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1. Introduction. In this article, we consider a bilinear optimal control problem13

of the following form:14

(1.1)

inf
u∈L2(0,∞)

J (u, y0) :=
1

2

∫ ∞
0

‖Cy(t)‖2Z dt+
α

2

∫ ∞
0

u(t)2 dt,

where:

{
ẏ(t) = Ay(t) + (Ny(t) +B)u(t), for t > 0
y(0) = y0 ∈ Y.

15

Here V ⊂ Y ⊂ V ∗ is a Gelfand triple of real Hilbert spaces, where the embedding of V16

into Y is dense and compact, and V ∗ denotes the topological dual of V . The operator17

A : D(A) ⊂ Y → Y is the infinitesimal generator of an analytic C0-semigroup eAt on18

Y , B ∈ Y , C ∈ L(Y,Z), N ∈ L(V, Y ), α > 0 and D(A) denotes the domain of A.19

The control variable u is scalar-valued. The precise conditions on A, B, C, and N20

are given further below. We denote by V the associated value function, i.e. V(y0) is21

the value of Problem (1.1) with initial condition y0.22

The optimal control problem is posed over an infinite-time horizon and the state23

equation is nonlinear, since it contains a bilinear term, Nyu. We have in mind the si-24

tuation where A is a second-order differential operator and N is a lower-order operator25

containing zero- and first-order differentiation terms. The operator N , considered as26

an operator in Y , is unbounded. Some optimal control problems of the Fokker-Planck27

equation can typically be written in the above form, see [7] and [9, Section 8].28

In the first part of the paper, we prove that the solution to the problem, seen as29

a function of the initial condition y0, is infinitely differentiable. The result is proved30

for initial conditions close to the steady state 0. It implies in particular that the31

value function is infinitely differentiable in the neighborhood of 0. We also prove a32

sensitivity relation: for an initial condition y0, the derivative of V at y0 is equal to33

the associated costate at time 0.34

The second part of the paper is dedicated to the analysis of polynomial feedback35

laws. Polynomial feedback laws are derived from Taylor approximations of the value36

function of the form: V(y) ≈
∑k
j=2

1
j!Tj(y, ..., y), where T2,T3,...,Tk are bounded mul-37

tilinear forms of order 2,3,...,k. The bilinear form T2 is characterized as the unique38
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2 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

solution to an algebraic Riccati equation and the multilinear forms of order 3 and more39

are characterized as the unique solutions to generalized Lyapunov equations. The spe-40

cific structure of the Taylor expansion has been known since the 60s (see [23] and the41

review paper [18]) for a general class of finite-dimensional stabilization problems. We42

have extended these results to the case of infinite-dimensional bilinear systems in a43

recent work [9]. In another recent work [8], we have developped a numerical method44

for computing the polynomial feedback laws, based on a model-reduction technique45

for bilinear systems and an integral representation of the solutions to generalized Ly-46

apunov equations. Numerical results have been obtained for a control problem of the47

Fokker-Planck equation.48

In our work [9], we have obtained the following estimate:49

‖uk − ū‖L2(0,∞) = O(‖y0‖(k+1)/2
Y ),50

where uk denotes the open-loop control generated by the feedback law derived from51

a Taylor expansion of order k and where ū denotes the solution to Problem (1.1) (for52

the initial condition y0, assumed to be close enough to 0). The main result of the53

second part of the present article is the following (improved) estimate:54

‖uk − ū‖L2(0,∞) = O(‖y0‖kY ).55

Let us point out that this estimate is new, even for the finite-dimensional setting.56

Both parts of the article rely on a stability analysis of the optimality conditions57

associated with Problem (1.1). This approach is described in abstract frameworks in58

[6, 17] and has been used for the sensitivity analysis of optimal control problems in59

many different settings. For the case of infinite-dimensional systems with finite-time60

horizon, we can mention [15, 16, 26].61

Let us briefly comment on the literature on infinite-horizon optimal control pro-62

blems. Many authors have considered the case of nonlinear ordinary differential equa-63

tions. In fact, this area of research is still quite active, in part motivated by problems64

in economics. We refer the reader to the most recent articles [1, 3, 5, 24, 25] and to the65

references therein. The article [12] gives a very interesting account of the different ap-66

proaches for investigating infinite-horizon optimal control problems. In this reference,67

a sensitivity relation is also obtained for problems with control constraints. The case68

of partial differential equations has received significantly less attention. Much research69

was dedicated to the linear-quadratic case and the development of proper frameworks70

for deriving algebraic Riccati equations, see e.g. [14, 20]. The quadratic programming71

approach for linear-quadratic infinite-horizon optimal control problems was discussed72

in [21]. For the case of nonlinear partial differential equations, we mention the articles73

[13] and [28], where optimality conditions are derived for a class of optimal control74

problems of semilinear parabolic equations. In [13], a sparsity-promoting cost function75

is considered. In [28], a quadratic cost function (similar to ours) is considered and a76

sensitivity relation is proved.77

We now give a brief account of the contents of the paper. In Section 2, we78

provide the precise problem formulation and give results on the well-posedness of79

the state equation. Section 3 is devoted to existence results for optimality systems80

related to linear-quadratic infinite-horizon optimal control problems. They are used81

for justifying the applicability of the inverse function theorem used in the sensitivity82

analysis performed in Section 4. While the results of Section 4 are of local nature,83

we provide in Section 5 optimality conditions for an arbitrary initial condition. We84

describe in Section 6 the construction of polynomial feedback laws and summarize the85
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 3

main results obtained in the error analysis of [9]. The improved rate of convergence86

is established in Section 7. The proofs of two technical results are moved to the87

Appendix.88

2. Formulation of the problem and first properties.89

2.1. Formulation of the problem. Throughout the article we assume that the90

following four assumptions hold true.91

(A1) The operator −A can be associated with a V -Y coercive bilinear form a : V ×92

V → R such that there exist λ ∈ R and δ > 0 satisfying93

a(v, v) ≥ δ‖v‖2V − λ‖v‖2Y for all v ∈ V.9495

(A2) The operator N is such that N ∈ L(V, Y ) and N∗ ∈ L(V, Y ).96

(A3) [Stabilizability] There exists an operator F ∈ L(Y,R) such that the semigroup97

e(A+BF )t is exponentially stable on Y .98

(A4) [Detectability] There exists an operator K ∈ L(Z, Y ) such that the semigroup99

e(A−KC)t is exponentially stable on Y .100

Conditions (A3) and (A4) are well-known and analysed in infinite-dimensional101

systems theory, see [14], for example. In particular, there has been ongoing inte-102

rest on stabilizability of infinite-dimensional parabolic systems by finite-dimensional103

controllers. We refer to [2, 27] and the references given there.104

While the results of this article are obtained for scalar controls, the generalisation105

to the case of systems of the form106

ẏ = Ay +

m∑
j=1

(Njy(t) +Bj)uj(t),107

with Bj ∈ Y , can easily be achieved. In this more general case, one has to assume108

that the operators N1,...,Nm satisfy Assumption (A2). Assumption (A3) must be109

replaced by the following one: there exist operators F1,...,Fm in L(Y,R) such that the110

semigroup e(A+
∑m

j=1 BjFj)t is exponentially stable.111

With (A1) holding the operator A associated to the form a generates an analytic112

semigroup that we denote by eAt, see e.g. [29, Sections 3.6 and 5.4]. Let us set113

A0 = A − λI, if λ > 0 and A0 = A otherwise. Then −A0 has a bounded inverse114

in Y , see [29, page 75], and in particular it is maximal accretive, see [29, 20]. We115

have D(A0) = D(A) and the fractional powers of −A0 are well-defined. In particular,116

D((−A0)
1
2 ) = [D(−A0), Y ] 1

2
:= (D(−A0), Y ) 1

2 ,2
the real interpolation space with117

indices 2 and 1
2 , see [4, Proposition 6.1, Part II, Chapter 1]. Assumption (A5) below118

will only be used in Sections 6 for the proof of Lemma 6.3. The assumption is not119

needed for the sensitivity analysis performed in Section 4 and for the derivation of120

optimality conditions in Section 5.121

(A5) It holds that [D(−A0), Y ] 1
2

= [D(−A∗0), Y ] 1
2

= V .122

Let us state the problem under consideration. For y0 ∈ Y , consider123

(P ) inf
u∈L2(0,∞)

J (u, y0) :=
1

2

∫ ∞
0

‖CS(u, y0; t)‖2Z dt+
α

2

∫ ∞
0

u(t)2 dt,124

where S(u, y0; ·) is the solution to125

(2.1)

{
ẏ(t) = Ay(t) +Ny(t)u(t) +Bu(t), for t > 0,
y(0) = y0.

126
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4 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Here y = S(u, y0) is referred to as solution of (2.1) if for all T > 0, it lies in127

W (0, T ) :=
{
y ∈ L2(0, T ;V ) | ẏ ∈ L2(0, T ;V ∗)

}
.128

The well-posedness of the state equation is ensured by Lemma 2.4 below. We re-129

call that W (0, T ) is continuously embedded in C([0, T ], Y ) [22, Theorem 3.1]. We130

abbreviate131

W∞ = W (0,∞).132

The space W∞ is continuously embedded in Cb([0,∞], Y ), see e.g. the proof of [9,133

Lemma 1]. We fix M0 > 0 such that for all y ∈W∞,134

(2.2) ‖y‖L∞(0,∞;Y ) ≤M0‖y‖W∞ .135

Let us mention that for y ∈W∞, limt→∞ ‖y(t)‖Y = 0. A short proof can be found in136

[9, Lemma 1]. We also set137

W 0
∞ =

{
y ∈W∞ | y(0) = 0

}
.138

Finally, we denote by V the value function associated with Problem (P ), defined by139

V(y0) = inf
u∈L2(0,∞)

J (u, y0).140

Note that origin is a steady state of the uncontrolled system (2.1) and that V(0) = 0.141

Remark 2.1. Assumptions (A1)-(A5) have been justified for a class of controlled142

Fokker-Planck equations in [7, 9]. In that case the operator N is unbounded when143

considered as operator in Y . For finite-dimensional control systems, the function space144

assumptions are vacuously satisfied and the stability and detectability requirements145

are well investigated.146

Remark 2.2. If A generates an exponentially stable semigroup, then the control147

operator B can be the zero operator. In this case the Riccati equation (6.4) below148

results in a Lyapunov equation.149

Example 2.3. To illustrate the framework for a simple special case, we consider150

the control system151

(2.3)


ξ̇ = ∆ξ + u b ξ in Ω× (0,∞)

∂ξ
∂n = 0 on ∂Ω× (0,∞)

ξ(0) = ξ0 in Ω,

152

where Ω is a bounded domain in Rn with smooth boundary δΩ, u = u(t) ∈ R,153

b ∈ L∞(Ω), and
∫

Ω
b(x)dx 6= 0. Our goal is to stabilize the system to a function of154

constant value ȳ ∈ R, ȳ 6= 0. For this purpose we transform (2.3) via y = ξ − ȳ to155

(2.4)


ẏ = ∆y + u b (y + ȳ)
∂y
∂n = 0

y(0) = y0,

156

where y0 = ξ0 − ȳ. The observation operator C is the restriction operator from Ω to157

a subdomain w ∈ Ω. To cast this problem in the general setting, we set Y = L2(Ω),158
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 5

V = H1(Ω), Z = L2(w),159

a(v, v) = (∇v,∇v)L2(Ω), A = ∆, D(A) = H2(Ω),160

Nv = bv, B = bȳ ∈ Y.161162

Note that C∗ is the extension-by-zero operator. Then (A1) and (A2) are satisfied163

with δ = λ = 1. The linearization of (2.4) at the origin is given by164

(2.5)


ẇ = ∆w + u b ȳ
∂w
∂n = 0

w(0) = w0.

165

By the generalized Poincaré inequality [19, page 297], there exists a constant C > 0166

such that C‖v‖2V ≤ ‖∇v‖2L2(Ω) + |ȳ|
( ∫

Ω
bv dx

)2
, for all v ∈ V . From (2.5) with167

u = −sgn(ȳ)
∫

Ω
bw dx, we obtain168

1

2

d

dt
‖w(t)‖2Y + ‖∇w(t)‖2L2(Ω) + |ȳ|

(∫
Ω

bw(t) dx
)2

= 0169

and thus, changing if necessary the value of C,170

d

dt
‖w(t)‖2Y + C‖w(t)‖2Y ≤ 0,171

which further implies that ‖w(t)‖Y ≤ e−Ct‖w0‖Y , by Gronwall’s inequality. Thus172

(A3) holds with Fw = −sgn(ȳ)
∫

Ω
bw dx. Finally, Assumption (A4) can be obtained173

with K = −C∗ and Assumption (A5) can be proved with [20, Appendix 3A].174

2.2. State equation. The first lemma ensures that the state equation is well-175

posed. The lemma is a simple generalization of [9, Lemma 1] and is based on As-176

sumptions (A1) and (A2). Unless stated otherwise, y0 is an initial condition in Y and177

f lies in L2(0,∞;V ∗). All along the article, the constant M > 0 is a generic constant178

whose value may change.179

Lemma 2.4. For all T > 0 and u ∈ L2(0, T ), there exists a unique solution180

y ∈W (0, T ) to the following system:181

ẏ = Ay +Nyu+Bu+ f, y(0) = y0.182

Moreover, there exists a continuous function c such that183

(2.6) ‖y‖W (0,T ) ≤ c(T, ‖y0‖Y , ‖u‖L2(0,T ), ‖f‖L2(0,T ;V ∗)).184

Finally, if y ∈ L2(0,∞;Y ), then y ∈W∞.185

Using the stabilizability assumption (A3) and the techniques of [4, Theorem 2.2,186

Part II, Chapter 3] and [30], one can show that for all f ∈ L2(0,∞;V ∗) and for all187

y0 ∈ Y , the following nonhomogeneous system:188

(2.7) ẏ = (A+BF )y + f, y(0) = y0189

has a unique solution y ∈W∞. Moreover, there exists a constant Ms > 0 independent190

of f and y0 such that191

(2.8) ‖y‖W∞ ≤Ms(‖f‖L2(0,∞;V ∗) + ‖y0‖Y ).192
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6 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Similarly, as a consequence of the detectability assumption (A4), the following non-193

homogeneous system:194

(2.9) ẏ = (A−KC)y + f, y(0) = y0195

has a unique solution y ∈W∞. Moreover, there exists a constant Md independent of196

f and y0 such that197

(2.10) ‖y‖W∞ ≤Md(‖f‖L2(0,∞;V ∗) + ‖y0‖Y ).198

In the following, we address the stability of a class of perturbations of the linear199

system (2.9).200

Lemma 2.5. Let P ∈ L(W∞, L
2(0,∞;V ∗)) be such that ‖P‖ < 1

Md
, where ‖P‖201

denotes the operator norm of P . Then there exists a unique solution to the following202

system:203

(2.11) ẏ(t) = (A−KC)y(t) + (Py)(t) + f(t), y(0) = y0.204

Moreover,205

‖y‖W∞ ≤
Md

1−Md‖P‖
(‖f‖L2(0,∞;V ∗) + ‖y0‖Y ).206

Proof. We first prove the existence of a solution, by using a classical fixed-point207

argument. Let M ′ = Md

1−Md‖P‖ . Consider the set M⊂W∞, defined by208

M =
{
y ∈W∞ | ‖y‖W∞ ≤M ′(‖f‖L2(0,∞;V ∗) + ‖y0‖Y )

}
.209

We consider the mapping Z : y ∈ M 7→ Z(y) ∈ W∞, where z = Z(y) is the unique210

solution to211

ż(t) = (A−KC)z(t) + (Py)(t) + f(t), z(0) = y0.212

We prove that the mapping Z has a fixed point, which is then a solution to (2.11).213

By (2.10), we have214

‖Z(y)‖W∞ ≤ Md

(
‖Py‖L2(0,∞;V ∗) + ‖f‖L2(0,∞;V ∗) + ‖y0‖Y

)
215

≤ Md(1 + ‖P‖M ′)︸ ︷︷ ︸
=M ′

(‖f‖L2(0,∞;V ∗) + ‖y0‖Y ).216

217

Therefore Z(M) ⊆M. Now for y1 and y2 ∈M, we set z = Z(y2)−Z(y1). Then,218

ż(t) = (A−KC)z(t) + (P (y2 − y1))(t), z(0) = 0,219

and by estimate (2.10), we obtain220

‖Z(y2)−Z(y1)‖W∞ = ‖z‖W∞ ≤Md‖P‖‖y2 − y1‖W∞ .221

This proves that Z is a contraction, since Md‖P‖ < 1. Therefore, by the fixed-point222

theorem, there exists y ∈ M such that Z(y) = y, which proves the existence of a223

solution to (2.11).224

Observe now that the mapping Z, defined on the whole space W∞, is still a225

contraction. This proves the uniqueness of the solution to (2.11) in W∞.226
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Remark 2.6. The result is also true when the operator (A −KC) is replaced by227

(A+BF ) and the constant Md by Ms.228

In the next lemma, we utilize the previous result and assumption (A4) to establish229

a detectability property for the bilinear system.230

Lemma 2.7. Let 0 < δ <
(
‖N‖L(Y,V ∗)M0Md

)−1
and let u ∈ L2(0,∞) be such231

that ‖u‖L2(0,∞) ≤ δ. Assume that the unique solution y to the following system:232

ẏ = Ay +Nyu+Bu+ f, y(0) = y0233

is such that Cy ∈ L2(0,∞;Z). There exists a constant M > 0, independent of y0, u,234

f , and y, such that235

‖y‖W∞ ≤M
(
‖y0‖Y + ‖u‖L2(0,∞) + ‖f‖L2(0,∞;V ∗) + ‖Cy‖L2(0,∞;Z)

)
.236

Proof. Consider the following system:237

(2.12) ż = Az +Nzu+Bu+ f +KC(y − z), z(0) = y0.238

For proving its well-posedness, we introduce the operator P ∈ L(W∞, L
2(0,∞;V ∗)),239

defined by (Pξ)(t) = Nξ(t)u(t) for ξ ∈W∞. We have240

‖Pξ‖L2(0,∞;V ∗) ≤ ‖N‖L(Y,V ∗)‖u‖L2(0,∞)‖ξ‖L∞(0,∞;Y )241

≤ ‖N‖L(Y,V ∗)‖u‖L2(0,∞)M0︸ ︷︷ ︸
<M−1

d

‖ξ‖W∞ .242

243

Therefore, ‖P‖ := ‖P‖L(W∞,L2(0,∞;V ∗)) < M−1
d . Note that (2.12) can be expressed244

as245

ż(t) = (A−KC)z(t) + (Pz)(t) + (Bu(t) + f(t) +KCy(t)).246

Thus by Lemma 2.5, system (2.12) has a unique solution, which satisfies247

‖z‖W∞ ≤ M
(
‖Bu+ f +KCy‖L2(0,∞;V ∗) + ‖y0‖Y

)
248

≤ M(‖u‖L2(0,∞) + ‖f‖L2(0,∞;V ∗) + ‖Cy‖L2(0,∞;Z) + ‖y0‖Y ),249250

where the constant M in the last inequality does not depend on y0, u, f and y.251

Finally, we observe that e := z − y satisfies252

ė(t) = (A−KC)e(t) + u(t)N(t)e(t) = (A−KC)e(t) + (Pe)(t), e(0) = 0,253

which proves that e = 0, using once again Lemma 2.5. Therefore, y = z and the254

lemma is proved.255

Remark 2.8. The result of Lemma 2.7 remains true if the bilinear term Nyu is256

removed. In this case, no restriction on ‖u‖L2(0,∞) is necessary, since then the well-257

posedness of z (defined by (2.12)) follows directly from estimate (2.8).258

Remark 2.9. In an abstract non-convex setting, a sensitivity analysis can be per-259

formed (i) if the linearized constraints are surjective and (ii) if the sufficient second-260

order optimality conditions are satisfied. These two properties are satisfied in the261

current framework for (y, u) = (0, 0), the solution to (P ) with initial condition y0 = 0.262

This manuscript is for review purposes only.



8 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

(i) A consequence of the stabilizability assumption (A3) is that for all f ∈263

L2(0,∞;V ∗), there exists a pair (z, v) ∈W∞×L2(0,∞) satisfying: ż = Az+Bv+ f ,264

z(0) = 0 (see the proof of Lemma 3.3).265

(ii) A consequence of the detectability assumption (A4), obtained with Lemma 2.7266

and Remark 2.8, is the following property: for all (z, v) ∈ W∞ × L2(0,∞) satisfying267

ż = Az +Bv, z(0) = 0, there exists a constant M independent of (z, v) such that268

1

2
‖Cz‖2L2(0,∞;Z) +

α

2
‖v‖2L2(0,∞) ≥M(‖z‖2L2(0,∞;Y ) + ‖v‖2L2(0,∞)).269

This property corresponds to the sufficient second-order optimality conditions for (P )270

with initial condition y0 = 0.271

3. Linear optimality systems. This section is dedicated to the proof of Pro-272

position 3.1 below, which is a key result for the sensitivity analysis performed in273

Section 4 and for the error analysis of Section 7. The proof can be found at the end of274

the section. For finite-horizon control problems, results like Proposition 3.1 are quite275

well-known. The case of infinite-time horizons, however, needs special attention. It276

should also be pointed out that the proof is not based on PDE techniques, but rat-277

her, an associated linear-quadratic optimal control problem is investigated. Before278

stating the proposition in detail, we recall that W 0
∞ is continuously embedded into279

L2(0,∞;V ) and therefore L2(0,∞;V ∗) is continuously embedded into (W 0
∞)∗. We280

further introduce the space281

X := L2(0,∞;V ∗)× (W 0
∞)∗ × L2(0,∞).282

Proposition 3.1. For all (f, g, h) ∈ X, there exists a unique triplet (y, u, p) ∈283

W 0
∞ × L2(0,∞)× L2(0,∞;V ) such that284

(3.1)


ẏ − (Ay +Bu) = f in L2(0,∞;V ∗)

−ṗ−A∗p− C∗Cy = g in (W 0
∞)∗

αu+ 〈B, p〉Y = −h in L2(0,∞).

285

Moreover there exists a constant M > 0, independent of (f, g, h), such that286

(3.2) ‖(y, u, p)‖W∞×L2(0,∞)×L2(0,∞;V ) ≤M‖(f, g, h)‖X .287

Assume further that g ∈ L2(0,∞;V ∗). Then p ∈W∞ and there exists a constant M ,288

independent of (f, g, h), such that289

(3.3) ‖p‖W∞ ≤M
(
‖f‖L2(0,∞;V ∗) + ‖g‖L2(0,∞;V ∗) + ‖h‖L2(0,∞)

)
.290

Note that the costate equation in (3.1) must be understood as follows:291

〈p, ϕ̇〉L2(0,∞;V ),L2(0,∞;V ∗) = 〈A∗p, ϕ〉L2(0,∞;V ∗),L2(0,∞;V )292

+ 〈C∗Cy, ϕ〉L2(0,∞;Y ) + 〈g, ϕ〉(W 0
∞)∗,W 0

∞
,293294

for all ϕ ∈W 0
∞. The main idea for proving the above result is the following: the linear295

system (3.1) constitutes the optimality conditions for the linear-quadratic optimal296

control problem (LQ) defined below. Given f ∈ L2(0,∞;V ∗), g ∈ (W 0
∞)∗, and297

h ∈ L2(0,∞), we consider:298

(LQ) min
(y,u)∈W 0

∞×L2(0,∞)
J [g, h](y, u) subject to: e[f ](y, u) = 0,299
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where300

J [g, h](y, u) :=
1

2

∫ ∞
0

‖Cy(t)‖2Z dt+ 〈g, y〉(W∞0 )∗,W∞0
+
α

2

∫ ∞
0

(
u(t)2 + h(t)u(t)

)
dt,301

e[f ](y, u) := ẏ − (Ay +Bu+ f) ∈ L2(0,∞;V ∗).302303

Note that the initial condition y(0) = 0 need not be specified as a constraint since304

y ∈W 0
∞. Let us prove the existence of a solution to Problem (LQ).305

Lemma 3.2. There exists a constant M > 0 such that for all (f, g, h) ∈ X, the306

linear-quadratic problem (LQ) has a unique solution (y, u) satisfying the following307

bounds:308

(3.4) ‖y‖W∞ ≤M‖(f, g, h)‖X and ‖u‖L2(0,∞) ≤M‖(f, g, h)‖X .309

Proof. Let ỹ ∈ W 0
∞ be defined by ˙̃y = (A + BF )ỹ + f . Then by (2.8), we have310

‖ỹ‖W∞ ≤Ms‖f‖L2(0,∞;V ∗). Setting ũ = F ỹ, we obtain that311

‖ũ‖L2(0,∞) ≤M‖f‖L2(0,∞;V ∗) and e[f ](ỹ, ũ) = 0,312

and consequently J [g, h](ỹ, ũ) ≤M‖(f, g, h)‖2X . Therefore the problem is feasible.313

Let us consider now a minimizing sequence (yn, un)n∈N. We can assume that for314

all n ∈ N,315

J [g, h](yn, un) ≤M‖(f, g, h)‖2X .(3.5)316317

We begin by proving that the sequence (yn, un) is bounded in W∞×L2(0,∞). To this318

purpose, we first compute a lower bound of J [g, h](yn, un). Using Young’s inequality,319

we obtain for all ε > 0 that320

J [g, h](yn, un) ≥ 1

2
‖Cyn‖2L2(0,∞;Z) − ‖g‖(W 0

∞)∗‖yn‖W∞321

+
α

2
‖un‖2L2(0,∞) − ‖h‖L2(0,∞)‖un‖L2(0,∞)322

≥ 1

2
‖Cyn‖2L2(0,∞;Z) −

1

2ε
‖g‖2(W 0

∞)∗ −
ε

2
‖yn‖2W∞323

+
α

2

(
‖un‖L2(0,∞) −

‖h‖L2(0,∞)

α

)2

−
‖h‖2L2(0,∞)

2α
.(3.6)324

325

Combining (3.5) and (3.6), we obtain that there exists a constant M independent of326

ε > 0 such that327

‖Cyn‖2L2(0,∞;Z) + α
(
‖un‖L2(0,∞) −

‖h‖L2(0,∞)

α

)2

328

≤M
(
‖(f, g, h)‖2X + ε‖yn‖2W∞ +

1

ε
‖g‖2(W 0

∞)∗

)
329
330

and therefore331

‖Cyn‖L2(0,∞;Z) ≤ M
(
‖(f, g, h)‖X +

√
ε‖yn‖W∞ +

1√
ε
‖g‖(W 0

∞)∗

)
,(3.7)332

‖un‖L2(0,∞) ≤ M
(
‖(f, g, h)‖X +

√
ε‖yn‖W∞ +

1√
ε
‖g‖(W 0

∞)∗

)
.(3.8)333

334
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Applying Lemma 2.7 (taking into account Remark 2.8) and using (3.7), we obtain335

‖yn‖W∞ ≤ M
(
‖un‖L2(0,∞) + ‖f‖L2(0,∞;V ∗) + ‖Cyn‖L2(0,∞;Z)

)
336

≤ M
(
‖(f, g, h)‖X +

√
ε‖yn‖W∞ +

1√
ε
‖g‖(W 0

∞)∗
)

337
338

Choosing ε = 1
(2M)2 (where M is the constant involved in the last inequality), we339

obtain the existence of another constant M such that ‖yn‖W∞ ≤ M‖(f, g, h)‖X .340

Combining this estimate with (3.8), we finally obtain that341

‖un‖L2(0,∞) ≤M‖(f, g, h)‖X .342

The sequence (yn, un)n∈N is therefore bounded in W∞ × L2(0,∞) and has a weak343

limit point (y, u) satisfying (3.4). One can prove the optimality of (y, u) with the344

same techniques as those used for the proof of [9, Proposition 2].345

The uniqueness of the solution directly follows from the linearity of the state346

equation and the strict convexity of the cost functional.347

We give now optimality conditions for Problem (LQ). The existence of a Lagrange348

multiplier follows directly from the surjectivity of a linear operator denoted T , derived349

from the state equation. The surjectivity of T is itself is a direct consequence of the350

stabilizability assumption (A3).351

Lemma 3.3. For all (f, g, h) ∈ X, there exists a unique costate p ∈ L2(0,∞;V )352

satisfying the following relations:353

−ṗ−A∗p− C∗Cy = g(3.9)354

αu+ 〈B, p〉Y = − h.(3.10)355356

Here (y, u) denotes the unique solution to (LQ). Moreover, there exists a constant357

M > 0 independent of (f, g, h) such that ‖p‖L2(0,∞;V ) ≤M‖(f, g, h)‖X .358

Proof. The mappings e[f ] and J [g, h] are continuously differentiable. We have359

DJ [g, h](y, u)(z, v)360

= 〈C∗Cy, z〉L2(0,∞;Y ) + 〈g, z〉(W 0
∞)∗,W 0

∞
+ α〈u, v〉L2(0,∞) + 〈h, v〉L2(0,∞)361

=
〈(C∗Cy + g

αu+ h

)
,

(
z
v

)〉
(W 0
∞)∗×L2(0,∞),W 0

∞×L2(0,∞)
.362

363

The derivative De[f ](y, u), which is independent of f , y and u, is denoted by T . It is364

given by365

T : (z, v) ∈W 0
∞ × L2(0,∞) 7→ ż − (Az +Bv) ∈ L2(0,∞;V ∗).366

The adjoint operator T ∗ : L2(0,∞;V )→ (W 0
∞)∗ × L2(0,∞) satisfies367

〈T ∗p, (z, v)〉 = 〈p, ż〉L2(0,∞;V ),L2(0,∞;V ∗) − 〈p,Az〉L2(0,∞;V ),L2(0,∞;V ∗)368

− 〈p,Bv〉L2(0,∞;V ),L2(0,∞;V ∗)369

= 〈−ṗ, z〉(W 0
∞)∗,W 0

∞
− 〈A∗p, z〉L2(0,∞;V ∗),L2(0,∞;V ) − 〈〈B, p〉Y , v〉L2(0,∞)370

=
〈(−ṗ−A∗p
−〈B, p〉Y

)
,

(
z
v

)〉
(W 0
∞)∗×L2(0,∞),W 0

∞×L2(0,∞)
.371

372
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Let us prove that the operator T is surjective. Take ϕ ∈ L2(0,∞;V ∗), let z̃ be the373

solution to the following system: ˙̃z = (A+BF )z̃+ϕ, z̃(0) = 0. Let us set ṽ = F z̃. By374

estimate (2.8), ‖z̃‖W∞ ≤ Ms‖ϕ‖L2(0,∞;V ∗) and thus ‖ũ‖L2(0,∞) ≤ M‖ϕ‖L2(0,∞;V ∗).375

Clearly T (z̃, ṽ) = ϕ, which proves the surjectivity of T . Consequently, see e.g. [32],376

there exists a unique p ∈ L2(0,∞;V ) such that377

DJ [g, h](y, u)(z, v)− 〈T ∗p, (z, v)〉(W 0
∞)∗×L2(0,∞),W 0

∞×L2(0,∞) = 0.378

Using the expressions of DJ [g, h](y, u) and T ∗ previously obtained, we deduce the379

costate equation (3.9) and relation (3.10). By the closed range theorem (see [11,380

Theorem 2.20]) and (3.4), there exists a constant M > 0 such that381

‖p‖L2(0,∞;V ) ≤ M‖T ∗p‖(W 0
∞)∗×L2(0,∞)382

≤ M‖DJ [g, h](y, u)‖(W 0
∞)∗×L2(0,∞)383

≤ M
(
‖C∗Cy‖L2(0,∞;Y ) + ‖g‖(W 0

∞)∗ + ‖u‖L2(0,∞) + ‖h‖L2(0,∞)

)
.384385

Finally, using estimate (3.4) for the solution (y, u) to Problem (LQ), we obtain that386

‖p‖L2(0,∞;V ) ≤M‖(f, g, h)‖X . This concludes the proof.387

We can finally prove Proposition 3.1.388

Proof of Proposition 3.1. The existence of (y, u, p) and estimate (3.2) directly fol-389

low from Lemma 3.2 and Lemma 3.3. Let (y1, u1, p1) and (y2, u2, p2) be two soluti-390

ons to (3.1). By the linearity of the system, the difference is a solution to (3.1)391

with (f, g, h) = (0, 0, 0). Estimate (3.2) implies the uniqueness. Let us assume now392

that g ∈ L2(0,∞;V ∗). In order to prove that p ∈ W∞, it suffices to prove that393

ṗ ∈ L2(0,∞;V ∗). Using the costate equation (3.9) and estimate (3.2), we obtain that394

‖ṗ‖L2(0,∞;V ∗) ≤
(
‖A∗p‖L2(0,∞;V ∗) + ‖C∗Cy‖L2(0,∞;V ∗) + ‖g‖L2(0,∞;V ∗)

)
395

≤ M
(
‖p‖L2(0,∞;V ) + ‖y‖L2(0,∞;Y ) + ‖g‖L2(0,∞;V ∗)

)
396

≤ M
(
‖f‖L2(0,∞;V ∗) + ‖g‖L2(0,∞;V ∗) + ‖h‖L2(0,∞)

)
.397398

This implies (3.3) and concludes the proof of the proposition.399

4. Sensitivity analysis. In this section, after proving the existence and uni-400

queness of a solution to (P ) for all initial conditions y0 close enough to the origin, we401

verify that locally, the unique solution, the associated trajectory, and the costate (in402

W∞) are infinitely differentiable functions of the initial condition y0. In particular,403

this will imply that the value function V is C∞ in a neighborhood of the origin.404

A first step in the analysis is the derivation of first-order necessary optimality405

conditions for (P ) in a weak form (Proposition 4.2), i.e. for a costate p ∈ L2(0,∞;V )406

and an adjoint equation satisfied in (W 0
∞)∗. Then, we prove the existence of a mapping407

y0 7→
(
Y(y0),U(y0),P(y0)

)
,408

defined for y0 ∈ Y close to 0, which is such that (Y(y0),U(y0),P(y0)) is the unique409

triplet (y, u, p) in a neighbourhood of (0, 0, 0) satisfying the weak optimality conditions410

(Lemma 4.4). It follows then that U(y0) is the unique solution to (P ) (Proposition411

4.5), for y0 close enough to 0.412

Optimality conditions in a strong form, involving a costate in W∞, require an413

extra step. We first prove the existence of a mapping414

y0 7→
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
,415
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12 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

defined for y0 ∈ Y close to 0, which is such that (Ỹ(y0), Ũ(y0), P̃(y0)) is the unique416

triplet (y, u, p) in a neighbourhood of (0, 0, 0) satisfying the strong optimality condi-417

tions (Lemma 4.7). To conclude the sensitivity analysis, it suffices then to check that418

the mappings (Y,U ,P) and (Ỹ, Ũ , P̃) coincide around 0 (Lemma 4.8).419

We start by proving the existence of a solution to (P ), assuming the existence of420

a feasible control u and the bound (4.1). This bound enables us to derive estimates421

on the trajectory for the W∞-norm, using Lemma 2.7.422

Lemma 4.1. Let 0 ≤ δ0 ≤ 1
2

(
‖N‖L(Y,V ∗)M0Md

)−1
. Assume that there exists a423

control u ∈ L2(0,∞) such that424

(4.1) J (u, y0) ≤ α

2
δ2
0 .425

Then (P ) possesses a solution ū. Moreover, there exists a constant M > 0, indepen-426

dent of δ0, such that427

(4.2) ‖ū‖L2(0,∞) ≤ δ0 and ‖ȳ‖W∞ ≤M(‖y0‖Y + δ0),428

where ȳ = S(ū, y0).429

Proof. We follow the same approach as in Lemma 3.2. Let (un)n∈N be a minimi-430

zing sequence, and set yn = S(un, y0). We can assume that J (un, y0) ≤ α
2 δ

2
0 , for all431

n ∈ N. This implies that for all n ∈ N,432

‖un‖L2(0,∞) ≤ δ0 and ‖Cyn‖L2(0,∞;Z) ≤
√
αδ0.433

By Lemma 2.7 with δ = 1
2

(
‖N‖L(Y,V ∗)M0Md

)−1
, we obtain the existence of M ,434

independent of δ0, such that for all n ∈ N,435

‖yn‖W∞ ≤M(‖y0‖Y + ‖un‖L2(0,∞) + ‖Cyn‖L2(0,∞;Z)) ≤M(‖y0‖Y + δ0).436

Therefore the sequence (yn, un)n∈N has a weak limit point (ȳ, ū) in W∞ × L2(0,∞),437

satisfying estimate (4.2). One can prove that ȳ = S(ū, y0) and that ū is optimal with438

the same techniques as those used for the proof of [9, Proposition 2].439

In the following lemma, we state and prove first-order necessary optimality condi-440

tions in a weak form. The approach is similar to the one employed for Lemma 3.3: we441

formulate the problem as an abstract optimization problem and obtain the existence442

of a costate in L2(0,∞;V ) as a Lagrange multiplier. An a-priori estimate must be443

done on the solution and its associated trajectory in order to prove that the operator444

associated with the linearized state equation is surjective.445

Proposition 4.2. There exists δ1 > 0 such that, if for y0 ∈ Y , Problem (P ) has446

a solution ū such that ‖ū‖L2(0,∞) ≤ δ1 and ‖ȳ‖L2(0,∞;Y ) ≤ δ1, where ȳ = S(y0, ū),447

then there exists a unique costate p ∈ L2(0,∞;V ) satisfying448

ṗ+A∗p+ ūN∗p+ C∗Cȳ = 0 (in (W 0
∞)∗),(4.3)449

αū+ 〈Nȳ +B, p〉Y = 0.(4.4)450451

Moreover, there exists a constant M > 0, independent of (ȳ, ū), such that452

(4.5) ‖p‖L2(0,∞;V ) ≤M(‖ȳ‖L2(0,∞;Y ) + ‖ū‖L2(0,∞)).453

The proof is given in the Appendix.454
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Remark 4.3. At this stage, it is not possible to prove that p ∈ W∞. More pre-455

cisely, it is not possible to prove that ṗ ∈ L2(0,∞;V ∗) because of the term ūN∗p.456

Indeed, since ū ∈ L2(0,∞), one would need to prove that N∗p ∈ L∞(0,∞;V ∗).457

However, we do not know for the moment whether p ∈ L∞(0,∞;Y ).458

Consider now the mapping Φ, defined from W∞ × L2(0,∞) × L2(0,∞;V ) to459

Y × L2(0,∞;V ∗)× (W 0
∞)∗ × L2(0,∞) by460

(4.6) Φ(y, u, p) =


y(0)

ẏ − (Ay + (Ny +B)u)
−ṗ−A∗p− uN∗p− C∗Cy

αu+ 〈Ny +B, p〉Y

 .461

This mapping is such that for a given y0, for (y, u, p) ∈W∞×L2(0,∞)×L2(0,∞;V ),462

Φ(y, u, p) = (y0, 0, 0, 0) if and only if (y, u, p) satisfies the first-order optimality con-463

ditions associated with (P ) with initial condition y0 (in weak form).464

From now on, we denote BY (δ) the closed ball of Y with radius δ and center 0.465

Lemma 4.4. There exist δ2 > 0, δ′2 > 0, and three C∞-mappings466

y0 ∈ BY (δ2) 7→
(
Y(y0),U(y0),P(y0)

)
∈W∞ × L2(0,∞)× L2(0,∞;V )467

such that for all y0 ∈ BY (δ2), the triplet
(
Y(y0),U(y0),P(y0)

)
is the unique solution468

to469

Φ(y, u, p) = (y0, 0, 0, 0), max
(
‖y‖W∞ , ‖u‖L2(0,∞), ‖p‖L2(0,∞;V )

)
≤ δ′2470

in W∞ ×L2(0,∞)×L2(0,∞;V ). Moreover, there exists a constant M > 0 such that471

for all y0 ∈ BY (δ2),472

(4.7) max
(
‖Y(y0)‖W∞ , ‖U(y0)‖L2(0,∞), ‖P(y0)‖L2(0,∞;V )

)
≤M‖y0‖Y .473

Proof. The result is a consequence of the inverse function theorem. The reader can474

check that Φ is well-defined and infinitely differentiable (note that the derivatives of475

order 3 and more are null, since Φ contains only linear terms and three bilinear terms:476

Nyu, −uN∗p and 〈Ny, p〉Y ). We also have Φ(0, 0, 0) = (0, 0, 0, 0). It remains to prove477

that DΦ(0, 0, 0) is an isomorphism. Let us investigate its inverse. Choose (y, u, p) ∈478

W∞×L2(0,∞)×(W 0
∞)∗, let (w1, w2, w3, w4) ∈ Y ×L2(0,∞;V ∗)×(W 0

∞)∗×L2(0,∞),479

we have480

(4.8) DΦ(0, 0, 0)(y, u, p) = (w1, ..., w4)⇐⇒


y(0) = w1

ẏ −Ay −Bu = w2

−ṗ−A∗p− C∗Cy = w3

αu+ 〈B, p〉Y = w4.

481

Denote by y[w1] the solution y to the system: ẏ = (A+BF )y, y(0) = w1. By estimate482

(2.8), we have ‖y[w1]‖W∞ ≤Ms‖w1‖Y . For u[w1] = Fy[w1], we obtain483

‖u[w1]‖L2(0,∞) ≤M‖w1‖Y .484
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Let us set z = y − y[w1]. Then the following equivalence holds true:485

DΦ(0, 0, 0)(y, u, p) = (w1, ..., w4)⇐⇒


z(0) = 0

ż −Az −Bu = w2 +Bu[w1]

−ṗ−A∗p− C∗Cz = w3 − C∗Cy[w1]

αu+ 〈B, p〉Y = w4.

486

We recognize here the optimality conditions associated with a linear-quadratic optimal487

control problem of the form (LQ). By Proposition 3.1, the linear system on the right-488

hand side of the above equivalence has a unique solution (z, u, p), which is the solution489

to (3.1) with490

(f, g, h) = (w2 +Bu[w1], w3 − C∗Cy[w1],−w4).491

Moreover, by Proposition 3.1, there exists a constant M > 0 independent of (f, g, h)492

such that493

‖(z, u, p)‖W∞×L2(0,∞)×L2(0,∞;V ) ≤ M‖(f, g, h)‖X494

≤ M‖(w2 +Bu[w1], w3 − C∗Cy[w1], w4)‖X495

≤ M‖(w1, w2, w3, w4)‖Y×X .496497

Therefore (y := z + y[w1], u, p) is the unique solution to498

DΦ(0, 0, 0)(y, u, p) = (w1, w2, w3, w4).499

In addition500

‖(y, u, p)‖W∞×L2(0,∞)×L2(0,∞;V ) ≤M‖(w1, w2, w3, w4)‖Y×X .501

This proves that DΦ(0, 0, 0) is an isomorphism as well as the existence of δ2 > 0,502

δ′2 > 0, and C∞-mappings Y, U , and P satisfying the equivalence (4.8).503

It remains to prove (4.7). Reducing if necessary δ2, we can assume that the norms504

of the derivatives of the three mappings are bounded on BY (δ2) by some constant505

M > 0. The three mappings are therefore Lipschitz continuous with modulus M .506

Estimate (4.7) follows, since
(
Y(0),U(0), (P(0)

)
= (0, 0, 0).507

In the following proposition we prove that for y0 close enough to 0, U(y0) is the508

unique solution to (P ) with initial condition y0.509

Proposition 4.5. There exists δ3 ∈ (0, δ2] such that for all y0 ∈ BY (δ3), U(y0) is510

the unique solution to (P ) with initial condition y0. Moreover, Y(y0) = S(y0,U(y0))511

and P(y0) is the unique associated costate.512

Proof. For the moment, let δ3 = δ2. The value of δ3 will (possibly) be reduced513

in the proof. Let y0 ∈ BY (δ3). Our approach consists in proving the existence of514

a solution ū to (P ), with associated trajectory ȳ and costate p. We also show that515

necessarily,516

max
(
‖ȳ‖W∞ , ‖ū‖L2(0,∞), ‖p‖L2(0,∞;V )

)
≤ δ′2.517

Since then the optimality conditions are satisfied, it holds that Φ(ȳ, ū, p) = (y0, 0, 0, 0)518

and we obtain by Lemma 4.4 that the solution to (P ) is unique and that it is given519

by (ȳ, ū, p) = (Y(y0),U(y0),P(y0)).520
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Let us start by proving the existence of a solution. By (4.7), there exists a constant521

M such that for all y0 ∈ BY (δ3),522

‖U(y0)‖L2(0,∞) ≤M‖y0‖Y and ‖Y(y0)‖W∞ ≤M‖y0‖Y .523

Therefore, J (U(y0), y0) ≤M‖y0‖2Y . We reduce now the value of δ3 so that524 √
2

α
Mδ3 ≤

1

2

(
‖N‖L(Y,V ∗)M0Md

)−1
.525

Let us set δ0 =
√

2M/α‖y0‖Y . It follows from the two above inequalities that526

δ0 ≤
√

2

α
Mδ3 ≤

1

2

(
‖N‖L(Y,V ∗)M0Md

)−1
.527

Moreover,528

J (U(y0), y0) ≤M‖y0‖2Y = M
(√ α

2M
δ0

)2

=
α

2
δ2
0 .529

The conditions of Lemma 4.1 are satisfied. Therefore (P ) has a solution ū, which530

satisfies ‖ū‖L2(0,∞) ≤ δ and |ȳ‖W∞ ≤ M(‖y0‖Y + δ0), where ȳ = S(ū, y0). Using the531

definition of δ0, we obtain the existence of a constant M > 0 such that532

(4.9) ‖ū‖L2(0,∞) ≤M‖y0‖Y and ‖ȳ‖W∞ ≤M‖y0‖Y .533

Let us prove now that the optimality conditions are satisfied. Reducing if necessary534

the value of δ3, we obtain that ‖ū‖L2(0,∞) ≤ δ1 and that ‖ȳ‖L2(0,∞;Y ) ≤ δ1 (where535

δ1 > 0 is given by Lemma 4.2). Therefore there exists p ∈ L2(0,∞;V ) such that the536

costate equation (4.3) and relation (4.4) hold. Moreover, we obtain537

(4.10) ‖p‖L2(0,∞;V ) ≤M(‖ȳ‖L2(0,∞;Y ) + ‖ū‖L2(0,∞)) ≤M‖y0‖Y .538

It follows from (4.9) and (4.10) that we can reduce for the last time, if necessary, the539

value of δ3 so that540

max
(
‖ū‖L2(0,∞), ‖ȳ‖L2(0,∞;Y ), ‖p‖L2(0,∞;V )

)
≤ δ′2.541

Since Φ(ȳ, ū, p) = (y0, 0, 0, 0), we finally obtain that (ȳ, ū, p) = (Y(y0),U(y0),P(y0)),542

by Lemma 4.4. The proposition is proved.543

Corollary 4.6. The value function V is infinitely differentiable on BY (δ3).544

Proof. The following mapping545

(y, u) ∈W∞ × L2(0,∞) 7→ 1

2
‖Cy‖2L2(0,∞;Z) +

α

2
‖u‖2L2(0,∞)546

is clearly infinitely differentiable. By Proposition 4.5, we find for all y0 ∈ BY (δ3) that547

V(y0) =
1

2
‖CY(y0)‖2L2(0,∞;Z) +

α

2
‖U(y0)‖2L2(0,∞),548

with infinitely differentiable mappings Y and U . The corollary follows, since V can549

be expressed as the composition of infinitely differentiable mappings.550
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We consider now the mapping Φ̃, defined from the space W∞ × L2(0,∞) ×W∞551

to Y × L2(0,∞;V ∗)× L2(0,∞;V ∗)× L2(0,∞) by552

Φ̃(y, u, p) =


y(0)

ẏ − (Ay + (Ny +B)u)
−ṗ−A∗p− uN∗p− C∗Cy

αu+ 〈Ny +B, p〉Y

 .553

The action of Φ̃ is the same as Φ, but for different choices of spaces for the domain of554

the adjoint variable p and for the costate equation in the image of Φ̃. We have already555

mentioned in Remark 4.3 the impossibility to prove in a direct way the fact that the556

adjoint lies in W∞. Remarkably, the mapping Φ̃ is well-defined and the well-posedness557

of the nonlinear equation Φ̃(y, u, p) = (y0, 0, 0, 0) can be easily established.558

Lemma 4.7. There exist δ4 > 0, δ′4 > 0, and three C∞-mappings559

y0 ∈ BY (δ4) 7→
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
∈W∞ × L2(0,∞)×W∞560

such that for all y0 ∈ BY (δ4), the triplet
(
Y(y0),U(y0),P(y0)

)
is the unique solution561

to562

Φ̃(y, u, p) = (y0, 0, 0, 0), max
(
‖y‖W∞ , ‖u‖L2(0,∞), ‖p‖W∞

)
≤ δ′4563

in W∞ × L2(0,∞)×W∞.564

Proof. The proof is the same as the proof of Lemma 4.4. The reader can check565

that Φ̃ is well-defined and infinitely differentiable. For proving that DΦ̃(0, 0, 0) is an566

isomorphism, one has to rely on estimate (3.3) of Proposition 3.1.567

We can prove that the mappings (Y,U ,P) and (Ỹ, Ũ , P̃) coincide around 0.568

Proposition 4.8. There exists δ5 ∈ (0,min(δ2, δ4)) such that for all y0 ∈ BY (δ5),569

(4.11)
(
Y(y0),U(y0),P(y0)

)
=
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
.570

Proof. The mappings Ỹ, Ũ , and P̃ being continuous, there exists a real number571

δ5 ∈ (0,min(δ2, δ4)) such that for all y0 ∈ BY (δ5),572

(4.12) max
(
‖Ỹ(y0)‖W∞ , ‖Ũ(y0)‖L2(0,∞), ‖P̃(y0)‖L2(0,∞;V )

)
≤ δ′2.573

By construction of
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
,574

Φ̃
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
= (y0, 0, 0, 0).575

Therefore Φ
(
Ỹ(y0), Ũ(y0), P̃(y0)

)
= (y0, 0, 0, 0). Combined with (4.12), we obtain576

(4.11) by Lemma 4.4.577

This result implies that (P ) has a unique solution, for all y0 ∈ BY (min(δ3, δ5)).578

Moreover, the optimality conditions hold with a costate in W∞.579

5. Optimality conditions for an arbitrary initial condition. In this section580

we first prove a sensitivity relation: locally, the costate and the derivative of the value581

function coincide. This enables us to prove optimality conditions in strong form for582

(P ) for arbitrary initial conditions.583
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Lemma 5.1. There exists δ6 ∈ (0,min(δ3, δ5)] such that for all y0 ∈ BY (δ6),584

‖Y(y0)‖L∞(0,∞;Y ) ≤ min(δ3, δ5) and585

(5.1) p(t) = DV(y(t)), ∀t ≥ 0,586

where y = Y(y0) and p = P(y0).587

Proof. By continuity of the mapping Y, there exists δ6 ∈ (0,min(δ3, δ5)] such that588

for all y0 ∈ BY (δ6), ‖Y(y0)‖L∞(0,∞;Y ) ≤ min(δ3, δ5).589

We now claim the following: for all y0 ∈ BY (δ6), we have p(0) = DV(y0),590

where p = P(y0). To verify this claim, let y0 and ỹ0 ∈ BY (δ6), and set (y, u, p) =591

(Y(y0),U(y0),P(y0)) and (ỹ, ũ) = (Y(ỹ0),U(ỹ0)). For the sake of readability, we sim-592

ply denote in this proof by ‖·‖ the norms in L2(0,∞) and L2(0,∞;Z), the distinction593

being clear from the context. We have594

V(ỹ0)− V(y0) =
(1

2
‖Cỹ‖2 +

α

2
‖ũ‖2

)
−
(1

2
‖Cy‖2 +

α

2
‖u‖2

)
595

−
〈
p, ˙̃y − (Aỹ + (Nỹ +B)ũ)

〉
L2(0,∞;V ),L2(0,∞;V ∗)

596

+
〈
p, ẏ − (Ay + (Ny +B)u)

〉
L2(0,∞;V ),L2(0,∞;V ∗)

.(5.2)597
598

Indeed, u and ũ are optimal and the last two terms (in brackets) are null. The four599

following relations can be easily verified:600

(5.3)

1

2
‖Cỹ‖2 − 1

2
‖Cy‖2 = 〈C∗Cy, ỹ − y〉L2(0,∞;Y ) +

1

2
‖C(ỹ − y)‖2,

α

2
‖ũ‖2 − α

2
‖u‖2 = α〈u, ũ− u〉L2(0,∞) +

α

2
‖ũ− u‖2,

Nỹũ−Nyu = Ny(ũ− u) +N(ỹ − y)u+N(ỹ − y)(ũ− u),

−〈p, ˙̃y − ẏ〉L2(V ),L2(V ∗) = 〈p(0), ỹ0 − y(0)〉Y + 〈ṗ, ỹ − y〉L2(V ∗),L2(V ).

601

Combining (5.2) and (5.3) yields602

V(ỹ0)− V(y0) = 〈p(0), ỹ(0)− y(0)〉Y +
1

2
‖C(ỹ − y)‖2 +

α

2
‖ũ− u‖2603

+
〈
p,N(ỹ − y)(ũ− u)

〉
L2(0,∞;V );L2(0,∞;V ∗)

604

+
〈
ṗ+A∗p+ uN∗p+ C∗Cy︸ ︷︷ ︸

=0

, ỹ − y
〉
L2(0,∞;V ∗);L2(0,∞;V )

605

+
〈
αu+ 〈Ny +B, p〉Y︸ ︷︷ ︸

=0

, ũ− u
〉
L2(0,∞)

.606

607

For ỹ0 = y0 + h, we have ‖ỹ − y‖W∞ ≤ M‖h‖Y and ‖ũ − u‖L2(0,∞) ≤ M‖h‖Y , by608

the Lipschitz-continuity of the mappings Y and U . It follows that the three quadratic609

terms in the above relation are of order ‖h‖2Y and thus that610

|V(ỹ0)− V(y0)− 〈p(0), ỹ0 − y0〉Y |611

=
∣∣∣1
2
‖C(ỹ − y)‖2 +

α

2
‖ũ− u‖2 +

〈
p,N(ỹ − y)(ũ− u)

〉
L2(0,∞;V );L2(0,∞;V ∗)

∣∣∣612

≤M‖h‖2Y .613614

This proves that DV(y0) = p(0), as announced.615
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18 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Let y0 ∈ BY (δ6), set (y, u, p) = (Y(y0),U(y0),P(y0)) and choose t ≥ 0. Let us616

verify (5.1). We define617

ỹ : s ≥ 0 7→ y(t+ s), ũ : s ≥ 0 7→ u(t+ s), p̃ : s ≥ 0 7→ p(t+ s).618

By the dynamic programming principle, ũ is the solution to Problem (P ) with initial619

condition ỹ(0) = y(t). The associated trajectory and costate are ỹ and p̃. Since620

‖y(t)‖Y ≤ min(δ3, δ5), we can use the previous claim. We obtain thatDV(ỹ(0)) = p̃(0)621

and finally that DV(y(t)) = p(t).622

Using the optimality condition (4.4), we directly obtain the following corollary,623

which states that the mapping y ∈ Y 7→ − 1
αDV(y)(Ny + B) is an optimal feedback624

law.625

Corollary 5.2. For all y0 ∈ BY (δ6),626

u(t) = − 1

α
DV(y(t))(Ny(t) +B), for a.e. t > 0,627

where y = Y(y0) and u = U(y0).628

We can now prove the optimality conditions for any initial condition (assuming629

the existence of a solution). Roughly speaking, the proof consists in showing that630

the optimality conditions are satisfied for (T1,∞), with T1 sufficiently large, using631

a dynamic programming principle argument. Optimality conditions for the whole632

interval (0,∞) can then be obtained easily, using once again a dynamic programming633

principle argument and Lemma 5.1.634

Theorem 5.3. Let y0 ∈ Y and assume that there exists a solution ū to (P ) with635

initial condition y0. Then the associated trajectory ȳ = S(ū, y0) lies in W∞. Moreover,636

there exists a costate p ∈W∞ such that for a.e. t ≥ 0,637

ṗ+A∗p+ ūN∗p+ C∗Cȳ = 0(5.4)638

αū+ 〈Nȳ +B, p〉Y = 0.(5.5)639640

Proof. Let δ0 = 1
2

(
‖N‖L(Y,V ∗)M0Md

)−1
, let T0 > 0 be sufficiently large so that641

1

2

∫ ∞
T0

‖Cȳ(t)‖2Z dt+
α

2

∫ ∞
T0

ū(t)2 dt ≤ α

2
δ2
0 .642

We define ũ : t ≥ 0 7→ ū(T0+t) and ỹ : t ≥ 0 7→ ȳ(T0+t). By the dynamic programming643

principle, ũ is a solution to (P ) with initial condition ỹ(0) = y(T0), and associated644

trajectory ỹ. Since J (ỹ0, ũ) ≤ α
2 δ

2
0 , we obtain by Lemma 4.1 that ỹ ∈ W∞, thus645

ȳ ∈ W∞. As a consequence, limt→∞ ‖ȳ(t)‖Y = 0 and there exists T1 ≥ 0 such that646

‖ȳ(T1)‖Y ≤ δ6.647

Let û : t ≥ 0 7→ ū(T1 + t) and ŷ : t ≥ 0 7→ ȳ(T1 + t). Again by the dynamic648

programming principle, û is a solution to (P ) with initial condition ŷ(0) = ȳ(T1) and649

associated trajectory ŷ. Since ‖ŷ(0)‖ ≤ δ3, Proposition 4.5 implies that650

ŷ = Y
(
ȳ(T1)

)
and û = U

(
ȳ(T1)

)
651

Moreover, by Proposition 4.8, the associated costate p̂ = P
(
ȳ(T1)

)
lies in W∞.652

Let us now define p ∈W∞(T1,∞) by p(t) = p̂(t− T1), for all t ∈ [T1,∞). Clearly653

the costate equation (5.4) and relation (5.5) hold true for t ≥ T1. Uniqueness of p on654
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[T1,∞) directly follows from the uniqueness of the costate associated with the optimal655

control û.656

Let us construct p on [0, T1]. Observe first that by Lemma 5.1, we have p̂(0) =657

DV(ŷ(0)), and thus658

(5.6) p(T1) = DV(ŷ(0)) = DV(ȳ(T1)).659

Let the extension of p on [0, T1] be the unique solution to the following system:660

(5.7) − ṗ = A∗p+ ūN∗p+ C∗Cȳ, p(T1) = DV(ȳ(T1)).661

Existence and the uniqueness of the solution to this system in W (0, T1) can be obtai-662

ned with the same methods as those used for Lemma 2.4. The terminal condition in663

the above system is compatible with (5.6). Therefore p satisfies the costate equation664

(5.4) on the whole interval (0,∞) and p ∈W∞.665

It remains to prove that (5.5) is satisfied on (0, T1). We only sketch the proof,666

which is classical. Observe first that by the dynamic programming principle, the667

control ū|(0,T1) is a solution to the following problem:668

min
u∈L2(0,T1)

JT1(u) :=
1

2

∫ T1

0

‖CS(y0, u; t)‖2Z dt+
α

2

∫ T1

0

u(t)2 dt+ V(y(T1)).669

Note also that (5.7) is the associated costate equation. It can be easily established670

that the control-to-state mapping u ∈ L2(0, T1) 7→ S(y0, u)|(0,T1) is continuously dif-671

ferentiable and that its derivative can be described as the linearization of the state672

equation. It follows that JT1
(·) is differentiable. A well-known computation (relying673

on an integration by parts) yields that674

DJT1(ū)v =

∫ T1

0

(
αū+ 〈Nȳ(t) +B, p(t)〉Y

)
v(t) dt, ∀v ∈ L2(0, T1).675

Since ū is optimal, DJT1(ū) = 0 and (5.5) follows. The theorem is proved.676

6. Construction and properties of polynomial feedback laws. We recall677

in this section the relevant definitions and main results obtained in [9] for polynomial678

feedback laws. These are described by bounded multilinear forms. For k ≥ 1 we make679

use of the following norm:680

(6.1) ‖(y1, ..., yk)‖Y k = max
i=1,...,k

‖yi‖Y .681

We denote by BY k(δ) the closed ball in Y k with radius δ and center 0. For k ≥ 1682

we say that T : Y k → R is a bounded multilinear form if T is linear in each variable683

separately and684

(6.2) ‖T ‖ := sup
y∈B

Y k (1)

|T (y)| <∞.685

We denote by M(Y k,R) the set of bounded multilinear forms. Bounded multilinear686

forms T ∈ M(Y k,R) are called symmetric if for all z1,...,zk ∈ Y k and for all permu-687

tations σ of {1, ..., k}, T (zσ(1), ..., zσ(k)) = T (z1, ..., zk). Given two multilinear forms688

T1 ∈ M(Y k,R) and T2 ∈ M(Y `, R), we denote by T1 ⊗ T2 the bounded multilinear689

mapping which is defined for all (y1, ..., yk+`) ∈ Y k+` by690

(T1 ⊗ T2)(y1, . . . , yk+`) = T1(y1, ..., yk)T2(yk+1, ..., yk+`).691

This manuscript is for review purposes only.



20 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

For y ∈ Y , we denote692

y⊗k = (y, ..., y) ∈ Y k.693

6.1. Taylor approximation. For all k ≥ 2, we construct a polynomial approx-694

imation Vk of V of the following form:695

(6.3) Vk : Y → R, Vk(y) =

k∑
j=2

1

j!
Tj(y, . . . , y),696

where T2,...,Tj ,...,Tk are bounded multilinear forms of order 2,...,j,..., k. The first697

multilinear form, the bilinear form T2, is obtained as the solution to an algebraic698

operator Riccati equation and the other multilinear forms are obtained as the solutions699

to linear operator equations which we call generalized Lyapunov equations.700

Let us denote by Π ∈ L(Y ) the unique nonnegative self-adjoint operator satisfying701

the following algebraic operator Riccati equation:702

(6.4) 〈A∗Πz1, z2〉+ 〈ΠAz1, z2〉+ 〈Cz1, Cz2〉Z −
1

α
〈B,Πz1〉Y 〈B,Πz2〉Y = 0,703

for all z1 and z2 ∈ D(A). It is well-known, see [14, Theorem 6.2.7] that, as a conse-704

quence of assumptions (A3) and (A4), the linearized closed-loop operator705

(6.5) AΠ := A− 1

α
BB∗Π706

generates an exponentially stable semigroup on Y.707

The precise structure of the generalized Lyapunov equations is given in Theorem708

6.1 below. In the definition of the right-hand sides of these equations, we make use709

of a specific symmetrization technique that we define now. For i and j ∈ N, consider710

the following set of permutations:711

Si,j =
{
σi+j ∈ Si+j |σ(1) < ... < σ(i) and σ(i+ 1) < ... < σ(i+ j)

}
,712

where Si+j is the set of permutations of {1, ..., i+ j}. Let T be a multilinear form of713

order i+ j. We denote by Symi,j(T ) the multilinear form defined by714

Symi,j(T )(z1, ..., zi+j) =

(
i+ j

i

)−1[ ∑
σ∈Si,j

T (zσ(1), ..., zσ(i+j))
]
,715

for all (z1, ..., zi+1) ∈ Y i+j .716

Theorem 6.1 (Theorem 16, [9]). There exists a unique sequence of bounded717

symmetric multilinear forms (Tj)j≥2, with Tj : Y j → R, and a unique sequence of718

bounded multilinear forms (Rj)j≥3 with Rj : D(A)j → R such that for all (z1, z2) ∈719

Y 2, T2(z1, z2) := (z1,Πz2) and such that for all j ≥ 3, for all (z1, ..., zj) ∈ D(A)j,720

(6.6a)

j∑
i=1

Tk(z1, ..., zi−1, AΠzi, zi+1, ..., zj) =
1

2α
Rj(z1, ..., zj),721

where722

Rj = 2j(j − 1)Sym1,j−1

(
C1 ⊗ Gj−1

)
723

+

j−2∑
i=2

(
k

i

)
Symi,j−i

(
(Ci + iGi)⊗ (Cj−i + (j − i)Gj−i)

)
,(6.6b)724

725
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and where726

(6.6c)

{
Ci(z1, ..., zi) = Ti+1(B, z1, ..., zi), for i = 1, ..., j − 2,

Gi(z1, ..., zi) = 1
i

[∑i
`=1 Ti(z1, ..., z`−1, Nz`, z`+1, ..., zi)

]
,

727

for i = 1, ..., j − 1.728

6.2. Feedback laws and associated closed-loop systems. A polynomial729

feedback law uk : y ∈ V → R can now be obtained by replacing the value function V730

by its approximation Vk in the optimal feedback law given by Corollary 5.2:731

(6.7) uk(y) := − 1

α
DVk(y)(Ny +B) = − 1

α

( k∑
i=2

1

(i− 1)!
Ti(Ny +B, y, . . . , y)

)
.732

A justification of the differentiability of Vk and a formula for its derivative, used in733

the above expression, can be found in [9, Lemma 7]. We consider now the closed-loop734

system associated with the feedback law uk:735

(6.8) ẏ(t) = Ay(t) + (Ny(t) +B)uk(y(t)), y(0) = y0.736

For a given initial condition y0, its solution is denoted by S(uk, y0). We also denote737

by Uk(y0) the open-loop control defined by738

(6.9) Uk(y0; t) = uk(S(uk, y0; t)), for a.e. t > 0.739

The following theorem states that for ‖y0‖Y small enough, the closed-loop system740

(6.8) has a unique solution and generates an open-loop control in L2(0,∞).741

Theorem 6.2 (Theorem 22 and Corollary 23, [9]). For all k ≥ 2, there exist742

two constants δ7 > 0 and M > 0 such that for all y0 ∈ BY (δ7), the closed-loop system743

(6.8) admits a unique solution S(uk, y0) ∈W∞ satisfying744

(6.10) ‖S(uk, y0)‖W∞ ≤M‖y0‖Y .745

Moreover, Uk(y0) ∈ L2(0,∞) and the two mappings y0 ∈ BY (δ7) 7→ S(uk, y0) and746

y0 ∈ BY (δ7) 7→ Uk(y0) are Lipschitz-continuous.747

6.3. Error analysis. We finally recall some of the key lemmas used in the error748

analysis of [9], since they will be useful for the extension provided in the next section.749

The main idea consists in defining a perturbed cost function Jk which has the750

property that Vk is its value function. This is achieved by constructing a remainder751

term rk, defined for k ≥ 2 and y ∈ V by752

(6.11) rk(y) =
1

2α

2k∑
i=k+1

k∑
j=i−k

qk,j(y)qk,i−j(y),753

where the mappings qk,1, qk,2,..., and qk,k are given by754 
qk,1(y) = C1(y),

qk,i(y) = 1
i!

(
Ci(y⊗i) + iGi(y⊗i)

)
, ∀i = 2, ..., k − 1,

qk,k(y) = 1
(k−1)!Gk(y⊗k).

755
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We recall that the definitions of Ci and Gi are given by (6.6c). Note also that the756

mapping rk : V → R is C∞. The perturbed cost function Jk is defined by757

Jk(u, y0) :=
1

2

∫ ∞
0

‖CS(u, y0; t)‖2Y dt+
α

2

∫ ∞
0

u2(t) dt+

∫ ∞
0

rk
(
S(u, y0; t)

)
dt.758

The well-posedness of Jk is guaranteed if S(y0, u) ∈W∞, see [9, Proposition 26]. We759

point out that rk is not necessarily non-negative.760

The next lemma states that Vk is the value function associated with the problem761

of minimization of Jk over controls which guarantee trajectories in W∞. Moreover,762

the control Uk(y0) given by (6.7) and (6.9) is a solution to the problem. Let us763

emphasize the fact that the result is stated for an initial condition in BY (δ7) ∩ V .764

Lemma 6.3 (Lemma 29, [9]). Let k ≥ 2 and y0 ∈ BY (δ7) ∩ V . Then Jk(u, y0)765

and Jk(Uk(y0), y0) are finite and766

Vk(y0) = Jk(Uk(y0), y0) ≤ Jk(u, y0),767

for all u ∈ L2(0,∞) with S(u, y0) ∈W∞.768

The loss of optimality when using Uk(y0) is estimated in Theorem 6.5 below. The769

proof relies on Lemma 6.3 and on the two estimates given in the next lemma.770

Lemma 6.4 (Lemma 28, [9]). Let k ≥ 2. There exists a constant M > 0 such771

that for all y0 ∈ BY (δ8),772 ∫ ∞
0

rk
(
ȳ(t)

)
dt ≤M‖y0‖k+1

Y and

∫ ∞
0

rk
(
S(uk, y0; t)

)
dt ≤M‖y0‖k+1

Y ,773

where ȳ is an optimal trajectory for problem (P ) with initial value y0.774

Finally, the following theorem asserts that Vk is an approximation of V of order775

k + 1 in the neighbourhood of 0 and gives an error estimate on the efficiency of the776

open-loop control generated by uk.777

Theorem 6.5 (Proposition 2, Theorem 30, and Theorem 32, [9]). Let k ≥ 2.778

There exist δ8 ∈ (0, δ7] and a constant M > 0 such that for all y0 ∈ BY (δ8), the779

following estimates hold:780

J (Uk(y0), y0) ≤ V(y0) +M‖y0‖k+1
Y ,781

|V(y0)− Vk(y0)| ≤ M‖y0‖k+1
Y .782783

In addition, for all y0 ∈ BY (δ8), Problem (P ) with initial condition y0 possesses a784

solution ū satisfying785

‖ū−Uk(y0)‖L2(0,∞) ≤ M‖y0‖(k+1)/2
Y786

‖S(ū, y0)− S(uk, y0)‖W∞ ≤ M‖y0‖(k+1)/2
Y .787788

We finish this section with an observation of the multilinear forms Tk. The analy-789

sis of [9] performed for obtaining the results presented in this section does not rely on790

the C∞-regularity of the value function. It was therefore not clear that the multilinear791

forms T2, T3,... are the derivatives of V of order 2, 3,... evaluated at 0. This relation792

can now be established.793

Theorem 6.6. For all k ≥ 2, Tk = DkV(0).794
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Proof. The proof is based on the following result (referred to as polarization iden-795

tity), proved in [31, Theorem 1]: for all symmetric multilinear forms T ∈ M(Y k,R),796

for all y = (y1, ..., yk) ∈ Y k,797

T (y1, ..., yk) =
1

k!

∂k

∂λ1...∂λk
f [y](0),798

where the function f [y] is a polynomial function defined by799

f [y] : λ ∈ Rk 7→ T
(( k∑

i=1

λiyi

)⊗k)
.800

As a direct corollary, we obtain that if two symmetric multilinear forms coincide on801

the set of diagonal terms {y⊗k | y ∈ Y k}, they are equal.802

Let us come back to the proof of the theorem. Let k ≥ 2 and let y ∈ Y . By803

Theorem 6.5, we have the following Taylor expansion (with respect to θ ∈ R):804

V(θy) =

k∑
j=2

θj

j!
Tj(y⊗j) + o(|θ|k+1).805

We have proved in Corollary 4.6 that V is C∞, therefore, by the uniqueness of the806

Taylor expansion of functions of real variables, we have Tk(y⊗k) = DkV(0)(y⊗k),807

for all y ∈ Y . Since Tk and DkV(0) are both symmetric and coincide on the set of808

diagonal terms, they are equal, which concludes the proof.809

7. Error analysis: new estimates. In this section we improve the estimates810

obtained in Theorem 6.5. The approach consists of two main steps. First we use811

the fact that the control Uk(y0) is the solution to an optimal control problem with812

a specific perturbation. The corresponding optimality conditions lead to a perturbed813

adjoint equation, see Lemma 7.3. In a second step, we analyze the influence of the814

perturbation of the optimality conditions.815

We consider the perturbation term in the definition of Jk and define816

Rk : y ∈W∞ 7→
∫ ∞

0

rk(y(t)) dt ∈ R.817

In the following lemma, we give an estimate of the norm of the derivative of Rk, which818

will appear as an additional term in the perturbed costate equation.819

Lemma 7.1. The mapping Rk is continuously differentiable. Moreover, for all820

δ > 0, there exists a constant M such that821

(7.1) |DRk(y)z| ≤M‖y‖kW∞‖z‖W∞ ,822

for all y ∈ W∞ such that ‖y‖W∞ ≤ δ and for all z ∈ W∞. Finally, if y lies in823

W∞ ∩ L∞(0,∞;V ), then DRk(y) ∈ L2(0,∞;V ∗).824

This lemma is proved in the Appendix. As was already pointed out in Section825

6, the optimality of Uk(y0) for the minimization problem of Jk(y0, ·) has only been826

proved for an initial condition in BY (δ7)∩V . The next technical lemma will enable us827

to prove the optimality of Uk(y0) for initial conditions close to 0 but not necessarily828

in V .829
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Lemma 7.2. There exist two constants δ9 > 0 and M > 0 such that for all y0 ∈830

BY (δ9) and u with ‖u‖L2(0,∞) ≤ δ9, we have: If ‖y‖W∞ ≤ δ9 where y = S(y0, u), then831

for all ỹ0 ∈ BY (δ9), there exists ũ ∈ L2(0,∞) such that832

‖ũ− u‖L2(0,∞) ≤M‖ỹ0 − y0‖Y and ‖ỹ − y‖W∞ ≤M‖ỹ0 − y0‖Y ,833

where ỹ = S(y0, ũ).834

A proof can be found in [10, Page 26].835

Lemma 7.3. Let k ≥ 2. There exists δ10 > 0 with the following property: If836

y0 ∈ BY (δ10), then there exists a unique costate pk ∈ L2(0,∞;V ) such that837

ṗk +A∗pk + ukN
∗pk + C∗Cyk +DRk(yk) = 0 in (W 0

∞)∗,(7.2)838

αuk + 〈Nyk +B, pk〉Y = 0,(7.3)839840

where yk = S(uk, y0) and uk = Uk(y0). Moreover, there exists a constant M , inde-841

pendent of y0, such that842

(7.4) ‖pk‖L2(0,∞;V ) ≤M‖y0‖Y .843

Proof. Since S(uk, ·) is continuous, there exists δ10 ∈ (0, δ7) such that for all844

y0 ∈ BY (δ10), ‖S(uk, y0)‖L∞(0,∞;Y ) < δ9. For a given y0 ∈ BY (δ10), consider the845

following problem:846

inf
y∈W∞

u∈L2(0,∞)

Jk(y, u) :=
1

2

∫ ∞
0

‖Cy(t)‖2Z dt+
α

2

∫ ∞
0

u(t)2 dt+Rk(y),847

subject to: ek(y, u) :=
(
ẏ − (Ay + (Ny +B)u), y(0)− y0) = (0, 0).(7.5)848849

From Lemma 6.3 we know that for y0 ∈ BY (δ10) ∩ V , the control Uk(y0) is a global850

solution to this problem. We claim now that if y0 ∈ BY (δ10), then (S(uk, y0),Uk(y0))851

is a local solution. Let us fix y0 ∈ BY (δ10) and denote (yk, uk) = (S(uk, y0),Uk(y0)).852

Let us set ε = 1
M0

(δ9 − ‖yk‖L∞(0,∞;Y )), and let (y, u) ∈W∞ × L2(0,∞) be such that853

e(y, u) = 0 and ‖y − yk‖W∞ ≤ ε. Then854

‖y − yk‖L∞(0,∞;Y ) ≤M0ε855

and thus ‖y‖L∞(0,∞;Y ) ≤ δ9. Let (yn0 )n∈N be a sequence in BY (δ9) ∩ V converging to856

y0 in Y. By Lemma 7.2, there exists for all n ∈ N a control un such that857

‖un − u‖L2(0,∞) ≤M‖yn0 − y0‖Y and ‖yn − y‖ ≤M‖yn0 − y0‖Y ,858

where yn = S(un, y
n
0 ). Since Jk is continuous, Jk(yn, un) −→

n→∞
Jk(y, u). Using the859

continuity of the mappings y0 7→ S(uk, y0) and y0 7→ Uk(y0), we also obtain that860

Jk(S(uk, y
n
0 ),Uk(yn0 )) −→

n→∞
Jk(S(uk, y0),Uk(y0)) = Jk(yk, uk).861

From the optimality of (S(uk, y
n
0 ),Uk(yn0 )), we deduce that for all n ∈ N,862

Jk(S(uk, y
n
0 ),Uk(yn0 )) ≤ Jk(yn, un)863

and finally, passing to the limit in n, Jk(yk, uk) ≤ Jk(y, u). This proves the local864

optimality of (yk, uk).865
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The derivation of the optimality conditions, the proof of uniqueness of pk, as well866

as the proof of estimate (7.4) can be done exactly in the same way as in Lemma 4.2.867

The only difference is the presence of the term DRk(yk) in the costate equation, which868

can be estimated with Lemma 7.1.869

We finally obtain the desired improvement of Theorem 6.5.870

Theorem 7.4. Let k ≥ 2. Then there exist δ11 > 0 and M > 0 such that for all871

y0 ∈ BY (δ11),872

(7.6) max
(
‖yk − ȳ‖W∞ , ‖uk − ū‖L2(0,∞), ‖pk − p̄‖L2(0,∞;V )

)
≤M‖y0‖kY ,873

where (ȳ, ū, p̄) =
(
Y(y0),U(y0),P(y0)

)
and (yk, uk) =

(
S(uk, y0),Uk(y0)

)
and where874

pk is the costate given by Lemma 7.3. Moreover,875

(7.7) J (y0, uk) ≤ V(y0) +M‖y0‖2kY .876

Proof. Step 1: application of the inverse function theorem. We consider again the877

mapping Φ defined by (4.6). As was proved in Lemma 4.4, Φ is infinitely differentiable878

and DΦ(0, 0, 0) is an isomorphism. For a given δ > 0, we denote879

B(δ) =
{

(y, w) ∈ Y × (W 0
∞)∗ | ‖y‖Y ≤ δ, ‖w‖(W 0

∞)∗ ≤ δ
}
.880

Applying the inverse function theorem, we obtain that there exist δ > 0, δ′ > 0, and881

three infinitely differentiable mappings882

(y0, w) ∈ B(δ) 7→
(
Ŷ(y0, w), Û(y0, w), P̂(y0, w)

)
∈W∞ × L2(0,∞)× L2(0,∞;V )883

such that for all (y, u, p) ∈ W∞ × L2(0,∞) × L2(0,∞;V ) and for all pairs (y0, w) ∈884

B(δ), if max(‖y‖W∞ , ‖u‖L2(0,∞), ‖p‖L2(0,∞;V )) ≤ δ′, then885

Φ(y, u, p) = (y0, 0, w, 0)⇐⇒


y = Ŷ(y0, w)

u = Û(y0, w)

p = P̂(y0, w).

886

We shall use this fact with w = DRk(yk). By the continuity of the mappings S(uk, ·)887

and Uk(·), by Lemma 7.1 and by Lemma 7.3, there exists δ11 ∈ (0, δ10) so that for all888

y0 ∈ BY (δ11),889

(7.8)

{
max

(
‖yk‖W∞ , ‖uk‖L2(0,∞), ‖pk‖L2(0,∞;V )

)
≤ δ′,

max
(
‖y0‖Y , ‖DRk(yk)‖(W 0

∞)∗
)
≤ δ.

890

Step 2: a characterization of (yk, uk, pk). We now claim that for y0 ∈ BY (δ11),891

(7.9) yk = Ŷ(y0, DRk(yk)), uk = Û(y0, DRk(yk)), pk = P̂(y0, DRk(yk)).892

Let us first consider the case where y0 ∈ BY (δ11) ∩ V . The key observation is that893

Φ(yk, uk, pk) = (y0, 0, DRk(yk), 0). This equality is clearly satisfied for the first three894

coordinates of Φ, since yk(0) = y0, and since yk and pk satisfy the state and costate895

equations, respectively. The equality is also satisfied for the fourth coordinate, as a896

direct consequence of the optimality condition (7.3) given in Lemma 7.3.897
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Step 3: a characterization of (ȳ, ū, p̄). Now, let us reduce δ11, if necessary, so that898

for all y0 ∈ BY (δ11),899

max
(
‖Ŷ(y0, 0)‖W∞ , ‖Û(y0, 0)‖L2(0,∞), ‖P̂(y0, 0)‖L2(0,∞;V )

)
≤ δ′2.900

Then,
(
Ŷ(y0, 0), Û(y0, 0), P̂(y0, 0)

)
=
(
Y(y0),U(y0),P(y0)

)
.901

Step 4: conclusion. The value of δ11 can be reduced once again, so that the902

mappings Ŷ, Û , and P̂ are Lipschitz-continuous. Using the Lipschitz continuity of903

S(uk, ·) and Lemma 7.1, we obtain that904

‖yk − ȳ‖W∞ =
∥∥Ŷ(y0, DRk(wk)

)
− Ŷ(y0, 0)

∥∥
W∞

905

≤ M‖DRk(yk)‖(W 0
∞)∗ ≤M‖yk‖kW∞ ≤M‖y0‖kY .906907

The remaining estimates on ‖uk − ū‖L2(0,∞) and ‖pk − p̄‖L2(0,∞;V ) can be proved908

similarly. Estimate (7.6) follows.909

For proving (7.7), we use the same technique as in Lemma 5.1. For the sake of910

readability, we denote by ‖ · ‖ the norms in L2(0,∞) and L2(0,∞;Z). We have911

J (y0, uk)− J (y0, ū) =
(1

2
‖Cyk‖2 +

α

2
‖uk‖2

)
−
(1

2
‖Cȳ‖2 +

α

2
‖ū‖2

)
912

−
〈
p̄, ẏk − (Ayk + (Nyk +B)uk)〉L2(0,∞;V ),L2(0,∞;V ∗)913

+
〈
p̄, ˙̄y − (Aȳ + (Nȳ +B)ū)〉L2(0,∞;V ),L2(0,∞;V ∗)914

=
1

2
‖C(yk − ȳ)‖2 +

α

2
‖uk − ū‖2915

+
〈
p̄, N(yk − ȳ)(uk − ū)

〉
L2(0,∞;V ),L2(0,∞;V ∗)

916

≤ M
(
‖yk − ȳ‖2W∞ + ‖uk − ū‖2

)
917

≤ M‖y0‖2kY .918919

Estimate (7.7) follows. The theorem is proved.920

8. Conclusion. We have performed a sensitivity analysis for an infinite-horizon921

optimal control problem involving an infinite-dimensional state equation. Error esti-922

mates for the efficiency of polynomial feedback laws have been derived. The approach923

that we have used, based on a stability analysis of the optimality conditions, is quite924

general and can certainly be used for other classes of partial differential equations.925

Future work will focus on stabilization problems of semilinear parabolic equations,926

for which the derivation and analysis of polynomial feedback laws are completely927

open. Non-smooth variants of the implicit function theorem should also enable us928

to perform a sensitivity analysis for infinite-time horizon control problems with a929

sparsity-promoting term in the cost function. Finally, our approach could also be930

used to derive error estimates on the efficiency of other kinds of feedback laws, like931

State Dependent Riccati Equations based feedback laws.932
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Appendix A. Technical proofs.935

Proof of Proposition 4.2. We fix δ1 = 1
2

(
‖N‖L(Y,V ∗)M0Md

)−1
. Then, by Lemma936

2.7, ȳ ∈W∞. As a consequence, (ȳ, ū) is a solution to the following problem:937

inf
(y,u)∈W∞×L2(0,∞)

J(y, u), subject to: e(y, u) = 0,938
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where939

J(y, u) =
1

2

∫ ∞
0

‖Cy(t)‖2Z dt+
α

2

∫ ∞
0

u(t)2 dt,940

e(y, u) =
(
ẏ − (Ay +Nyu+Bu), y(0)− y0

)
∈ L2(0,∞;V ∗)× Y.941942

Our approach for deriving optimality conditions is similar to the one of Lemma 3.3.943

In order to have a state variable in W 0
∞, we first need to perform a shift of the state944

equation. Let u ∈ L2(0,∞) and set y = S(y0, u). Then, z = y − ȳ is the solution to945

the following system:946

ż = Az +Nzu+ (Nȳ +B)u− (Nȳū+Bū), z(0) = 0.947

We can now consider the following optimization problem:948

(A.1) inf
(z,u)∈W 0

∞×L2(0,∞)
J̃(z, u), subject to: ẽ(z, u) = 0,949

where950

J̃(z, u) = J(z + ȳ, u) =
1

2

∫ ∞
0

‖C(z(t) + ȳ(t))‖2Z dt+
α

2

∫ ∞
0

u(t)2 dt951

ẽ(z, u) = ż −
(
Az +Nzu+Bu− (Nȳū+Bū)

)
∈ L2(0,∞;V ∗).952953

For all (y, u) ∈ W∞ × L2(0,∞), for z = y − ȳ, we have: e(y, u) = 0 if and only if954

ẽ(z, u) = 0 and z ∈W 0
∞. Since J̃(z, u) = J(z + ȳ, u), we deduce that (ȳ − ȳ = 0, ū) is955

a solution to problem (A.1).956

The mappings J̃ and ẽ are continuously differentiable. We have957

DJ̃(0, ū)(ξ, v) = 〈C∗Cȳ, ξ〉L2(0,∞;Y ) + α〈ū, v〉L2(0,∞)958

Dẽ(0, ū)(ξ, v) = ξ̇ − (A+ ūN)ξ − (Nȳ +B)v.959960

Let us prove now that Dẽ(0, ū) is surjective, if δ1 > 0 is sufficiently small. For961

ϕ ∈ L2(0,∞;V ∗), let z be the solution to962

ż = (A+ ūN)z + (Nȳ +B)Fz + ϕ, z(0) = 0.963

Then, setting (Pz)(t) = ū(t)Nz(t) +Nȳ(t)Fz(t), we find964

ż(t) = (A+BF )z(t) + (Pz)(t) + ϕ(t).965

For ‖ξ‖W∞ ≤ 1, we have966

‖Pξ‖L2(0,∞;V ∗) ≤ M0

(
‖N‖L(Y,V ∗)‖ū‖L2(0,∞) + ‖N‖L(Y,V ∗)‖ȳ‖L2(0,∞;Y )‖F‖L(Y,R)

)
967

≤ M0

(
‖N‖L(Y,V ∗) + ‖N‖L(Y,V ∗)‖F‖L(Y,R)

)
δ1.968969

It follows that ‖P‖L(W∞,L2(0,∞;V ∗)) < M−1
s , for δ1 > 0 chosen sufficiently small.970

Therefore, by Lemma 2.5 and Remark 2.6, there exists a constant M > 0 such that971

(A.2) ‖z‖W∞ ≤M‖ϕ‖L2(0,∞;V ∗).972

Setting v = Fz, we obtain that973

(A.3) ‖v‖L2(0,∞) ≤M‖ϕ‖L2(0,∞;V ∗).974
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Finally we have Dẽ(0, ū)(z, v) = ϕ, which proves that Dẽ(0, ū) is surjective. Let us975

emphasize the fact that the constant M involved in (A.2) and (A.3) does not depend976

on (ū, ȳ) (but it depends on δ1). It follows from the surjectivity of Dẽ(0, ū) that there977

exists a unique p ∈ L2(0,∞;V ) such that for all (z, v) ∈W 0
∞ × L2(0,∞),978

(A.4) DJ̃(0, ū)(z, v)−
〈
p,Dẽ(0, ū)(z, v)

〉
L2(0,∞;V ),L2(0,∞;V ∗)

= 0.979

The costate equation (4.3) and relation (4.4) follow, similarly to the proof of Lemma980

3.3. It remains to prove estimate (4.5) on the costate. Let ϕ ∈ L2(0,∞;V ∗) and (z, v)981

be taken as in the proof of the surjectivity of Dẽ(0, u). From (A.4), we deduce that982

〈p, ϕ〉L2(0,∞;V ),L2(0,∞;V ∗) =
〈
p,Dẽ(0, ū)(z, v)

〉
L2(0,∞;V ),L2(0,∞;V ∗)

983

= DJ̃(0, ū)(z, v)984

≤ M
(
‖ȳ‖L2(0,∞;Y )‖z‖L2(0,∞;Y ) + ‖ū‖L2(0,∞)‖v‖L2(0,∞)

)
985

≤ M(‖ȳ‖L2(0,∞;Y ) + ‖ū‖L2(0,∞))‖ϕ‖L2(0,∞;V ∗).986987

Once again, the constantM obtained above does not depend on (ȳ, ū) and ϕ, therefore,988

(4.5) holds true.989

Proof of Lemma 7.1. The mapping rk can be written in the following form:990

rk(y) =

2k∑
i=k+1

j1(i)∑
j=1

Qi1,j(y, ..., y) +

2k∑
i=k+1

j2(i)∑
j=1

Qi2,j(y, ..., y,Ny, y, ..., y)991

+

2k∑
i=k+1

j3(i)∑
j=1

Qi3,j(y, ..., y,Ny, y, ..., y,Ny, y, ..., y),992

993

where all the mappings Qi`,j are bounded multilinear forms of order i. To simplify,994

we prove the result for the following mapping:995

R : y ∈W∞ 7→
∫ ∞

0

r(y(t)) dt, where: r(y) = Q(Ny,Ny, y, ..., y)996

and Q is a bounded multilinear form of order i ≥ k + 1. The general case easily997

follows. For y and z ∈ V , we have998

Dr(y)z = Q(Nz,Ny, y, ..., y) +Q(Ny,Nz, y, ..., y)999

+Q(Ny,Ny, z, y, ..., y) + ...+Q(Ny,Ny, y, ..., y, z) ∈ R.10001001

We prove that R is continuously differentiable and that1002

(A.5) DR(y)z =

∫ ∞
0

Dr(y(t))z(t) dt.1003

Let us define1004

R1 : (y1, ..., yk) ∈ (W∞)k 7→
∫ ∞

0

Q(Ny1, Ny2, y3, ..., yk) dt,1005

R2 : y ∈W∞ 7→ y⊗k ∈ (W∞)k,10061007
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so that R = R1 ◦ R2. The operator R2 is linear and bounded, thus it is infinitely1008

differentiable. The mapping R1 is a bounded multilinear form, since1009

|R1(y1, ..., yk)| ≤ ‖Q‖‖Ny1‖L2(0,∞;Y )‖Ny2‖L2(0,∞;Y )‖y3‖L∞(0,∞;Y )...‖yk‖L∞(0,∞;Y )1010

≤ M‖y1‖L2(0,∞;V )‖y2‖L2(0,∞;V )‖y3‖L∞(0,∞;Y )...‖yk‖L∞(0,∞;Y )1011

≤ M‖y1‖W∞ ...‖yk‖W∞ .10121013

Therefore, R1 is continuously differentiable (see [9, Lemma 7]), moreover,1014

DR1(y1, ..., yk)(z1, ..., zk) = R1(z1, y2, ..., yk)1015

+R1(y1, z2, y3, ..., yk) + ...+R1(y1, ..., yk−1, zk).(A.6)10161017

This proves that the mapping R is continuously differentiable. Moreover, by the chain1018

rule, DR(y)z = DR1(R2(y))DR2(y)z. Combined with (A.6), we obtain (A.5).1019

Let us prove estimate (7.1). For y and z ∈ V , the following estimate holds:1020

(A.7) |Dr(y)z| ≤M
(
‖y‖V ‖y‖i−2

Y ‖z‖V + ‖y‖2V ‖y‖i−3
Y ‖z‖Y

)
.1021

Therefore, for all y and z ∈W∞,1022 ∫ ∞
0

|Dr(y(t))(z(t))|dt ≤ M
(
‖y‖L2(0,∞;V )‖y‖i−2

L∞(0,∞;Y )‖z‖L2(0,∞;V )1023

+ ‖y‖2L2(0,∞;V )‖y‖
i−3
L∞(0,∞;Y )‖z‖L∞(0,∞;Y )

)
1024

≤ M‖y‖i−1
W∞
‖z‖W∞ .10251026

The constant M involved in the above inequality is independent of y and z, therefore,1027

for a given δ > 0,1028 ∣∣∣ ∫ ∞
0

Dr(y(t))(z(t)) dt
∣∣∣ ≤M‖y‖i−1−k

W∞
‖y‖kW∞‖z‖W∞ ≤Mδi−1−k‖y‖kW∞‖z‖W∞ ,1029

if ‖y‖W∞ ≤ δ, since i ≥ k + 1. This proves estimate (7.1).1030

Assume now that y ∈W∞∩L∞(0,∞;V ). As a consequence of (A.7), there exists1031

a constant M > 0, independent of y and z, such that1032

|DR(y)z| ≤ M
(
‖y‖L2(0,∞;V )‖z‖L2(0,∞;V )‖y‖i−2

L∞(0,∞;Y )1033

+ ‖y‖L∞(0,∞;V )‖y‖L2(0,∞;V )‖z‖L2(0,∞;V )‖y‖i−3
L∞(0,∞;Y )

)
,1034

1035

which proves that in this case DR(z) ∈ L2(0,∞;V ∗).1036

Acknowledgements. This work was partly supported by the ERC advanced1037

grant 668998 (OCLOC) under the EU’s H2020 research program.1038

REFERENCES1039

[1] S. M. Aseev, M. I. Krastanov, and V. M. Veliov, Optimality conditions for discrete-time1040
optimal control on infinite horizon, Pure Appl. Funct. Anal., 2 (2017), pp. 395–409.1041

[2] M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimen-1042
sional feedback or dynamical controllers: Application to the navier-stokes system, SIAM1043
J. Control Optim., 49 (2011), pp. 420–463.1044

[3] A. O. Belyakov and V. M. Veliov, Constant versus periodic fishing: age structured optimal1045
control approach, Math. Model. Nat. Phenom., 9 (2014), pp. 20–37.1046

This manuscript is for review purposes only.



30 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

[4] A. Bensoussan, G. Da Prato, M. Delfour, and S. Mitter, Representation and Control of1047
Infinite Dimensional Systems, Birkhäuser Boston Basel Berlin, 2007.1048
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