general implicit
formulation by requiring that for feasible (y, u) ∈ Y × Uad it holds that

e(y, u) = 0. (2.1)

If for each u ∈ Uad there exists a unique y ∈ Y such that (2.1) holds, then a solution
operator S can be defined by setting

y = S(u) if and only if e(y, u) = 0 for (y, u) ∈ Y × Uad.

The so-called lower level problem

(Pα,yδ)


min

(y,u)∈Y×U
Jα,yδ(y, u) ≡ 1

2m
m∑
j=1
‖y − yδj‖2Ỹ + α ·Ψ(u) subject to

u ∈ Uad and e(y, u) = 0,

which depends on the parameter α ∈ [
¯
α, ᾱ], is a multi-penalty Tikhonov regularized inverse

problem. We let

Fad := {(y, u) ∈ Y × U | u ∈ Uad and e(y, u) = 0}

denote the set of feasible points of the lower level problem. To fix ideas, typical choices
for the used spaces are

U = H1(Ω), Y = H1
0 (Ω), Ỹ = L2(Ω), Ũ = L2(Ω),

where Ω is a bounded Lipschitz domain. Concrete examples for the state equation are
given in Section 6.
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2.1 Basic assumptions

The following assumptions are frequently invoked throughout this work.

(H1) The feasible control set Uad is convex and closed in U .

(H2) The feasible set of the lower level problem Fad is non-empty.

(H3) For every sequence (yn, un) in Y × Uad and (ȳ, ū) ∈ Y × Uad such that

e(yn, un) = 0 for all n ∈ N, and (yn, un) ⇀ (ȳ, ū),

it follows that
e(ȳ, ū) = 0.

(H4) For every sequence (yn, un) in Fad it holds that if (un) is bounded in U , then (yn) is
bounded in Y .

(H5) The function
r∑
i=1

Ψi

is coercive on U and proper on Fad.

(H6) The penalty functionals Ψi, 1 ≤ i ≤ r, are weakly lower semi continuous on U .

3 The lower level problem
When we discuss existence of solutions and optimality conditions for the learning problem
in Section 4 and 5, respectively, we frequently make use of basic properties of the lower
level problem. In this section these properties are derived. Throughout this section we
always assume that α ∈ [

¯
α, ᾱ].

3.1 Existence of solutions

Proposition 3.1 (Existence of solutions) If (H1)–(H6) hold, then (Pα,yδ) has a solution.

Proof. By (H1) the set Y ×Uad is closed and convex, and thus weakly closed [5, Theorem
3.7 on p.60]. It is then a direct consequence of (H3) that Fad is weakly sequentially closed.
From (H4)–(H5) and the assumption that α > 0, it follows that Jα,yδ is coercive on Fad.
The mapping

(y, u) 7→ 1
2m

m∑
j=1
‖y − yδj‖2Ỹ

is weakly lower semi continuous as a convex continuous function [5, Corollary 3.9 on p.61].
In combination with (H6) this implies that Jα,yδ is weakly lower semi continuous on Y ×U .
Since it is well-known that a weakly lower semi continuous and coercive function attains
a minimum on a non empty and weakly sequentially closed subset of a reflexive Banach
space, the proof is complete.

Remark 3.1. As an immediate consequence of Proposition 3.1, we obtain that the feasible
set of the learning problem (LP) is non empty.
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3.2 Stability

One of the reasons for regularizing an inverse problem is lack of stability with respect to
the data. It is thus expected that stability, at least in some sense, holds for the Tikhonov
regularized problem (Pα,yδ). Indeed, as stated below in Corollary 3.1, stability can be
guaranteed under reasonable assumptions. Before we begin working towards this result,
we need to clarify what we mean by stability (in particular in the context of problems
with possibly non unique solutions).

Definition 3.1 (Stability with respect to the data) We say that (Pα,yδ) is stable with
respect to the data if and only if the following holds: (Pα,yδ) has a solution for every
(α, yδ) ∈ [

¯
α, ᾱ]× Ỹ m, and for every sequence (yδn) in Ỹ m such that

yδ
n → yδ,

it follows that every sequence (yn, un) of corresponding solutions to (Pα,yδn) has an accu-
mulation point, and every such accumulation point is a solution to (Pα,yδ).

Remark 3.2. If (Pα,yδ) has a unique solution, then it is straightforward to verify that
stability with respect to the data is equivalent to requiring that every sequence (yn, un)
as in Definition 3.1 is converging to the unique solution of (Pα,yδ).

Recall that in the learning problem we minimize the distance to the ground truth
control over the set of all feasible regularization parameters and corresponding solutions
to the lower level problem. It is useful to know whether the lower level problem is stable
with respect to the regularization parameters.

Definition 3.2 (Stability with respect to the regularization parameters) We say that
(Pα,yδ) is stable with respect to the regularization parameters if and only if the following
holds: (Pα,yδ) has a solution for every (α, yδ) ∈ [

¯
α, ᾱ]× Ỹ m, and for every sequence (αn)

in [
¯
α, ᾱ] such that

αn → α,

it follows, that every sequence (yn, un) of corresponding solutions to (Pαn,yδ) has an ac-
cumulation point, and every such accumulation point is a solution to (Pα,yδ).

As a first step towards showing stability, we prove the following lemma, which states
that under standard assumptions at least weak stability can be guaranteed with respect
to both the data and the regularization parameters.

Lemma 3.1 (Weak stability) Assume that (H1)–(H6) hold, and let (αn, ynδ ) be a sequence
in [

¯
α, ᾱ]× Ỹ m such that

(αn, ynδ )→ (α, yδ).

Then every sequence (yn, un) of solutions to (Pαn,yδn) has a subsequence (ynk , unk) con-
verging weakly to a solution (ȳ, ū) of (Pα,yδ), and

lim
k→∞

Ψ(unk) = Ψ(ū).

Proof. A proof is given in the Appendix.

Strong convergence as in Definition 3.1 and 3.2, and thus stability, can be achieved if
the following additional assumptions are satisfied.
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(H7) For every sequence (un) in U and u ∈ U it holds that, if

un ⇀ u and Ψ(un)→ Ψ(u),

then it follows that un → u.

(H8) For each u ∈ Uad there exists a unique y(u) ∈ Y such that

e(y(u), u) = 0,

and the mapping
u 7→ y(u)

is continuous from Uad to Y .

Remark 3.3. Condition (H7) is known to hold, for instance, if

‖ · ‖U =
r∑
i=1

Ψi

and U is a uniformly convex Banach space [5, Proposition 3.32. on p.78]. Note that every
Hilbert space is a uniformly convex Banach space.

The following corollary, which, under reasonable assumptions, guarantees stability for
the lower level problem, summarizes the considerations in this subsection.

Corollary 3.1 (Stability) If (H1)–(H8) hold, then (Pα,yδ) is stable with respect to both
the data and the regularization parameters.

Proof. In combination with (H7) and (H8) this is a direct consequence of Lemma 3.1.

4 Existence of solutions of the learning problem
Using results from the previous section, we can now apply standard arguments to prove
that the learning problem has a solution.

Theorem 4.1 If (H1)–(H6) hold, then (LP) has a solution.

Proof. We begin by showing that the feasible set of (LP), which is given by

F := {(α, y, u) ∈ [
¯
α, ᾱ]× Fad | (y, u) solves (Pα,yδ)},

is non empty and weakly sequentially compact. The non emptiness of F follows from
Proposition 3.1. In order to prove that F is weakly sequentially compact, we argue as
follows: As a consequence of the Bolzano-Weierstraß theorem, every sequence (αn, yn, un)
in F has a subsequence (αnk , ynk , unk) such that for some α∗ ∈ [

¯
α, ᾱ]

αnk → α∗. (4.1)

Utilizing that (Pα,yδ) is weakly stable with respect to the regularization parameters (Lemma 3.1)
we can assume, possibly after taking another subsequence, that in addition to (4.1)

(ynk , unk) ⇀ (y∗, u∗) (4.2)
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for some (y∗, u∗) ∈ Fad which solves (Pα∗,yδ). Since (α∗, y∗, u∗) ∈ F , this proves that F
is weakly sequentially compact. In view of the fact that a weakly lower semi continuous
function attains a minimum on a non empty and weakly sequentially compact set (see e.g.
[22, Theorem 2.3 on p.8]), it remains to show that the mapping

(α, y, u) 7→ ‖u− u†‖2Ũ
is weakly lower semi continuous on F . This follows from [5, Corollary 3.9 on p.61], and
thus the proof complete.

5 Optimality conditions
The aim of this section is to derive optimality conditions for the learning problem. In
this context, as we will see, a second order sufficient optimality condition for the lower
level problem plays the role of a constraint qualification. We begin by stating our basic
hypotheses, which are assumed to hold throughout this section: There exists an open
neighborhood V of Uad with the following properties:

(B1) The state equation e is defined and twice continuously F-differentiable on Y × V .

(B2) The penalty function Ψ is twice continuously F-differentiable on V .

(B3) For each u ∈ V there is a unique y ∈ Y such that

e(y, u) = 0. (5.1)

Moreover, ey(y, u) ∈ L(Y,Z) is bijective for all (y, u) ∈ Y × V satisfying (5.1).

5.1 The lower level problem

Let us briefly recall some standard results on optimality conditions for the lower level
problem. First order necessary optimality conditions are usually expressed using the notion
of a Karush–Kuhn–Tucker (KKT) point.

Definition 5.1 (KKT point) We say that (y, u, λ) ∈ Y ×U×Z ′ is a KKT point of (Pα,yδ),
if the following statements hold:

〈α ·Ψu(u) + λeu(y, u), v − u〉U ′,U ≥ 0, for all v ∈ Uad, (optimality)
1
m

m∑
j=1

(y − yδj) + λey(y, u) = 0, (adjoint equation)

u ∈ Uad, e(y, u) = 0. (state equation)

It is well known that if a solution (y∗, u∗) to (Pα,yδ) satisfies the constraint qualification
in the sense that ey(y∗, u∗) is bijective, then there exists a unique λ∗ ∈ Z ′ such that
(y∗, u∗, λ∗) is a KKT point of (Pα,yδ), see e.g. [25]. Henceforth we refer to the system
in Definition 5.1 as first order necessary optimality condition. In order to write second
order sufficient optimality conditions in a compact form, we now introduce the Lagrange
function.

Definition 5.2 (Lagrange function) We define the Lagrange function L : [
¯
α, ᾱ]×Y ×Uad×

Z ′ → R of the lower level problem by

L(α, y, u, λ) := Jα,yδ(y, u) + λe(y, u)

for (α, y, u, λ) ∈ [
¯
α, ᾱ]× Y × Uad × Z ′.
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Second order sufficient optimality conditions have many important practical implica-
tions. The condition presented in the following definition is one of the most often used ones
in practice. For a discussion of the role of second order sufficient optimality conditions in
PDE constrained optimization, we refer to [7] and the references given therein.

Definition 5.3 (Second order sufficient optimality condition) We say that (y, u) satisfies
the second order sufficient optimality condition of (Pα,yδ) if ey(y, u) is bijective and there
exists λ ∈ Z ′ and η > 0 such that (y, u, λ) is a KKT point and

D2
(y,u)L(α, y, u, λ)[(δy, δu), (δy, δu)] ≥ η‖(δy, δu)‖2Y×U

for all (δy, δu) ∈ kerDe(y, u) ∩ (Y × (Uad − Uad)).

If (y∗, u∗) satisfies the second order sufficient optimality condition of (Pα,yδ), then
(y∗, u∗) is a local solution to (Pα,yδ), see e.g. [28].

5.2 KKT reformulation and optimality conditions

A major obstacle when deriving optimality conditions for bilevel optimization problems,
consists in the fact that the constraint that feasible points must be solutions to a lower level
problem can not always be expressed in standard form, i.e. via convex, equality and cone
constraints. A standard technique to partially overcome this issue, consists in introducing
the following auxiliary problem, which is usually referred to as the KKT reformulation of
a bilevel problem:

(LPKKT) min
α∈[

¯
α,ᾱ], (y,u,λ)∈Y×Uad×Z′

‖u− u†‖2Ũ s.t. (y, u, λ) is a KKT point of (Pα,yδ).

Note, that in order to be feasible for the KKT reformulation, points only need to satisfy the
first order necessary optimality condition, instead of the generally stronger requirement
that they must be (global) solutions to the lower level problem.
Remark 5.1. In (LPKKT), the Lagrange multiplier λ is included as an additional optimiza-
tion variable. In our case there exists a unique feasible state y(u) and a unique solution
to the adjoint equation λ(u) for every u ∈ Uad. Thus, it is possible to equivalently rewrite
(LPKKT) as a problem in the controls u only. This will be used in the theorem below.

The main reason for introducing the KKT reformulation, is that in general its con-
straints are easier to handle than the constraints of the original problem. For example,
if there are no control constraints in the lower level problem, then the constraints of
the KKT reformulated problem consist only of equality and convex constraints. Before
discussing how to obtain optimality conditions for (LPKKT), we need to investigate the
relation between the KKT reformulation and the original problem. Clearly, if the lower
level problem is convex for every parameter α ∈ [

¯
α, ᾱ], then both are equivalent. In gen-

eral, this is not the case since KKT points of the lower level problem need not be solutions
to the lower level problem. However, since we are only interested in (LPKKT) to obtain
optimality conditions for the learning problem, for our purposes it is sufficient to know
under which conditions a solution to the learning problem is guaranteed to be a local
solution to (LPKKT). This question is addressed in the following theorem. Thereby, it
is important to keep in mind that feasible points of the learning problem are defined as
global solutions to the lower level problem.

Theorem 5.1 Let (α∗, y∗, u∗) be a solution to (LP) and assume that the following state-
ments hold:
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(C1) (Pα∗,yδ) is stable with respect to the regularization parameters.

(C2) (y∗, u∗) satisfies the second order sufficient optimality condition of (Pα∗,yδ).

(C3) (y∗, u∗) is the unique solution to (Pα∗,yδ).

Then there exists a unique λ∗ ∈ Z ′ such that (α∗, y∗, u∗, λ∗) is a local solution to (LPKKT).

Proof. We define
F (α, u) := Jα,yδ(y(u), u) (5.3)

as the reduced cost functional of the lower level problem, and for every u ∈ V we let N (u)
denote the polar cone to the set Uad at the point u, i.e.

N (u) =
{
{u′ ∈ U ′ | 〈u′, v − u〉 ≤ 0 for all v ∈ Uad} if u ∈ Uad
∅ if u /∈ Uad.

Note that for every u ∈ V there exists a unique state y(u) and Lagrange multiplier λ(u)
satisfying the associated state and adjoint equation, respectively. It is straightforward to
show that (y(u), u, λ(u)) is a KKT point of (Pα,yδ) if and only if u satisfies the variational
inequality

0 ∈ DuF (α, u) +N (u). (5.4)

A reduced KKT formulation of (LP) can thus be written as follows.

min
(α,u)∈[

¯
α,ᾱ]×V

‖u− u†‖2Ũ subject to 0 ∈ DuF (α, u) +N (u). (5.5)

We now divide the proof into three steps.

Step 1: We claim: If (α∗, u∗) is a local solution to (5.5), then (α∗, y∗, u∗, λ∗) is a local
solution to (LPKKT). In fact, if (α∗, u∗) is a solution to (5.5) restricted to J(α∗)×
V (α∗), where J(α∗) and V (u∗) are neighbourhoods of α∗ and u∗, respectively,
then (α∗, y∗, u∗, λ∗) is solution to (LPKKT) restricted to J(α∗)× Y × V (u∗)×Z ′.

Step 2: We claim: There exist neighborhoods J(α∗) of α∗ and V (u∗) of u∗, and a Lipschitz
continuous function Φ: J(α∗)→ V (u∗) such that for all (α, u) ∈ J(α∗)× V (u∗) it
holds that

0 ∈ DuF (α, u) +N (u) if and only if u = φ(α). (5.6)

This follows immediately from a generalized implicit function theorem ([29, Corol-
lary 2.2]) if we can verify the necessary requirements for this result. Thereby, the
only requirement, which does not follow immediately from our assumptions, is
the strong regularity of (5.4) at (α∗, u∗). However, to verify strong regularity it
suffices to show that for every u′ ∈ U ′ there exists a unique u ∈ U such that

u′ ∈ DuuF (α∗, u∗)(u− u∗) +N (u), (5.7)

and that the mapping u′ → u is Lipschitz continuous. To prove this, we consider
the problem

min
u∈Uad

−u′(u) + 1
2DuuF (α∗, u∗)[u− u∗, u− u∗]. (5.8)

The second order sufficient optimality condition (C2) implies that (5.8) has a
unique solution. Moreover, u solves (5.8) if and only if (5.7) holds. It remains
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to show Lipschitz continuity of the mapping. For this purpose let u′1, u′2 ∈ U ′ be
arbitrary, and let u1, u2 ∈ U , respectively, be the corresponding solutions to (5.7).
We have

DuuF (α∗, u∗)(u1 − u2)− u′1 + u′2 ∈ N (u2)−N (u1),
from which it follows that

DuuF (α∗, u∗)[u1 − u2, u1 − u2] ≤ 〈u′1 − u′2, u1 − u2〉.

Again, we apply the second order sufficient optimality condition to arrive at

‖u1 − u2‖U ≤
1
η
‖u′1 − u′2‖U ′ .

This shows that the mapping u′ → u is Lipschitz continuous, which concludes the
second step.

Step 3: This is the final step of the proof. We let J(α∗), V (u∗), and φ : J(α∗)→ V (u∗) be
as in the second step and claim that their exists an open neighbourhood I(α∗) ⊆
J(α∗) of α∗ such that φ(α) is a global solution to the reduced lower level problem
for every α ∈ I(α∗). This we prove by contradiction. If our claim was false, then
there would be a sequence (αn) in J(α∗) such that

αn → α∗,

and an associated sequence (un) of solutions to (Pαn,yδ) such that (un) does not
intersect V (u∗). Using the stability assumption (C1) and the uniqueness assump-
tion (C3), it follows that (un) must converge to u∗. However, since the sequence
(un) was chosen such that un /∈ V (u∗) for all n ∈ N, this leads to a contradic-
tion. This proves that (α∗, u∗) is a solution to the reduced bilevel problem (5.5)
restricted to I(α∗)× V (u∗), and consequently, using the first step, it follows that
(α∗, y∗, u∗, λ∗) is a local solution to (LPKKT). This completes the proof.

As an important consequence of the above theorem, we get the following: Any solution
to (LP), for which the assumptions of Theorem 5.1 hold, satisfies the optimality conditions
to be a local solution to (LPKKT). The derivation of optimality conditions for (LPKKT)
which are convenient for numerical realization, are still impeded by the presence of control
constraints in the lower level problem, which in turn lead to set valued constraints in
(LPKKT). We therefore first consider the case without constraints on u. In Section 6, we
show how one can still obtain optimality conditions for a particular example where control
constraints are essential to ensure that the lower level problem is well posed. This will be
done using a smoothed point wise projection on the set of feasible controls. To conclude
this section, we finally present optimality conditions for (LPKKT) in the absence of control
constraints, which in turn gives us optimality conditions for (LP) under the conditions of
Theorem 5.1.
Lemma 5.1 Assume that Uad = U . Let (α∗, y∗, u∗, λ∗) be a local solution to (LPKKT)
with (y∗, u∗) satisfying the second order sufficient optimality condition of (Pα∗,yδ). Then
there exists a unique triple (p∗, q∗, z∗) ∈ Y × U × Z ′ such that

〈Ψu(u∗)q∗, α− α∗〉2 ≥ 0, ∀α ∈ [
¯
α, ᾱ], (5.9a)

p∗ + λ∗eyy(y∗, u∗)p∗ + λ∗eyu(y∗, u∗)q∗ + z∗ey(y∗, u∗) = 0, (5.9b)
u∗ − u† + λ∗euy(y∗, u∗)p∗ + α∗ ·Ψuu(u∗)q∗ + λ∗euu(y∗, u∗)q∗ + z∗eu(y∗, u∗) = 0, (5.9c)

ey(y∗, u∗)p∗ + eu(y∗, u∗)q∗ = 0. (5.9d)
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Proof. We define
F (α, y, u) := Jα,yδ(y, u).

In view of [25], it suffices to verify the regularity assumption consisting in the bijectivity
of the mapping

(δy, δu, δλ)→

Fyy + λ∗eyy Fyu + λ∗eyu e∗y
Fyu + λ∗eyu Fuu + λ∗eyu e∗u

ey eu 0


δyδu
δλ


from Y ×U×Z ′ to Y ′×U ′×Z, where we write Fyy = Fyy(α∗, y∗, u∗), eyy = eyy(α∗, y∗, u∗)
et cetera. This follows from observing that for every (y′, u′, z) ∈ Y ′×U ′×Z, the quadratic
problem

min
(δy ,δu)∈Y×U

D2
(y,u)L(α∗, y∗, u∗, λ∗)[(δy, δu), (δy, δu)]− y′(δy)− u′(δu)

subject to De(y, u)(δy, δu) = z

has a unique solution (δ∗y , δ∗u, δ∗λ), which is characterized by Fyy + λeyy Fyu + λ∗eyu e∗y
Fyu + λ∗eyu Fuu + λ∗eyu e∗u

ey eu 0


δ∗yδ∗u
δ∗λ

 =

y′u′
z

 .

Let us briefly discuss the assumptions (C1)-(C3) needed in Theorem 5.1. As we have
already seen in Corollary 3.1, if (H1)–(H8) are satisfied, then the stability required in
(C1) holds. Condition (C2), which requires that the second order sufficient optimality
condition holds, is quite standard, and also needed to ensure the existence of an optimality
system for (LPKKT). Condition (C3) might seem very restrictive. First, let us point out
that, unfortunately, as indicated by a counterexample in [20, Example 4.2.1], without
the third condition the conclusion of Theorem 5.1 no longer remains true. However,
notice that in (C3) we only require that the lower level problem has a unique solution
for the optimal regularization parameter α∗. While in general unique solvability of the
lower level problem for every regularization parameter can not be expected, there are
ways to ensure unique solvability a-posteriori for a specific regularization parameter. To
be more precise, given a critical point of the corresponding lower level problem, one can
validate a criterion involving its adjoint state, which, if satisfied, guarantees that the given
critical point is the unique global solution to the lower level problem. We provide such a
criterion for a particular example in Section 6.2. This criterion, which can also be seen as
a smallness condition on the discrepancy, will also be sufficient to ensure that the second
order sufficient optimality condition (C2) is met. A similar criterion for a different class
of optimal control problems is provided and thoroughly investigated in [2].

6 Examples
We now apply the developed theory for learning parameters for the regularization of two
PDE constrained problems. In the first example, the lower level problem is quadratic and,
as we will see, both existence of solutions and optimality conditions can be established
quite easily using the results from the previous sections. In the second example, the state
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equation is bilinear. In this case, the lower level problem is not convex. For this example,
we provide a criterion, which guarantees that the assumptions needed in Theorem 5.1 are
satisfied, which in turn allows us to use the KKT reformulation to derive an optimality
system.

6.1 Linear state equation

We consider (LP) with Y = H1
0 (Ω), U = H1(Ω), Ỹ = Ũ = L2(Ω) and Z = H−1(Ω). Here,

Ω ⊂ Rd is a bounded Lipschitz domain, where d ∈ N. Furthermore, given γ > 0 we let the
state equation e : H1

0 (Ω)×H1(Ω)→ H−1(Ω) be defined as

e(y, u) = −γ∆y + y − u for (y, u) ∈ H1
0 (Ω)×H1(Ω),

and assume that weighted H1-regularization is used, i.e.

Ψi = 1
2‖Ki · ‖2L2(Ω), where Ki = I and Ki = ∂xi−1 , for 2 ≤ i ≤ d+ 1.

In this example, the lower level problem is uniformly convex. Thus, it suffices to verify
(H1)-(H8) and (B1)-(B3) to guarantee the existence of solutions and to obtain optimality
conditions for this problem. First, we note that (H1) holds by definition and (B1) follows
easily using that e is a linear and continuous operator. To verify (H3), one uses that
linear continuous operators are weak-weak continuous. Conditions (H2), (H4), (H8), and
(B3) can be seen as straightforward consequence of the Lax-Milgram lemma. Since the
operators Ki : H1(Ω)→ L2(Ω), 1 ≤ i ≤ d+ 1, are linear and continuous, and

‖u‖2H1(Ω) =
d+1∑
i=1
‖Kiu‖2L2(Ω),

one can verify (H5), (H6), and (B2) by standard arguments. (H7) is of course satisfied
since U = H1(Ω) is a Hilbert space (see Remark 3.3).

6.2 Bilinear state equation

In this example, we discuss the estimation of the diffusion coefficient in a second order
elliptic PDE using weighted Hk regularization. That is, we consider (LP) with Y =
H1

0 (Ω), U = Hk(Ω), Ỹ = Ũ = L2(Ω) and Z = H−1(Ω). Here, we assume that Ω ⊂ Rd is
a bounded Lipschitz domain, where d ∈ N, and let the state equation e : H1

0 (Ω)× Uad →
H−1(Ω) be given by

e(y, u) = −∇ · (u∇ y)− f for (y, u) ∈ H1
0 (Ω)× Uad,

for some f ∈ L2(Ω). We define the penalty function Ψ by setting

Ψβ(u) = 1
2‖∂βu‖

2
2 for β ∈ Nd0 with |β|1 ≤ k.

The set of feasible controls is chosen to be

Uad := {u ∈ Hk(Ω) ∩ L∞(Ω) | a ≤ u ≤ b a.e. in Ω}

for given 0 < a < b < ∞. While in the following we prove the existence of solutions for
arbitrary dimension d and order of regularization k, to obtain optimality conditions we
assume that d = k = 2. Similar arguments can be used to obtain optimality conditions
whenever k > d/2. In the following discussion, we systematically identify the space of
Lagrange multipliers Z ′ = (H−1(Ω))′ with H1

0 (Ω).
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Existence of solutions Let us first establish the existence of solutions. In view of
Theorem 4.1, it suffices to verify (H1)–(H6). Showing (H1) is straightforward. Conditions
(H5) and (H6) can be verified similarly as for the previous example. Note that since for
all u ∈ Uad and y ∈ H1

0 (Ω) we have∫
Ω
u∇ y∇ y ≥ a‖∇ y‖22,

where a is the pointwise lower bound on the diffusion coefficient, one obtains (H2) and
(H4) as a direct consequence of the Lax-Milgram lemma in combination with the Poincaré
inequality. To prove (H3), we argue as follows: Let (yn, un) ∈ Fad and (ȳ, ū) ∈ Y × Uad
such that (yn, un) ⇀ (ȳ, ū). Since Hk(Ω) is compactly embedded in L2(Ω), it follows that

un → ū in L2(Ω).

Now for arbitrary v ∈ C∞c (Ω) we conclude that

un∇ v → u∇ v in (L2(Ω))d,

using Hölder’s inequality. This implies that∫
Ω
un∇ yn · ∇ v →

∫
Ω
ū∇ ȳ · ∇ v.

Thus, we have proven that∫
Ω
ū∇ ȳ · ∇ v − fv = 0 for all v ∈ C∞c (Ω).

Since C∞c (Ω) is dense in H1
0 (Ω), a simple continuity argument shows that∫

Ω
ū∇ ȳ · ∇ v − fv = 0 for all v ∈ H1

0 (Ω),

where we use that ū ∈ L∞(Ω). This is precisely what we needed to show.

Relation to the KKT reformulation We aim at applying the results from Section 5.
For this purpose, we first need to show that (B1)–(B3) hold. To guarantee (B1) and (B3)
we require that Hk(Ω) can be continuously embedded into L∞(Ω), which is the case if
and only if k > d/2, see e.g. [1, Theorem 5.4, Example 5.25, and 5.26]). Clearly, (B2) is
always satisfied.

For simplicity, from now on we let d = 2 and k = 2. In order to relate the problem
to its KKT reformulation, we have to verify the conditions (C1)-(C3) in Theorem 5.1.
Since we already know that (H1)–(H6) hold, the stability assumption (C1) follows from
Corollary 3.1, if (H7) and (H8) hold. Since H2(Ω) is a Hilbert space, (H7) follows directly.
(H8) is a consequence of the implicit function theorem in combination with the Lax-
Milgram lemma. To verify the remaining conditions, we make use of results on higher
regularity. In particular, note that under our assumptions, for each u ∈ Uad both the
associated state y and the solution to the adjoint equation p are in H2(Ω), assuming that
Ω has sufficient regularity, see [26, Theorem 10.1 on p. 188]. Using standard Sobolev
embeddings, we may also assume that

‖v‖L∞(Ω) ≤ C1‖v‖H2(Ω) and ‖v‖W 1,4(Ω) ≤ C2‖v‖H2(Ω). (6.1)

for constants C1, C2 > 0. The following estimate will be useful later on.
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Lemma 6.1 For all (y, u, p) ∈ H1
0 (Ω)×H2(Ω)×H2

0 (Ω) it holds that

|
∫

Ω
u∇ y∇ p | ≤ C‖u‖H2(Ω)‖y‖L2(Ω)‖p‖H2(Ω), (6.2)

where C := C1 + C2
2 for constants C1, C2 as in (6.1).

Proof. Using partial integration, Hölders inequality, and the embeddings in (6.1), we es-
timate

|
∫

Ω
u∇ p∇ y | = |

∫
Ω
∇ · (u∇ p) y | = |

∫
Ω
y∇u∇ p+

∫
Ω
y u∆p | ≤

‖y‖L2(Ω)
(
‖∇ p∇u‖L2(Ω) + ‖u‖L∞(Ω)‖∆p‖L2(Ω)

)
≤ (C2

2 + C1)‖y‖L2(Ω)‖p‖H2(Ω)‖u‖H2(Ω).

This is what we needed to show.

In the following proposition we provide a criterion involving the adjoint state of a
critical point of the lower level problem, which, if satisfied, guarantees that the second
order sufficient optimality condition (C2) holds.

Proposition 6.1 Let (ȳ, ū, p̄) ∈ H1
0 (Ω)×H2(Ω)×H1

0 (Ω) be a KKT point of (Pα,yδ) and

αmin := min{αi | 1 ≤ i ≤ r}.

If it holds that
‖p̄‖H2(Ω) <

2√αmin
C

,

where C is as in Lemma 6.1, then (ȳ, ū) satisfies the second order sufficient optimality
condition of (Pα,yδ).

Proof. For arbitrary δu ∈ Uad−Uad we let δy ∈ Y be such that (δy, δu) ∈ kerDe(ȳ, ū), i.e.∫
Ω
u∇ δy∇ v +

∫
Ω
δu∇ y∇ v = 0 for all v ∈ H1

0 (Ω).

The claim now follows from the estimate

D2
(y,u)L(α, ȳ, ū, p̄)[(δy, δu), (δy, δu)] = ‖δy‖2L2(Ω) + 2α · Ψ(δu) +

∫
Ω
δu∇ δy∇ p̄ ≥

‖δy‖2L2(Ω) + αmin‖δu‖2H2(Ω) − C‖p̄‖H2(Ω)‖δu‖H2(Ω)‖δy‖L2(Ω) ≥(
1− C

2√αmin
‖p̄‖H2(Ω)

)(
‖δy‖2L2(Ω) + αmin‖δu‖2H2(Ω)

)
,

where we use Lemma 6.1 and the Cauchy-type inequality

ab ≤ 1
2ε2 (a2 + ε4b2)

for a = ‖δy‖L2(Ω), b = ‖δy‖H2(Ω), and ε = (αmin)1/4.
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The same condition on the adjoint state is also sufficient to ensure (C3), i.e. that the
lower level problem has a unique solution for the optimal parameter.

Proposition 6.2 Let (ȳ, ū, p̄) ∈ H1
0 (Ω)×H2(Ω)×H1

0 (Ω) be a KKT point of (Pα,yδ) and

αmin := min{αi | 1 ≤ i ≤ r}.

If it holds that
‖p̄‖H2(Ω) <

2√αmin
C

,

where C is as in Lemma 6.1, then (ȳ, ū) is the unique global solution to the lower level
problem (Pα,yδ).

Proof. For every (y, u) ∈ Fad we have

0 = e(y, u)− e(ȳ, ū) = ey(ȳ, ū)[y − ȳ] + eu(ȳ, ū)[u− ū] + eyu(ȳ, ū)[y − ȳ, u− ū],

where we use that e is an affine bilinear function. This implies that

− p̄(ey(ȳ, ū)[y − ȳ] + eu(ȳ, ū)[u− ū]) = p̄eyu(ȳ, ū)[y − ȳ, u− ū]. (6.3)

Using that (ȳ, ū, p̄) is a KKT point and a quadratic expansion of Jα,yδ around (ȳ, ū), we
can estimate

Jα,yδ(y, u)− Jα,yδ(ȳ, ū) ≥
DyJα,yδ(ȳ, ū)[y − ȳ] +DuJα,yδ(ȳ, ū)[u− ū] + ‖y − ȳ‖2L2(Ω) + αmin‖u− ū‖2H2(Ω) ≥

− p̄(ey(ȳ, ū)[y − ȳ] + eu(ȳ, ū)[u− ū]) + ‖y − ȳ‖2L2(Ω) + αmin‖u− ū‖2H2(Ω).

By (6.3), Lemma 6.1, and similar arguments as in the proof of Proposition 6.1, we arrive
at

Jα,yδ(y, u)− Jα,yδ(ȳ, ū) ≥
(

1− C

2√αmin
‖p̄‖H2(Ω)

)(
‖y − ȳ‖2L2(Ω) + αmin‖u− ū‖2H2(Ω)

)
,

from which the claim easily follows.

Optimality conditions In this example, control constraints are essential to ensure
that the lower level problem is well-posed. However, the case of control constraints is
not covered in Lemma 5.1. To circumvent this issue, we consider a relaxed version of the
problem, in which the state equation e is replaced by

ẽ(y, u) = −∇ · (φε(u)∇ y)− f for (y, u) ∈ H1
0 (Ω)×Hk(Ω),

where φε : R → R is a smoothed point wise projection on [a, b]. The precise definition of
φε is given in the Appendix. One can show that the learning problem with this relaxed
state equation fulfills the assumptions of Theorem 4.1, and thus has a solution. Optimality
conditions can the be obtained via Theorem 5.1 and Lemma 5.1.

7 Numerical experiments
In this section we present two numerical experiments regarding learning regularization
parameters in weighted H1-regularization.
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7.1 Linear state equation

In the first experiment, we consider the problem from Section 6.1, where the inverse
problem for which we learn regularization parameters consists in estimating the forcing
function in a second order elliptic PDE. Here, we let Ω = (−1, 1)× (−1, 1) and γ = 0.1.

Single vector of data To create a single vector of data, we set c1 = 0.4, c2 = 0.4,
h = 2.5, d = 0.3, κ = 2, and let y† be the corresponding state for the ground truth control

u†(x1, x2) =
{
h if |x1 − c1| < d and |x2 − c2| < d,

2.5(sin2(κπx1) + x2
2) else.

The ground truth control is shown in Figure 1a. We discretize the problem on a 128×128
mesh using the standard five-point stencil for the Laplace operator. Noisy data measure-
ments yδj are generated by point wise setting

yδj = y† + εξj ,

for 1 ≤ j ≤ m, where ξj follows a normal distribution with mean 0 and standard deviation
1, and ε := εmax |y†| with ε being the relative noise level. We consider the following
regularization operators

K1 := I, K2 := ∂x1 , K3 := ∂x2 .

In Figure 2a, we plot the values of the bilevel cost functional, i.e. the squared distance
between the recovered and ground truth control, in dependence of the regularization pa-
rameter when using the single operator K1 for different noise levels. Figure 2b shows a
contour plot of the bilevel cost functional in dependence of the regularization parameters
using the operators K2 and K3 for 1% noise. Note that in both figures the bilevel cost
functional attains a distinct minimum. This confirms the feasibility of the formulation of
finding regularization parameters as a learning problem.

Training and validation sets To create multiple vectors of data for training and vali-
dation, we proceed similarly as for the single dataset. The difference consists in randomly
choosing κ ∈ [0, 3], h ∈ [0, 4], d ∈ [0, 0.8] and c1, c2 ∈ [0, 1] following a uniform distribution.

Used methods and the solution algorithm To solve the learning problem we use a
globalized quasi-Newton method. Since modifying the approximate Hessian to be positive
definite would result in quite poor performance, we use a different strategy: We perform
a regular BFGS update, unless we detect that a descent condition in the BFGS update
direction is violated. In that case, instead, we perform a gradient descent update and
reset the approximate Hessian (compare [33, Algorithm 11.5 on p.60]). In both cases, we
perform an Armijo backtracking line search along the search directions. For a warm start,
we always begin the iteration with 5 initial gradient descent steps. We terminated the
algorithm, if the norm of the gradient fell below a certain threshold. In addition, for finer
discretizations, we also terminated the algorithm if the Armijo backtracking line search
was unsuccessful (which also indicates that we are close to a solution).
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Figure 1 Ground truth data used for the linear state equation.
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Figure 2 Values of the bilevel cost functional in dependence of the regularization pa-
rameters using one or two penalty functionals. In both graphs we use a single noisy data
measurement.
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Algorithm 1: Iterative method for parameter learning with a linear state equation.
Data: Let α0 be given.
Define H0 := I. Compute u0 solving the lower level problem for α0 and the
corresponding Lagrange multiplier q0 from the optimality system in Lemma 5.1.
For 1 ≤ i ≤ 3, set g0

i := 〈Kiq
0,Kiu

0〉, whenever the operator Ki should be used,
and set d0 := −g0, k := 0.
while ‖gk‖22 > tolerance do

if 〈gk, dk〉 < −min{c1, c2‖dk‖22}‖dk‖22 and k ≥ 5 then
Perform Armijo backtracking line search along dk, set k = k + 1 and update
αk;

else
Hk = I;
Perform Armijo backtracking line search along −gk, set k = k + 1 and
update αk;

Compute uk solving the lower level problem for αk and the corresponding
Lagrange multiplier qk. Set gki := 〈Kiq

k,Kiu
k〉, whenever the operator Ki

should be used. Update the approximate Hessian Hk and compute the BFGS
update direction dk.

Results for a single vector of data We tested the algorithm in MATLAB for various
choices of operators Ki, noise levels, and numbers of available noisy measurements. To be
able to compare results for the different settings, we used a fixed seed for random number
generation for each dataset. We noticed the following behavior:

• In all tested cases K1 = I is the best operator to use, if only one operator should
be used. Using only K2 = ∂x1 or K3 = ∂x2 results in quite poor performances (see
Table 1), which is not surprising since in these cases the lower level problem might
be ill-posed.

• Adding another regularization operator Ki to any choice of one or two regularization
operators improves tracking of the exact control (see Table 1).

• UsingK2 = ∂x1 andK3 = ∂x2 is the best choice amongst the two operator cases. The
performance using these two operators is only slightly inferior to the performance
using all three operators (Figure 3 and Table 1).

• When using multiple noisy data measurements yδj with the same statistical struc-
ture, the ability to track u† is significantly improved, as we would expect (compare
Table 1 and Figure 3).

• When we only use unilateral regularization associated to K2 or K3, the optimal u∗
seems to have jumps in the direction which is not penalized (see Figure 3).

Results for training and validation sets Here, we always use all regularization op-
erators K1,K2, and K3. We create NT = 100 training and NE = 500 validation data
vectors. The training set is devided into NB ∈ {1, 2, 5, 10, 100} training batches. Each
training batch then consists of N = NT /NB training data vectors. For 1 ≤ i ≤ NB an opti-
mal regularization parameter α∗,i is computed for the i-th batch by solving the associated
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(a) Using K1 = I m = 5, with optimal
α = (5.73× 10−6) and ‖u∗ − u†‖2
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0.8336.

x1

-1 -0.5 0 0.5 1

x
2

-1

-0.5

0

0.5

1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) Using K2 = ∂x1 m = 5, with opti-
mal α = (3.98× 10−8) and ‖u∗−u†‖2

2 =
8.7794.
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(c) Using K1 = I K3 = ∂x2 ,
m = 5, with optimal α =
(2.25× 10−6, 5.63× 10−8) and
‖u∗ − u†‖2

2 = 0.13642.
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(d) Using K2 = ∂x1 K3 = ∂x2 ,
m = 5, with optimal α =
(2.11× 10−9, 1.47× 10−8) and
‖u∗ − u†‖2

2 = 0.068485.

Figure 3 Optimal u∗ for the linear state equation, various choices of Ki, and m = 5; 1%
additive noise was used.

Used Operators (Locally) Optimal α∗ ‖u∗ − u†‖22
K1 (1.33× 10−5) 1.1235
K2 (9.08× 10−8) 38.5143
K3 (4.02× 10−7) 37.2593

K1, K2 (2.66× 10−6, 2.10× 10−8) 0.73592
K1, K3 (5.50× 10−6, 1.42× 10−7) 0.20574
K2, K3 (5.17× 10−9, 4.24× 10−8) 0.10707

K1, K2, K3 (−5.60× 10−7, 5.30× 10−9, 4.19× 10−8) 0.10657

Table 1 Locally optimal α∗ for different sets of operators Ki with 1% noise and m = 1.
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number of batches training error validation error
1 2.08× 10−1 2.02× 10−1

2 2.08× 10−1 2.02× 10−1

5 2.05× 10−1 2.05× 10−1

10 2.00× 10−1 2.10× 10−1

100 1.64× 10−1 3.50× 10−1

Table 2 Average training and validation error using NT = 100 training and NE = 500
validation data points. The training set is divided into NB ∈ {1, 2, 5, 10, 100} batches.
Here we have used a 64× 64 mesh.

(multiple data) learning problem (1.5). Subsequently the optimal regularization parame-
ters are tested on the validation set. Thus for each validation vector (y†V , u†V , yδV ) and
each parameter α∗,i, we compute a solution uVα∗,i to the corresponding lower level problem.
We then compute the validation error given by ‖uVα∗,i −u†

V ‖2L2(Ω). The average validation
error is obtained by averaging the validation error over all validation vectors and param-
eters α∗,i. In Table 2 the average validation error is compared to the average training
error. It is somewhat surprising that the average error over the training set does not sig-
nificantly differ from the average validation error, except when regularization parameters
are determined separately for each data vector (N = 1), which is the case for NB = 100.
However, this suggests that using learned regularization parameters in structurally related
problems can lead to good results.

7.2 Bilinear state equation

In the second numerical experiment the inverse problem is to estimate the diffusion coef-
ficient in a second order elliptic partial differential equation.

Problem setting We consider the learning problem with Ω = (−1, 1) × (−1, 1), Y =
H1

0 (Ω), Ỹ = Ũ = L2(Ω), and let the state equation e : H1
0 (Ω)× U → H−1(Ω) be given by

e(y, u) = ∇ · (φε(u)∇ y)− f for (y, u) ∈ H1
0 (Ω)× U.

In principle, following the considerations in Section 6.2, we should choose U = H2(Ω).
However, to avoid the resulting extra numerical difficulties, we work with U = H1(Ω).
This choice still guarantees the existence of optimal regularization parameters, but the
derivation of the optimality system is formal. The function φε : R → R is a smoothed
point wise projection on the interval [a, b]. Its precise definition is given in the Appendix.
In the state equation, we choose f ∈ L2(Ω) such that for the ground truth control u† given
by

u†(x1, x2) =
{

1 + x2
2 if

√
x12 + x22 ≤ 1

2 ,

0.1 + x1
2 else,

the corresponding state y† is given by

y†(x1, x2) = (x1
4 − x1

2)(x2
2 − 1).

The ground truth control is shown in Figure 4a. We discretize the problem on a 64× 64
mesh using Lagrange P1 finite elements. Noisy data measurements yδj are generated as
for the previous example and the same regularization operators are considered.
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Used Operators (Locally) Optimal α∗ ‖u∗ − u†‖22
K1 (1.15× 10−4) 0.73853

K1, K2 (3.52× 10−5, 3.33× 10−6) 0.23291
K1, K3 (3.94× 10−5, 9.22× 10−7) 0.48599
K2, K3 (2.49× 10−7, 1.52× 10−7) 0.16802

K1, K2, K3 (9.62× 10−8, 4.45× 10−7, 1.09× 10−7) 0.16603

Table 3 Locally optimal α∗ for different sets of Ki with 3% noise and m = 5.

Used methods and the solution algorithm We use nearly the same globalized quasi-
Newton method as for the linear state equation. The only difference is that here a solu-
tion to the lower level problem is computed using a sequential programming method (SP
method for short) from [21].

Results We performed similar experiments as for the linear state equation and noticed
the same behaviour with respect to using different numbers and types of regularization
operators. Additionally, we made the following observations:

• K1 = I was the only choice of a single operator which lead to meaningful results (see
Figure 4b).

• Using the operator K2 = ∂x1 seems to be more significant for the quality of the re-
constructions than using K3 = ∂x2 (see Table 3). This is also indicated by observing
that the obtained optimal regularization parameter for K2 is usually larger than the
optimal regularization parameter for K3 when using both operators.

• We expect difficulties reconstructing u† at stationary points of y† (see [14, p.24]). A
simple computation shows that (x1, x2) is a stationary point of y† if and only if one
of the following statements is true:

a) x1 = 0 (line segment along the x2-axis)
b) |x1| = 1 and |x2| = 1 (edges of the domain)
c) |x1| =

√
1/2 and x2 = 0

Here, we have continuously extended the gradient of y† to the boundary of the
domain. Difficulties reconstructing u† near the edges of the domain can be seen
in Figure 4b. Since in this case there is no additional smoothing in any of the
directions, the values of the reconstructed u∗ near the edges tend to zero. Difficulties
reconstructing u† near the x2-axis can be seen in Figure 4b and 4c. Note that
smoothing in the x1-direction, however, largely prevents the issues near the x2-axis,
as we can see in Figure 4d.
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Figure 4 Ground truth and reconstructed controls for the bilinear state equation, various
choices of operators Ki and m = 1; 1% additive noise was used.
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8 Outlook
Possible directions for further research include the use of nonlocal operators as penalty
functionals as well as non smooth penalty functionals for nonlinear PDE constraints. It
can also be of interest to consider regularization terms of the form β

∑r
i=1 αiΨi(u), where

the αi are determined by learning techniques based on a training set, and, given new data,
β is chosen by classical parameter choice strategies to adapt the amount of regularization
to possibly changing noise levels and different scaling. We also point out that the ability
to compute optimal regularization parameters provides the opportunity to evaluate how
well classical parameter choice strategies are performing.

A Proof of Lemma 3.1
Proof. The proof is divided into three steps.

Step 1: We first aim at showing that the sequence (yn, un) has a weakly convergent sub-
sequence in Fad. Since Fad is a weakly closed subset of a reflexive Banach space,
for this purpose it is sufficient to show that (yn, un) is bounded. Utilizing (H4),
in turn, the boundedness of (yn, un) follows if we can prove that (un) is bounded.
To show that (un) is bounded, we argue as follows: Since the sequence (yδn) is
convergent, there exists M > 0 such that

‖yδnj ‖Ỹ ≤M for all n ∈ N and 1 ≤ j ≤ m.

A simple computation now shows that for every (y, u) ∈ Fad and every n ∈ N we
have

¯
α ·Ψ(un) ≤ Jαn,yδn(yn, un) ≤ Jαn,yδn(y, u) ≤ 1

2(‖y‖Ỹ +M)2 + ᾱ ·Ψ(u).

Using that Ψ is proper on Fad, we can choose (y, u) ∈ Fad such that the right-hand
side of this chain of inequalities is finite. Since the right-hand side is independent
of n, and

¯
α > 0, this shows that

r∑
i=1

Ψi(un)

is bounded. Consequently, from (H5) it follows that (un) is bounded; and thus
the first step is complete.

Step 2: Using the first step, we can assume that there exists a subsequence of (yn, un),
which, for simplicity, we again denote by (yn, un), and (ȳ, ū) ∈ Fad such that

(yn, un) ⇀ (ȳ, ū).

Our goal in the second step is to show that (ȳ, ū) solves (Pα,yδ). For this purpose,
since (yn, un) solves (Pαn,yδn), note that

Jαn,yδn(yn, un) ≤ Jαn,yδn(y, u) (A.1)

for all (y, u) ∈ Fad and n ∈ N. Using that

(αn, yδn, yn, un) 7→ Jαn,yδn(yn, un)



27

is weakly lower semi continuous on [
¯
α, ᾱ] × Ỹ m × Y × U , and that for every

(y, u) ∈ Fad the mapping

(αn, yδn) 7→ Jαn,yδn(y, u)

is continuous on [
¯
α, ᾱ]× Ỹ m, taking the limit n→∞ in (A.1) we arrive at

Jα,yδ(ȳ, ū) ≤ lim inf
n→∞

Jαn,yδn(yn, un) ≤ lim
n→∞

Jαn,yδn(y, u) = Jα,yδ(y, u). (A.2)

As a consequence of this estimate, we have

lim
n→∞

Jαn,yδn(yn, un) = Jα,yδ(ȳ, ū) = min
(y,u)∈Fad

Jα,yδ(y, u) <∞, (A.3)

which shows that (ȳ, ū) solves (Pα,yδ). This finishes the second step.

Step 3: In order to complete the proof it remains to show that

lim
n→∞

Ψ(un) = Ψ(ū),

which is done now. First, observe that due to weak lower semi continuity of the
involved functions

‖ȳ − yδj‖2Ỹ ≤ lim inf
n→∞

‖yn − yδj‖2Ỹ for 1 ≤ j ≤ m (A.4)

and
Ψi(ū) ≤ lim inf

n→∞
Ψi(un) for 1 ≤ i ≤ r. (A.5)

We now argue as follows: If for some 1 ≤ i ≤ r it holds that

Ψi(ū) < lim inf
n→∞

Ψi(un),

then in view of (A.4)–(A.5), and using Jα,yδ(ȳ, ū) <∞, this implies

Jα,yδ(ȳ, ū) < lim
n→∞

Jαn,yδn(yn, un).

Since we have already shown that

lim
n→∞

Jαn,yδn(yn, un) = Jα,yδ(ȳ, ū),

this leads to a contradiction. Consequently, we must have

Ψi(ū) = lim inf
n→∞

Ψi(un) for all 1 ≤ i ≤ r. (A.6)

Since (A.6) is also true for every subsequence of (un), this implies that

Ψi(ū) = lim
n→∞

Ψi(un) for all 1 ≤ i ≤ r,

which is what was left to show.
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B Smoothed projection
Here, we provide the precise definition of the function φε : R → R for given ε > 0, which
can be seen as a smoothed projection on the interval [a, b]. We have determined φε
by choosing it as the polynomial with (piecewise) lowest degree matching the following
conditions: φε ∈ C3(R), a ≤ φε ≤ b, and

• φε(t) = t for t ∈ [a+ ε, b− ε],

• φε(t) = a for t ≤ a,

• φε(t) = b for b ≤ t.

The resulting function can be written as follows:

φε(t) =



t if a+ ε ≤ t ≤ b− ε
a if t ≤ a
b if b ≤ t
fε(t− a) if a ≤ t ≤ a+ ε

−fε(−t+ b) + a+ b if b− ε ≤ t ≤ b,

where
fε(x) = −10

ε6 x7 + 36
ε5 x

6 − 45
ε4 x

5 + 20
ε3 x

4 + a.
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