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Abstract

An infinite-dimensional bilinear optimal control problem with infinite-time horizon is con-
sidered. The associated value function can be expanded in a Taylor series around the equi-
librium, the Taylor series involving multilinear forms which are uniquely characterized by
generalized Lyapunov equations. A numerical method for solving these equations is proposed.
It is based on a generalization of the balanced truncation model reduction method and some
techniques of tensor calculus, in order to attenuate the curse of dimensionality. Polynomial
feedback laws are derived from the Taylor expansion and are numerically investigated for a
control problem of the Fokker-Planck equation. Their efficiency is demonstrated for initial
values which are sufficiently close to the equilibrium.
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1 Introduction

In this article, we consider the following bilinear optimal control problem:

inf
u∈L2(0,∞;Rm)

J (u, y0) :=
1

2

∫ ∞
0

‖y(t)‖2Y dt+
β

2

∫ ∞
0

‖u(t)‖2Rm dt,

where:

 ẏ(t) = Ay(t) +

m∑
j=1

(Njy(t) +Bj)uj(t), for t > 0

y(0) = y0 ∈ Y.

(1)

Here, V ⊂ Y ⊂ V ∗ is a Gelfand triple of real Hilbert spaces and A : D(A) ⊂ Y → Y is the
infinitesimal generator of an analytic C0-semigroup eAt on Y . The precise conditions on Bj and
Nj are given further below. The value function, denoted by V, associates with any initial condition
y0 the value of problem (1).

In our previous work [9], we analysed polynomial feedback laws of the form(
up(y)

)
j

= − 1

β
DVp(y)(Njy +Bj), ∀j = 1, ...,m

resulting from a Taylor expansion Vp of the value function V. The Taylor expansion is of the
following form:

V(y) ≈ Vp(y) =

p∑
k=2

1

k!
Tk(y, . . . , y), (2)
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where Tk : Y k → R denotes a bounded multilinear form of order k. The multilinear form T2

is determined by solving an algebraic Riccati equation. For k ≥ 3, the multilinear form Tk is
characterized by a generalized operator Lyapunov equation of the form

k∑
i=1

Tk(z1, . . . , zi−1, AΠzi, zi+1, . . . , zk) = Rk(z1, . . . , zk), z1, . . . , zk ∈ D(A). (3)

In this equation, the operator AΠ is associated with the linearized closed-loop system obtained
from a Riccati-based stabilization approach and the r.h.s. is computed by induction.

In the present contribution, we provide a detailed description of the numerical implementation of
the feedback laws up and investigate their behavior in practice. A version of the Lyapunov equations
(3) in a finite-dimensional space is obtained by discretizing the state equation with a finite-difference
scheme, which preserves the bilinear structure of the system. The numerical realisation of the
discretized Lyapunov is not straightforward, because of the curse of dimensionality: The size of
the linear system to be solved increases exponentially with the dimension of the domain Ω and
with the degree p of the Taylor expansion. We therefore propose to use a generalization of the
balanced truncation model reduction method [6] to reduce the size of the dimension of the state
equation and the Lyapunov equations. We also use a technique of [13] for solving the discretized
and reduced Lyapunov equations.

The method is tested on an optimal control problem of the Fokker-Planck equation, in dimension
1 and 2. The impact of model reduction on the corresponding feedback laws is analysed. The
efficiency of the feedback laws is also analysed, in particular, we investigate how much improvement
can be obtained when using high-order feedback laws rather than Riccati-based feedback laws. At
a theoretical level, the method is of local nature: The well-posedness of the closed-loop system
associated with the feedback law up is only guaranteed for initial conditions close to the equilibrium
[9]. We therefore investigate the influence of the distance of the initial condition to the origin on
the success of the method. The influence of the cost parameter β is also investigated.

The concept of series expansion of the value function has inspired researchers in optimal control
for a long time. We refer to [16] for a very useful survey on this topic. Numerical tests are mostly
carried out in the context of ordinary differential equations for systems of significantly smaller
order than those which typically arise from discretized infinite-dimensional systems, which are in
the focus of the present work. Let us mention that an interesting and natural extension of the
expansion method consists in computing the expansion in an array of reference points. This relates
to the concept of the patchy technique [1, 3]. Many additional references have been gathered in
[9].

Important efforts have been made recently to develop some new methods for the feedback con-
trol of partial differential equations. The present paper contributes to this developing field. For
quadratic cost functionals and in the absence of additional constraints, the most noted and inves-
tigated technique consists in applying linear quadratic regulator theory after linearization of the
state equation around a steady state, see for instance [4, 20]. Most other techniques, and especially
those involving the value function and the Hamilton-Jacobi-Bellmann equation, rely on system re-
duction. In [2, 17], dimension reduction of the system is based on proper orthogonal decomposition,
while the results in [15] are based the high-order approximation properties of spectral methods. In
[14], the reduced basis method was used for open-loop control of fluid flow.

The structure of the article is as follows. In Section 2, we briefly recall the main theoretical
results obtained in [9] and generalize them to the case of multiple inputs. In Section 3, we describe
the bilinear control problem of the Fokker-Planck equation used for the numerical results. We
provide in Section 4 a detailed description of our numerical approach for discretizing, reducing,
and solving the Lyapunov equations. Numerical results are reported in Section 5.

2 Summary of the theoretical results

In this section, we recall the main theoretical results proved in [9]. In that previous paper, we
worked with scalar-valued controls, while we now consider the multi-input control case u(t) ∈ Rm.
The extension of our results to the case m > 1 is however straightforward. Throughout this section,
we assume that the following assumptions are satisfied.
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(A1) The operator A can be associated with a bounded V -Y bilinear form a : V × V → R such
that there exist λ ∈ R and δ > 0 satisfying

a(v, v) ≥ δ‖v‖2V − λ‖v‖2Y for all v ∈ V.

(A2) For all j = 1, . . . ,m, Nj ∈ L(V, Y ) ∩ L(D(A), V ) and N∗j ∈ L(V, Y ).

(A3) For A0 := A− γI, with γ > 0 sufficiently large and the real interpolation space with indices
2 and 1

2 , see [7, Proposition 6.1, Part II, Chapter 1], it holds that

[D(−A0), Y ] 1
2

= [D(−A∗0), Y ] 1
2

= V.

(A4) There exist operators F1, . . . , Fm ∈ L(Y,R) such that the semigroup e(A+
∑m

j=1 BjFj)t is expo-
nentially stable on Y.

In the approach developed in [9], we first characterize the multilinear forms T2,T3, . . . of the
Taylor approximation. The equations satisfied by the multilinear forms are obtained by successive
differentiation of the following Hamilton-Jacobi-Bellman equation.

Proposition 1 (Proposition 9, [9]). Assume that there exists an open neighborhood Y0 of the origin
in Y which is such that the two following statements hold:

1. For all y0 ∈ Y0, problem (1) possesses a solution u which is right-continuous at time 0.

2. The value function is continuously differentiable on Y0.

Then, for all y0 ∈ D(A) ∩ Y0,

DV(y)Ay0 +
1

2
‖y0‖2Y −

1

2β

m∑
j=1

(
DV(y0)(Njy0 +Bj)

)2
= 0. (4)

Moreover, for all solutions u to problem (1) with initial condition y0, if u is right-continuous at 0,
then (

u(0+)
)
j

= − 1

β
DV(y0)(Njy +Bj), ∀j = 1, . . . ,m (5)

The first nontrivial term T2 of the Taylor expansion is determined by the unique nonnegative
self-adjoint operator satisfying the following algebraic operator Riccati equation:

〈A∗Πz1, z2〉+ 〈ΠAz1, z2〉+ 〈z1, z2〉 −
1

β

m∑
j=1

(B∗jΠz1)(B∗jΠz2) = 0 for all z1, z2 ∈ D(A). (6)

It is obtained by differentiating twice equation (4). It is well-known that the linearized closed-loop
operator

AΠ := A− 1

β

m∑
j=1

BjB
∗
jΠ (7)

generates an exponentially stable semigroup on Y , thanks to assumption (A4).
Further differentiation of the HJB equation allows to characterize the multilinear forms T3, T4...

as solutions to generalized Lyapunov equations, whose right-hand sides are defined recursively. The
precise structure of these equations is given in Theorem 2 below. In the definition of the right-hand
sides of the generalized Lyapunov equations, we make use of a specific symmetrization technique,
that we define now. For i and j ∈ N, consider the following set of permutations:

Si,j =
{
σi+j |σ(1) < ... < σ(i) and σ(i+ 1) < ... < σ(i+ j)

}
,

where Si,j is the set of permutations of {1, ..., i + j}. Let T be a multilinear form of order i + j.
We denote by Symi,j(T ) the multilinear form defined by

Symi,j(T )(z1, ..., zi+j) =

(
i+ j

i

)−1[ ∑
σ∈Si,j

T (zσ(1), ..., zσ(i+j))
]
, ∀(z1, ..., zi+1) ∈ Y i+j .

3



Theorem 2 (Theorem 15, [9]). There exists a unique sequence of bounded symmetric multilinear
forms (Tk)k≥2, with Tk : Y k → R and a unique sequence of bounded multilinear forms (Rj,k)k≥3, j =
1, . . . ,m with Rj,k : D(A)k → R such that for all (z1, z2) ∈ Y 2,

T2(z1, z2) := (z1,Πz2) (8)

and such that for all k ≥ 3, for all (z1, ..., zk) ∈ D(A)k,

k∑
i=1

Tk(z1, ..., zi−1, AΠzi, zi+1, ..., zk) =
1

2β

m∑
j=1

Rj,k(z1, ..., zk), (9a)

where

Rj,k = 2k(k − 1)Sym1,k−1

(
Cj,1 ⊗ Gj,k−1

)
+

k−2∑
i=2

(
k

i

)
Symi,k−i

(
(Cj,i + iGj,i)⊗ (Cj,k−i + (k − i)Gj,k−i)

)
, (9b)

and where{
Cj,i(z1, ..., zi) = Ti+1(Bj , z1, ..., zi), for i = 1, ..., k − 2,

Gj,i(z1, ..., zi) = 1
i

[∑i
`=1 Ti(z1, ..., z`−1, Njz`, z`+1, ..., zi)

]
, for i = 1, ..., k − 1.

(9c)

For all p ≥ 2, we define the polynomial approximation Vp as follows:

Vp : Y → R, Vp(y) =

p∑
k=2

1

k!
Tk(y, . . . , y), (10)

where the sequence (Tk)k≥2 is given by Theorem (2). We deduce from Vp the polynomial feedback
law up : y ∈ V → Rm, defined by(

up(y)
)
j

= − 1

β
DVp(y)(Njy +Bj)

= − 1

β

( p∑
k=2

1

(k − 1)!
Tk(Njy +Bj , y, . . . , y)

)
, ∀j = 1, . . . ,m. (11)

Its form is suggested by (5) and (10). A justification of the differentiability of Vp and a formula
for its derivative, used in the above expression, can be found in [9, Lemma 7]. We consider now
the closed-loop system associated with the feedback law up:

ẏ(t) = Ay(t) +

m∑
j=1

(Njy(t) +Bj)
(
up(y(t))

)
j
, y(0) = y0. (12)

For a given initial condition y0, its solution is denoted by S(up, y0). We also denote by Up(y0) the
open-loop control defined by

Up(y0; t) = up(S(up, y0; t)), for a.e. t ≥ 0. (13)

The following theorem states that for ‖y0‖Y small enough, the closed-loop system (12) has a unique
solution and generates an open-loop control in L2(0,∞;Rm). The solution to the closed-loop system
is obtained in the space:

W∞ :=
{
y ∈ L2(0,∞;V ) | ẏ ∈ L2(0,∞;V ∗)

}
.

Theorem 3 (Theorem 21 and Corollary 22, [9]). There exist two constants δ0 > 0 and C > 0 such
that for all y0 with ‖y0‖Y ≤ δ0, the closed-loop system (12) admits a unique solution S(up, y0) ∈
W∞ satisfying

‖S(up, y0)‖W∞ ≤ C‖y0‖Y , (14)

moreover, Up(y0) ∈ L2(0,∞;Rm).

4



Finally, the following theorem states that Vp is an approximation of V of order p + 1, in the
neighborhood of 0 and gives an error estimate on the efficiency of the open-loop control generated
by up.

Theorem 4 (Proposition 2, Theorem 30, and Theorem 32, [9]). Let δ0 be given by Theorem 3.
There exists δ ∈ (0, δ0] and a constant C > 0 such that for all y0 ∈ Y with ‖y0‖Y ≤ δ, the following
estimates hold:

J (Up(y0), y0) ≤ V(y0) + C‖y0‖p+1
Y ,

|V(y0)− Vp(y0)| ≤ C‖y0‖p+1
Y .

Moreover, for all y0 ∈ Y with ‖y0‖Y ≤ δ, problem (1) with initial condition y0 possesses a solution
ū satisfying

‖ū−Up(y0)‖L2(0,∞;Rm) ≤ C‖y0‖(p+1)/2
Y

‖S(ū, y0)− S(up, y0)‖W∞ ≤ C‖y0‖(p+1)/2
Y .

Remark 5. The constants δ0, δ, and C involved in Theorem 3 and 4 depend on p. They also depend
on the data of the problem. In particular, when β converges to 0, the algebraic Riccati equation
(6) becomes degenerate and the operator norm of the right-hand sides of the Lyapunov equations
(9a) possibly increases, because of the factor 1

2β . Therefore, one can expect that the radius of
convergence of the Taylor expansion and the constant δ0 both converge to 0 as β converges to 0.

3 Fokker-Planck equation

We describe in this section a specific optimal control problem of the form (1) which we shall
investigate numerically in Section 5.

3.1 Problem formulation

Following the setup discussed in [8], we consider the following controlled Fokker-Planck equation:

∂ρ

∂t
= ν∆ρ+∇ · (ρ∇G) +

m∑
j=1

uj∇ · (ρ∇αj) in Ω× (0,∞),

0 = (ν∇ρ+ ρ∇G) · ~n on Γ× (0,∞),

ρ(x, 0) = ρ0(x) in Γ,

(15)

where Ω ∈ Rd denotes a bounded domain with smooth boundary Γ. The Fokker-Planck equation
models the evolution of the probability distribution of a very large set of particles. More precisely,
ρ(·, t) is the probability density function of the random variable Xt, solution to the following
stochastic differential equation:

dX(t) = −∇xV (X(t), t)dt+
√

2νdWt,

where (Wt)t≥0 is a Brownian motion and where the potential V is controlled by u in the following
manner:

V (x, t) = G(x) +

m∑
j=1

uj(t)αj(x), ∀x ∈ Ω, ∀t ≥ 0.

Each particle moves along the negative direction of the gradient of the potential V and is subject
to random perturbations. When no control is used (i.e. u = 0), the potential V equals the ground
potential G. The functions α1,...αm are called control shape functions. The reflecting bound-
ary conditions models the fact that the particles are confined in Ω and ensure a preservation of
probability, i.e.

∫
Ω
ρ(x, t)dx =

∫
Ω
ρ0(x)dx for a.e. t ≥ 0.

The initial probability distribution ρ0(x) is normalized so that
∫

Ω
ρ0(x)dx = 1. We also assume

that the ground potential G and the control shape functions αj lie in W 1,∞(Ω) ∩W 2,max(2,n)(Ω)
and that ∇αj · ~n = 0 on Γ.
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We introduce now the stationary probability distribution ρ∞, defined by

ρ∞(x) =
e−Φ(x)∫

Ω
e−Φ(z)dz

,

where Φ(x) = log(ν) + G(x)
ν . System (15) is known to converge to ρ∞ when t → ∞. This

convergence depends on ν and the ground potential G and can be extremely slow. We therefore
consider the following optimization problem:

inf
u∈L2(0,∞;Rm)

J (u, ρ0) =
1

2

∫ ∞
0

‖ρ(t)− ρ∞‖L2(Ω) dt+
β

2

∫ ∞
0

‖u(t)‖2Rm dt, (16)

in order to speed up the convergence to ρ∞.

3.2 Abstract formulation and projection

As is discussed in detail in [8] (for the case m = 1), system (15) can be considered as an abstract
bilinear control system of the form

ρ̇(t) = Aρ(t) +

m∑
j=1

Njρ(t)uj(t), ρ(0) = ρ0, (17)

where the operators A and Nj are given by

A : D(A) ⊂ L2(Ω)→ L2(Ω),

D(A) =
{
ρ ∈ H2(Ω) |(ν∇ρ+ ρ∇G) · ~n = 0 on Γ

}
,

Aρ = ν∆ρ+∇ · (ρ∇G),

Nj : H1(Ω)→ L2(Ω), Njρ = ∇ · (ρ∇αj),

(18)

and where their L2(Ω)-adjoints are given by

A∗ : D(A∗) ⊂ L2(Ω)→ L2(Ω),

D(A∗) =
{
ϕ ∈ H2(Ω) |(ν∇ϕ) · ~n = 0 on Γ

}
,

A∗ϕ = ν∆ϕ−∇G · ∇ϕ,

N∗j : H1(Ω)→ L2(Ω), N∗j ϕ = −∇ϕ · ∇αj .

(19)

Setting y = ρ− ρ∞, (17) is equivalent to

ẏ(t) = Ay(t) +

m∑
j=1

(Njy(t) +Bj)uj(t), y(0) = ρ0 − ρ∞, (20)

where
Bj : R→ L2(Ω), Bjc = cNjρ∞.

Denoting by 1 the constant function on Ω equal to 1, one can easily see that:

1 ∈ im(A)⊥, 1 ∈ im(Nj)
⊥, 1 ∈ im(Bj)

⊥.

The mass conservation property follows directly from this observation:
∫

Ω
y(·, t)dx =

∫
Ω
y(·, 0)dx,

∀t ≥ 0. Consider the space

YP =
{
v ∈ L2(Ω) :

∫
Ω

vdx = 0
}
.

The mass conservation property implies that y(t) does not converge to 0 if y(0) does not lie in YP .
Therefore, condition (A4) is not satisfied if (20) is considered as a dynamical system in L2(Ω).
Instead, it must be regarded as a dynamical system in YP . As detailed in [8], this can be done by
first considering the projection P on 1

⊥ along ρ∞:

P : L2(Ω)→ YP , Py = y −
(∫

Ω

ydx
)
ρ∞.

6



Then, we have:

ẏ(t) = Ây(t) +

m∑
j=1

(N̂jy(t) + B̂j)u(t), (21)

where

Â = PAIP with D(Â) = D(A) ∩ YP ,
N̂j = PNjIP with D(N̂j) = H1(Ω) ∩ YP ,
B̂j = PBj ,

and where IP denotes the injection of YP into L2(Ω). Assumptions (A1)-(A4) are now satisfied for
system (21), as proved in [9, Section 8].

4 Algorithmic approach

Our numerical implementation of the feedback laws is based on the following approach. We first
discretize the Fokker-Planck equation with a finite-difference scheme, leading to a finite-dimensional
bilinear optimal control problem. Because of the curse of dimensionality, the tensors T2, T3, . . .
cannot be directly computed for the discretized problem. A reduction of the discretized model is
therefore necessary. The Lyapunov equations (9) can then be solved using techniques from [13].

4.1 Discretization

4.1.1 Discretization of the original state equation

The spatial discretization is obtained with a finite-difference method. We use a uniform grid with
n points. The discrete approximations of the individual operators are subsequently denoted with a
subscript n. Due to the simpler structure of the boundary conditions for the operator A∗, we employ
a finite-difference scheme for A∗ rather than for A itself. Then, the transpose of the resulting matrix
serves as a discrete approximation of A. It is denoted by An ∈ Rn×n. For the discretization of
the advective term ∇G ·∇·, an upwinding-like scheme which utilizes backward/forward differences
based on the sign of the derivatives Gxi

is used. Since the sign of the controls are not known a
priori, central differences are used for the discretization of Nj . The discretization of Nj is denoted
by Nj,n ∈ Rn×n.

Remark 6. A finite-difference scheme has been used because it preserves the bilinear structure of
the Fokker-Planck equation and therefore allows the computation of a reduced-order model and
provides a natural way of discretizing the Riccati equation (6) and the Lyapunov equations (9).
Other popular schemes for the discretization of the Fokker-Planck equation, like the Cooper-Chang
algorithm [11] or semi-Lagrangian methods (see the detailed bibliography of [10]) have nice features
(in particular, positivity preservation), however, they do not maintain the bilinear structure.

Remark 7. The central finite-difference scheme used for the operators Nj worked well for our
simulations, even though in principle, it might lead to numerical instabilities. The design of
a scheme for discretizing Nj without prior knowledge of the properties of the control is still a
challenging issue.

Since the operator A is known to have a real spectrum with ρ∞ corresponding to the smallest
eigenvalue (in magnitude) (see [8, Section 3]), a discretization ρ∞,n ∈ Rn can be efficiently com-
puted, even for large scale problems, by an inverse iteration applied to An. Denoting by hxi

the

mesh size in the direction xi and setting h̄ =
∏d
i=1 hxi

and 1 = [1, . . . , 1]T ∈ Rn, we normalize
the stationary distribution ρ∞,n so that h̄1T ρ∞,n = 1. The initial probability distribution is also
normalized: h̄1T ρn,0 = 1. Finally, we use Bj,n = Nj,nρ∞,n ∈ Rn for the discretization of Bj and
set Bn = [B1,n . . . Bm,n] ∈ Rn×m.

All together the spatially discretized problem reads:

min
u∈L2(0,∞;Rm)

Jn(y0,n, u) :=
1

2

∫ ∞
0

h̄‖yn(t)‖2Rndt+
β

2

∫ ∞
0

‖u(t)‖2Rmdt, (22)

subject to:

{
ẏn(t) = Anyn(t) +

(∑m
j=1Nj,nyn(t)uj(t)

)
+Bnu(t),

y(0) = y0,n := ρ0,n − ρ∞,n.
(23)

7



4.1.2 Discretization of the projected state equation

As explained in Section 3, the state equation must be regarded on a subspace YP of L2(Ω) to
guarantee stabilizability. The underlying projection must be numerically implemented to allow an
efficient resolution of the algebraic Riccati equation. We recall the main steps of the computation
of the corresponding discretized and projected operators, details can be found in [8]. Consider the
matrix R ∈ Rn×n and its inverse, given by

R =


1 ρ∞,1

. . .
...

1 ρ∞,n−1

−1 . . . −1 ρ∞,n

 , R−1 =


1 0

. . .
...

1 0
1 . . . 1 1

−


ρ∞,1 . . . ρ∞,1
...

...
...

ρ∞,n−1 . . . ρ∞,n−1

0 . . . 0

 .

The n − 1 first columns of R build a basis of the orthogonal set to the vector 1. We consider

the state space transformation

[
ỹn(t)
zn(t)

]
= R−1yn(t), where ỹn(t) ∈ Rn−1. After the state space

transformation, we obtain the system[
˙̃yn(t)
żn(t)

]
=
(
R−1AnR

) [ỹn(t)
zn(t)

]
+
( m∑
j=1

(
R−1Nj,nR

) [ỹn(t)
zn(t)

]
uj(t)

)
+
(
R−1Bn

)
u(t), (24)[

ỹn(0)
zn(0)

]
= R−1y0,n,

where

R−1AnR =

[
Ãn 0
0 0

]
, R−1Nj,nR =

[
Ñj,n ∗

0 0

]
, R−1Bn =

[
B̃n
0

]
.

Because of the normalization of ρ0,n and ρ∞,n, we have zn(0) = 0. Moreover, the second block row
in (24) is null, therefore z(t) = 0 and

y(t) = R

[
ỹ(t)
z(t)

]
= R

[
ỹ(t)

0

]
= R

[
In−1

0

]
︸ ︷︷ ︸

=:Q∈Rn×n−1

ỹ(t).

Finally, we obtain the following equivalent formulation of problem (22)-(23):

min
u∈L2(0,∞;Rm)

Jn(y0,n, u) :=
1

2

∫ ∞
0

‖C̃nỹn(t)‖2Rndt+
β

2

∫ ∞
0

‖u(t)‖2Rmdt, (25)

subject to:

{
˙̃yn(t) = Ãnỹn(t) +

(∑m
j=1 Ñj,nỹn(t)uj(t)

)
+ B̃nu(t),

ỹn(0) = QTR−1y0,n,
(26)

where C̃n =
√
h̄RQ.

4.2 Computation of the feedback tensors

In theory, the polynomial feedback laws associated with the discretized problem (25)-(26) can
be obtained by solving the algebraic Riccati equation and the generalized Lyapunov equations
associated with the discretized operators Ã, Ñ1,...,Ñm, B̃ (for simplicity, we omit the subscript n
in this subsection). However, the generalized Lyapunov equation of order k, corresponding to the
discretized system, is equivalent to a linear system of size (n − 1)k. As a remedy, we propose to
replace system (26) by a reduced-order model. We describe below our approach for reducing the
discretized state equation and explain how to solve the corresponding reduced Lyapunov equations.

4.2.1 Model reduction

We construct a reduced-order model for (26) of the form

ẏr(t) = Aryr(t) +

m∑
j=1

Nj,ryr(t)uj(t) +Bru(t), yr(0) = y0,r, (27)
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where the matrices Ar, Nj,r ∈ Rr×r, Br ∈ Rr×m, r � n − 1 are computed in such a way that

for some matrix Cr ∈ Rn×r, Cryr(t) ≈ C̃ỹn(t), for a range of controls uj(t). Our construction is
based on a known generalization of the method of balanced truncation for bilinear systems, see
e.g. [6]. It has already been used in the context of the Fokker-Planck equation in [5]. Let us briefly
summarize it. As in the case of linear systems, a reduced-order model is obtained as a truncation of
a system that is balanced with respect to certain Gramians. In the bilinear case ([6]), reachability
and observability of a bilinear system can be associated with the definiteness of the Gramians X
and Y given as the solution of the generalized Lyapunov equations

ÃX +XÃT +

m∑
j=1

ÑjXÑ
T
j + B̃B̃T = 0,

ÃTY + Y Ã+

m∑
j=1

ÑT
j Y Ñj + C̃T C̃ = 0.

Since an explicit computation of X and Y based on vectorization requires O(n6) operations, we
use a fixed point iteration, as discussed in [12]. More precisely, we compute

ÃX1 +X1Ã
T + B̃B̃T = 0, ÃXi +XiÃ

T +

m∑
j=1

ÑjXi−1Ñ
T
j + B̃B̃T = 0

and stop when the relative residual∥∥∥ÃXi +XiÃ
T +

∑m
j=1 ÑjXiÑ

T
j + B̃B̃T

∥∥∥
F

‖B̃B̃T ‖F

falls below a prescribed tolerance ε. The same procedure is applied for computing Y. Once (approx-
imations of) the Gramians X and Y have been computed, the steps for balancing and truncation
are the same as in the linear case. Based on the product of the Cholesky factors S and R, respec-
tively, of the Gramians X = STS and Y = RTR a singular value decomposition UΣV = SRT is
computed. Using the best rank-r decomposition of SRT then yields the final reduced-order model
via a Petrov-Galerkin projection

Ar = WT
r ÃVr, Nj,r = WT

r ÑjVr, Br = WT
r B̃, Cr = C̃Vr,

where Vr = STU(:,1:r)Σ
− 1

2

(1:r,1:r) and Wr = RTV(:,1:r)Σ
− 1

2

(1:r,1:r). The initial condition is obtained as

follows:
y0,r = WT

r ỹn(0).

Some comments concerning the reduced-order modeling approach are in order.

Remark 8. In contrast to the linear case, the generalized method of balanced truncation does
not exhibit an a priori error bound. In the next section, we therefore provide several comparisons
between the original and the reduced model and the corresponding feedback laws. For applicability
of MOR techniques, one typically assumes that the number of inputs and outputs is small. This is
clearly not the case for C̃ ∈ Rn×n−1. On the other hand, in case at least the input space is finite-
dimensional, analytic control systems are still known to have rapidly decaying singular values ([19]).
System theoretic model reduction techniques typically assume that the initial value is zero, i.e.,
ρ0,n = ρ∞. Obviously, this leads to a trivial stabilization problem for (26). For nonzero initial
values, the initialization of the reduced-oder model is not obvious and might potentially yield a
significantly different transient response. While the projected initial condition yr,0 = WT

r ỹn(0)
might still lead to deviations between original and reduced-order model, we expect this effect to be
comparably small since for the theoretical results of the feedback law, the initial value is assumed
to be close to the origin.
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4.2.2 Lyapunov equations

It is now possible to compute at a higher degree the feedback laws associated with the following
reduced problem:

min
u∈L2(0,∞;Rm)

Jr(y0,r, u) :=
1

2

∫ ∞
0

‖Cryr(t)‖2Rndt+
β

2

∫ ∞
0

‖u(t)‖2Rmdt,

subject to:

{
ẏr(t) = Aryr(t) +

(∑m
j=1Nj,ryr(t)uj(t)

)
+Bru(t),

y(0) = y0,r.

(28)

Note that the above problem has a slightly different structure from problem (1), because of the
operator Cr, however, only the algebraic Riccati equation has to be modified. It reads:

ATr Πr + ΠrAr −
1

β
ΠrBrB

T
r Πr + CTr Cr = 0.

We set: AΠ,r = Ar− 1
βBrB

T
r Πr. For solving the generalized Lyapunov equations, we represent any

multilinear form S : (Rr)k → R by an array in Rr×...×r. The associated vectorization is denoted

by vec(S) ∈ Rrk . The generalized Lyapunov equation of order k corresponding to (28) can be
formulated as a tensor-structured linear system:

k∑
i=1

(I ⊗ · · · ⊗ I ⊗ATΠ,r ⊗ I ⊗ · · · ⊗ I)︸ ︷︷ ︸
=:Ak,r

vec(Tk,r) =
1

2β

m∑
j=1

vec(Rj,k,r), (29)

where ⊗ is the Kronecker product and where Rk,j,r is computed with (9b)-(9c).

Remark 9. Because of the symmetrization operations involved in (9c), the term Rk,j,r must be

computed as a sum of (k − 1) +
∑k−2
i=2

(
k
i

)
≈ 2k terms.

Note that an explicit computation of the inverse of Ak,r requires O(r3k) operations which would
be infeasible even for moderate reduced dimensions r. However, the specific tensor structure allows
us to approximate the solution to (29) by a quadrature formula. The method is described and
analyzed in [13]. The main idea consists in combining an explicit integral representation of the
inverse A−1

k,r with a separability property of the matrix exponential of tensor-structured matrices.

The obtained approximation of A−1
k,r takes the form

A−1
k,r ≈

l∑
i=−l

wi

k⊗
j=1

etiA
T
Π,r .

We refer to [13] for the choice of the weights and points. For our numerical simulations, we have
used l = 50, leading to a sufficiently accurate approximation.

Remark 10. Let us emphasize that the model reduction step does not entirely resolve the curse of
dimensionality, since the cost of computing the feedback tensor Tk,r still grows exponentially with
k. The use of low-rank tensor formats would possibly allow to increase the degree of the polynomial
approximation of the feedback law. However, this would introduce a further approximation error.
Moreover, in our numerical examples, we obtained sufficiently accurate approximations of the
optimal control and thus we refrain from a more detailed discussion on tensor calculus.

Once the feedback tensors Tk,r have been computed up to a degree p, we arrive at the following
reduced closed-loop system:

ẏr(t) = Aryr(t) +
( m∑
j=1

Nj,ryr(t)
(
up(yr(t))

)
j

)
+Brup(yr(t)), (30)

where the reduced feedback law up is given by:

up(yr) = − 1

β

p∑
k=2

1

(k − 1)!
Tr,k(Nryr +Br, yr, . . . , yr).
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If ‖y0,r‖Rr is sufficiently small, then (30) is well-posed and the feedback law generates a control
up ∈ L2(0,∞;Rm), given by

up(t) = up(yr(t)).

In the numerical results below, once the control up has been computed (by solving the reduced
closed-loop system (30)), its efficiency is tested with the discretized system (23), that is to say, by
solving:

ẏn(t) = Anyn(t) +
( m∑
j=1

Nj,nyn(t)
(
up(t)

)
j

)
+Bnup(t), yn(0) = y0,n. (31)

5 Numerical results

We report on numerical tests in dimension 1 and 2, respectively. The main discussion focuses on
the one-dimensional example while the two-dimensional example should illustrate the applicability
of the method for larger dynamical systems.

All simulations were done on an Intel R©Xeon(R) CPU E31270 @ 3.40 GHz x 8, 16 GB RAM,
Ubuntu Linux 14.04, MATLAB R© Version 8.0.0.783 (R2012b) 64-bit (glnxa64). The solutions of
the ODE systems are obtained with the routine ode15. For solving the algebraic Riccati equation,
we use the routine care. The matrix exponential involved in the approximation formula for A−1

k,r

is implemented with the routine expm.

5.1 One-dimensional example

The first example that we consider is of the form (15) with d = 1, m = 1, ν = 1 and Ω = (−6, 6).
The ground potential G that we use is represented in Figure 1a and the corresponding probability
distribution is shown in Figure 1b. The potential G has three local minima reached at x1, x2, and
x3 and two local maxima reached at x4 and x5, with

x1 ≈ −3.85 < x4 ≈ −2.24 < x2 ≈ −0.12 < x5 ≈ 2.43 < x3 ≈ 3.78.

The minimum is reached at x1. The energy activation Q, defined as the highest potential barrier
that a particle has to overcome to reach the most stable equilibrium x1, is approximately:

Q = G(y1)−G(x2) ≈ 1.11.

For small values of ν, the rate of convergence of the uncontrolled system is approximately Ce−Q/ν ,
where C is a constant (see [18, Section 2]).

−6 −4 −2 0 2 4 6
0

20

40

x

G(x)

(a) Ground potential.

−6 −4 −2 0 2 4 6

0

0.1

0.2

x

ρ∞(x)

(b) Stationary distribution.

Figure 1: 1D Fokker-Planck equation.
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The control shape function α(x) ∈ R is such that

α(x) =


−1/2 if −6.0 ≤ x ≤ −5.9

x/12 if −5.8 ≤ x ≤ 5.8

1/2 if 5.9 ≤ x ≤ 6.0,

so that ∇α · ~n = 0 on Γ. It is constructed by (twice continuously differentiable) Hermite interpo-
lation on the intervals (−5.9,−5.8) and (5.8, 5.9). The control u(t) is scalar-valued and allows to
interact with the system by tilting one half of the ground potential while raising the other.

Our numerical tests are guided by the following three issues. First, we show the effect of model
reduction on the corresponding feedback laws. Then, we investigate the convergence of the controls
generated by the different polynomial feedback laws towards the optimal control, as the order p
increases. Finally, we study the influence of the initial condition and the value of β on the efficiency
and the convergence of these controls. The last item relates to the local behavior of the method.

5.1.1 Reduced vs original model

As described in Subsection 4.2.1, we rely on a reduced-order model for the computation of the
feedback laws. We expect the reduced-order model to replicate faithfully the original dynamics.
Due to the absence of a rigorous error bound, we provide the numerical results for some of our
test cases. For this purpose, we first compare the controls obtained with the original model (for
a finite-difference discretization with n = 100) with the controls obtained with a reduced model
of dimension r = 25. The dimension of the reduced model is determined by neglecting states
corresponding to singular values of the product of the generalized Gramians whose magnitude is
smaller than 10−6. Two different initial conditions are considered. The first one is represented in
Figure 2a and results from a random perturbation of the stationary distribution. The second one,
represented in Figure 3a, models a set of particles located close to x = 0, in the second well of the
potential G. For both situations, we chose β = 10−4. Due to the size of the original model, we
are only able to compute the first three feedback laws when no model reduction is applied. The
controls obtained with the original model and the reduced model are shown in Figures 2b and 3b.
In both cases, the control obtained with the reduced model replicates accurately the ones obtained
with the original model. The only visible deviation occurs at the beginning of the simulation, for
the first initial condition. In view of the nonzero initial condition and Remark 8, this is to be
expected.

Since the reduction from n = 100 to r = 25 is only moderate, we investigate further parameters
of n and r, respectively. Figure 4a shows the decay of the singular values of the product of the
Gramians for an original model of dimension n = 1000. We include the thresholds for relative
magnitudes smaller than 10−3 and 10−6. Let us emphasize that in contrast to n = 100, the
relative accuracy of 10−6 is already obtained for r = 21 rather than r = 25. For larger values of
n, this threshold, however, remains constant at r = 21. Figure 4b shows a comparison between
the controls obtained for reduced-order models of dimension r = 21 (ε = 10−6) and r = 9 (ε =
10−3). Two comments are in order: a) comparing Figure 3b with Figure 4b, the control laws are
visually (almost) indistinguishable, b) the first singular values remain approximately the same for
discretizations with a larger value of n.

5.1.2 Convergence of higher order feedback laws

We investigate in this subsection the behavior of the controls up derived from the feedback laws
up for large values of p. More precisely, we investigate the convergence of up towards the solution
uopt of the problem, when p increases. The method used for computing uopt is described below.
Two different initial conditions are tested. The first one, represented in Figure 5a, is a random
perturbation of the stationary distribution. The second one is the uniform distribution on Ω. We
use β = 10−4 and choose n = 1000 for the discretization. The original model is reduced to r = 9
(ε = 10−3), so that the seven first feedback laws can be computed. The obtained controls are
shown in Figures 5b and 6b, respectively.

As can be observed in the case of the randomly perturbed initial condition, the Riccati-based
feedback law differs significantly from all higher order feedback laws. Let us emphasize that the
bilinear term characterized by the operator N does not influence the computation of the first

12
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(a) Initial and stationary distribution.
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u2(t), r = 25
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u4(t), r = 25

(b) Controls.

Figure 2: Comparison of the original and reduced models, for n = 100, r = 25, and β = 10−4.
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(a) Initial and stationary distribution.
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(b) Controls.

Figure 3: Comparison of the original and reduced models, for n = 100, r = 25, and β = 10−4.
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(a) Singular value decay for n = 1000.

0 1 2 3 4 5

0

10

20

30

t

u2(t), r = 21

u3(t), r = 21

u4(t), r = 21

u2(t), r = 9

u3(t), r = 9

u4(t), r = 9

(b) Controls.

Figure 4: Comparison of the reduced models with r = 21 and r = 9, derived from a finer dis-
cretization (with n = 1000), with the setup of Figure 3.
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feedback tensor T2. This potentially explains the strong deviations between u2 and all other controls.
We further see that the higher order control laws quickly approach the optimal control law uopt.
A clear deviation between the Riccati-based feedback law u2 and all higher order controls can
also be observed for the case of a uniform initial condition. The convergence, however, appears
to be slightly slower than in the first case as is indicated by a deviation from u3 and u4 from the
other controls. This might be due to the different initial condition which is further away from the
stationary distribution, i.e., y0 is further away from the origin.
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(a) Initial and stationary distribution.
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u4(t)

u5(t)

u6(t)

u7(t)

u8(t)

(b) Control laws.

Figure 5: Convergence of the control laws for β = 10−4, n = 1000 and r = 9.
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(a) Initial and stationary distribution.
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(b) Control laws.

Figure 6: Convergence of the control laws for β = 10−4, n = 1000 and r = 9.

Solving the open-loop problem An approximation of the solution of the problem, denoted by
uopt, is obtained by solving

min
u∈L2(0,T )

J̃r(u) :=
1

2

∫ T

0

‖Cryr(t)‖2Rn + β‖u(t)‖2Rmdt, (32)

where yr is the solution to the reduced-order model (27) and where T = 20. To this purpose, we
use a gradient-descent algorithm: uk+1 = uk − tk∇J̃r(uk), where tk is computed with Armijo’s
stepsize-rule:

tk = max
j=0,1,2,...

{
Cθj | J̃r(uk − Cθj∇J̃r(uk)) ≤ J̃r(uk)− Cσθj‖∇J̃r(uk)‖2L2(0,T )

}
,

with C = 500, θ = 0.7, and σ = 0.05. The stopping criterion ‖∇J̃r(uk)‖L2(0,T ) ≤ δ is used
with δ = 3 · 10−4. Note that the control provided by such a numerical method may only be an
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approximation of a local solution to the problem. Even though the gradient-descent algorithm
is rather slow, it has the advantage, in the current framework, of being easy to implement and
robust. Since the focus of our study is the computation and the analysis of feedback laws, more
sophisticated methods for solving (32) have not been considered. Let us mention that variants of
J̃r incorporating a penalty term on the final state yr(T ) provide extremly similar solutions to the
problem, since the chosen value for T is large.

5.1.3 Influence of the initial value and the control costs

The efficiency of the polynomial feedback laws is only guaranteed in a neighborhood of the origin
(i.e. for ρ0 sufficiently close to ρ∞, in the context of the Fokker-Planck equation). The size of the
neighborhood may decrease for small values of β, as explained in Remark 5. In this subsection, we
investigate the efficiency and the convergence of the controls up for three different initial conditions,
which are respectively close, rather close, and far from the stationary distribution. Different values
of β are tested. For the discretization and for the reduction of the model, the values n = 1000 and
r = 21 (ε = 10−6) are used. The integral (25) is reduced to the interval (0, T ) with T = 20 for the
evaluation of the cost function.

Test case 1: uniform initial condition Table 1 provides results for a uniform initial condition.
This initial condition can be regarded as very close to the stationary distribution, since the cost
of the uncontrolled system J(u = 0) = 0.045 is small. We have ‖ρ0 − ρ∞‖L2(Ω) = 0.24. In such
a situation, the control u2 generated by the feedback law u2 is almost optimal, as can be seen on
Table 1a. For p = 6, the L2-distance of up to uopt is approximately 7 times smaller than for p = 2,
for the three considered values of β.

β J(u2) J(u3) J(u4) J(u5) J(u6) J(uopt)

1e−3 0.038 0.038 0.038 0.038 0.038 0.038
1e−4 0.034 0.033 0.033 0.033 0.033 0.032
1e−5 0.037 0.031 0.031 0.031 0.031 0.030

(a) Cost of the controls up.

β
‖up − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5 p = 6

1e−3 0.228 0.026 0.024 0.024 0.024
1e−4 4.26 1.19 0.82 0.61 0.61
1e−5 29.8 10.3 7.91 4.70 4.05

(b) L2-distance between the controls up and the optimal control uopt.

Table 1: Convergence results for the test case 1.

Test case 2: centered initial distribution In this second test case, we consider an initial
condition modeling a set of particles located around the origin. The results are shown on page 16
in Figure 7 and Table 2. In order to reach the stationary distribution, an important proportion of
the particles has to overcome the barrier of the reference potential G located at y1 ≈ −2.24. The
optimal control takes positive values, in order to lower the barrier by tilting the potential on the left
side. The cost associated with the uncontrolled system is now significantly larger than in the first
test case: J(u = 0) = 0.174. The L2-distance to the equilibrium is larger: ‖ρ0 − ρ∞‖L2(Ω) = 0.57.
For all the considered values of β, a big reduction of ‖up− uopt‖L2(0,T ) is observed when the order
of the feedback law increases. For p = 6, the L2-distance is at least 10 times smaller than for p = 2.
Convergence is achieved for values of β larger than 5 · 10−5, but is not observed for β = 10−5, as is
well shown in Figure 7d. For this intermediate initial condition, the convergence of the controls as
well as an important reduction of the costs can be observed, at least for the smallest values of β.
For values of β larger than 5 ·10−4, the controls u2,...u6 are all almost optimal, while for β ranging
from 10−4 to 5 · 10−5, a significant difference between u2 and u3 is observed. For β = 10−5, the
costs of u4 are twice smaller as those of u2 and u3.
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(c) Controls for β = 10−4.
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(d) Controls for β = 10−5.

Figure 7: Initial condition and controls for the test case 2.

β J(u2) J(u3) J(u4) J(u5) J(u6) J(uopt)

1e−3 0.156 0.155 0.155 0.155 0.155 0.154
5e−4 0.147 0.145 0.145 0.145 0.145 0.144
1e−4 0.138 0.122 0.120 0.120 0.120 0.119
5e−5 0.190 0.114 0.111 0.112 0.111 0.110
1e−5 0.205 0.194 0.104 0.111 0.113 0.095

(a) Cost of the controls up.

β
‖up − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5 p = 6

1e−3 1.149 0.169 0.119 0.034 0.031
5e−4 2.583 0.737 0.171 0.336 0.219
1e−4 18.50 7.02 3.16 4.01 1.52
5e−5 46.87 13.18 8.40 8.17 2.65
1e−5 90.5 78.0 39.0 42.6 34.3

(b) L2-distance between the controls up and the optimal control uopt.

Table 2: Convergence results for the test case 2.
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Figure 8: Initial condition and controls for the test case 3.

β J(u2) J(u3) J(u4) J(u5) J(u6) J(uopt)

1e−3 0.525 0.511 0.511 0.512 0.510 0.507
5e−4 0.451 0.417 0.431 0.459 0.446 0.408
1e−4 0.381 0.368 2.689 ∞ ∞ 0.246
5e−5 0.381 0.432 ∞ ∞ ∞ 0.206
1e−5 0.365 ∞ ∞ ∞ ∞ 0.147

(a) Cost of the controls up.

β
‖up − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5 p = 6
1e−3 4.88 1.50 1.77 2.31 1.52
5e−4 11.26 5.03 7.11 11.89 11.99
1e−4 46.34 35.36 57.08 ∞ ∞
5e−5 74.79 60.86 ∞ ∞ ∞
1e−5 172.3 ∞ ∞ ∞ ∞

(b) L2-distance between the controls up and the optimal control uopt.

Table 3: Convergence results for the test case 3.
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Test case 3: right-sided initial distribution A third test case is presented page 17 in Figure
8 and Table 3, where the set of particles is assumed to be located in the third potential well. This
initial configuration appears to be more challenging than the two other configurations, since a
large proportion of the set of particles has now to overcome two barriers of the reference potential,
a first one at y2 ≈ 2.43 and a second one at y1 ≈ −2.24. The cost of the uncontrolled system
is J(u = 0) = 0.865 and the L2-distance of the initial condition to the stationary distribution
is ‖ρ0 − ρ∞‖L2(Ω) = 0.76 For a comparably high control cost parameter β = 10−2, the controls
rapidly converge. Lowering the parameter to β = 10−3, convergence is in question (at least cannot
be determined from the numerical results). Finally, for β = 10−4, only the control laws u2, u3 and
u4 actually converge to zero. Higher order closed-loop system appear to be attracted by a further
(nontrivial) steady state. This is indicated by the symbol ∞ in Table 3. This behavior can be
explained by the fact that the closed-loop system is a nonlinear (polynomial) equation for which
different steady states might occur. In the case of the Fokker-Planck equation, the feedback laws
u5 and u6 introduce a shift of the ground potential such that the particle remains in the (stable)
stationary distribution associated with this shifted potential. This last test case shows the local
nature of the method.

5.2 A two-dimensional example

For this second example, we consider a system of the form (15) with

d = 2, m = 2, ν = 0.25 and Ω = (−6, 6)× (−6.5, 5.5).

The ground potential G is represented in Figure 10a and the corresponding probability distribution
is shown in Figure 10b. The potential G has four local minimizers, located as follows:

xA ≈ (2.48,−3.77), xB ≈ (−2.86,−3.75), xC ≈ (−2.88, 2.52), xD ≈ (2.42, 2.51).

Two control shape functions are used represented in Figure 11 and given by:

α1(x1, x2) = x1/12, ∀(x1, x2) ∈ (−5.8, 5.8)× (−6.5, 5.5),

α2(x1, x2) = x2/12, ∀(x1, x2) ∈ (−6, 6)× (−6.3, 5.3).

The control shape function α1 is constructed by interpolation on ((−6,−5.8)∪ (5.8, 6))× (−6, 6) so
that ∇α1 ·~n = 0 on Γ, as in the one-dimensional case. The technique is also used for α2. A negative
value of u1 allows to shift the distribution along the first coordinate axis of Ω and a negative value
of u2 allows to shift the distribution along the second coordinate axis.

As for the one-dimensional case, we investigate the influence of the initial condition and the
value of β on the efficiency of the feedback laws. We present below the results obtained for two
different initial conditions, for a reduced model of order r = 47, obtained from a finite-difference
discretization with n = 50 · 50 degrees of freedom with a tolerance of ε = 10−4. For such a
dimension, only the first four feedback laws can be computed. Figure 12 shows the decay of the
singular values of the product of the Gramians for the unreduced discretized system. As can be
observed, the decay is significantly slower than in the one-dimensional case. This can be partly
explained by the fact that the ground potential G has a more complicated structure, and that a
wider range of controls are taken into account. The open-loop control problem is solved with the
same parameters:

C = 500, θ = 0.7, σ = 0.05, δ = 3 · 10−4.

The final-time used for solving (32) and for evaluating (25) is set to T = 200.

Test case 4: a random perturbation of the initial condition Figure 13 and Table 4
(page 20) show the results obtained for an initial condition obtained by randomly perturbing the
stationary distribution. The initial condition is therefore close to the stationary distribution. The
cost of the uncontrolled system is J(u = 0) = 0.593 and ‖ρ0−ρ∞‖L2(Ω) = 0.18. Good convergence
results are observed for values of β ranging from 10−3 to 5 · 10−5. For p = 5, the L2-distance
‖up−uopt‖L2(0,T ) is approximately 10 times smaller than for p = 2. For β = 10−4 and β = 5 ·10−5,
a significant reduction of the costs can be observed as k increases. For β = 10−5, the situation is
more complex. Convergence of the controls uk as k increases is not achieved. The values of the
costs decrease with k except for k = 4. In case the associated closed loop system associated with
still converges to 0 but some strong oscillations of the control render a large value of J(u4).
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Figure 10: 2D Fokker-Planck equation.
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Figure 13: Initial condition and controls for the test case 4.

β J(u2) J(u3) J(u4) J(u5) J(uopt)

1e−3 0.247 0.235 0.234 0.234 0.232
5e−4 0.232 0.207 0.205 0.205 0.203
1e−4 0.252 0.180 0.174 0.174 0.171
5e−5 0.279 0.179 0.168 0.168 0.165
1e−5 0.524 0.182 20.696 0.164 0.158

(a) Cost of the controls up.

β
‖up − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5

1e−3 3.53 0.80 0.19 0.14
5e−4 6.73 1.42 0.37 0.24
1e−4 27.40 5.78 1.83 1.24
5e−5 52.50 11.06 3.69 2.40
1e−5 257.01 63.97 84.31 10.61

(b) L2-distance between the controls up and the optimal control uopt.

Table 4: Convergence results for the test case 4.
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Figure 14: Initial condition and controls for the test case 5.

β J(u2) J(u3) J(u4) J(u5) J(uopt)

1e−1 7.58 7.57 7.57 7.57 7.52
5e−2 6.41 6.39 6.40 6.39 6.35
1e−2 3.70 3.34 3.09 3.32 3.00
5e−3 3.07 2.68 2.28 2.96 2.05
1e−3 2.45 2.41 ∞ ∞ 0.93

(a) Cost of the controls up.

β
‖up − uopt‖L2(0,T )

p = 2 p = 3 p = 4 p = 5

1e−1 0.70 0.61 0.62 0.60
5e−2 1.10 0.69 0.80 0.63
1e−2 13.02 11.10 4.08 9.01
5e−3 21.59 19.80 9.66 20.06
1e−3 47.34 55.69 ∞ ∞

(b) L2-distance between the controls up and the optimal control uopt.

Table 5: Convergence results for the test case 5.
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Test case 5: initial condition with support in the second potential-well Figure 14 and
Table 5 show the results obtained for an initial condition located in the second potential well
(around xB). A large proportion of the distribution must be transported to xA, along the first
coordinate axis and from the negative values to the positive ones. Therefore, one can expect that
the first coordinate of the control takes negative values and that the second coordinate has a
smaller amplitude than the first one. This initial condition is much further from the stationary
distribution than the previous one. Consequently the cost of the uncontrolled system is much
larger: J(u = 0) = 9.04 and ‖ρ0 − ρ∞‖L2(Ω) = 0.63. As a consequence, the feedback laws are only
efficient for larger values of β than those considered previously. Convergence can be observed for
values of β larger than 5 · 10−3. The reduction factor of the L2-distance is smaller than for the
test case 4, but still a significant reduction of the cost is noted for β = 10−2 and β = 5 · 10−3. For
β = 10−3, convergence with respect to k cannot be achieved. The closed-loop system associated
with u4 quickly converges to a non-trivial stationary point. The closed-loop system associated
with u5 generates a control which has strong oscillations along time and eventually converges to a
non-trivial stationary point.

6 Conclusion

A numerical method for computing polynomial feedback laws for an infinite-dimensional optimal
control problem with infinite-time horizon has been proposed. It consists in particular in reducing
the state equation in order to attenuate the curse of dimensionality, which prevents a direct resolu-
tion of the involved Lyapunov equations. The applicability of the method has been demonstrated
with an optimal control problem of the Fokker-Planck equations in dimensions 1 and 2. The effect
of model reduction on the feedback laws has been numerically analysed and the relevance of the
reduction approach has been shown. Good convergence results for high-order feedback laws have
been obtained in many situations for which the initial condition was close enough to the equi-
librium or for which the value of the cost parameter β was not too small. The influence of the
initial condition and the cost parameter β on the success of the method has been investigated in a
systematic manner.

Further research will focus on the design of polynomial feedback laws for infinite-dimensional
systems with a more complicated structure. At a numerical level, the use of low-rank tensors for-
mats could be investigated to facilitate the numerical resolution of the Lyapunov equations and the
simulation of closed-loop systems. It may also be of interest to design a heuristic mechanism which
selects an appropriate order for the feedback law, in order to avoid convergence to a non-trivial
stationary point and to allow a practical implementation. At a theoretical level, the computation
of an error estimate for the efficiency of controls generated by reduced feedback laws could also be
a topic for future work.
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