INFINITE-HORIZON BILINEAR OPTIMAL CONTROL PROBLEMS:
SENSITIVITY ANALYSIS AND POLYNOMIAL FEEDBACK LAWS*

TOBIAS BREITENT, KARL KUNISCH#, AND LAURENT PFEIFFER'

Abstract. An infinite-horizon optimal control problem subject to an infinite-dimensional state
equation with state and control variables appearing in a bilinear form is investigated. A sensitivity
analysis with respect to the initial condition is carried out. We show in particular that the value
function is infinitely differentiable in the neighborhood of the steady state, under a stabilizability
assumption. In a second part, we derive error estimates for controls generated by polynomial feedback
laws, which are derived from Taylor expansions of the value function.
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1. Introduction. In this article, we consider a bilinear optimal control problem
of the following form:

1 o0 o0
i Tww)i= [ ICuOBde S [ uerat
0 0

(1 1) uw€L2(0,00) 2
| where: { y(t) = Ay(t) + (Ny(t) + B)u(t), fort >0
’ y(()) =1y €Y.

Here V C Y C V*is a Gelfand triple of real Hilbert spaces, where the embedding of V'
into Y is dense and compact, and V* denotes the topological dual of V. The operator
A: D(A) CY — Y is the infinitesimal generator of an analytic Cy-semigroup e4* on
Y,BeY,CeL(Y,Z), N € L(V,Y), a >0 and D(A) denotes the domain of A.
The control variable u is scalar-valued. The precise conditions on A, B, C, and N
are given further below. We denote by V the associated value function, i.e. V(yp) is
the value of Problem (1.1) with initial condition yg.

The optimal control problem is posed over an infinite-time horizon and the state
equation is nonlinear, since it contains a bilinear term, Nyu. We have in mind the si-
tuation where A is a second-order differential operator and N is a lower-order operator
containing zero- and first-order differentiation terms. The operator N, considered as
an operator in Y, is unbounded. Some optimal control problems of the Fokker-Planck
equation can typically be written in the above form, see [7] and [9, Section 8].

In the first part of the paper, we prove that the solution to the problem, seen as
a function of the initial condition yq, is infinitely differentiable. The result is proved
for initial conditions close to the steady state 0. It implies in particular that the
value function is infinitely differentiable in the neighborhood of 0. We also prove a
sensitivity relation: for an initial condition yg, the derivative of V at yg is equal to
the associated costate at time 0.

The second part of the paper is dedicated to the analysis of polynomial feedback
laws. Polynomial feedback laws are derived from Taylor approximations of the value
function of the form: V(y) =~ 2522 71,7;(y, ..y y), where T3,7T3,..., T are bounded mul-
tilinear forms of order 2,3,....,k. The bilinear form 75 is characterized as the unique
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2 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

solution to an algebraic Riccati equation and the multilinear forms of order 3 and more
are characterized as the unique solutions to generalized Lyapunov equations. The spe-
cific structure of the Taylor expansion has been known since the 60s (see [23] and the
review paper [18]) for a general class of finite-dimensional stabilization problems. We
have extended these results to the case of infinite-dimensional bilinear systems in a
recent work [9]. In another recent work [8], we have developped a numerical method
for computing the polynomial feedback laws, based on a model-reduction technique
for bilinear systems and an integral representation of the solutions to generalized Ly-
apunov equations. Numerical results have been obtained for a control problem of the
Fokker-Planck equation.
In our work [9], we have obtained the following estimate:
k= @l 20,000 = Olllwolly ),

where uj denotes the open-loop control generated by the feedback law derived from
a Taylor expansion of order k and where @ denotes the solution to Problem (1.1) (for
the initial condition yg, assumed to be close enough to 0). The main result of the
second part of the present article is the following (improved) estimate:

lur = @]l 2(0,00) = Olly0]l5-)-

Let us point out that this estimate is new, even for the finite-dimensional setting.

Both parts of the article rely on a stability analysis of the optimality conditions
associated with Problem (1.1). This approach is described in abstract frameworks in
[6, 17] and has been used for the sensitivity analysis of optimal control problems in
many different settings. For the case of infinite-dimensional systems with finite-time
horizon, we can mention [15, 16, 26].

Let us briefly comment on the literature on infinite-horizon optimal control pro-
blems. Many authors have considered the case of nonlinear ordinary differential equa-
tions. In fact, this area of research is still quite active, in part motivated by problems
in economics. We refer the reader to the most recent articles [1, 3, 5, 24, 25] and to the
references therein. The article [12] gives a very interesting account of the different ap-
proaches for investigating infinite-horizon optimal control problems. In this reference,
a sensitivity relation is also obtained for problems with control constraints. The case
of partial differential equations has received significantly less attention. Much research
was dedicated to the linear-quadratic case and the development of proper frameworks
for deriving algebraic Riccati equations, see e.g. [14, 20]. The quadratic programming
approach for linear-quadratic infinite-horizon optimal control problems was discussed
in [21]. For the case of nonlinear partial differential equations, we mention the articles
[13] and [28], where optimality conditions are derived for a class of optimal control
problems of semilinear parabolic equations. In [13], a sparsity-promoting cost function
is considered. In [28], a quadratic cost function (similar to ours) is considered and a
sensitivity relation is proved.

We now give a brief account of the contents of the paper. In Section 2, we
provide the precise problem formulation and give results on the well-posedness of
the state equation. Section 3 is devoted to existence results for optimality systems
related to linear-quadratic infinite-horizon optimal control problems. They are used
for justifying the applicability of the inverse function theorem used in the sensitivity
analysis performed in Section 4. While the results of Section 4 are of local nature,
we provide in Section 5 optimality conditions for an arbitrary initial condition. We
describe in Section 6 the construction of polynomial feedback laws and summarize the
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 3

main results obtained in the error analysis of [9]. The improved rate of convergence
is established in Section 7. The proofs of two technical results are moved to the
Appendix.

2. Formulation of the problem and first properties.

2.1. Formulation of the problem. Throughout the article we assume that the
following four assumptions hold true.
(A1) The operator —A can be associated with a V-Y coercive bilinear form a: V x
V — R such that there exist A € R and § > 0 satisfying

a(v,v) > d|lv||F = A|v||3 forallv e V.

(A2) The operator N is such that N € L(V,Y) and N* € L(V,Y).

(A3) [Stabilizability] There exists an operator F' € L(Y,R) such that the semigroup
e(A+BI)t i5 exponentially stable on Y.

(A4) [Detectability] There exists an operator K € £(Z,Y") such that the semigroup
e(A=KO)t i5 exponentially stable on Y.

Conditions (A3) and (A4) are well-known and analysed in infinite-dimensional
systems theory, see [14], for example. In particular, there has been ongoing inte-
rest on stabilizability of infinite-dimensional parabolic systems by finite-dimensional
controllers. We refer to [2, 27] and the references given there.

While the results of this article are obtained for scalar controls, the generalisation
to the case of systems of the form

= Ay+ Y (Njy(t) + B;)u;(1),
j=1

with B; € Y, can easily be achieved. In this more general case, one has to assume
that the operators Ni,...,N,, satisfy Assumption (A2). Assumption (A3) must be
replaced by the following one: there exist operators Fy,...,F,, in £(Y,R) such that the
semigroup eAFT2j= BiFi)t g exponentially stable.

With (A1) holding the operator A associated to the form a generates an analytic
semigroup that we denote by e, see e.g. [29, Sections 3.6 and 5.4]. Let us set
Ag = A— M, if A >0 and Ay = A otherwise. Then —Aj has a bounded inverse
in Y, see [29, page 75], and in particular it is maximal accretive, see [29, 20]. We
have D(A4y) = D(A) and the fractional powers of —Ag are well-defined. In particular,
D((—Ag)2) = [D(=Ao), Y]y = (D(=Ap),Y)1 5 the real interpolation space with
indices 2 and 3, see [4, Proposition 6.1, Part II, Chapter 1]. Assumption (A5) below
will only be used in Sections 6 for the proof of Lemma 6.3. The assumption is not
needed for the sensitivity analysis performed in Section 4 and for the derivation of
optimality conditions in Section 5.

(A5) It holds that [D(—AO),Y]% = [D(—AS),Y}% =V.
Let us state the problem under consideration. For yg € Y, consider

; R )12 a [T e
Pt Tl =g [ IOS@a B+ G [t
where S(u, yo;-) is the solution to

y(t) = Ay(t) + Ny(t)u(t) + Bu(t), fort >0,
(2.1)
y(0) = yo.

This manuscript is for review purposes only.



127

129
130
131

142
143
144
145
146
147
148
149

[
ot ot Ot
A o

3

4 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Here y = S(u, yo) is referred to as solution of (2.1) if for all T > 0, it lies in
W(0,T):= {y € L*(0,T;V) |y € L*(0,T; V*)}.

The well-posedness of the state equation is ensured by Lemma 2.4 below. We re-
call that W(0,T) is continuously embedded in C([0,7],Y) [22, Theorem 3.1]. We
abbreviate

We = W(0, 00).

The space W, is continuously embedded in Cj([0,o0],Y), see e.g. the proof of [9,
Lemma 1]. We fix My > 0 such that for all y € W,

(2.2) Yl Loe (0,00:v) < Mollyllw. -

Let us mention that for y € W, lims o ||y(t)]|y = 0. A short proof can be found in
[9, Lemma 1]. We also set

wo = {y € Wy | y(0) 20}.

Finally, we denote by V the value function associated with Problem (P), defined by

V(yo) = ueLi,}%g 00) T (u,90)-

Note that origin is a steady state of the uncontrolled system (2.1) and that V(0) = 0.

Remark 2.1. Assumptions (A1)-(A5) have been justified for a class of controlled
Fokker-Planck equations in [7, 9]. In that case the operator N is unbounded when
considered as operator in Y. For finite-dimensional control systems, the function space
assumptions are vacuously satisfied and the stability and detectability requirements
are well investigated.

Remark 2.2. If A generates an exponentially stable semigroup, then the control
operator B can be the zero operator. In this case the Riccati equation (6.4) below
results in a Lyapunov equation.

Ezxample 2.3. To illustrate the framework for a simple special case, we consider
the control system

E= Af+ubt in Q x (0,00)
(2.3) g—fl: 0 on 08 x (0, 00)
£€0)= & in €,

where Q is a bounded domain in R™ with smooth boundary 0, v = u(t) € R,
be L*(Q), and [, b(x)dxr # 0. Our goal is to stabilize the system to a function of
constant value § € R, § # 0. For this purpose we transform (2.3) via y =& — 7 to

y= Ay+ub(y+7)

(2.4) 2= 0
y(O) = Yo,

where yg = £y — y. The observation operator C' is the restriction operator from €2 to
a subdomain w € €. To cast this problem in the general setting, we set Y = L?(),

This manuscript is for review purposes only.
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V = HY(Q), Z = L*(w),

a(vvv) = (VU, VU)L2(Q)3 A= Aa D(A) = HQ(Q)v
Nv=b, B=bjeY.

Note that C* is the extension-by-zero operator. Then (Al) and (A2) are satisfied
with 6 = A = 1. The linearization of (2.4) at the origin is given by

w= Aw+uby

(2.5) v — 0
w(0) = wo.

By the generalized Poincaré inequality [19, page 297], there exists a constant C' > 0

_ 2 :
such that Clv||?, < ||Vv||%2(m + 9] ( [, bv dx)”, for all v € V. From (2.5) with
u = —sgn(y) [, bw dx, we obtain

Ld 2 2 7 2
2 g+ Ve +191( | bue) dr) =0
and thus, changing if necessary the value of C,

d
Zw@IF + Cllw @) <0,

which further implies that ||w(t)|ly < e~ “!||lwo|ly, by Gronwall’s inequality. Thus
(A3) holds with Fw = —sgn(y) |, bw dz. Finally, Assumption (A4) can be obtained
with K = —C* and Assumption (A5) can be proved with [20, Appendix 3A].

2.2. State equation. The first lemma ensures that the state equation is well-
posed. The lemma is a simple generalization of [9, Lemma 1] and is based on As-
sumptions (A1) and (A2). Unless stated otherwise, yo is an initial condition in ¥ and
f lies in L2(0, 00; V*). All along the article, the constant M > 0 is a generic constant
whose value may change.

LEMMA 2.4. For all T > 0 and u € L?(0,T), there exists a unique solution
y € W(0,T) to the following system:
y=Ay+ Nyu+Bu+f, y(0)=yo.

Moreover, there exists a continuous function c such that

(2.6) 1Yllw 0.0y < e(T lyolly s [[wll 20,1y, [ 1 L2 0,75v+))-

Finally, if y € L*(0,00;Y), then y € Wo.

Using the stabilizability assumption (A3) and the techniques of [4, Theorem 2.2,
Part II, Chapter 3] and [30], one can show that for all f € L?(0,00;V*) and for all
Yo € Y, the following nonhomogeneous system:

(2.7) y=(A+BF)y+f, y(0)=w

has a unique solution y € W,. Moreover, there exists a constant M, > 0 independent
of f and yg such that

(2.8) [Yllwee < Ms(1fllz20,00v+) + l[0lly)-

This manuscript is for review purposes only.
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6 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Similarly, as a consequence of the detectability assumption (A4), the following non-
homogeneous system:

(2.9) y=(A-KCy+f, y0)=uyo

has a unique solution y € W,. Moreover, there exists a constant My independent of
f and yo such that

(2.10) lyllw.e < Ma(llfllz20,00v+) + lwolly)-

In the following, we address the stability of a class of perturbations of the linear
system (2.9).

LEMMA 2.5. Let P € L(W, L?(0,00;V*)) be such that || P| < ML&’ where || P||

denotes the operator norm of P. Then there exists a unique solution to the following
system:

(2.11) y(t) = (A= KC)y(t) + (Py)(t) + f(t),  y(0) = o

Moreover,

d
< v + .
HyHWoo =7 Md||P|| (”fHL?(O,oo,V ) ||y0||Y)

Proof. We first prove the existence of a solution, by using a classical fixed-point
argument. Let M’ = $;HPH' Consider the set M C W, defined by

M= {y e W lllylw. <M (Ifll20,00v+) + lyollv)}-
We consider the mapping Z: y € M — Z(y) € Wy, where z = Z(y) is the unique
solution to

2t) = (A= KC)z(t) + (Py)(t) + f(1), 2(0) = yo.

We prove that the mapping Z has a fixed point, which is then a solution to (2.11).
By (2.10), we have
IZW) W < Ma(llPYllL2(0.00:v+) + [1f ]l 22(0.005v+) + [0]ly)
< Mg(1+[|P[[M')(] Yolly)-
—_—
=M’

Therefore Z(M) C M. Now for y; and y» € M, we set z = Z(y2) — Z(y1). Then,

Fllz2(0,005v+) + 1

2(t) = (A= KC)z(t) + (P(y2 —y1))(t), 2(0) =0,

and by estimate (2.10), we obtain

12(y2) = Z(y1)Iwee = llzllwee < MallPlllly2 — y1llwe-

This proves that Z is a contraction, since My||P|| < 1. Therefore, by the fixed-point
theorem, there exists y € M such that Z(y) = y, which proves the existence of a
solution to (2.11).

Observe now that the mapping Z, defined on the whole space W, is still a
contraction. This proves the uniqueness of the solution to (2.11) in W. d

This manuscript is for review purposes only.
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 7

Remark 2.6. The result is also true when the operator (A — K(C) is replaced by
(A4 BF) and the constant My by Mj.

In the next lemma, we utilize the previous result and assumption (A4) to establish
a detectability property for the bilinear system.

LEMMA 2.7. Let 0 < § < (||N||L(y,v*)M0Md)_1 and let u € L?(0,00) be such
that ||ul£20,00) < 0. Assume that the unique solution y to the following system:

y=Ay+ Nyu+ Bu+f, y(0)=yo

is such that Cy € L*(0,00; Z). There exists a constant M > 0, independent of yo, u,
f, and y, such that

1yllwee < M(lIyolly + llull 20,000 + 1 fll£2(0,00:v) + [CYll22(0,00:2) ) -
Proof. Consider the following system:
(2.12) i=Az+ Nzu+Bu+ f+ KC(y—=z), 2(0)=yo.

For proving its well-posedness, we introduce the operator P € L(W, L?(0, 00; V*)),
defined by (P¢)(t) = N&(t)u(t) for £ € Wo. We have

ul| £2(0,00) €]l 252 (0,005v)
ull £2(0,00) Mo [|€]| W -

1PEN L2(0,00v+) <INl ev,ve)

INIA

IVl ev,vey

-1
<M

Therefore, | P|| := || P|lz(w...r2(0,00:v+)) < My '. Note that (2.12) can be expressed
as

2(t) = (A= KC)z(t) + (P2)(t) + (Bu(t) + f(t) + KCy(t)).
Thus by Lemma 2.5, system (2.12) has a unique solution, which satisfies

12llw.. < M(||Bu+ f+ KCyll12(0,00v+) + l0lly)
< M(||u||L2(O,OO) + ||f||L2(0,oo;V*) + ||CyHL2(O,oo;Z) + Hy0||Y)7

where the constant M in the last inequality does not depend on yg, u, f and y.
Finally, we observe that e := z — y satisfies

é(t) = (A — KO)e(t) + u()N(t)e(t) = (A — KC)e(t) + (Pe)(t), e(0) =0,

which proves that e = 0, using once again Lemma 2.5. Therefore, y = 2z and the
lemma is proved. ]

Remark 2.8. The result of Lemma 2.7 remains true if the bilinear term Nyu is
removed. In this case, no restriction on |[u||z2(0,00) is necessary, since then the well-
posedness of z (defined by (2.12)) follows directly from estimate (2.8).

Remark 2.9. In an abstract non-convex setting, a sensitivity analysis can be per-
formed (i) if the linearized constraints are surjective and (ii) if the sufficient second-
order optimality conditions are satisfied. These two properties are satisfied in the
current framework for (y, u) = (0,0), the solution to (P) with initial condition yg = 0.

This manuscript is for review purposes only.
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8 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

(i) A consequence of the stabilizability assumption (A3) is that for all f €
L?(0,00; V*), there exists a pair (z,v) € Wy, x L?(0, 00) satisfying: 2 = Az + Bv + f,
z(0) = 0 (see the proof of Lemma 3.3).

(ii) A consequence of the detectability assumption (A4), obtained with Lemma 2.7
and Remark 2.8, is the following property: for all (z,v) € Wy, x L?(0,00) satisfying
2= Az + Bu, z(0) = 0, there exists a constant M independent of (z,v) such that

1 «
§||CZ||%2(O,OQ;Z) + 5\\?}”%2(0,00) > M([|2]172(0,00v) + 101 72(0,00))-

This property corresponds to the sufficient second-order optimality conditions for (P)
with initial condition yg = 0.

3. Linear optimality systems. This section is dedicated to the proof of Pro-
position 3.1 below, which is a key result for the sensitivity analysis performed in
Section 4 and for the error analysis of Section 7. The proof can be found at the end of
the section. For finite-horizon control problems, results like Proposition 3.1 are quite
well-known. The case of infinite-time horizons, however, needs special attention. It
should also be pointed out that the proof is not based on PDE techniques, but rat-
her, an associated linear-quadratic optimal control problem is investigated. Before
stating the proposition in detail, we recall that W2 is continuously embedded into
L?(0,00; V) and therefore L?(0,00;V*) is continuously embedded into (W2)*. We
further introduce the space

X = L%*0,00; V*) x (W2)* x L*(0, c0).

PROPOSITION 3.1. For all (f,g,h) € X, there exists a unique triplet (y,u,p) €
W x L?(0,00) x L?(0,00; V) such that

y—(Ay+Bu)= f in L*(0, 00; V*)
(3.1) —p—Ap—C*Cy=yg in (W3,)*
au+ (B,p)y = —h in L?(0, 00).

Moreover there exists a constant M > 0, independent of (f,g,h), such that

(32) H (y7 u,p) ||Woo X L2(0,00) x L2(0,00;V) < M” (f7 g, h) ”X

Assume further that g € L?(0,00;V*). Then p € W, and there exists a constant M,
independent of (f,g,h), such that

(3-3) Ipllwee < M llz2 0,000+ + lgllz20.00v) + 1l L2(0,00))-

Note that the costate equation in (3.1) must be understood as follows:

(D5 ) L2(0,00:V),L2(0,005v*) = (AP, 0) £2(0,00;V),L2(0,00;V)
+ <C*Cy7 (p>L2(O,oo;Y) + <97 @) W9y \wi»

for all o € WY . The main idea for proving the above result is the following: the linear
system (3.1) constitutes the optimality conditions for the linear-quadratic optimal
control problem (L(Q)) defined below. Given f € L?(0,00;V*), g € (W2)*, and
h € L?(0,0), we consider:

(LQ) Jlg, h](y,u) subject to: e[f](y,u) =0,

min
(y,u)eWI xL2(0,00)

This manuscript is for review purposes only.
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where

Jlg. By w) = & / T NCYOIZ At + (9 9) aweeye e + & / " (w(®)? + h(t)u(n)) dt,

2 2
e[f](y,u) := 7 — (Ay + Bu + f) € L*(0,00; V*).
Note that the initial condition y(0) = 0 need not be specified as a constraint since
y € W2 Let us prove the existence of a solution to Problem (LQ).

LEMMA 3.2. There exists a constant M > 0 such that for all (f,g,h) € X, the
linear-quadratic problem (LQ)) has a unique solution (y,u) satisfying the following
bounds:

(3-4) lyllw.. < MI[(£,9.h)llx and lullzz0,00) < MI(S; 9, )l x-

Proof. Let § € W2 be defined by 4§ = (A + BF)j + f. Then by (2.8), we have
9w < Ml fllz2(0,00;v+)- Setting @ = Fg, we obtain that

Ha||L2(07oo) < MHf||L2(0,oo;V*) and e[f](g7a) = Oa

and consequently J([g, h](7, %) < M||(f,g,h)||%. Therefore the problem is feasible.
Let us consider now a minimizing sequence (Y, tn)nen. We can assume that for
alln € N,

(3.5) I[g, W) (yn, un) < MI|(f, g, h)|%-

We begin by proving that the sequence (y,, u,, ) is bounded in W, x L2(0, 00). To this
purpose, we first compute a lower bound of J[g, h](yn, u,). Using Young’s inequality,
we obtain for all € > 0 that

1
19, Py wn) = 5 1CYnl 720,002 = N9l we )« 19nllwee

«
+ S lunlZz(0,00) = 12l 20,00 [ 22(0.00)

1 2 1 2 € 2
2 §||Cyn||L2(0,oo;Z) - 2*€||9||(Wgc)* - §||yn||woo
a 1hllze .00 V2 I7lZ2(0,00)
(3. + 5 (lunllzzcoon = 50 ) 7 = =00,

Combining (3.5) and (3.6), we obtain that there exists a constant M independent of
€ > 0 such that

||h||L2(o,<><>)>2
Q

1
< M(J1(F.9, W% + lllli, + gl )

1CYn32(0.0012) + @ (lnl220.00) =

and therefore

1
(3 7) ||Cyn||L (0,00;2) > <||(f7ga h)HX \/gHyn”H/oc \/EHQH(W;’O) )7

1
(3.8) ltn | 22 (0,00) < M(H(f’g,h)HX + Vellynllw. + %HQH(W&)*)

This manuscript is for review purposes only.
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10 T. BREITEN, K. KUNISCH, AND L. PFEIFFER
Applying Lemma 2.7 (taking into account Remark 2.8) and using (3.7), we obtain

||yn||Woo < M(HUWHL2(O,00) + Hf||L2(O,oo;V*) + Hcyn||L2(0,oo;Z))
1
< M(I(f, 9, M)l x + Vellynllw., + %”g”(W&)*)

Choosing ¢ = ﬁ (where M is the constant involved in the last inequality), we

obtain the existence of another constant M such that ||y,|lw. < MJ|(f,g,h)|x.
Combining this estimate with (3.8), we finally obtain that

[unllz2(0,00) < MII(f; 9, 1)l x -

The sequence (Yn,Un)nen is therefore bounded in W, x L?(0,00) and has a weak
limit point (y,w) satisfying (3.4). One can prove the optimality of (y,u) with the
same techniques as those used for the proof of [9, Proposition 2].

The uniqueness of the solution directly follows from the linearity of the state
equation and the strict convexity of the cost functional. ]

We give now optimality conditions for Problem (LQ). The existence of a Lagrange
multiplier follows directly from the surjectivity of a linear operator denoted 7', derived
from the state equation. The surjectivity of T' is itself is a direct consequence of the
stabilizability assumption (A3).

LEMMA 3.3. For all (f,g,h) € X, there exists a unique costate p € L?(0,00;V)
satisfying the following relations:

(3.9) —p—Ap—C"Cy
(3.10) au+ (B,p)y

g
— h.

Here (y,u) denotes the unique solution to (LQ)). Moreover, there exists a constant
M > 0 independent of (f,g,h) such that ||p|r2(0,00,v) < M||(f, 9, )| x-

Proof. The mappings e[f] and Jl[g, h] are continuously differentiable. We have

DJlg, h](y,u)(z,v)
=(C"CyY, 2) 12(0,005v) + (95 2) (W), wo, + U, 0) 12(0,00) + (7 V) £2(0,00)

_< C*Cy+g z >
- au+h )7 \v) /(W) x12(0,00),W x L2(0,00)

The derivative De[f](y, ), which is independent of f, y and u, is denoted by T It is
given by

T: (z,v) € W2 x L*(0,00) + % — (Az + Bv) € L*(0,00; V).
The adjoint operator T*: L?(0,00; V) — (W2)* x L?(0, o) satisfies

(T7p, (2,0)) = Dy £)12(0,00V), 120,005V ) — (P> AZ) 12(0,00:V),L2(0,00;V*)
— (P, BU) 12(0,00;), L2 (0,00;V'*)
= (=D, 2)(wo ), w9, — (AP, 2) L2(0,00;V*),L2(0,00;v) — ({B5P) Y, V) 12(0,00)

< —-p—A'p\ (z >
—(B,p)y ) "\v) /(W9 )*xL2(0,00),WO x L2(0,00)

This manuscript is for review purposes only.
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 11

Let us prove that the operator T is surjective. Take ¢ € L2(0,00;V*), let Z be the
solution to the following system: Z = (A+ BF)Z+4¢, 2(0) = 0. Let us set & = Fz. By
estimate (2.8), ||Z[lw., < Msllllz2(0,00;v+) and thus |4 z2(0,00) < M|l L2(0,00;v%)-
Clearly T(Z,0) = ¢, which proves the surjectivity of T. Consequently, see e.g. [32],
there exists a unique p € L?(0,00; V) such that

DJlg, h](y,u)(2z,v) = (T"p, (2,0)) (W)= x L2(0,00), W2, x L2(0,00) = O-

Using the expressions of DJ[g, h](y,u) and T* previously obtained, we deduce the
costate equation (3.9) and relation (3.10). By the closed range theorem (see [11,
Theorem 2.20]) and (3.4), there exists a constant M > 0 such that

1Pl122(0,005v) < M| T*Pll(w0 )+ x L2(0,00)
< M”D‘][ga h](ya U)H(Wgo)*XLQ(O,oo)
< M(IC*CyllL2(0,000v) + lgllwo )+ + [l £2(0,00) + 12l 22(0,00)) -

Finally, using estimate (3.4) for the solution (y,u) to Problem (LQ), we obtain that
P22 (0,00:v) < MI|(f,g,h)||x. This concludes the proof. O

We can finally prove Proposition 3.1.

Proof of Proposition 3.1. The existence of (y, u, p) and estimate (3.2) directly fol-
low from Lemma 3.2 and Lemma 3.3. Let (y1,u1,p1) and (y2,us,p2) be two soluti-
ons to (3.1). By the linearity of the system, the difference is a solution to (3.1)
with (f,g,h) = (0,0,0). Estimate (3.2) implies the uniqueness. Let us assume now
that g € L?(0,00;V*). In order to prove that p € Wy, it suffices to prove that
p € L2(0,00; V*). Using the costate equation (3.9) and estimate (3.2), we obtain that

1Bl 22(0,00:v+) < (A" P £2(0,005v+) + 107 CYll 2 (0,00v+) + 191 L2 (0,00:v+))
< M(||p||L2(O,OO;V) + 1yl 22 (0,00:v) + ||g||L2(O,oo;V*))
< M ([I£l2(0,00:v+) + N9l £2(0,005v+) + 11l 22(0,00)) -
This implies (3.3) and concludes the proof of the proposition. |

4. Sensitivity analysis. In this section, after proving the existence and uni-
queness of a solution to (P) for all initial conditions yy close enough to the origin, we
verify that locally, the unique solution, the associated trajectory, and the costate (in
W) are infinitely differentiable functions of the initial condition yo. In particular,
this will imply that the value function V is C*° in a neighborhood of the origin.

A first step in the analysis is the derivation of first-order necessary optimality
conditions for (P) in a weak form (Proposition 4.2), i.e. for a costate p € L?(0, 00; V)
and an adjoint equation satisfied in (W2 )*. Then, we prove the existence of a mapping

yo — (V(wo),U(yo), P(v0)),

defined for yo € Y close to 0, which is such that (Y(yo),U(yo), P(yo)) is the unique
triplet (y,u, p) in a neighbourhood of (0, 0, 0) satisfying the weak optimality conditions
(Lemma 4.4). It follows then that U (yo) is the unique solution to (P) (Proposition
4.5), for yo close enough to 0.

Optimality conditions in a strong form, involving a costate in W, require an
extra step. We first prove the existence of a mapping

Yo = (Vo) U(yo), P(v0)),

This manuscript is for review purposes only.
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12 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

defined for yy € Y close to 0, which is such that (Y (yo),U(yo), P(yo)) is the unique
triplet (y,u,p) in a neighbourhood of (0,0, 0) satisfying the strong optimality condi-
tions (Lemma 4.7). To conclude the sensitivity analysis, it suffices then to check that
the mappings (V,U, P) and (V,U, P) coincide around 0 (Lemma 4.8).

We start by proving the existence of a solution to (P), assuming the existence of
a feasible control u and the bound (4.1). This bound enables us to derive estimates
on the trajectory for the W,-norm, using Lemma 2.7.

LEMMA 4.1. Let 0 < §p < %(||N||£(Y’V*)M0Md)_1. Assume that there ezists a
control u € L?(0,00) such that

(4.1) I (o) < 53

Then (P) possesses a solution @. Moreover, there exists a constant M > 0, indepen-
dent of &g, such that

(4.2) [allz20,00) <00 and  |[gllw.. < M([lyolly + do),

where § = S(@,yo).

Proof. We follow the same approach as in Lemma 3.2. Let (uy,)nen be a minimi-
zing sequence, and set y, = S(un,yo). We can assume that J (u,,yo) < %5(2), for all
n € N. This implies that for all n € N,

unllL2(0,00) < 00 and  |[[CynllL2(0,00,2) < Vrdo.

By Lemma 2.7 with § = %(HNHZ;(Y’V*)MOMd)_l, we obtain the existence of M,
independent of 0y, such that for all n € N,

lynllwe < M([lyolly + [[unllz20,00) + 1CYRllL2(0,00:2)) < M ([[yolly + do)-

Therefore the sequence (Y, un)nen has a weak limit point (7, %) in W, x L?(0, 00),
satisfying estimate (4.2). One can prove that § = S(@,yo) and that @ is optimal with
the same techniques as those used for the proof of [9, Proposition 2]. ]

In the following lemma, we state and prove first-order necessary optimality condi-
tions in a weak form. The approach is similar to the one employed for Lemma 3.3: we
formulate the problem as an abstract optimization problem and obtain the existence
of a costate in L?(0,00; V) as a Lagrange multiplier. An a-priori estimate must be
done on the solution and its associated trajectory in order to prove that the operator
associated with the linearized state equation is surjective.

PROPOSITION 4.2. There exists 61 > 0 such that, if for yo € Y, Problem (P) has
a solution U such that ||@]|12(0,00) < 61 and [|§||L2(0,00;v) < 61, where § = S(yo,u),
then there exists a unique costate p € L*(0,00; V) satisfying

(4.3) p+Ap+aN*p+C*Cy=0 (in (W2)*),
(4.4) at+ (Ny+ B,p)y = 0.

Moreover, there exists a constant M > 0, independent of (y,u), such that

(4.5) 121122 (0,00:v) < M (19l 20,0007 + 1% 2 (0,00))-

The proof is given in the Appendix.

This manuscript is for review purposes only.
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INFINITE-HORIZON OPTIMAL CONTROL PROBLEMS 13

Remark 4.3. At this stage, it is not possible to prove that p € W,. More pre-
cisely, it is not possible to prove that p € L?(0,00; V*) because of the term uN*p.
Indeed, since @ € L?(0,00), one would need to prove that N*p € L>(0,00;V*).
However, we do not know for the moment whether p € L>°(0,00;Y).

Consider now the mapping ®, defined from W,, x L?(0,00) x L?(0,00;V) to
Y x L2(0,00; V*) x (W2)* x L?(0,00) by

y(0)
_| - (Ay+(Ny+B)u)
(4.6) (y,u,p) = —p— A*p —uN*p — C*Cy

au+ (Ny+ B,p)y

This mapping is such that for a given yq, for (y,u, p) € W, x L?(0,00) x L%(0,00; V),
D(y,u,p) = (y0,0,0,0) if and only if (y,u,p) satisfies the first-order optimality con-
ditions associated with (P) with initial condition yq (in weak form).

From now on, we denote By (d) the closed ball of Y with radius § and center 0.

LEMMA 4.4. There exist 62 > 0, 65 > 0, and three C*°-mappings
Yo € By (d2) = (Y(y0),U(yo), P(yo)) € Weo x L?(0,00) x L*(0,00; V)

such that for all yo € By (82), the triplet (¥(yo),U(yo), P(yo)) is the unique solution
to

‘b(y,u,p) = (yO’ 0, 070)7 max (||yHWoo’ Hu||L2(0,oo)v ||p||L2(0,oo;V)) < 6é

in Wao x L2(0,00) x L?(0,00; V). Moreover, there exists a constant M > 0 such that
for all yo € By (2),

(4.7) max (|| (yo) e, 14 (40) | L2(0,00): P (w0) | L2(0,005v)) < Mlyolly-

Proof. The result is a consequence of the inverse function theorem. The reader can
check that @ is well-defined and infinitely differentiable (note that the derivatives of
order 3 and more are null, since ® contains only linear terms and three bilinear terms:
Nyu, —uN*p and (Ny,p)y). We also have (0,0,0) = (0,0,0,0). It remains to prove
that D®(0,0,0) is an isomorphism. Let us investigate its inverse. Choose (y,u,p) €
Weo x L2(0,00) x (W2)*, let (w1, ws, w3, wy) € Y x L2(0,00; V*) x (W)* x L?(0, 00),
we have

y(0) = w
y—Ay—Bu = ws

4.8 D®(0,0,0)(y,u,p) = s s = .
(4.8) (0,0,0)(y,u, p) = (w1, ..., wa) A CCy = ws
au+ (B,p)y = ws.

Denote by y[w1] the solution y to the system: ¢ = (A+ BF)y, y(0) = w;. By estimate
(2.8), we have ||y[w1]|lw.. < Ms||w1|y. For u[wi] = Fy[w:], we obtain

[ufwn]l[L2(0,00) < MJwi]ly-

This manuscript is for review purposes only.
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14 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Let us set z = y — y[w1]. Then the following equivalence holds true:

z(0) = 0
2—Az—Bu = wy-+ Buw
DB0,0,0)(y,wp) = (wr, ) = { A 2+ Bul
—p—A*'p—C*Cz = w3z— C*Cylw]

au+ (B,p)y = wy.

We recognize here the optimality conditions associated with a linear-quadratic optimal
control problem of the form (LQ)). By Proposition 3.1, the linear system on the right-
hand side of the above equivalence has a unique solution (z, u, p), which is the solution
to (3.1) with

(f,g,h) = (w2 + Bu|wi], ws — C*Cylwy], —wy).

Moreover, by Proposition 3.1, there exists a constant M > 0 independent of (f, g, h)
such that

||(Z?u7p)HW(X,XL2(O,OO)><L2(O,OO;V) < M||(f7gvh)||X
< M||(wz + Bu[wi], ws — C*Cylwi], wa)| x

< M||(w17w2,w3,w4)||y><x-

Therefore (y := z + y[w1],u, p) is the unique solution to

Dq)(oa 0,0)(%“’?) = (wla w27w37w4)-

In addition

(5 1, ) [ We x £2(0,00) % L2(0,003v) < M |[(w1, w2, w3, ws)||yxx-

This proves that D®(0,0,0) is an isomorphism as well as the existence of dy > 0,
8% > 0, and C*°-mappings ), U, and P satisfying the equivalence (4.8).

It remains to prove (4.7). Reducing if necessary do, we can assume that the norms
of the derivatives of the three mappings are bounded on By (d2) by some constant
M > 0. The three mappings are therefore Lipschitz continuous with modulus M.
Estimate (4.7) follows, since (Y(0),4(0), (P(0)) = (0,0,0). O

In the following proposition we prove that for yo close enough to 0, U (yo) is the
unique solution to (P) with initial condition yq.

PROPOSITION 4.5. There exists 03 € (0, d2] such that for all yo € By (d3), U(yo) is
the unique solution to (P) with initial condition yo. Moreover, Y(yo) = S(yo,U(yo))
and P(yo) is the unique associated costate.

Proof. For the moment, let 3 = d5. The value of d3 will (possibly) be reduced
in the proof. Let yg € By (d3). Our approach consists in proving the existence of
a solution @ to (P), with associated trajectory § and costate p. We also show that
necessarily,

max ([|7llw., %]l L2 (0,000 [Pl L2(0,005v)) < 5.

Since then the optimality conditions are satisfied, it holds that ®(g, 4, p) = (o, 0, 0,0)
and we obtain by Lemma 4.4 that the solution to (P) is unique and that it is given

by (9,4, p) = (V(yo),U (o), P(y0))-

This manuscript is for review purposes only.
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Let us start by proving the existence of a solution. By (4.7), there exists a constant
M such that for all yg € By (d3),

14(yo)ll 20,000 < Mlolly  and ¥ (yo)llw.. < Mlyolly-

Therefore, J(U(yo),yo0) < M||yo||3. We reduce now the value of d5 so that

2 1 -1
\/ aM53 < §(||N||£(Y,V*)M0Md) .

Let us set 69 = v/2M/a||yolly. It follows from the two above inequalities that

2 1 -1
Go <4/~ Mds < §(||N||L(Y,V*)M0Md) ~

Moreover,

2 — @ N\ _ag
T @hw).o0) < Ml = ([ 00)” = 347

The conditions of Lemma 4.1 are satisfied. Therefore (P) has a solution @, which
satisfies |||l 12(0,00) < 0 and |g|lw. < M(||lyolly + do), where 5 = S(@,y0). Using the
definition of Jy, we obtain the existence of a constant M > 0 such that

(4.9) [all2(0.00) < Mlyolly  and  [[gllw.. < Mllyolly-

Let us prove now that the optimality conditions are satisfied. Reducing if necessary
the value of 3, we obtain that [|@]|z2(0,00) < 01 and that [|y][12(0,00;y) < 1 (Where
81 > 0 is given by Lemma 4.2). Therefore there exists p € L%(0, 00; V) such that the
costate equation (4.3) and relation (4.4) hold. Moreover, we obtain

(4.10) 1Pl 22(0,00:v) < M7l 22(0,0057) + |l 22(0,00)) < M|yl

It follows from (4.9) and (4.10) that we can reduce for the last time, if necessary, the
value of d3 so that

max (Ha”LZ(O,OO)’ Hg”LQ(O,oo;Y)? ||pHL2(O.,oo;V)) < éé

Since ®(y,w,p) = (y0,0,0,0), we finally obtain that (g, 4,p) = (V(yo),U(yo), P(yo)),
by Lemma 4.4. The proposition is proved. ]

COROLLARY 4.6. The value function V is infinitely differentiable on By (03).

Proof. The following mapping
2 1 2 Q2
(y,u) € Weo x L*(0,00) = §||Oy||L2(O,oo;Z) + §||UHL2(O,OO)
is clearly infinitely differentiable. By Proposition 4.5, we find for all yo € By (d3) that

1 «
V(yo) = 5\\03)(1/0)”%2(0,00;2) + §||U(y0)||%2(o,oo)»

with infinitely differentiable mappings ) and U. The corollary follows, since V can
be expressed as the composition of infinitely differentiable mappings. 0

This manuscript is for review purposes only.
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16 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

We consider now the mapping @, defined from the space Wao x L2(0,00) x Wao
to Y x L2(0,00; V*) x L%(0,00; V*) x L?(0,00) by

y(0)
N | v-(Ay+ (Ny+ B)
(I)(yvuap) - _p_A*p—’u,N*p—C*Cy

au+ (Ny+ B,p)y

The action of @ is the same as ®, but for different choices of spaces for the domain of
the adjoint variable p and for the costate equation in the image of ®. We have already
mentioned in Remark 4.3 the impossibility to prove in a direct way the fact that the
adjoint lies in W,,. Remarkably, the mapping ® is well-defined and the well-posedness
of the nonlinear equation ®(y, u, p) = (30,0, 0,0) can be easily established.

LEMMA 4.7. There exist 64 > 0, 04 > 0, and three C*°-mappings

Yo € By((54) — (y(y0)72/{(y0)775(y0)) € Wy X L2(07OO) X Wso

such that for all yo € By (84), the triplet (Y(yo),U(yo), P(yo)) is the unique solution
to

®(y,u,p) = (%,0,0,0), max (|lyllw.,, [ullz2(0,0), IPllw..) < 3

in Weo X L?(0,00) X Weo.

Proof. The proof is the same as the proof of Lemma 4.4. The reader can check
that @ is well-defined and infinitely differentiable. For proving that D®(0,0,0) is an
isomorphism, one has to rely on estimate (3.3) of Proposition 3.1. O

We can prove that the mappings (V,4,P) and (V,U,P) coincide around 0.
PROPOSITION 4.8. There exists 65 € (0, min(dz,d4)) such that for all yo € By (J5),

(4.11) (Y(yo),U(yo), Pyo)) = (y(yo),d(yo),ﬁ(yo)).

Proof. The mappings Y, U, and P being continuous, there exists a real number
85 € (0, min(d2, d4)) such that for all yg € By (ds),

(4.12) max (|| Y (yo)lwee » 1U(50) || £2(0.00)+ [P (%0) | £2(0,001)) < 5.
(yo))a

@ (V(yo),U(yo), P(yo)) = (0, 0,0,0).

hel

By construction of (Y(yo),U(yo),

Therefore ®(Y(y0),U(y0), P(¥0)) = (¥0,0,0,0). Combined with (4.12), we obtain
(4.11) by Lemma 4.4. ad

This result implies that (P) has a unique solution, for all yy € By (min(ds,ds)).
Moreover, the optimality conditions hold with a costate in W.

5. Optimality conditions for an arbitrary initial condition. In this section
we first prove a sensitivity relation: locally, the costate and the derivative of the value
function coincide. This enables us to prove optimality conditions in strong form for
(P) for arbitrary initial conditions.

This manuscript is for review purposes only.
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LEMMA 5.1. There exists 0¢ € (0,min(ds,ds)] such that for all yo € By (de),
[V (90)[| Lo~ (0,00:v) < min(d3,d5) and

(5.1) p(t) = DV(y(t)), Vi =0,

where y = Y(yo) and p = P(yo).

Proof. By continuity of the mapping ), there exists dg € (0, min(ds, d5)] such that
for all yo € By (06), ||V (y0)l| L= (0,00;v) < min(ds, ds).

We now claim the following: for all yg € By(dg), we have p(0) = DV(yo),
where p = P(yo). To verify this claim, let yo and gy € By (ds), and set (y,u,p) =
(Y(yo),U(yo), P(yo)) and (g, %) = (V(Jo),U(Fo))- For the sake of readability, we sim-
ply denote in this proof by || - || the norms in L?(0, 00) and L?(0, o0; Z), the distinction
being clear from the context. We have

~ (L e Qa2 (L 2 . @2
V(o) = V(o) = (51C31° + Slal2) = (1l + 5 ull?)
- <pﬂg - (Ag + (Nﬂ + B)a)>LQ(O,OO;V),LZ(O,DO;V*)
(52) + <p7 y - (Ay + (Ny + B)u)>L2(O,OO;V),L2(O,OQ;V*)'

Indeed, u and @ are optimal and the last two terms (in brackets) are null. The four
following relations can be easily verified:

1 1 o L
§H0y\l2 - §H0y||2 ={C"CY§ = Y)12(0.00m) + 5110 = 9|12,
Q.2 O 2 o a
(5.3) Slal? = Slul® = afu, @ = u)r20,00) + 5 18 = ul?,
Njii — Nyu = Ny(i —u) + N(§ — y)u+ N(§ — y) (@ — u),
_<p7ﬂ - y>L2(V),L2(V*) = <p(0)7g(] - y(0)>Y + (p,ﬂ - y>L2(V*)7Lz(V).

Combining (5.2) and (5.3) yields

Vi) = V(o) = (p(0),5(0) — yO))y + 1CG — I + 57— ul?
+ <pa N(g - y)(ﬂ - u)>L2(O,oo;V);L2(O,oo;V*)

+ <p + A*p + UN*p + C*Cyv g - y>L2(O,oo;V*);L2(O,oo;V)
=0
+<au+<Ny+B,p>y,12—u>

=0

L2(0,00)"

For go = yo + h, we have [|§ —y|w,, < M]h]ly and [|a = ul[r2(0,00) < M[|A]ly, by
the Lipschitz-continuity of the mappings ) and U. It follows that the three quadratic
terms in the above relation are of order ||h||? and thus that

V(90) — V(yo) — (p(0), 9o — yo)v|

1 . . - -
= §||C(y - y)||2 + 5”” - ’U’H2 + <p= N(y - y)(u - u)>L2(0,DQ;V);L2(O7DO;V*)
< M|h||5.

This proves that DV(yo) = p(0), as announced.
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18 T. BREITEN, K. KUNISCH, AND L. PFEIFFER

Let yo € By (d6), set (y,u,p) = (V(yo),U(yo), P(yo)) and choose t > 0. Let us
verify (5.1). We define

g:s>0—=ylt+s), w:s>0—ult+s), p:s>0—plt+s).

By the dynamic programming principle, 4 is the solution to Problem (P) with initial
condition §(0) = y(¢). The associated trajectory and costate are § and p. Since

ly(®)]ly < min(ds,ds), we can use the previous claim. We obtain that DV((0)) = p(0)
and finally that DV(y(t)) = p(t). d

Using the optimality condition (4.4), we directly obtain the following corollary,
which states that the mapping y € Y — —1DV(y)(Ny + B) is an optimal feedback
law.

COROLLARY 5.2. For all yo € By (dg),

u(t) = —éDV(y(t))(Ny(t) +B), forae t>0,

where y = Y(yo) and u = U(yop).

We can now prove the optimality conditions for any initial condition (assuming
the existence of a solution). Roughly speaking, the proof consists in showing that
the optimality conditions are satisfied for (T}, 00), with T} sufficiently large, using
a dynamic programming principle argument. Optimality conditions for the whole
interval (0, 00) can then be obtained easily, using once again a dynamic programming
principle argument and Lemma 5.1.

THEOREM 5.3. Let yop € Y and assume that there exists a solution @ to (P) with
initial condition yo. Then the associated trajectory y = S(u, yo) lies in Wo,. Moreover,
there exists a costate p € Wy, such that for a.e. t > 0,

(5.4) p+A'p+uaN*"p+C*Cy=0
(5.5) atu+ (Ny+ B,p)y = 0.

Proof. Let 09 = %(HNHL(yy*)Mon)fl, let Ty > 0 be sufficiently large so that
1 o0 o
f/ ICHO)I dt + g/ a(t)2dt < So2.
2 ). 2 /1, 2

We define@: t > 0 — a(To+t) and §: t > 0 — §(To+t). By the dynamic programming
principle, @ is a solution to (P) with initial condition §(0) = y(Tp), and associated
trajectory §. Since J(Jo, %) < $03, we obtain by Lemma 4.1 that § € W, thus
J € Wx. As a consequence, lim;_, ||7(¢)||ly = 0 and there exists T3 > 0 such that
1Ty < bs.

Let 4:t > 0w @(Th +t) and g: ¢t > 0 — g(T1 +t). Again by the dynamic
programming principle, 4 is a solution to (P) with initial condition 3(0) = y(71) and
associated trajectory ¢. Since ||§(0)|| < 03, Proposition 4.5 implies that

g=Y(H(T)) and a@=U(y(T1))
Moreover, by Proposition 4.8, the associated costate p = P(Q(Tl)) lies in W ..

Let us now define p € W, (11, 00) by p(t) = p(t — T1), for all ¢t € [T}, 00). Clearly
the costate equation (5.4) and relation (5.5) hold true for ¢ > T;. Uniqueness of p on
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[T1,00) directly follows from the uniqueness of the costate associated with the optimal
control 4.

Let us construct p on [0,T3]. Observe first that by Lemma 5.1, we have p(0) =
DV(3(0)), and thus

(5.6) p(T1) = DV(9(0)) = DV(y(T1)).
Let the extension of p on [0,73] be the unique solution to the following system:
(5.7) —p=A"p+aN"p+C*Cy, p(T1)= DV(§(T1)).

Existence and the uniqueness of the solution to this system in W (0,7}) can be obtai-
ned with the same methods as those used for Lemma 2.4. The terminal condition in
the above system is compatible with (5.6). Therefore p satisfies the costate equation
(5.4) on the whole interval (0,00) and p € W,.

It remains to prove that (5.5) is satisfied on (0,77). We only sketch the proof,
which is classical. Observe first that by the dynamic programming principle, the
control (g1, is a solution to the following problem:

1 a [T
s Jn )= g [ IeSGsnlZar+ 5 [ ue? ae vim)).
Note also that (5.7) is the associated costate equation. It can be easily established
that the control-to-state mapping v € L?(0,7}) +— S (Yo, u)|(0,r,) is continuously dif-
ferentiable and that its derivative can be described as the linearization of the state
equation. It follows that Jr, (-) is differentiable. A well-known computation (relying
on an integration by parts) yields that

T
D, (@) = /0 (a@+ (NG(t) + B,p(t))y)o(t)dt, Vo € L2(0,T}).

Since @ is optimal, DJr, (@) = 0 and (5.5) follows. The theorem is proved. 0

6. Construction and properties of polynomial feedback laws. We recall
in this section the relevant definitions and main results obtained in [9] for polynomial
feedback laws. These are described by bounded multilinear forms. For k > 1 we make
use of the following norm:

(6.1) 11s sy s = max lyily-

ERRRE}

We denote by By« () the closed ball in Y* with radius § and center 0. For k& > 1
we say that 7: Y¥ — R is a bounded multilinear form if 7 is linear in each variable
separately and

(6.2) ITI:="sup [T(y)| < oo

yEBy k(1)

We denote by M(Y* R) the set of bounded multilinear forms. Bounded multilinear
forms 7 € M(Y* R) are called symmetric if for all z1,...,2;, € Y* and for all permu-
tations o of {1,...,k}, T(24(1), -+ Zo(k)) = T (21, ..., 2). Given two multilinear forms
T € M(Y* R) and T € M(Y*, R), we denote by 71 ® T> the bounded multilinear
mapping which is defined for all (y, ..., yx1¢) € Y+ by

(T @T2) (W15 Ykrt) = Ti(W1, oo Yi) T2 (Y15 -or Yig)-
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20 T. BREITEN, K. KUNISCH, AND L. PFEIFFER
For y € Y, we denote

y®F = (y,...,y) € Y*

6.1. Taylor approximation. For all k£ > 2, we construct a polynomial approx-
imation Vi of V of the following form:

k
(6.3) Vi Y 2R, Vi(y) =)

where 73,...,7,...,7x are bounded multilinear forms of order 2,...,5,..., k. The first
multilinear form, the bilinear form 73, is obtained as the solution to an algebraic
operator Riccati equation and the other multilinear forms are obtained as the solutions
to linear operator equations which we call generalized Lyapunov equations.

Let us denote by IT € £(Y') the unique nonnegative self-adjoint operator satisfying
the following algebraic operator Riccati equation:

1
(64) <A*HZ1, 22> + <HA21, Z2> + <CZl, CZQ>Z — E<B,HZ1>y<B,H2’2>Y =0,

for all z; and zo € D(A). It is well-known, see [14, Theorem 6.2.7] that, as a conse-
quence of assumptions (A3) and (A4), the linearized closed-loop operator

1
(6.5) Ay = A— —BB'TI
(0%

generates an exponentially stable semigroup on Y.

The precise structure of the generalized Lyapunov equations is given in Theorem
6.1 below. In the definition of the right-hand sides of these equations, we make use
of a specific symmetrization technique that we define now. For ¢ and j € N, consider
the following set of permutations:

Sij={0i4; € Siyjlo(l) <..<o(i)and o(i+1) < .. <o(i+j)},

where S, is the set of permutations of {1,...,¢+ j}. Let 7 be a multilinear form of
order i + j. We denote by Sym; ;(7) the multilinear form defined by

N |
1+
Symi7j(7')(z1,...,zi+j)=( ; ) [ Z T(Za(l)a"'azﬂ(i+j)):|7
0’657‘,,_7‘
for all (21,...,2i41) € Y7,

THEOREM 6.1 (Theorem 16, [9]). There exists a unique sequence of bounded
symmetric multilinear forms (T;)j>2, with T;: Y9 — R, and a unique sequence of
bounded multilinear forms (R;);>3 with R;: D(A)? — R such that for all (z1,22) €
Y2, Ta(21, 22) := (21, 22) and such that for all j >3, for all (21, ...,z;) € D(A)’,

J
1
(66&) ; 776(2’1, ceey Ri—1, AHZia Zit1y ey Zj) = %Rj(zl, ceey Zj),
where
Rj=2j(j — I)Syml,j—l(cl ® gj—l)

j—2 k
(6.6b) + Z <Z)Sym”1((cz + ’Lgl) & (iji + (j — i)gj,i)),

=2
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and where

Ci(z1yy2i) = Tiz1(B,z1,...,2i), fori=1,....7—2,
(6.60) { (21 ) +1(B, 1 ), f j

Gi(z1,.z) = 1 Zz=17;(21,~~~,Ze—1,NZe,Z£+1,~-~,Zi)},

fori=1,...,5— 1.

6.2. Feedback laws and associated closed-loop systems. A polynomial
feedback law ug: y € V' — R can now be obtained by replacing the value function ¥V
by its approximation Vj in the optimal feedback law given by Corollary 5.2:

k
61)  wls) =~ DV (N + B) = (30 =5 TNy + B .).

=2

A justification of the differentiability of Vi and a formula for its derivative, used in
the above expression, can be found in [9, Lemma 7]. We consider now the closed-loop
system associated with the feedback law uy:

(6.8) y(t) = Ay(t) + (Ny(t) + Buk(y(t)),  y(0) = o

For a given initial condition yg, its solution is denoted by S(ug,yo). We also denote
by U (yo) the open-loop control defined by

(6.9) Uk (yo; t) = up(S(uk, yo; t)), forae.t>0.

The following theorem states that for ||yg|ly small enough, the closed-loop system
(6.8) has a unique solution and generates an open-loop control in L?(0, o).

THEOREM 6.2 (Theorem 22 and Corollary 23, [9]). For all k > 2, there exist
two constants o7 > 0 and M > 0 such that for all yo € By (67), the closed-loop system
(6.8) admits a unique solution S(uk,yo) € We satisfying

(6.10) 15 (ak, yo) lwoe < M[golly-

Moreover, Uy(yo) € L*(0,00) and the two mappings yo € By (67) — S(ug,yo) and
Yo € By (87) — Uyg(yo) are Lipschitz-continuous.

6.3. Error analysis. We finally recall some of the key lemmas used in the error
analysis of [9], since they will be useful for the extension provided in the next section.

The main idea consists in defining a perturbed cost function J; which has the
property that Vj is its value function. This is achieved by constructing a remainder
term rg, defined for k > 2 and y € V by

2k k
1
(6.11) re(y) = % ‘;H ‘Zk Qk,j(y)Qk,i—j(y)a
1= Jj=1—

where the mappings qx 1, qk.2,..., and gy are given by

ara(y) = Ci(y),
Qk,i(y) = %(Cl(y(@z) + igi(y®i))7 Vi = 2a seey k— 1a

Qi (y) = ﬁgk(ym)-
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We recall that the definitions of C; and G; are given by (6.6¢). Note also that the
mapping 7 V — R is C*°. The perturbed cost function Jj is defined by

o

1 oo o
T (u,yo) == 5/ CS (u, yo; )13 dt + %/ u?(t) dt +/ 7 (S(u, yo; t)) dt.
0 0

0

The well-posedness of Jj is guaranteed if S(yo,u) € W, see [9, Proposition 26]. We
point out that r; is not necessarily non-negative.

The next lemma states that Vy is the value function associated with the problem
of minimization of Jj over controls which guarantee trajectories in W.,. Moreover,
the control Uy (yg) given by (6.7) and (6.9) is a solution to the problem. Let us
emphasize the fact that the result is stated for an initial condition in By (d7) N'V.

LEMMA 6.3 (Lemma 29, [9]). Let k > 2 and yo € By (d7) N'V. Then Ji(u,yo)
and J(Uk(yo),y0) are finite and

Vi(v0) = Te(Uk(y0), vo) < Tk(u,y0),

for all u € L?(0,00) with S(u,yo) € Weo.
The loss of optimality when using Uk (yo) is estimated in Theorem 6.5 below. The

proof relies on Lemma 6.3 and on the two estimates given in the next lemma.

LEMMA 6.4 (Lemma 28, [9]). Let k > 2. There exists a constant M > 0 such
that for all yo € By (Js),

oo

o
| o) < Ml and [ (S takmst) d < Ml
0 0

where § is an optimal trajectory for problem (P) with initial value yo.

Finally, the following theorem asserts that V} is an approximation of V of order
k + 1 in the neighbourhood of 0 and gives an error estimate on the efficiency of the
open-loop control generated by ug.

THEOREM 6.5 (Proposition 2, Theorem 30, and Theorem 32, [9]). Let k > 2.
There exist 6g € (0,07] and a constant M > 0 such that for all yo € By (dg), the
following estimates hold:

I (Uk(y0),50) < V(o) + Mllyoll5™,
V(yo) — Vi(yo)| < M||yo|\]§/+1-

In addition, for all yo € By (ds), Problem (P) with initial condition yo possesses a
solution u satisfying

_ k+1)/2
% — Uk(90) | 2 (0,00) < Ml T/
15 (@, o) — S (g, yo) lw. < Myoll$EHD72.

We finish this section with an observation of the multilinear forms 7. The analy-
sis of [9] performed for obtaining the results presented in this section does not rely on
the C'*°-regularity of the value function. It was therefore not clear that the multilinear
forms 73, Ts,... are the derivatives of V of order 2, 3,... evaluated at 0. This relation
can now be established.

THEOREM 6.6. For all k > 2, T, = D*V(0).
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Proof. The proof is based on the following result (referred to as polarization iden-
tity), proved in [31, Theorem 1]: for all symmetric multilinear forms 7 € M(Y* R),
for all y = (y1,...,yx) € Y*,

1 ok

T(yi, - yx) = Hmﬂy](o%

where the function f[y] is a polynomial function defined by

k Rk
flyl: X € R* T((Z)\iyi) )

As a direct corollary, we obtain that if two symmetric multilinear forms coincide on
the set of diagonal terms {y®* |y € Y*}, they are equal.

Let us come back to the proof of the theorem. Let k¥ > 2 and let y € Y. By
Theorem 6.5, we have the following Taylor expansion (with respect to 6 € R):

J )
ST W) + o6,

_ M:

<

V(0y) =

Jj=2

We have proved in Corollary 4.6 that V is C°°, therefore, by the uniqueness of the
Taylor expansion of functions of real variables, we have Tx(y®*) = D*V(0)(y®*),
for all y € Y. Since T, and D¥V(0) are both symmetric and coincide on the set of
diagonal terms, they are equal, which concludes the proof. ]

7. Error analysis: new estimates. In this section we improve the estimates
obtained in Theorem 6.5. The approach consists of two main steps. First we use
the fact that the control Ug(yp) is the solution to an optimal control problem with
a specific perturbation. The corresponding optimality conditions lead to a perturbed
adjoint equation, see Lemma 7.3. In a second step, we analyze the influence of the
perturbation of the optimality conditions.

We consider the perturbation term in the definition of 7, and define

o0
Ri:y€e Wy — / ri(y(t)) dt € R.
0

In the following lemma, we give an estimate of the norm of the derivative of Ry, which
will appear as an additional term in the perturbed costate equation.

LEMMA 7.1. The mapping Ry is continuously differentiable. Moreover, for all
0 > 0, there exists a constant M such that

(7.1) IDRi(y)2] < M|yl |l2llw..

for all y € Wy such that ||yllw., < 0 and for all z € Wy. Finally, if y lies in
Weao N L%(0,00; V), then DRy (y) € L2(0,00; V*).

This lemma is proved in the Appendix. As was already pointed out in Section
6, the optimality of Ug(yo) for the minimization problem of Jx(yo,-) has only been
proved for an initial condition in By (67) NV. The next technical lemma will enable us
to prove the optimality of Ug(yg) for initial conditions close to 0 but not necessarily
inV.
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LEMMA 7.2. There exist two constants dg > 0 and M > 0 such that for all yo €
By (09) and u with ||u|12(0,00) < 09, we have: If ||y|lw. < g where y = S(yo,u), then
for all §jo € By (d9), there exists i € L?(0,00) such that

@ = ullz2(0,00) £ Mo = wolly  and (|7 = yllw. < Mo — yolly,

where § = S(yo, ).

A proof can be found in [10, Page 26].

LEMMA 7.3. Let k > 2. There exists 619 > 0 with the following property: If
Yo € By (610), then there exists a unique costate p, € L(0,00; V) such that
(7.2) Pr + A'pr + ug N*pr, + C*Cyr, + DRy (yx) = 0 in (W),
(7.3) aug + (Nyi + B, pr)y = 0,
where yr = S(ug,yo) and ur, = Ug(yo). Moreover, there exists a constant M, inde-
pendent of yo, such that
(7.4) 1Pk || 22 (0,00;v) < M |[yol|y-

Proof. Since S(ug,-) is continuous, there exists d19 € (0,d7) such that for all
Yo € By (d10), [[S(Uk,%0) | Lo (0,00;v) < 9. For a given yo € By (d10), consider the
following problem:

1 [ a [
inf =z 2 4t + & 2
,dut Ji(y,u) 5 /0 ICy(t)||Z dt + 5 /0 u(t)® dt + Ry (y),

ueL?(0,00)
(7.5) subject to: ex(y,u) := (§ — (Ay + (Ny + B)u),y(0) — yo) = (0,0).
From Lemma 6.3 we know that for yo € By (d19) NV, the control Ug(yo) is a global
solution to this problem. We claim now that if yo € By (d10), then (S(ug,vo0), Ur(yo))
is a local solution. Let us fix yo € By (d19) and denote (yi, ur) = (S(uk,yo), Ur(vo))-
Let us set ¢ = Mio(ég — |ykll Lo (0,00;), and let (y,u) € We x L?(0,00) be such that
e(y,u) =0 and ||y — yxllw., <e. Then

1y = Ykl Loe(0,00,v) < Moe

and thus [|y|| Lo (0,00;v) < d9. Let (y§ )nen be a sequence in By (dg) NV converging to
yo in Y. By Lemma 7.2, there exists for all n € N a control u,, such that

un = ull20,00) < Mllyg — volly  and |y, —yll < Mllyg — volly,

where y, = S(un,yd). Since Jy is continuous, Ji(yn,u,) —> Jr(y,u). Using the
n—oo
continuity of the mappings yo — S(ug,yo) and yo — U (yo), we also obtain that

Ji(S(ur, y0), Uk(yg)) — Jk(S(ak,y0), Uk(vo)) = Ji(yk, ur)-

n—oo

From the optimality of (S(uk,y3), Ur(yd)), we deduce that for all n € N,

Ji(S(ur, y5), Uk(yg)) < Jk(yn, un)

and finally, passing to the limit in n, Jg(yg,ur) < Jr(y,u). This proves the local
optimality of (yg, uk).
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The derivation of the optimality conditions, the proof of uniqueness of pg, as well
as the proof of estimate (7.4) can be done exactly in the same way as in Lemma 4.2.
The only difference is the presence of the term D Ry (yx) in the costate equation, which
can be estimated with Lemma 7.1. 0

We finally obtain the desired improvement of Theorem 6.5.

THEOREM 7.4. Let k > 2. Then there exist 511 > 0 and M > 0 such that for all
Yo € By (011),

(7.6) max (|lye — Fllwae, llur — @l 220,000 [P5 = Bll22(0,00:v)) < Mllwolly

where (5,4, p) = (Y(y0),U(yo), P(y0)) and (yr,ur) = (S(uk, o), Uk(yo)) and where

Di is the costate given by Lemma 7.5. Moreover,

(7.7) T (yo, ur) < V(yo) + M|lyolI3*.

Proof. Step 1: application of the inverse function theorem. We consider again the
mapping ® defined by (4.6). As was proved in Lemma 4.4, ® is infinitely differentiable
and D®(0,0,0) is an isomorphism. For a given § > 0, we denote

B(©) = {(y,w) € Y x (WL)" | lylly <6, [wlwe)- <6}

Applying the inverse function theorem, we obtain that there exist § > 0, 6’ > 0, and
three infinitely differentiable mappings

(yo,w) € B(é) — (:)A)(yo,w),lj(yo,w),ﬁ(yo,w)) € Woo X L2(0,OO) X L2(O,OO; V)

such that for all (y,u,p) € Weo x L%(0,00) x L%*(0,00; V) and for all pairs (yo,w) €
B(6), if max([[yllw.., [ull 22 (0.00): [IPl| L2 (0,001v)) < 0" then

= ﬁ(yo,w)
(yo, w)

y
®(y,u,p) = (y0,0,w,0) << u
P (Yo, w).

U

_p

We shall use this fact with w = DRy (yx). By the continuity of the mappings S(u, )

and Ug(-), by Lemma 7.1 and by Lemma 7.3, there exists d11 € (0, d19) so that for all

Yo € By (011),

(78) max (Hyk||Woc7 ||uk||L2(0,oo)a Hpk||L2(0,oo;V)) < 6/3
max (|lyolly, [ DRk (yx) | (woy+) < 6.

Step 2: a characterization of (Y, uk,pr). We now claim that for yo € By (d11),

A A A

(7.9) yr = Yo, DRi(yr)), ur =U(yo, DRx(yx)), pr = P(yo, DRi(yx)).

Let us first consider the case where yo € By (d11) N'V. The key observation is that
D(yg, uk, Pr) = (Yo, 0, DRy (yx),0). This equality is clearly satisfied for the first three
coordinates of @, since y;(0) = yo, and since y; and pj, satisfy the state and costate
equations, respectively. The equality is also satisfied for the fourth coordinate, as a
direct consequence of the optimality condition (7.3) given in Lemma 7.3.
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Step 3: a characterization of (§,4,p). Now, let us reduce d11, if necessary, so that
for all yo € By (d11),

max (1Y (o, 0) 1w, I14(30, 0)l1 2 (0,009 1P (40, 0)| 2 0,001)) < 5.

Then, (Y (y0,0),U(yo,0), P(y0,0)) = (Y(vo).U(0), P(y0))-

Step 4: conclusion. The value of §;; can be reduced once again, so that the
mappings :)77 U, and P are Lipschitz-continuous. Using the Lipschitz continuity of
S(ug,-) and Lemma 7.1, we obtain that

ly — Gllwo. = || (yo, DRi(wy)) — y(yo»O)HWm
< M| DRy (yi)llwo y- < Myl < Mlyol5-.

The remaining estimates on ||ux — @l[12(0,00) and [|px — Pl/£2(0,00;1) can be proved
similarly. Estimate (7.6) follows.

For proving (7.7), we use the same technique as in Lemma 5.1. For the sake of
readability, we denote by | - || the norms in L?(0, 00) and L?(0,c0; Z). We have

1 2, @ 2 (1 2 Qg2

(Slcwl? + Sluel?) = (1w + Slal?)
— (P, ik — (Ayre + (Ny + B)ur)) 12(0,00:V), L2(0,005V %)
+ (0.4 — (AF + (NG + B)@)) 12(0,00,'), L2(0,005V*)

1 _ e} _
= 310 =) + 5 e — ]

T (Yo, ur) — T (yo, )

+ <ﬁ’N(yk - g)(uk B a)>L2(0,oo;V),L2(0,oo;V*)
M (lly = 9l + llue —all?)
< M|yoll3*-

IN

Estimate (7.7) follows. The theorem is proved. a

8. Conclusion. We have performed a sensitivity analysis for an infinite-horizon
optimal control problem involving an infinite-dimensional state equation. Error esti-
mates for the efficiency of polynomial feedback laws have been derived. The approach
that we have used, based on a stability analysis of the optimality conditions, is quite
general and can certainly be used for other classes of partial differential equations.
Future work will focus on stabilization problems of semilinear parabolic equations,
for which the derivation and analysis of polynomial feedback laws are completely
open. Non-smooth variants of the implicit function theorem should also enable us
to perform a sensitivity analysis for infinite-time horizon control problems with a
sparsity-promoting term in the cost function. Finally, our approach could also be
used to derive error estimates on the efficiency of other kinds of feedback laws, like
State Dependent Riccati Equations based feedback laws.

Acknowledgements. This work was partly supported by the ERC advanced
grant 668998 (OCLOC) under the EU’s H2020 research program.

Appendix A. Technical proofs.
Proof of Proposition /.2. We fix §; = %(||N|‘L(Y7V*)M0Md)_l. Then, by Lemma

2.7, § € Ws. As a consequence, (7, @) is a solution to the following problem:

inf J bject to: =0
(y,u)ewglxm(o,oo) (y,u), subject to: e(y,u) ,
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where
1 [ 9 a [ 9
Jyuw) =5 | Cy®)lzdt+ 5 [ u(t) dt,
2 Jo 2 Jo
e(y,u) = (y — (Ay + Nyu+ Bu),y(0) — yo) € L*(0,00;V*) x Y.
Our approach for deriving optimality conditions is similar to the one of Lemma 3.3.
In order to have a state variable in W2 | we first need to perform a shift of the state

equation. Let u € L?(0,00) and set y = S(yo,u). Then, z = y — ¢ is the solution to
the following system:

2=Az+ Nzu+ (Ny+ B)u — (Nyu + Bu), z(0)=0.

We can now consider the following optimization problem:

(A.1) (z,u)ewglﬁm(o,oo) J(z,u), subject to: é(z,u) =0,
where
J(zou) = J(z +7,u) = % /OOO IO +aE)IG dt+ 5 /OOO u(t)? dt
é(z,u) = # — (Az + Nzu+ Bu — (Ngu + Ba)) € L*(0,00; V*).
For all (y,u) € Woe x L?(0,00), for z = g, we have: e(y,u) = 0 if and only if

y—v,
é(z,u) =0 and 2 € WY. Since J(z,u) = J(z + ¥, u), we deduce that (§ — 5 = 0, ) is
a solution to problem (A.1).
The mappings J and € are continuously differentiable. We have

Dj(07 ’a)(§7 U) = <C*Cg7 £>L2(O,OO;Y) + Oé(’a, U>L2(O,oo)
Dé(0,w)(¢,v) = £ — (A+aN)é — (Ny + B)v.

Let us prove now that Dé(0,@) is surjective, if §; > 0 is sufficiently small. For
¢ € L%(0,00; V*), let z be the solution to

i=(A4+aN)z+ (Ny+B)Fz+¢, =z(0)=0.
Then, setting (Pz)(t) = a(t)Nz(t) + Ny(t)Fz(t), we find
2(t) = (A4 BF)z(t) + (Pz)(t) + ¢(t).
For ||€]lw.. <1, we have

1PE £20,00:v+) < Mo (Nl 2ev,vy |l 2 (0,00) + 1IN 2w, vy 171 220,000 | Fll 2(viR) )
< Mo([INllzevvey + INI v IF Nl 2vimy ) 1

It follows that ||P|lzw.,22(0,00v%)) < M1, for 63 > 0 chosen sufficiently small.
Therefore, by Lemma 2.5 and Remark 2.6, there exists a constant M > 0 such that

(A-2) I2llwee < M@l L2(0,00v+)-

Setting v = F'z, we obtain that

(A.3) vl 22(0,00) < M2l £2(0,00;v+)-
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Finally we have Dé(0,4)(z,v) = ¢, which proves that Dé(0,@) is surjective. Let us
emphasize the fact that the constant M involved in (A.2) and (A.3) does not depend
on (%, y) (but it depends on 7). It follows from the surjectivity of Dé(0, @) that there
exists a unique p € L?(0,00; V) such that for all (z,v) € W2 x L?(0, ),

(A.4) DJ(0,a)(z,v) — (p, Dé(0, @) (z,v 0.

)>L2(O,oo;V),L2(0,oo;V*) =

The costate equation (4.3) and relation (4.4) follow, similarly to the proof of Lemma
3.3. It remains to prove estimate (4.5) on the costate. Let ¢ € L%(0,00; V*) and (z,v)
be taken as in the proof of the surjectivity of Dé(0,u). From (A.4), we deduce that

(D, @) 120,00V, L2(0,00:v) = (P, Dé(o,’ﬁ)(z,U)>L2(0700;V)7L2(07OO;V*)
= DJ(0,a)(z,v)
< M (/190 22 (0,00 121l 20,0007y + 1% 220,000 0]l 220,009 )
< M|l z2(0,00:7) + N8l 22(0,00)) 1101l L2(0,00:v4)

Once again, the constant M obtained above does not depend on (7, @) and ¢, therefore,
(4.5) holds true. |

Proof of Lemma 7.1. The mapping 7 can be written in the following form:

2k J1(i) 2k Jja2(i)
@)= > > Q)+ Y Y QY y Ny Y, )
i=ht1 j=1 i=ht1 j=1
2k ja(i) ‘
+ Z Z Q’é’j(y7.'.7y7Ny7y7"'7y7Ny7y7 "'7:1‘/)7
i=k41 j=1

where all the mappings Q};) ; are bounded multilinear forms of order i. To simplify,
we prove the result for the following mapping:

R:y e Wy »—>/ r(y(t))dt, where: r(y) = Q(Ny, Ny, vy, ..., y)
0

and Q is a bounded multilinear form of order ¢ > k 4+ 1. The general case easily
follows. For y and z € V', we have

Dr(y)z = Q(Nz,Ny,y, ....,y) + Q(Ny,Nz,y, ...,y)
+ Q(Ny7 Ny7 Z7y7 "'7y) + A + Q(Ny’ Ny’ y’ "‘7y7 Z) 6 R'

We prove that R is continuously differentiable and that

(A.5) DR(y)z = /000 Dr(y(t))=(t) dt.
Let us define

Rl: (y17 ayk) € (Woo)k H/ Q(NylvNy27y37 ayk)dtv
0

Ry:y € Woo = 3% € (Woo)*,
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so that R = R; o Ry. The operator Ry is linear and bounded, thus it is infinitely
differentiable. The mapping R; is a bounded multilinear form, since

[R1 (Y15 s )| < NQIINY1I 20,0057 1N Y21l 220,007 [1U3]] Lo (0,0057) -+ 1Yk Lo (0,057
< Mlyall 220,00 19211 220,00 193]l oo (0,005%) -+ 1Uk | Lo (0,0057)
< Myillwe - lyellw. -

Therefore, R; is continuously differentiable (see [9, Lemma 7]), moreover,
DRy(y1, - yi) (21, s 21) = Ra(21,Y2, -5 Yk)
(A6) + R1(y1, 22,Y3, .ny yk) + ...+ Rl(yl7 vy Yh—1, Zk)

This proves that the mapping R is continuously differentiable. Moreover, by the chain
rule, DR(y)z = DRy (R2(y))DR2(y)z. Combined with (A.6), we obtain (A.5).
Let us prove estimate (7.1). For y and z € V, the following estimate holds:

(A7) |Dr(y)z] < M(Ilyllv Il Izl + Tyl 15 lllly)-

Therefore, for all y and z € W,

/O [ Dr(y() ()| dt < M (9]l 220,00 117220, s 121l 22 (0,000

+ 191172000 U122 0 0057 1211 2% 0,007
< Myl Izlw...

The constant M involved in the above inequality is independent of y and z, therefore,
for a given 0 > 0,

‘/0 Dr(y(®)(=(t)) dt| < Mllylw " lyliv.lzllw. < M=yl lzlw..,

if [|y|lw., <0, since ¢ > k + 1. This proves estimate (7.1).
Assume now that y € W NL>(0,00; V). As a consequence of (A.7), there exists
a constant M > 0, independent of y and z, such that

|DR(y)Z| < M(||y||L2(O,oo;V)||zHL2(0,oo;V)||yHi[;02(0,oo;Y)

F {19l 2o 0,000 1911 220,00 1211 22 (0,00 1Y 1 722 0,007 )

which proves that in this case DR(z) € L?(0,00; V*). d
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