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Abstract This work is concerned with the determination of the di�usion coe�cient from

distributed data of the state. This problem is related to homogenization theory on the

one hand and to regularization theory on the other hand. An approach is proposed which

involves total variation regularization combined with a suitably chosen cost functional

that promotes the di�usion coe�cient assuming prespeci�ed values at each point of the

domain. The main di�culty lies in the delicate functional-analytic structure of the resulting

nondi�erentiable optimization problem with pointwise constraints for functions of bounded

variation, which makes the derivation of useful pointwise optimality conditions challenging.

To cope with this di�culty, a novel reparametrization technique is introduced. Numerical

examples using a regularized semismooth Newton method illustrate the structure of the

obtained di�usion coe�cient.

1 introduction

In this paper we revisit a challenging problem in the calculus of variations given by

(PI)


min

u ∈U

1

2

‖y − z‖2L2(Ω)
+ R(u)

s.t. − div(u∇y) = f in Ω,

y = 0 on ∂Ω,

whereU denotes the set of admissible controls and R stands for a regularization term. This

problem represents the optimization-theoretic formulation of the problem of determining the

optimal distribution u of material in the domain Ω from data z. If the data are only available in

distributed part ω ( Ω of the domain, then the cost functional in (PI) can readily be adapted.

Problem (PI) arises as the regularization of a coe�cient inverse problem; if the focus is on the

situation that u(x) is supposed to assume only preferred values ui speci�c to di�erent materials,

it can also be considered as a topology optimization problem.
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In the calculus of variation literature, di�erent forms of (PI) have received a tremendous

amount of attention. For the particular choice that R is not present and

(1.1) U = {u ∈ L∞(Ω) : 0 < umin ≤ u(x) ≤ umax}

for constants umin and umax, it was shown in [33] that the problem may fail to have a solution.

Historically, this goes along with the development of homogenization theory and deep analytical

concepts such as H-convergence and compensated compactness; see, e.g., [34, 39, 40]. Such

concepts allow associating a solution to (PI) without the use of a regularization term R.

Here we follow a di�erent perspective and aim for a formulation that allows numerical

realization; in such a context the use of regularization terms provides a powerful tool. The

goal must be to choose a functional R that guarantees existence to (PI) and at the same time

does not a�ect the sought parameter u too much. The use of a regularization term involving

semi-norms of Sobolev spaces would con�ict with this second requirement, since such a choice

would prevent jumps of u across hypersurfaces – a property that we want to retain here.

The choice for R that we propose and investigate in this paper is

R(u) = αG(u) + βTV(u),

where G is a pointwise “multi-bang” penalty as in [20, 21] that promotes the attainment of the

prede�ned states {ui }
m
i=1

almost everywhere, and TV denotes the total variation semi-norm.

The use of TV will guarantee existence, while G models the desired structural properties. The

usefulness of TV has been established in the calculus of variations and in image analysis

for several decades now; see, e.g., [3, 10, 23] and [19, 36]. It has also been used in topology

optimization in [7] and [14], but the approaches in these contributions are di�erent from our

formulation and do not contain the multi-material concept (although the latter considers a

three-phase formulation with two di�erent non-material phases, “void” and “liquid”). Rather, this

concept is an extension of our work from [21], where related topology optimization problems are

considered in situations where well-posedness can be guaranteed without the need of employing

TV-regularization. Concerning approaches for multi-material topology optimization, we refer

to, e.g., [4–6, 13, 26]; among these, our “multi-bang approach” is most closely related to the

second. Finally, coe�cient inverse problems have been studied in a wide variety of contexts.

The use of the TV functional entails an essential di�culty from an in�nite dimensional

optimization point of view. In fact, well-posedness of the PDE constraint in (PI) requires a strictly

positive lower bound on u as in the de�nition (1.1) ofU. In the process of deriving optimality

conditions, however, one is confronted with the problem of considering the subdi�erential of

TV(u) + IU , where IU denotes the indicator function of the setU, e.g., as extended real-valued

functions on L2(Ω). In this case, the sum rule cannot be used to compute this subdi�erential

since neither of the two functionals TV and IU is continuous at any point of its domain (which

would be required to use a result as in [9] on the sum of subdi�erentials of convex functions).

The fact that the sum rule is not applicable constitutes a major obstacle for deriving useful

optimality conditions. Thus, we propose a di�erent approach to ensure the well-posedness

of the PDE constraint in (PI): We introduce a reparametrization of the coe�cient in the PDE

constraint which allows us to drop the explicit pointwise bounds in the de�nition ofU. This
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novel approach could be of interest also in situations di�erent from the one considered in this

work.

For the numerical solution, we consider a �nite element discretization of the problem that

allows deriving optimality conditions in terms of the expansion coe�cients that, after intro-

ducing a Moreau–Yosida regularization of the multi-bang and total variation penalties, can be

solved by a semismooth Newton-type method with path-following.

The paper is organized as follows. Section 2 contains the problem statement, useful results

on the state equation, and descriptions of the transformation announced above, as well as of

the multi-bang penalty term. Sections 3 and 4 are devoted to the existence of minimizers and

�rst-order optimality conditions, respectively. The discretization of the in�nite dimensional

problem as well as of the optimality conditions are provided in Section 5. There we also provide a

description of the semismooth Newton-type method, employing dual regularizations of the multi-

bang penalty term and the TV term, which are needed for de�ning the Newton steps. Numerical

examples are provided in Section 6 for two model problems motivated by the interpretation of

(PI) as a topology optimization and a parameter identi�cation problem, respectively. Finally, in

Appendix a we prove that strongly Lipschitz domains are regular in the sense of Gröger, an

elementary but not completely obvious result that is important in our analysis.

2 problem statement and preliminary results

We consider for α , β > 0 the following problem:

(P)


min

u ∈BV (Ω)

1

2

‖y − z‖2L2(Ω)
+α G(u) + β TV(u)

s.t. − div(Φε (u)∇y) = f in Ω,

y = 0 on ∂Ω.

Here, Ω ⊂ Rd
, d ∈ N, is a bounded strongly Lipschitz domain (see De�nition a.1 for a rigorous

de�nition), BV (Ω) denotes the space of functions of bounded variation, and f ∈ L2(Ω) and

z ∈ L2(Ω) are given. Furthermore, TV denotes the total variation,G is a multi-bang penalty, and

Φε for ε ≥ 0 is a superposition operator de�ned by a (smoothed) pointwise projection onto the

set [umin,umax] ⊂ (0,∞), each of which will be described in detail in the following subsections.

2.1 functions of bounded variation

We recall, e.g., from [3, 23, 44] that the space BV (Ω) is given by those functions v ∈ L1(Ω) for

which the distributional derivative Dv is a Radon measure, i.e.,

BV (Ω) =
{
v ∈ L1(Ω) : ‖Dv ‖M(Ω) < ∞

}
.

The total variation of a function v ∈ BV (Ω) is then given by

TV(v) := ‖Dv ‖M(Ω) =

∫
Ω

d|Dv |2,
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i.e., the total variation in the sense of measure theory of the vector measure Dv ∈ M(Ω;Rd ) =

C(Ω;Rd )∗. Here, | · |2 denotes the Euclidean norm on Rd
; we thus consider here the isotropic

total variation. For v ∈ L1(Ω) \ BV (Ω), we set TV(v) = ∞.

The space BV (Ω) is a Banach space if equipped with the norm

‖v ‖BV (Ω) := ‖v ‖L1(Ω) + TV(v),

see, e.g., [10, Thm. 10.1.1]. Moreover, the space C∞(Ω) is dense in BV (Ω) with respect to strict

convergence, i.e., for any v ∈ BV (Ω) there exists a sequence {vn}n∈N ⊂ C∞(Ω) such that

(i) vn → v in L1(Ω) and

(ii) TV(vn) → TV(v),

see, e.g., [10, Thm. 10.1.2]. In fact, a slight modi�cation of the proof (which is based on approxi-

mation via molli�cation) shows that for v ∈ BV (Ω) ∩ Lp (Ω) with 1 < p < ∞, the convergence

vn → v in (i) holds even strongly in Lp (since the constructed molli�ed sequence converges in

Lp for any 1 ≤ p < ∞; see, e.g., [10, Prop. 2.2.4]).

It follows that BV (Ω) embeds into Lr (Ω) continuously for every r ∈ [1, d
d−1
] and compactly

if r < d
d−1

, see, e.g., [3, Cor. 3.49 together with Prop. 3.21]. Note that this requires Ω to be a

strongly Lipschitz domain. In addition, the total variation is lower semi-continuous with respect

to strong convergence in L1(Ω), i.e., if {un}n∈N ⊂ BV (Ω) and un → u in L1(Ω), we have that

(2.1) TV(u) ≤ lim inf

n→∞
TV(un),

see, e.g., [44, Thm. 5.2.1]. Note that this does not imply that TV(u) < ∞ and hence thatu ∈ BV (Ω)
unless {TV(un)}n∈N has a bounded subsequence. From (2.1), we also deduce that the convex

extended real-valued functional TV : Lp (Ω) → R ∪ {∞} is weakly lower semi-continuous for

any p ∈ [1,∞].

2.2 multibang penalty

Let u1 < · · · < um be a given set of desired coe�cient values. Here we assume that u1 = 0

and um = umax − umin such that for u(x) ∈ [u1,um], we have u(x) + umin ∈ [umin,umax]. The

multi-bang penaltyG is then de�ned similar to [21], where we have to replace the box constraints

u(x) ∈ [u1,um] by a linear growth to ensure that G is �nite on Lr (Ω), r < ∞. Speci�cally, we

consider

G : L1(Ω) → R, G(u) =

∫
Ω
д(u(x)) dx ,

where д : R→ R is given by

(2.2) д(t) =


−umt t ≤ u1,
1

2
((ui + ui+1)t − uiui+1) t ∈ [ui ,ui+1], 1 ≤ i < m,

umt −
1

2
u2

m t ≥ um .

It can be veri�ed easily that д is continuous (note that u1 = 0), convex, and linearly bounded

from above and below, i.e.,

1

2
u2 |t | ≤ д(t) ≤ um |t | for all t ∈ R.
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Remark 2.1. The de�nition of д implies that д(t) > д(0) = 0 for all t , 0 and that д(t) > д(um)
for all t > um = umax − umin. For the results of this section as well as of Sections 3 and 4, we only

require these properties of д rather than the speci�c form of д. In particular, the results also hold

for t 7→ |t |, i.e., if G is replaced by the L1
norm.

Since д is �nite (and hence proper), convex, and continuous, the corresponding integral

operator G : Lr (Ω) → R is �nite, convex, and continuous (and hence a fortiori weakly lower

semi-continuous) for any r ∈ [1,∞], see, e.g., [11, Prop. 2.53]. Also, the properties of д imply the

following properties of G:

(g1) G(v) > G(0) = 0 for all v ∈ L1(Ω) \ {0},

(g2)
1

2
u2‖v ‖L1(Ω) ≤ G(v) ≤ um ‖v ‖L1(Ω) for all v ∈ L1(Ω).

Furthermore, for r < ∞ and r ′ := r
r−1

(with r ′ = ∞ for r = 1), the Fenchel conjugate

G∗ : Lr
′

(Ω) → R ∪ {∞}, G∗(q) = sup

v ∈Lr (Ω)
〈q,v〉Lr ′ (Ω),Lr (Ω) −G(v),

as well as the convex subdi�erential

∂G(v) =
{
q ∈ Lr

′

(Ω) : 〈q, ṽ −v〉Lr ′ (Ω),Lr (Ω) ≤ G(ṽ) −G(v) ∀ṽ ∈ Lr (Ω)
}

can be computed pointwise, see, e.g., [22, Props. IV.1.2, IX.2.1] and [11, Prop. 2.53], respectively.

We point out that the pointwise representation of the subdi�erential does not hold for r = ∞.

From the de�nition of д we thus obtain that

(2.3) [∂G(v)](x) ∈



{−um} v(x) < u1,[
−um ,

1

2
(u1 + u2)

]
v(x) = u1,

{ 1

2
(ui + ui+1)} v(x) ∈ (ui ,ui+1), 1 ≤ i < m,[

1

2
(ui−1 + ui ),

1

2
(ui + ui+1)

]
v(x) = ui , 1 < i < m,[

1

2
(um−1 + um),um

]
v(x) = um ,

{um} v(x) > um ,

where, by a slight abuse of notation, [∂G(v)](x) stands for the evaluation of any q ∈ ∂G(v) at

x ∈ Ω. Using the fact that s ∈ ∂д(t) if and only if t ∈ ∂д∗(s) (see, e.g., [38, Prop. 4.4.4]), we

deduce that

(2.4) [∂G∗(q)](x) ∈



(−∞, 0] q(x) = −um ,

{0} q(x) ∈
(
−um ,

1

2
(u1 + u2)

)
,

[ui ,ui+1] q(x) = 1

2
(ui + ui+1), 1 ≤ i < m,

{ui } q(x) ∈
(

1

2
(ui−1 + ui ),

1

2
(ui + ui+1)

)
, 1 < i < m,

{um} q(x) ∈
(

1

2
(um−1 + um),um

)
,

[um ,∞) q(x) = um ,

∅ else,

almost everywhere; see Figure 1.
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(a) д
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q
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Figure 1: Pointwise multi-bang integrand д, subdi�erential ∂д, and conjugate di�erential ∂д∗

(u1 = 0, u2 = 1, u3 = 2)

2.3 superposition operator

To ensure well-posedness of the state equation, both coercivity of the di�erential operator

and pointwise boundedness of the coe�cients are required. This can be achieved by imposing

pointwise bounds on the coe�cients. Appending such bounds to the problem statement (P)

would lead to di�culties when deriving pointwise optimality conditions. As stated in the

introduction, we therefore propose a reparametrization of the coe�cient in the state equation.

For this purpose we introduce the following family of (smoothed) pointwise projections onto

the admissible set [umin,umax]. For �xed ε ≥ 0 we consider φε : R→ R,

(2.5) φε (t) = umin +



−ε for t ≤ −ε,

− 1

ε2
t3 − 1

ε t
2 + t for t ∈ [−ε, 0],

t for t ∈ [0,um],

− 1

ε2
t3 +

3um+ε
ε2

t2 +
ε2−2umε−3c2

ε2
t +

u3

m+c
2ε

ε2
for t ∈ [um ,um + ε],

um + ε for t ≥ um + ε,

where we have used that um = umax − umin from Section 2.2. For ε = 0, this coincides with the

pointwise projection proj[umin,umax]
, while for ε > 0 we have φε ∈ C

1,1(R). Clearly, there is a

wide variety of choices which serves the purpose of making φε continuously di�erentiable. It is

appropriate to choose this exterior smoothing in such a manner that φ ′ε (t) , 0 for t ∈ [0,um].
This will be further detailed in Remark 4.5 of Section 4. The reader will notice in the following

that ε > 0 is not used before deriving optimality conditions in Section 4.

Since φε (t) is uniformly bounded and globally Lipschitz continuous, we deduce from [42,

Lem. 4.11] that the corresponding superposition operator

Φε : Lr (Ω) → Lr (Ω), [Φε (v)](x) = φε (v(x)) for a.e. x ∈ Ω,

is globally Lipschitz continuous for every r ∈ [1,∞] and ε ≥ 0.

6



0

1

2

−ε 0 c c + ε

t

(a) φε − umin

0

1

2

−ε 0 c c + ε

t

(b) φ ′ε

Figure 2: Smoothed projection φε and derivative φ ′ε (c := um = 2, ε = 0.3)

Similarly, for any ε > 0 it is easily veri�ed that

φ ′ε (t) =


− 3

ε2
t2 − 2

ε t + 1 for t ∈ [−ε, 0]

1 for t ∈ [0,um],

− 3

ε2
t2 +

6um+2ε
ε2

t +
ε2−2umε−3u2

m
ε2

for t ∈ [um ,um + ε],

0 else,

is locally Lipschitz continuous and uniformly bounded by 4/3. As a locally Lipschitz continuous

function, φ ′ε is even globally Lipschitz on the compact set [−ε,um + ε]. Since φ ′ε (t) = 0 for all

t ∈ R \ (−ε,um + ε), we infer that φ ′ε is Lipschitz on all R. Hence, it follows from [42, Lem. 4.12,

proof of Lem. 4.13] that Φε is Lipschitz continuously Fréchet di�erentiable from L∞(Ω) to L∞(Ω),
and that the Fréchet derivative Φ′ε (v) ∈ L(L

∞(Ω),L∞(Ω)) at v ∈ L∞(Ω) acting on h ∈ L∞(Ω) is

given by

(2.6) [Φ′ε (v)h](x) = φ
′
ε (v(x))h(x) for a.e. x ∈ Ω.

In particular, Φ′ε (v) can be represented pointwise almost everywhere by x 7→ φ ′ε (v(x)) ∈ L
∞(Ω).

In the following, we will not distinguish the derivative and its representation.

2.4 state equation

It will be convenient to introduce for ε ≥ 0 the set

Uε = {v ∈ L
∞(Ω) : 0 < umin − ε ≤ v ≤ umax + ε a.e. in Ω}

along with its open L∞(Ω) neighborhood

Ûε =
{
v ∈ L∞(Ω) : 0 < 1

2
umin − 2ε < v < 2umax + 2ε a.e. in Ω

}
.

Furthermore, we consider for w ∈ Ûε and f ∈ L2(Ω) the elliptic partial di�erential equation

(2.7)

{
− div(w∇y) = f in Ω,

y = 0 on ∂Ω.
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From standard arguments based on the Lax–Milgram lemma, we obtain the existence of a unique

solution y ∈ H 1

0
(Ω) satisfying the uniform a priori estimate

(2.8) ‖y ‖H 1

0
(Ω) ≤ K2‖ f ‖H−1(Ω)

for some K2 > 0 independent of w ∈ Ûε (but depending on Ûε ), where ‖y ‖H 1

0
(Ω) = ‖∇y ‖L2(Ω)d .

We also have the following global Lipschitz estimate for the solution mapping w 7→ y =: y(w).

Lemma 2.2. For any ε ≥ 0 there exists a constant L > 0 such that

‖y(w1) − y(w2)‖H 1

0
(Ω) ≤ L‖w1 −w2‖L∞(Ω) for allw1,w2 ∈ Ûε .

Proof. Let y1,y2 ∈ H
1

0
(Ω) denote the solutions to (2.7) for w1,w2 ∈ Ûε , respectively. Inserting

y1 − y2 ∈ H 1

0
(Ω) as a test function in (2.7) for w = w1 and w = w2, subtracting, inserting the

productive zero, and rearranging yields

(w1∇(y1 − y2),∇(y1 − y2))L2(Ω)d = ((w2 −w1)∇y2,∇(y1 − y2))L2(Ω)d .

Estimating the left-hand side using the uniform lower bound onw and the right-hand side using

the Cauchy–Schwarz inequality and the a priori estimate (2.8), we obtain

( 1

2
umin − 2ε)‖∇(y1 − y2)‖

2

L2(Ω)d
≤ ‖w1 −w2‖L∞(Ω)‖∇y2‖L2(Ω)d ‖∇(y1 − y2)‖L2(Ω)d

≤ K2‖ f ‖H−1(Ω)‖w1 −w2‖L∞(Ω)‖∇(y1 − y2)‖L2(Ω)d ,

from which the desired estimate follows with L :=
K2

1

2
umin−2ε

‖ f ‖H−1(Ω). �

Our next goal is to establish that there exists an s > 2 such that the solution y of (2.7) belongs

toW 1,s (Ω). This increase in regularity is crucial for obtaining pointwise optimality conditions.

The proof relies on results from Gröger [24].

Proposition 2.3. There exists an s > 2 and a constant Ks > 0 such that for allw ∈ Ûε the solution
y ∈ H 1

0
(Ω) of (2.7) satis�es

‖y ‖W 1,s (Ω) ≤ Ks ‖ f ‖W −1,s (Ω).

Proof. Fix w ∈ Ûε and f ∈ L2(Ω) and denote by y ∈ H 1

0
(Ω) the solution to (2.7). By the

Sobolev embedding theorem, there exists an s̄ > 2 such that L2(Ω) is continuously embedded in

W −1,s1(Ω) for all s1 ∈ (2, s̄]. Furthermore, by Lemma a.1 the domain Ω is regular in the sense of

Gröger. Hence, [24, Thm. 3] implies that Ω ∈ Rs2
for some s2 > 2 and thus by [24, Lem. 1] for

s := min{s1, s2} > 2 as well. We therefore obtain from [24, Thm. 1] for any q ∈W −1,s (Ω) that

the unique solution ŷ ∈ H 1

0
(Ω) of

(2.9)

{
− div(w∇ŷ) + ŷ = q in Ω,

ŷ = 0 on ∂Ω,

satis�es ‖ŷ ‖W 1,s (Ω) ≤ K ‖q‖W −1,s (Ω), where K denotes a constant that depends on Ûε but not

on w , ŷ , or q. For the choice q = y + f this yields ‖ŷ ‖W 1,s (Ω) ≤ K(C‖y ‖L2(Ω) + ‖ f ‖W −1,s (Ω)),
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where C denotes the constant of the continuous embedding L2(Ω) ↪→ W −1,s (Ω). Using the

continuous embedding H 1

0
(Ω) ↪→ L2(Ω) with constant Ĉ , the a priori estimate (2.8), and

the continuous embedding W −1,s (Ω) ↪→ H−1(Ω) with constant C̄ , we obtain ‖ŷ ‖W 1,s (Ω) ≤

K(CĈK2C̄‖ f ‖W −1,s (Ω) + ‖ f ‖W −1,s (Ω)). Since for �xed Ûε all appearing constants are independent

ofw , the claim follows by noting that the choice of q implies that y solves (2.9), hence ŷ = y . �

3 existence

To show existence of a solution to (P), we make use of the solution mapping w 7→ y(w) to

introduce the reduced functional

J : BV (Ω) → R, J (u) =
1

2

‖y(Φε (u)) − z‖
2

L2(Ω)
+ α G(u) + β TV(u).

Proposition 3.1. For every ε ≥ 0 there exists a global minimizer ū ∈ BV (Ω) to (P).

Proof. Since J is bounded from below due to (g1), there exists a minimizing sequence {un}n∈N ⊂
BV (Ω). Furthermore, by (g2), we may assume without loss of generality that there exists aC > 0

such that

C
(
‖un ‖L1(Ω) + TV(un)

)
≤ J (un) ≤ J (0) for all n ∈ N,

and hence that {un}n∈N is bounded in BV (Ω). By the compact embedding of BV (Ω) into L1(Ω)
for any d ∈ N, we can thus extract a subsequence, denoted by the same symbol, converging

strongly in L1(Ω) to some ū ∈ L1(Ω). Lipschitz continuity of Φε from L1(Ω) to L1(Ω) now implies

that Φε (un) → Φε (ū) in L1(Ω) as well. Furthermore, the corresponding sequence {y(Φε (un))}n∈N
is uniformly bounded in H 1

0
(Ω) due to (2.8), and hence there exists a ȳ ∈ H 1

0
(Ω) such that, after

passing to a further subsequence if necessary, y(Φε (un)) ⇀ ȳ in H 1

0
(Ω). Since {Φε (un)}n∈N is

uniformly bounded in L∞(Ω) by construction, we have that Φε (un) → Φε (ū) strongly in Lr (Ω)
for any r ∈ [1,∞) and, in particular, for r = 2. We can thus pass to the limit in the distributional

formulation of (2.7),

(Φε (un),∇y(Φε (un)) · ∇ψ )L2(Ω) = (f ,ψ )L2(Ω) for allψ ∈ C∞
0
(Ω),

to obtain

(Φε (ū),∇ȳ · ∇ψ )L2(Ω) = (f ,ψ )L2(Ω) for allψ ∈ C∞
0
(Ω).

By density, we obtain that ȳ = y(Φε (ū)) and hence that y(Φε (un)) → y(Φε (ū)) strongly in L2(Ω).
Finally, lower semi-continuity ofG and TV with respect to convergence in L1(Ω) and the strong

convergence y(Φε (un)) → y(Φε (ū)) in L2(Ω) imply that

J (ū) ≤ lim inf

n→∞
J (un) ≤ J (u) for all u ∈ BV (Ω)

and thus that ū ∈ BV (Ω) is the desired minimizer. �

Due to the bilinear structure of the state equation the optimal control is not unique. Nonethe-

less, as a consequence of the reparametrization of the control by means of Φε , any solution to

(P) automatically satis�es pointwise control constraints.
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Proposition 3.2. Let ε ≥ 0 and ū ∈ BV (Ω) be a local solution to (P). Then, ū +umin ∈ Uε ⊂ L∞(Ω).

Proof. Let ε ≥ 0 and ū ∈ BV (Ω) with ū + umin < Uε . We will show that ū is not a local solution

to (P). We start by comparing ū to û de�ned pointwise almost everywhere by

û(x) =


−ε ū(x) < −ε,

ū(x) ū(x) ∈ [−ε,um + ε],

um + ε ū(x) > um + ε .

By de�nition of φε , it follows that Φε (û) = Φε (ū) and thus that y(Φε (û)) = y(Φε (ū)).
Furthermore, from Stampacchia’s Lemma for BV functions [37, Lem. 2.5] we obtain that

TV(û) ≤ TV(ū). Using the pointwise de�nition of G together with the inequalities д(t) >
д(−ε) > 0 for all t < −ε and д(t) > д(um + ε) for all t > um + ε , we also deduce thatG(û) < G(ū)
since ū + umin < Uε . Thus, J (û) < J (ū). Similarly, we observe that y(Φε (ut )) = y(Φε (ū)) for all

t ∈ [0, 1], where we have denoted ut := (1 − t)û + tū. Using TV(û) ≤ TV(ū) and G(û) < G(ū)
together with the convexity of TV and G yields that TV(ut ) ≤ TV(ū) and G(ut ) < G(ū) for all

t ∈ [0, 1). It follows that J (ut ) < J (ū) for all t ∈ [0, 1) and hence that ū is not a local solution to

(P). �

By Proposition 3.2, for any ε ≥ 0, each locally optimal control to problem (P) is therefore also

a local solution of

min

u ∈BV (Ω)∩L∞(Ω)
J (u),

and, moreover, the set of globally optimal controls is the same for both problems. In particular,

the solutions ū to (P) for ε = 0 coincide with the solutions to

(P
∗
)


min

u ∈BV (Ω)

1

2

‖y − z‖2L2(Ω)
+ α G(u) + β TV(u)

s.t. u(x) + umin ∈ [umin,umax],

and − div((u + umin)∇y) = f in Ω,

y = 0 on ∂Ω,

which is a particular case of the motivating problem (PI).

Remark 3.3. The same cut-o� argument as in the proof of Proposition 3.2 can be applied to the

minimizing sequence in the proof of Proposition 3.1 to construct a minimizing sequence that is

bounded in L∞(Ω) and hence in L1(Ω) even for α = 0. We thus also obtain the existence of a

solution ū to (P
∗
) with α = 0. The results in the following Section 4 remain valid in this case, and

the optimality conditions derived therein simplify in an obvious manner.

We close this section by brie�y addressing the convergence of global solutions to (P) as

ε → 0
+

. For this purpose we consider a family {ūε }ε>0 of solutions to (P). From Proposition 3.2

and the fact that J (0) is independent of ε , we deduce that this family is bounded in L∞(Ω)∩BV (Ω)
as ε → 0

+
. Thus, there exists a sequence {ūεk }k ∈N converging strongly to some ū in Lr (Ω) for

every r ∈ [2,∞)with TV(ū) ≤ lim infk→∞ TV(ūεk ) < ∞. With some modi�cations (in particular
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using that for everyu ∈ BV (Ω) there holds Φεk (u) → Φ0(u) = proj[umin,umax]
(u) strongly in L1(Ω)

for k →∞), the proof of Proposition 3.1 can now be used to verify that ū is a global solution to

(P) for ε = 0 and thus for (P
∗
).

4 optimality conditions

In this section, we derive pointwise necessary optimality conditions for solutions to problem (P).

Since we will require di�erentiability of the control-to-state operator u 7→ y(Φε (u)), we have

to assume ε > 0 from here on. To keep the presentation simple, we will from now omit the

dependence on ε . The derivation rests crucially on the following two nontrivial properties:

(i) By Proposition 3.2, we can work in the L∞(Ω) topology rather than in the L
d
d−1 (Ω) topology

induced by BV (Ω), which allows di�erentiability of the forward mapping.

(ii) By Proposition 2.3, the derivative of the forward mapping is actually in Lr (Ω) for some

r > 1, which will yield multipliers in Lr (Ω) instead of L∞(Ω)∗.

We begin by showing di�erentiability of the reduced tracking term

(4.1) F : Û → R, F (w) =
1

2

‖y(w) − z‖2L2(Ω)
.

This can be argued from di�erentiability of the forward mapping w 7→ y(w) in L∞(Ω) (see, e.g.,

[8]) together with the chain rule. However, it actually holds under the weaker requirement of

Lipschitz continuity of the forward mapping shown in Lemma 2.2. Since this argument may be

of independent interest, we give a full proof here.

We �rst introduce for a given parameter w ∈ Û ⊂ L∞(Ω) and y ∈ H 1

0
(Ω) the adjoint equation

(4.2)

{
− div(w∇p) = −(y − z) in Ω,

p = 0 on ∂Ω.

By the same arguments as for the state equation (2.7) there exists a unique solution p =
p(w,y) ∈ H 1

0
(Ω), which depends continuously on y and for which the additional regularity

p(w,y) ∈W 1,s (Ω) from Proposition 2.3 holds.

Lemma 4.1. The mapping F de�ned in (4.1) is Lipschitz continuously Fréchet di�erentiable in every

w ∈ Û ⊂ L∞(Ω). Furthermore, the Fréchet derivative of F inw ∈ Û is given by

F ′(w) = ∇y(w) · ∇p(w) ∈ L
s
2 (Ω)

with s > 2 from Proposition 2.3, where y(w) ∈ H 1

0
(Ω) is the solution to (2.7) and p(w) :=

p(w,y(w)) ∈ H 1

0
(Ω) is the corresponding solution to (4.2).

Proof. We �rst show directional di�erentiability in Û ⊂ L∞(Ω). Letw ∈ Û and h ∈ L∞(Ω). Then

there exists a ρ0 > 0 su�ciently small such that w + ρh ∈ Û for all ρ ∈ (0, ρ0). Consequently,
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for all such ρ there exists a solution y(w + ρh) ∈ H 1

0
(Ω) to (2.7). We now insert the productive

zero y(w) − y(w) in F (w + ρh) and expand the square to obtain

(4.3) F (w + ρh) − F (w) =
1

2

‖(y(w + ρh) − y(w)) + (y(w) − z)‖2L2(Ω)
−

1

2

‖y(w) − z‖2L2(Ω)

=
1

2

‖y(w + ρh) − y(w)‖2L2(Ω)
+ (y(w + ρh) − y(w),y(w) − z)L2(Ω) .

For the �rst term, we can use Lemma 2.2 to estimate

(4.4)

1

2

‖y(w + ρh) − y(w)‖2L2(Ω)
≤

L2

2

ρ2‖h‖2L∞(Ω).

For the second term, we introduce the adjoint state p(w), integrate by parts, and use the state

equation (2.7) for y = y(w) and y = y(w + ρh) to obtain

(y(w + ρh) − y(w),y(w) − z)L2(Ω) = (y(w + ρh) − y(w), div(w∇p))L2(Ω)

= (div(w∇y(w + ρh)),p)L2(Ω) − (div(w∇y(w)),p)L2(Ω)

= (−f ,p)L2(Ω) − (div(ρh∇y(w + ρh)),p)L2(Ω) − (−f ,p)L2(Ω)

= ρ (h∇y(w + ρh),∇p)L2(Ω) .

By Lemma 2.2 we have that y(w + ρh) → y(w) in H 1

0
(Ω) as ρ → 0

+
. Hence, dividing (4.3) by

ρ > 0 and passing to the limit implies in combination with (4.4) that

F ′(w ;h) := lim

ρ→0
+

1

ρ
(F (w + ρh) − F (w)) = 〈h,∇y · ∇p〉L∞(Ω),L1(Ω).

Since the mapping h 7→ F ′(w ;h) is linear and bounded, ∇y · ∇p is the Gâteaux derivative of F at

w ∈ Û . Thus, F is Gâteaux di�erentiable in Û . Due to Lemma 2.2 the mappings w 7→ y(w) and

w 7→ p(w,y) are Lipschitz from L∞(Ω) to H 1

0
(Ω) in Û . By using (2.8), we infer that the mapping

y 7→ p(w,y) is Lipschitz from H 1

0
(Ω) to H 1

0
(Ω) for any �xed w ∈ Û , with a Lipschitz constant

independent ofw . This shows thatw 7→ p(w) := p(w,y(w)) is Lipschitz continuous from L∞(Ω)
to H 1

0
(Ω) in Û . Hence, the mapping w 7→ ∇y(w) · ∇p(w) is Lipschitz continuous from L∞(Ω) to

L1(Ω) in Û , and thus F is in fact Fréchet di�erentiable in Û with Lipschitz continuous derivative.

The regularity ∇y(w) · ∇p(w) ∈ L
s
2 (Ω) follows from Proposition 2.3. �

Together with the Fréchet di�erentiability of Φ in L∞(Ω), this allows deriving abstract �rst-

order necessary optimality conditions using classical tools from convex analysis. Here it is

crucial that G does not incorporate pointwise constraints and is �nite on Lp (Ω) for p = s
s−2
> 1

instead of p = 1 in order to apply the sum rule to its convex subdi�erential (considered as a

subset of Lq(Ω) with q = s
2
< ∞), which requires the e�ective domain of G to have non-empty

interior.

Theorem 4.2. Any local minimizer ū ∈ BV (Ω) to (P) satis�es

(4.5) − F ′(Φ(ū))Φ′(ū) ∈ α ∂G(ū) + β ∂TV(ū) ⊂ L
s
2 (Ω),

where G and TV are considered as extended real-valued convex functionals on L
s
s−2 (Ω).
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Proof. Let ū ∈ BV (Ω) be a local minimizer to (P). Proposition 3.2 shows that ū is also a local

minimizer in BV (Ω) ∩ L∞(Ω). Thus, for all u ∈ BV (Ω) ∩ L∞(Ω) and t > 0 su�ciently small, we

have that

F (Φ(ū)) + α G(ū) + β TV(ū) ≤ F (Φ(ū + t(u − ū))) + α G(ū + t(u − ū)) + β TV(ū + t(u − ū)).

We now proceed as in the proof of [21, Prop. 2.2], using the convexity of G and TV to obtain

after rearranging that

1

t
(F (Φ(ū + t(u − ū))) − F (Φ(ū))) + α (G(u) −G(ū)) + β (TV(u) − TV(ū)) ≥ 0.

By Lemma 4.1 and the chain rule, F ◦ Φ is Fréchet di�erentiable at ū ∈ L∞(Ω), and the Fréchet

derivative is given by

(F ◦ Φ)′(ū) = F ′(Φ(ū))Φ′(ū) ∈ L∞(Ω)∗.

Since Lemma 4.1 further implies that F ′(Φ(ū)) ∈ L
s
2 (Ω), and since we have Φ′(ū) ∈ L∞(Ω) from

the representation (2.6), we deduce that in fact (F ◦Φ)′(ū) ∈ L
s
2 (Ω) ⊂ L1(Ω). Hence, we can pass

to the limit t → 0
+

to obtain

〈F ′(Φ(ū))Φ′(ū),u − ū〉L1(Ω),L∞(Ω) + α (G(u) −G(ū)) + β (TV(u) − TV(ū)) ≥ 0

for all u ∈ BV (Ω) ∩ L∞(Ω).
By the density of C∞(Ω) in L

s
s−2 (Ω) ∩ BV (Ω) with respect to strict convergence, there exists

for any u ∈ L
s
s−2 (Ω) ∩ BV (Ω) a sequence {un}n∈N ⊂ C∞(Ω) with un → u strongly in L

s
s−2 .

Hence, G(un) → G(u) by continuity of G, TV(un) → TV(u), and

〈F ′(Φ(ū))Φ′(ū),un − ū〉L1(Ω),L∞(Ω) → 〈F
′(Φ(ū))Φ′(ū),u − ū〉

L
s
2 (Ω),L

s
s−2 (Ω)

.

Taking TV(u) = ∞ for u ∈ L
s
s−2 (Ω) \ BV (Ω), we deduce that

〈F ′(Φ(ū))Φ′(ū),u − ū〉
L
s
2 (Ω),L

s
s−2 (Ω)

+ α (G(u) −G(ū)) + β (TV(u) − TV(ū)) ≥ 0

holds for all u ∈ L
s
s−2 (Ω). But this implies by de�nition that

− F ′(Φ(ū))Φ′(ū) ∈ ∂(α G + β TV)(ū) ⊂ L
s
2 (Ω),

where the subdi�erentials are understood as those of the canonical restriction to L
s
s−2 (Ω).

Finally, since dom TV = BV (Ω) ∩ L
s
s−2 (Ω) ⊂ L

s
s−2 (Ω) = domG and G is continuous on

L
2

s−2 (Ω), we can apply the sum rule for convex subdi�erentials (see, e.g., [38, Prop. 4.5.1]) to

obtain (4.5). �

Introducing explicit subgradients for the two subdi�erentials, we obtain primal-dual optimality

conditions.

Corollary 4.3. For any local minimizer ū ∈ BV (Ω) to (P), there exist q̄ ∈ L
s
2 (Ω) and ¯ξ ∈ L

s
2 (Ω)

satisfying

(4.6)


0 = F ′(Φ(ū))Φ′(ū) + αq̄ + β ¯ξ ,

q̄ ∈ ∂G(ū),
¯ξ ∈ ∂TV(ū).
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From Corollary 4.3, we can further derive pointwise optimality conditions for optimal controls.

For the Fréchet derivative of the tracking term and the subdi�erential of the multi-bang penalty,

we apply Lemma 4.1 together with the representations (2.6) and (2.3), respectively. The char-

acterization of
¯ξ ∈ ∂TV(ū) is more involved. Formally, elements of the subdi�erential ∂TV(u)

have the form − div

(
∇u
|∇u |2

)
, which is equal to the negative mean curvature of the level sets of u.

This can be made rigorous using the full trace from [15], which requires some notation. First,

we introduce for 1 ≤ q < ∞ the space

W div,q(Ω) :=
{
v ∈ Lq(Ω;Rd ) : divv ∈ Lq(Ω)

}
endowed with the graph norm. Furthermore, for any Radon measure µ, let L1

µ (Ω;Rd ) denote

the space of µ-measurable functions v : Ω → Rd
for which

‖v ‖L1

µ (Ω;Rd ) :=

∫
Ω
|v(x)|2 dµ

is �nite. To any v ∈ W div,q(Ω) ∩ L∞(Ω), we can then assign a unique Tv ∈ L1

|Du |(Ω;Rd ),

called the full trace of v , using appropriate converging sequences; see [15, Def. 12] for a precise

de�nition. Finally, we recall the decomposition of the measure Du for u ∈ BV (Ω) into an

absolutely continuous part Dau = ∇u dLd
with respect to the d-dimensional Lebesgue measure

Ld
, a jump part

D ju = (u+ − u−)νu dHd−1 |Su ,

where u+ − u− denotes the jump of u on the singularity set Su with normal νu and (d − 1)-

dimensional Hausdor� measureHd−1
, and the Cantor part Dcu with density σu with respect to

|Dcu |. We can now state fully our pointwise optimality conditions.

Theorem 4.4. For any local minimizer ū ∈ BV (Ω) to (P), there exist ȳ , p̄ ∈W 1,s (Ω), q̄ ∈ L
s
2 (Ω),

and
¯ψ ∈W div, s

2 (Ω) satisfying{
− div(Φ(ū)∇ȳ) = f in Ω,

ȳ = 0 on ∂Ω,
(4.7a) {

− div(Φ(ū)∇p̄) = −(ȳ − z) in Ω,

p̄ = 0 on ∂Ω,
(4.7b)

(∇ȳ · ∇p̄)Φ′(ū) + αq̄ − β div
¯ψ = 0 in L

s
2 (Ω),(4.7c)

ū(x) ∈



(−∞,u1] q̄(x) = −um ,

{u1} q̄(x) ∈
(
−um ,

1

2
(u1 + u2)

)
,

[ui ,ui+1] q̄(x) = 1

2
(ui + ui+1), 1 ≤ i < m,

{ui } q̄(x) ∈
(

1

2
(ui−1 + ui ),

1

2
(ui + ui+1)

)
, 1 < i < m,

{um} q̄(x) ∈
(

1

2
(um−1 + um),um

)
,

[um ,∞) q̄(x) = um ,

∅ else,

(4.7d)
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

| ¯ψ (x)|2 ≤ 1 for a.e. x ∈ Ω,

¯ψ (x) =
∇ū(x)

|∇ū(x)|2
for a.e. x ∈ Ω with ∇ū(x) , 0,

(T ¯ψ )(x) =
ū+(x) − ū−(x)

|ū+(x) − ū−(x)|
νū (x) forHd−1

-a.e. x ∈ Sū ,

(T ¯ψ )(x) = σū (x) for |Dcū |-a.e. x ∈ Ω.

(4.7e)

Proof. We start with (4.7c), which is obtained from the �rst equation of (4.6) by using Lemma 4.1

to express F ′(Φ(ū))Φ′(ū) in terms of the solution ȳ to the state equation (4.7a) and the solution

p̄ to the adjoint equation (4.7b). Furthermore, we have used [15, Prop. 8], which states that any

¯ξ ∈ ∂TV(ū) ∩ Lq(Ω) can be expressed as
¯ξ = − div

¯ψ for a
¯ψ ∈ W div,q(Ω) satisfying (4.7e).

1

We point out that the Lp (Ω), p > 1, regularity of (F ◦ Φ)′(ū) is crucial to allow applying this

result, and that it holds for strongly Lipschitz domains. Finally, the second relation in (4.6) can

be equivalently written as ū ∈ ∂G∗(q̄), which by (2.4) admits the pointwise characterization

(4.7d). �

Let us brie�y comment on these optimality conditions. Clearly, (4.7d) implies that if q̄ does

not have level sets of strictly positive measure, ū will be a pure multi-bang control, i.e., ū(x) ∈
{u1, . . . ,um} almost everywhere. Moreover, from (4.7e) we can deduce that ∇ū(x) = 0 for almost

every x ∈ Ω with | ¯ψ (x)|2 < 1. Further pointwise interpretations, in particular concerning the

interaction between the multi-bang and the total variation penalty, is impeded by the fact that

(4.7c) couples q̄ not with
¯ψ but with div

¯ψ , and the divergence operator does not act pointwise

and has a nontrivial kernel.

Remark 4.5. As already mentioned, the regularization φε of proj[umin,umax]
should be chosen in such

a way that it does not become stationary in [0,um]. For example, if we de�ne the function φε of (2.5)

in such a manner that it acts as an interior smoothing with φ ′ε (t) = 0 for t ∈ (−∞, 0] ∪ [um ,∞),
then ū ≡ 0 with q̄ ≡ 0,

¯ψ ≡ 0 and ȳ , p̄ computed from (4.7a) and (4.7b) always provides a trivial

solution to the optimality system. It could also be observed that this obstructs numerical algorithms.

Similarly, φ ′ε (um) = 0 would restrict in an undesired manner the possibility that φε (u(x)) =
umax. In fact, if ū(x) = um on a ball B of radius ρ > 0, then αq̄(x) = β div

¯ψ (x) on B, where
q̄(x) ∈

(
1

2
(um−1 + um),um

]
for almost every x ∈ B and |ψ (x)|2 ≤ 1 for almost every x ∈ Ω. As a

consequence, we have that

απ
d
2 ρd (um−1 + um)

2Γ(d
2
+ 1)

< α

∫
B
q̄ dx = β

∫
B

div
¯ψ dx = β

∫
∂B

¯ψ · nds ≤
2βπ

d
2 ρd−1

Γ(d
2
)
,

where n denotes the unit outer normal to B. Thus, ū(x) = um cannot occur on sets that contain a

ball B of radius ρ ≥
4βΓ(d

2
+1)

α (um−1+um )Γ(d
2
)
=

2βd
α (um−1+um )

. Using the same argument for a general set B to

which the divergence theorem applies, we infer that ū = um in B necessitates
|B |
|∂B | <

2β
α (um−1+um )

.

1
The result in [15] is stated for q =

p
p−1

for 1 < p ≤ d
d−1

. However, the upper bound on p is not used in the proofs; it

is merely the natural integrability of u ∈ BV (Ω) through embedding and is assumed to avoid further restrictions.

We can thus apply the result for arbitrary q > 1.
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5 numerical solution

This section is concerned with the numerical computation of solutions to (P). We proceed in

several steps. First, we introduce in Section 5.1 a �nite element discretization of (P), for which

we derive in Section 5.2 necessary optimality conditions in terms of the coe�cients with respect

to the �nite element basis functions. These can be solved by a semismooth Newton-type method

with path-following that is described in Section 5.3.

5.1 discretization

We consider a �nite element discretization of (P). Let T = {Th}h>0 be a quasi-uniform trian-

gulation of Ω, which we assume in the following to be polyhedral for simplicity, consisting

of triangular or tetrahedral elements T with volume |T |. For later use, let us also introduce

the notation Th = {Tj }
NTh
j=1

for h > 0, i.e., Th consists of NTh elements that are denoted by Tj ,
1 ≤ j ≤ NTh .

For the state and adjoint equation, we choose a conforming piecewise linear discretization,

i.e., we set

Yh := {vh ∈ C0(Ω) : vh |T ∈ P1 for all T ∈ Th} .

InYh we use the standard nodal basis {δYhi }
NYh
i=1

with respect to the vertices xi ∈ R
d

, 1 ≤ i ≤ NYh .

For anyvh ∈ Yh , we denote by v̂h ∈ R
NYh the coe�cients ofvh with respect to this basis. De�ning

[v]j to be the j-th component of a vectorv , we can express this forvh ∈ Yh asvh =
∑NYh

i=1
[v̂h]iδ

Yh
i .

The control is also discretized as continuous and piecewise linear, i.e., we set

Uh :=
{
uh ∈ C(Ω) : uh |T ∈ P1 for all T ∈ Th

}
.

This choice – as opposed to piecewise constants – yields a convergent (nonconforming) dis-

cretization even for the isotropic total variation, see [12, 17]. Again we use the standard nodal basis,

denoted by {δUhi }
NUh
i=1

, and distinguish between uh ∈ Uh and its coe�cient vector ûh ∈ R
NUh .

For wh ∈ Uh , the discrete state equation reads

(wh∇yh ,∇vh)L2(Ω) = (f ,vh)L2(Ω) for all vh ∈ Yh ,

and similarly for the discrete adjoint equation. We denote the corresponding (symmetric)

sti�ness matrix by Ah(wh) ∈ R
NYh×NYh and the mass matrix by Mh ∈ R

NYh×NYh .

Since the discrete gradient of uh ∈ Uh should be piecewise constant, we introduce the space

Ψh :=
{
ψh ∈ L

2(Ω)d : ψh |T ∈ P
d
0

for all T ∈ Th

}
.

In Ψh we work with the basis of characteristic functions of T ∈ Th , denoted by {χi }
NΨh
i=1

. For the

coe�cients ofψh ∈ Ψh associated to T ∈ Th , we write [ ˆψh]T ∈ R
d

and assume that
ˆψh ∈ R

NΨh

is ordered in the way [ ˆψh]Tj = ([
ˆψh](j−1)d+1, . . . , [ ˆψh]jd )

T ∈ Rd
for 1 ≤ j ≤ NTh . This allows us

to infer that ([ ˆψh]Tj )1≤j≤NTh =
ˆψh . Moreover, let Dh ∈ RNΨh×NUh denote the sti�ness matrix

arising from the bilinear form

(∇uh ,ψh)L2(Ω) for all (uh ,ψh) ∈ Uh × Ψh .
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We mention that −DT
h ∈ RNUh×NΨh corresponds to the discrete divergence. In the following,

we assume that Dh is ordered in the way [Dhûh]Tj = (D(j−1)d+1ûh , . . . ,D jdûh)
T ∈ Rd

, where Di
denotes for 1 ≤ i ≤ NΨh the i-th row of Dh . This allows us to infer that the Fréchet derivative of

the mapping ûh 7→ ([Dhûh]Tj )j ∈ R
NΨh , 1 ≤ j ≤ NTh , is given by Dh .

The multi-bang penalty is approximated via mass lumping, i.e., we take

Gh(ûh) :=

NUh∑
i=1

diд([ûh]i ),

where д : R→ R is given by (2.2) and di :=
∫
Ω
δUhi (x)dx , see [18, 35, 41]. For later use, we also

introduce the diagonal matrix M`
h ∈ R

NUh×NUh with entries di , which corresponds to a lumped

mass matrix in Uh . Similarly, the total variation is approximated by

TVh(ûh) :=
∑
T ∈Th

|[Dhûh]T |2.

This is a correctly weighted discretization of the total variation since for all uh ∈ Uh there holds

TV(uh) =
∑
T ∈Th

|T | |∇uh |T |2 =

NΨh∑
i=1

| (∇uh , χi )L2(Ω) |2 =
∑
T ∈Th

|[Dhûh]T |2 = TVh(ûh).

Note that by these de�nitions, Gh and TVh are de�ned on RNUh , allowing us to apply convex

analysis in the standard Euclidean topology.

The discrete problem now reads

(5.1)


min

ûh ∈R
NUh

1

2

‖yh − zh ‖
2

L2
+ α Gh(ûh) + β TVh(ûh)

s.t. Ah(Φh(uh))ŷh = Mh ˆfh ,

where zh is the L2(Ω) projection of z onto Yh and thus
1

2
‖yh − zh ‖

2

L2
= 1

2
(ŷh − ẑh)

TMh(ŷh − ẑh).
Similarly, fh denotes the L2(Ω) projection (or interpolation) of f onto Yh . The existence of a

solution û∗h ∈ R
NUh to (5.1) then follows from standard arguments.

5.2 discrete optimality system and regularization

We now derive numerically tractable optimality conditions for the discretized problem (5.1),

exploiting the fact that functional-analytic di�culties that had to be circumvented to obtain

(4.7) do not arise in the �nite-dimensional setting. Speci�cally,

(i) we can consider ε = 0 or equivalently, by Proposition 3.2, the discrete analogue of (P
∗
),

thus eliminating the need for Φε ;

(ii) as in [20, 21], we can include the pointwise constraints in the de�nition of the multi-bang

penalty G;
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(iii) applying the chain rule to the convex subdi�erential of the discrete total variation directly

yields an explicit componentwise relation.

Hence, we replace (5.1) by

(Ph)


min

ûh ∈R
NUh

1

2

‖yh − zh ‖
2

L2
+ α Ĝh(ûh) + β TVh(ûh)

s.t. Ah(uh + umin)ŷh = Mh ˆfh

for

Ĝh(ûh) :=

NUh∑
i=1

diд̂([ûh]i ), д̂(t) =


∞ t < u1,
1

2
((ui + ui+1)t − uiui+1) t ∈ [ui ,ui+1], 1 ≤ i < m,

∞ t > um .

Proceeding as in the continuous case, we see that (4.7a) and (4.7b) are replaced by their �nite

element approximation. Introducing for yh ,ph ∈ Yh the vector

âh(yh ,ph) := ∇yh · ∇ph ∈ R
NUh ,

we obtain analogously to (4.6) the primal-dual optimality conditions

(5.2)



Ah(u
∗
h + umin)ŷ

∗
h = Mh ˆfh ,

Ah(u
∗
h + umin)p̂

∗
h = Mh(ẑh − ŷ

∗
h),

0 = âh(y
∗
h ,p
∗
h) + αq̂

∗
h + β

ˆξ ∗h ,

q̂∗h ∈ ∂Ĝh(û
∗
h),

ˆξ ∗h ∈ ∂TVh(û
∗
h).

Let us remark that it is straightforward to derive a version of (5.2) inYh×Yh×Uh×Uh×Ψh instead

of RNYh ×RNYh ×RNUh ×RNUh ×RNΨh . It can then be observed that this version is exactly (4.6)

but with (ȳ , p̄, ū, q̄, ¯ξ ) ∈ Y × Y ×U ×U × Ψ replaced by their �nite-dimensional counterparts

(y∗h ,p
∗
h ,u
∗
h ,q
∗
h , ξ
∗
h) ∈ Yh × Yh × Uh × Uh × Ψh , and that (5.2) is its equivalent reformulation in

RNYh ×RNYh ×RNUh ×RNUh ×RNΨh . In particular, the two approaches of �rst discretize, then

optimize and �rst optimize, then discretize coincide.

The next step is to characterize these subgradients componentwise. For the �rst subdi�erential,

we can simply use the sum and chain rules and �nd that

[q̂∗h]j ∈ dj∂д̂([û
∗
h]j ), 1 ≤ j ≤ NUh ,

or equivalently

[û∗h]j ∈ ∂д̂
∗(d−1

j [q̂
∗
h]j ), 1 ≤ j ≤ NUh ,

with ∂д̂∗ given analogously to ∂д∗ as

∂д̂∗(s) =


{u1} s ∈

(
−∞, 1

2
(u1 + u2)

)
,

[ui ,ui+1] s = 1

2
(ui + ui+1), 1 ≤ i < m,

{ui } s ∈
(

1

2
(ui−1 + ui ),

1

2
(ui + ui+1)

)
, 1 < i < m,

{um} s ∈
(

1

2
(um−1 + um),∞

)
,
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see also [20, Sec. 2.1]. We will in the following replace the components [q̂∗h]i of q̂∗h by their

scaling d−1

i [q̂
∗
h]i ; using the de�nition of the lumped mass matrix, this means we have to replace

q̂∗h in the third equation of (5.2) by M`
hq̂
∗
h .

For the discrete total variation, we use the sum rule and the chain rule to deduce that there

exists
ˆψ ∗h ∈ R

NΨh such that

ˆξ ∗h = DT
h

ˆψ ∗h and [ ˆψ ∗h]T ∈ ∂(| · |2)([Dhû
∗
h]T ) for all T ∈ Th

are satis�ed. As before, we rewrite the subdi�erential inclusion equivalently as

[Dhû
∗
h]T ∈ ∂(| · |

∗
2
)([ ˆψ ∗h]T ) for all T ∈ Th .

Using

ˆh : Rd → R, ˆh(v) := |v |2,

this reads

[Dhû
∗
h]T ∈ ∂

ˆh∗([ ˆψ ∗h]T ) for all T ∈ Th .

To apply a Newton-type method, we replace the set-valued subdi�erentials by their single-

valued and Lipschitz-continuous Moreau–Yosida regularizations. Recall that the Moreau–Yosida

regularization of ∂F for any proper, convex and lower semi-continuous functional F : X →
R := R ∪ {∞} acting on a Hilbert space X is given by

(∂F )γ (v) =
1

γ

(
v − proxγ F (v)

)
,

where γ > 0 and

proxγ F (v) := arg min

w ∈X

1

2γ
‖w −v ‖2X + F (w) = (Id+γ ∂F )

−1 (v).

For the regularized subdi�erential (∂д̂∗)γ , we have from [21, Sec. 4.1] that for s ∈ R

(∂д̂∗)γ (s) =


u1 s ∈

(
−∞, (γ + 1

2
)u1 +

1

2
u2

)
,

1

γ

(
s − ui+ui+1

2

)
s ∈

[
(γ + 1

2
)ui +

1

2
ui+1,

1

2
ui + (γ +

1

2
)ui+1

]
, 1 ≤ i < m,

ui s ∈
(

1

2
ui−1 + (γ +

1

2
)ui , (γ +

1

2
)ui + ui+1

)
, 1 < i < m,

um s ∈
(

1

2
um−1 + (γ +

1

2
)um ,∞

)
.

For δ > 0, we denote the Moreau–Yosida regularization of ∂ ˆh∗ by (∂ ˆh∗)δ . To compute it, we

recall that the Fenchel conjugate of a norm is the indicator function of the unit ball corresponding

to the dual norm (which in this case is | · |2 itself). Furthermore, the proximal mapping proxδ F
of an indicator function to a convex set is for every δ > 0 the metric projection onto this set.

This shows that for all v ∈ Rd
there holds

(∂ ˆh∗)δ (v) =
1

δ

(
v − proj{ |v |2≤1}(v)

)
=

{
0 |v |2 ≤ 1,
1

δ

(
v − v

|v |2

)
|v |2 > 1.
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Combining the above, we obtain the regularized discrete optimality conditions

(5.3)



Ah(u
∗
h + umin)ŷ

∗
h = Mh ˆfh ,

Ah(u
∗
h + umin)p̂

∗
h = Mh(ẑh − ŷ

∗
h),

0 = âh(y
∗
h ,p
∗
h) + αM

`
hq̂
∗
h + βD

T
h

ˆψ ∗h ,

[û∗h]j = (∂д̂
∗)γ ([q̂

∗
h]j ), 1 ≤ j ≤ NUh ,

[Dhû
∗
h]T = (∂

ˆh∗)δ ([ ˆψ ∗h]T ), T ∈ Th .

Note that we have used the same notation ŷ∗h , û∗h , etc., as for solutions to the unregularized

discrete optimality conditions (5.2) to avoid further complicating the notation. We point out

that for the remainder of this work, this notation will always refer to solutions to (5.3).

Finally, we remark that since (∂F ∗)γ = ∇(F
∗)γ with ((F ∗)γ )

∗ = F +
γ
2
‖ · ‖2X holds for any

proper, convex, and lower semi-continuous functional F : X → R, the regularized optimality

system coincides with the necessary optimality conditions of
min

ûh ∈R
NUh

1

2

‖yh − zh ‖
2

L2
+ α

(
Ĝh(ûh) +

γ

2

‖ûh ‖
2

M `
h

)
+ β

(
TVh(ûh) +

δ

2

‖ûh ‖
2

2,h

)
s.t. Ah(uh + umin)ŷh = Mh ˆfh ,

where ‖ûh ‖M `
h

:= (ûThM
`
hûh)

1/2
and ‖ûh ‖2,h := (

∑
T ∈Th |[Dhûh]T |

2

2
)1/2. This can be interpreted as

the mass-lumped approximation of an H 1
regularization of (P). Note, however, that the problem

is still nonsmooth since Gh and TVh have not been modi�ed; it has merely been made more

strongly convex.

5.3 a semismooth newton-type method

To apply a semismooth Newton method to the regularized optimality conditions (5.3), we

reformulate them as a set of nonlinear implicit equations. Based on our numerical experience, it is

preferable to consider the reduced system arising from (5.3) by eliminating the variables (ûh , q̂h)
rather than solving the full system (5.3) in the variables (ŷh , p̂h , ûh , q̂h , ˆψh). In the following, we

abbreviate
ˆζh := (ŷh , p̂h , ˆψh) ∈ R

N ˆζh , where N ˆζh
:= 2NYh + NΨh .

We begin the reformulation by noting that the third equation in (5.3) is equivalent to

(5.4) q̂∗h = −
1

α
M−`h

(
Bh(yh)p̂h + βD

T
h

ˆψ ∗h

)
,

where M−`h denotes the inverse of M`
h and Bh(yh) ∈ R

NUh×NYh denotes the matrix induced by

the bilinear form

((∇yh · ∇vh),wh)L2(Ω) for all (wh ,vh) ∈ Uh × Yh .

De�ning

q̂h : R
N ˆζh → RNUh , q̂h( ˆζh) := −

1

α
M−`h

(
Bh(yh)p̂h + βD

T
h

ˆψh

)
,
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(5.4) becomes

q̂∗h = q̂h(
ˆζ ∗h ).

Inserting this into the fourth equation of (5.3) enables us to express û∗h by

û∗h = ûh(
ˆζ ∗h ),

where

ûh : R
N ˆζh → RNUh , ûh( ˆζh) :=

©­­­­­«
(∂д̂∗)γ ([q̂h( ˆζh)]1)

(∂д̂∗)γ ([q̂h( ˆζh)]2)
...

(∂д̂∗)γ ([q̂h( ˆζh)]NUh )

ª®®®®®¬
.

We writeuh( ˆζh) for the functionuh ∈ Uh with coe�cients ûh( ˆζh), i.e.,uh( ˆζh) :=
∑NUh

i=1
[ûh( ˆζh)]iδ

Uh
i .

Summarizing, (5.3) is equivalent to Fγ ,δ ( ˆζ
∗
h ) = 0 for

(5.5) Fγ ,δ : R
N ˆζh → R

N ˆζh , Fγ ,δ ( ˆζh) :=
©­­«
Ah(uh( ˆζh) + umin)p̂h +Mh(ŷh − ẑh)

Ah(uh( ˆζh) + umin)ŷh −Mh ˆfh
H( ˆζh)

ª®®¬ ,
whereH : R

N ˆζh → RNΨh ,H = (HT
1
,HT

2
, . . . ,HT

NTh
)T with

Hj : R
N ˆζh → Rd , Hj ( ˆζh) := [Dhûh( ˆζh)]Tj − (∂

ˆh∗)δ ([ ˆψh]Tj ) for 1 ≤ j ≤ NTh .

We recall that Th = {Tj }
NTh
j=1

and point out that NΨh = NThd .

Since all components of Fγ ,δ are either continuously di�erentiable or continuous and piece-

wise continuously di�erentiable (PC
1
) in each variable, Fγ ,δ is semismooth, see, e.g., [27, 28,

32, 43]. To obtain Newton derivatives for the nonsmooth terms, we use the fact that for PC
1

functions we can take as Newton derivative any selection of the derivatives of the essentially

active pieces; see [43, Sec. 2.5.3]. In the following, we denote Newton derivatives by DN . For

the partial Newton derivative of, say, ûh(·) with respect to the variable
ˆψh evaluated at

ˆζh , we

write DNψ ûh(
ˆζh). Since the mapping ûh(·) is a composition of smooth mappings with (∂д̂∗)γ , its

Newton derivative is given by the chain rule in combination with our speci�c choice of

DN (∂д̂
∗)γ (s) =

{
1

γ s ∈
[
(γ + 1

2
)ui +

1

2
ui+1,

1

2
ui + (γ +

1

2
)ui+1

]
, 1 ≤ i < m,

0 else.

To determine DNH , it su�ces to specify DN (∂ ˆh∗)δ , where we make the choice

DN (∂ ˆh∗)δ (v) =

{
0 |v |2 ≤ 1,
1

δ

(
Id− 1

|v |2
Id+ 1

|v |3
2

vvT
)
|v |2 > 1.

Together, we obtain

DNFγ ,δ ( ˆζh) =
©­«
CpEy +Mh CpEp +Cy/p CpEψ
CyEy +Cy/p CyEp CyEψ

DhEy DhEp DhEψ − Eψψ

ª®¬ ∈ RN ˆζh
×N ˆζh ,
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where

Cp := Bh(ph)
T , Cy := Bh(yh)

T , Cy/p := Ah(uh( ˆζh) + umin),

Ey := DNy ûh(
ˆζh), Ep := DNp ûh(

ˆζh), Eψ := DNψ ûh(
ˆζh),

and

Eψψ :=

©­­­­­«
DN (∂ ˆh∗)δ ([ ˆψh]T1

)

DN (∂ ˆh∗)δ ([ ˆψh]T2
)

. . .

DN (∂ ˆh∗)δ ([ ˆψh]TNTh
)

ª®®®®®¬
∈ RNΨh×NΨh .

Note that the Newton matrix can become singular. For instance, if |[ ˆψh]T |2 ≤ 1 for all T ∈ Th ,

then Eψψ = 0. Hence, (0, 0, ŵh)
T ∈ ker(DNFγ ,δ ( ˆζh)) for every ŵh ∈ ker(Eψ ). Clearly, ker(Eψ )

is nontrivial since this is true for ker(DT
h ). To cope with this singularity, we modify the (3,3)

block of DNFγ ,δ so that it reads DhEψ − Eψψ − µγ ,δ M̂h , where M̂h ∈ RNΨh×NΨh denotes the

diagonal mass matrix in Ψh , and µγ ,δ > 0 is a weight that depends on γ and δ ; in our numerical

experiments we observed µγ ,δ := δ−1
to work well. In the following, we assume that this choice

is made unless explicitly indicated otherwise. We denote this modi�ed matrix by
�DNFγ ,δ . For

later reference we notice that given (γj ,δ j ) ∈ R>0 × R>0, a semismooth Newton-type step

s̃ j ∈ R
N ˆζh at

˜ζ j ∈ R
N ˆζh is characterized by

(5.6)
�DNFγj ,δj (

˜ζ j )s̃ j = −Fγj ,δj (
˜ζ j ).

This step is combined with a backtracking line search based on the residual norm as well as

a path-following scheme for (γj ,δ j ). The full procedure to compute an approximate solution

to (Ph) is given in Algorithm 1, where we have dropped the index h for better readability. We

also write ‖ ˆζ ‖L2 := ‖ζh ‖L2(Ω)d+2 for
ˆζ ∈ R

N ˆζ
, where

ˆζ are the coe�cients of the function

ζh ∈ Yh × Yh × Ψh , and ‖( ˆζ , û, q̂)‖L2 := ‖(ζh ,uh ,qh)‖L2(Ω)d+4 , where ( ˆζ , û, q̂) are the coe�cients

of (ζh ,uh ,qh) ∈ Yh × Yh × Ψh ×Uh ×Uh .

Algorithm 1 is structured as follows. Lines 4 to 14 constitute an inner iteration; in this inner

iteration, a Newton-type method with line search is employed for �xed γ and δ to �nd a root of

Fγ ,δ . The remaining lines form an outer iteration; in this outer iteration, γ and δ are updated

and the starting point for the next inner iteration is computed in Line 19 or Line 21, respectively.

Moreover, the L2
di�erence of subsequent outer iterates is stored in rk and used in the termination

criterion.

Let us comment on some important features of Algorithm 1. We start by pointing out that the

line search in Lines 7 to 12 of Algorithm 1 is nonmonotone. That is, if backtracking does not

yield a σj ∈ [σmin, 1] with ‖Fγj ,δj (
˜ζ j + σj s̃

j )‖L2 < ‖Fγj ,δj (
˜ζ j )‖L2 , then the step length σj = σnm

is used regardless whether it satis�es ‖Fγj ,δj (
˜ζ j + σnms̃

j )‖L2 < ‖Fγj ,δj (
˜ζ j )‖L2 or not.

Next we remark that the computation of
ˆζk+1 in Line 19 is a predictor step: From the previous

roots
ˆζ k
opt

and
ˆζ k−1

opt
, a prediction

ˆζ k+1
of

ˆζ k+1

opt
is computed and used as the starting point for the
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Algorithm 1: Path-following method to solve (Ph)

Input: ˆζ 0 ∈ R
N ˆζ

, γ0 > 0, δ0 > 0, ν ∈ (0, 1), TOLr > 0, TOLF > 0,

σmin ∈ (0, 1], σnm ∈ (0, 1]

1 Set k = 0 and r−1 = TOLr + 1

2 repeat
3 Set j = 0 and

˜ζ 0 = ˆζ k

4 while ‖Fγj ,δj ( ˜ζ
j )‖L2 > TOLF do

5 Set q̃ j = q̂( ˜ζ j ) and ũ j = û( ˜ζ j )

6 Compute the Newton-type step s̃ j at
˜ζ j by solving (5.6) and set σj = 1

7 while
[
σj ≥ σmin and ‖Fγj ,δj ( ˜ζ

j + σj s̃
j )‖L2 ≥ ‖Fγj ,δj (

˜ζ j )‖L2

]
do

8 Set σj = σj/2
9 end

10 if σj < σmin then
11 Set σj = σnm

12 end
13 Set

˜ζ j+1 = ˜ζ j + σj s̃
j

and j = j + 1

14 end
15 Set

ˆζ k
opt
= ˜ζ j , ûk

opt
= û( ˆζ k

opt
) and q̂k

opt
= q̂( ˆζ k

opt
)

16 Set γk+1 = νγk and δk+1 = νδk
17 if k ≥ 1 then
18 Set rk = ‖( ˆζ

k
opt
, ûk

opt
, q̂k

opt
) − ( ˆζ k−1

opt
, ûk−1

opt
, q̂k−1

opt
)‖L2

19 Set
ˆζ k+1 = (1 + ν ) ˆζ k

opt
− ν ˆζ k−1

opt

20 else
21 Set rk = TOLr + 1 and

ˆζ k+1 = ˆζ k
opt

22 end
23 Set k = k + 1

24 until
[
rk−1 ≤ TOLr and rk−2 ≤ TOLr

]
;

Output: ˆζ k−1

opt
∈ R

N ˆζ

next inner iteration (whose aim it is to �nd
ˆζ k+1

opt
). For k ≥ 1, this prediction is taken to be the

componentwise linear extrapolation

ˆζ k+1
:= ˆζ k

opt
+
γk − γk+1

γk−1 − γk
( ˆζ k

opt
− ˆζ k−1

opt
) = (1 + ν ) ˆζ k

opt
− ν ˆζ k−1

opt
,

where we have used that γk+1 = νγk = ν
2γk−1. Note that due to the coupling δk/γk = δ0/γ0 for

all k , we obtain the same extrapolation step if γ is replaced by δ . We thus perform a combined

prediction for the continuation inγ as well as δ . Fork = 0, no predictor step is used as
ˆζ k−1

opt
= ˆζ −1

opt

is not available; instead we set
ˆζ 1 = ˆζ 0

opt
in this case.

Finally, we embed Algorithm 1 within a further continuation strategy for ν : If a Newton

iteration for a given pair (γk ,δk ) does not terminate successfully, we increase ν and restart
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Algorithm 1 from the last successful solution; this outer continuation is terminated if ν ≈ 1.

We conclude this section with several practical remarks concerning Algorithm 1. First, we

stress that while its numerical costs are negligible, the predictor step signi�cantly increased the

convergence speed in our numerical experiments. Also, due to the path-following strategy, it is

not necessary to choose the initial guess
ˆζ 0

in a speci�c way. In fact, our numerical experiments

indicate that arbitrary starting points can be used. In particular, the choice
ˆζ 0

:= 0 was always

su�cient to achieve convergence.

Furthermore, we found in our numerical experiments that for larger values of γ and δ (e.g.,

γ ,δ > 1), the convergence of Algorithm 1 can be accelerated if µγ ,δ = δ is used and Fγ ,δ is

modi�ed such that its Newton derivative equals
�DNFγ ,δ . For small values of γ and δ , however,

this strategy did not work and we had to choose Fγ ,δ as given in (5.5) and µγ ,δ = δ
−1

. Note

that for the choice µγ ,δ = δ
−1

it is not sensible to modify Fγ ,δ in such a way that its Newton

derivative equals
�DNFγ ,δ . In fact, we can show that if Fγ ,δ is modi�ed in this way, then the

sequence (( ˆζ k
opt
, û( ˆζ k

opt
), q̂( ˆζ k

opt
)))k can only converge to a solution to (5.2) with β = 0, i.e., to a

solution to the optimality conditions of the “pure multi-bang problem”.

6 numerical examples

We illustrate the structure of optimal controls for (Ph) using two model problems. In particular,

the goal is to show the di�erence between optimal controls of (Ph) for β > 0 and for β = 0, i.e.,

between solutions to a TV-regularized multi-bang problem and those to a “pure multi-bang”

problem. We remark that β > 0 is required in the in�nite dimensional case but can be arbitrarily

small, while taking β = 0 is justi�ed in the �nite-dimensional setting only. More examples for

the pure multi-bang approach can be found in [20, 21].

In all examples, we take Ω = (−1, 1)2 ⊂ R2
and employ a uniform triangulation Th consisting

of 8192 elements, i.e., NUh = 64 · 64. We use umin = 1.5 and the algorithmic parameters
ˆζ 0 = 0,

γ0 = 10
5
, δ0 = 10

3
, ν = 0.8, νmax = 0.9999, TOLr = 10

−3(umax − umin), TOLF = 10
−5

, as well as

σmin = 10
−6

and σnm = 10
−2

. The remaining data and parameters are chosen individually for

each example.

We implemented Algorithm 1 in Python using DOLFIN [30, 31], which is part of the open-

source computing platform FEniCS [1, 29]. The linear system (5.6) arising from the Newton-type

step is solved using the sparse direct solver spsolve from SciPy.

6.1 example 1: topology optimization

The �rst example is motivated by the possible application to topology optimization. The general

idea is that we have a design ũ ∈ U making use of two materials characterized by their densities

umin + ũ1 = 1.5 and umin + ũ2 = 2.5; we call this a binary design. Imagine that it has become

possible to use also materials that have intermediate densities, e.g., in total �ve materials with

densities umin + uj = 1.5 + 0.25(j − 1), 1 ≤ j ≤ 5. The question is now whether it is possible

to realize a similar state as arising from the (presumably optimal) binary design using the

(presumably cheaper) intermediate materials.
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(a) binary design ũh − umin (b) pure multi-bang design ūh − umin

(c) TV–multi-bang design u∗h − umin, β = 10
−6 (d) TV–multi-bang design u∗h − umin, β = 5 · 10−5

Figure 3: Comparison of binary, pure multi-bang, and total variation designs for Example 1

Following this motivation, we start from the binary design

ũ(x) :=

{
1.5 x ∈ ω1,

2.5 x ∈ ω2,

where

ω2 :=
{
x ∈ Ω : 0.1 < |x1 | < 0.8 and |x2 | < 0.8 and

[
|x1 | > 0.5 or |x2 | > 0.5

]}
and ω1 := Ω \ ω2. Denoting by ũh ∈ Uh the �nite element function that interpolates ũ in all

vertices of Th , we compute the target zh ∈ Yh as the state corresponding to ũh and fh ≡ 10, i.e.,

as the solution to − div(ũh∇zh) = fh in Ω; see Figure 3a. We then compute a solution to (Ph)

using the �ve desired coe�cient values uj = 0.25(j − 1), 1 ≤ j ≤ 5, together with the parameters

α = 10
−3

and β ∈ {0, 10−6, 5 · 10−5}; see Figures 3b to 3d (with γ�nal ≈ 1 · 10−4
, γ�nal ≈ 1.8 · 10−4

,

and γ�nal ≈ 6.4 · 10−2
, respectively).
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Comparing the pure multi-bang design ūh in Figure 3b with the TV–multibang designs in

Figure 3c–d, we clearly observe the well-known e�ect of TV regularization favoring level sets

with smaller perimeter: While most jumps and the promotion of the desired parameter values are

retained from the pure multi-bang design, the high-frequency “oscillations” between the level

sets of ūh = 1.0 and ūh = 0.75 are removed. Similarly, the spurious “droplets” near x = (−1, 0)

and x = (1, 0) are suppressed. (Here we recall that the multi-bang penalty acts purely pointwise

and does not promote any spatial regularity.) The e�ect of the total variation penalty is also

visible in Figure 3d, where the perimeters of the level sets for u∗h = 0.5 and u∗h = 0.75 have both

been reduced, respectively, by closing the “slit” at x1 = 0 and by removing the highest-valued

material. We point out that the simpler structure of the TV-regularized control may in itself

be preferable in certain applications. (We also remark that if the admissible control values are

restricted to (u1,u2) = (ũ1, ũ2) = (0, 1) and α , β are chosen su�ciently small, the binary reference

design is essentially recovered.)

6.2 example 2: parameter identification

The second example is motivated by a parameter identi�cation related to electrical impedance

tomography. Here, the goal is to reconstruct the spatially varying conductivity (which is a

tissue-speci�c material parameter) from noisy observations of the electric �eld arising from

external charges. It should be noted that in medical impedance tomography, external currents

and observations are both taken on the boundary or a part thereof; for the sake of simplicity,

however, we consider distributed charge density and observation.

We choose as true parameter

ũ(x) :=


1.5 x ∈ ω1,

1.6 x ∈ ω2,

1.7 x ∈ ω3,

where

ω1 :=
{
x ∈ Ω : (x1+0.1)2+(x2−0.1)2 ≥ 0.4

}
, ω3 :=

{
x ∈ Ω : (x1+0.2)2+(x2−0.2)2 < 0.08

}
,

and ω2 := Ω \ (ω1 ∪ ω3) model background, tumor, and healthy tissue, respectively. Again,

ũh ∈ Uh denotes the �nite element function interpolating ũ in all vertices of Th ; see Figure 4a.

For the target, we �rst compute a noise-free state z̃h ∈ Yh solving − div(ũh∇z̃h) = fh in Ω, where

fh ≡ 25. We now add noise to z̃h to obtain zh ; we use zh := z̃h + nlρh maxx ∈Ω(|z̃h(x)|), where

nl := 10
−3

and ρh ∈ Yh is a �nite element function whose coe�cients ρ̂h ∈ R
NYh are sampled

from a normal distribution with mean zero and standard deviation one. Corresponding to the

assumption that strong a priori knowledge is available, we choose the desired coe�cient values

u1 = 0, u2 = 0.1 and u3 = 0.2, together with the parameters α = 5 · 10−4
and β ∈ {0, 10−5, 10−6};

see Figures 4b to 4d (with γ�nal ≈ 5.8 · 10−6
, γ�nal ≈ 2.9 · 10−3

, and γ�nal ≈ 6.6 · 10−3
, respectively).

From Figure 4b, it is obvious that the pure multi-bang regularization fails for this challeng-

ing problem since the multi-bang penalty entails no spatial regularization. Speci�cally, noise
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(a) true parameter ũh − umin (b) multi-bang reconstruction ūh − umin

(c) TV–multi-bang recon. u∗h − umin, β = 10
−6 (d) TV–multi-bang recon. u∗h − umin, β = 10

−5

Figure 4: Comparison of true parameter, pure multi-bang, and total variation-regularized recon-

structions for Example 2

remains in the homogeneous background, and many points in the healthy tissue region are

misclassi�ed as either tumor or background; the latter in particular in a large region near

x = (0, 0) where ∇ȳh ≈ 0 (compare (4.7)). The reconstruction is improved by adding the total

variation regularization: with β = 10
−6

, the “hole” near x = (0, 0) is gone, and the misclassi�ed

points are reduced; see Figure 4c. Increasing the total variation regularization parameter to

β = 10
−5

(Figure 4d) again signi�cantly improves the reconstruction by removing the small

spurious inclusions while preserving the contrast and shape of the healthy tissue and tumor

regions; merely the volume of the latter is slightly reduced. This indicates that regularization as

understood in the context of inverse problems is predominantly provided by the total variation

penalty, while the multi-bang penalty is responsible for maintaining the desired contrast of the

reconstruction. Hence, it su�ces to investigate noise level-dependent parameter choice rules

for β while keeping α �xed, rather than having to consider – much more challenging – choice

rules for multiple parameters.
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7 conclusion

Total variation regularization of topology optimization and parameter identi�cation problems

is challenging both analytically and numerically but is required in order to obtain existence of a

solution without introducing additional smoothing. Furthermore, a pointwise multi-bang penalty

can be used to promote optimal coe�cients with desired (material) values. A reparametrization of

the coe�cient to be optimized allows proving existence as well as obtaining pointwise optimality

conditions. The numerical solution is based on a �nite element discretization and Moreau–

Yosida regularization of reduced optimality conditions together with a semismooth Newton-type

method combined with a predictive path-following strategy. Numerical examples indicate that

in comparison to a pure multi-bang approach, the additional total variation regularization yields

controls whose structure is much more regular.

appendix a strongly lipschitz domains are gröger regular

In this appendix, we address the relation between two di�erent de�nitions of Lipschitz domains

and the concept of Gröger regularity which are used in the literature. The �rst de�nition,

sometimes referred to as a strongly Lipschitz domain, requires that, roughly speaking, the

boundary can be represented locally as the graph of a Lipschitz function. A precise statement is

the following from [2, A 8.2].

Definition a.1 (Strongly Lipschitz domain). Let Ω ⊂ Rd
be open and bounded. We say that

Ω has a Lipschitz boundary if there exists l ∈ N such that ∂Ω can be covered by open sets

U 1,U 2, . . . ,U l
and for j = 1, . . . , l there exist a Euclidean coordinate system e j

1
, e j

2
, . . . , e jd ∈ R

d
,

a reference point y j ∈ Rd−1
, numbers r j > 0 and hj > 0, and a Lipschitz continuous function

η j : Rd−1 → R that satisfy the following properties:

(i) U j =
{
x ∈ Rd

: |x j
−,d − y

j |2 < r j and |x jd − η
j (x j
−,d )|2 < hj

}
;

(ii) for all x ∈ U j
, if x jd = η

j (x j
−,d ) then x ∈ ∂Ω;

(iii) for all x ∈ U j
, if 0 < x jd − η

j (x j
−,d ) < hj then x ∈ Ω;

(iv) for all x ∈ U j
, if 0 > x jd − η

j (x j
−,d ) > −h

j
then x < Ω.

Here, we have denoted x j
−,d = (x

j
1
, . . . ,x jd−1

)T ∈ Rd−1
for x = x j = (x j

1
, . . . ,x jd )

T ∈ Rd
, and the

coordinates of x j are given in the local Euclidean coordinate system e j
1
, e j

2
, . . . , e jd in Rd

, i.e.,

x j =
∑d

i=1
x ji e

j
i .

A bounded domain with Lipschitz boundary is called a strongly Lipschitz domain.

Strongly Lipschitz domains are extension domains, which is required to obtain embeddings

for Sobolev and BV functions into Lp spaces, and this de�nition is therefore used in [3, 15].

The second de�nition, sometimes referred to as a weakly Lipschitz domain, requires, roughly

speaking, that the boundary can be locally �attened by a bi-Lipschitz transformation; a precise

de�nition can be found in, e.g., [16, Sec. 6]. For our purposes, however, the following related

concept from [24, Def. 2] is more important.
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Definition a.2 (Gröger regularity). A set G ⊂ Rd
is called regular (in the sense of Gröger) if G is

bounded and if for every y ∈ ∂G there exist subsets U and Ũ of Rd
and a Lipschitz continuous

bijection Φ : U → Ũ with Lipschitz continuous inverse Φ−1
such thatU is an open neighborhood

of y in Rd
and that Φ(U ∩G) is one of the sets

E1 :=
{
x ∈ Rd

: |x | < 1, xd < 0

}
,

E2 :=
{
x ∈ Rd

: |x | < 1, xd ≤ 0

}
,

E3 :=
{
x ∈ E2 : xd < 0 or x1 > 0

}
,

where x = (x1,x2, . . . ,xd )
T

.

The main result of [24] is that a second order elliptic mixed boundary value problem on a

bounded domain Ω admits higher regularity of the solution if G = Ω ∪ ΓN is regular, where

ΓN ⊂ ∂Ω denotes the Neumann boundary. For Γ = ∅ (i.e., pure Dirichlet conditions, where E2

and E3 are not needed), De�nition a.2 reduces to that of Ω being a weakly Lipschitz domain.

Furthermore, [25, Sec. 5] shows also for mixed boundary conditions (under some assumptions

on ΓN ) that if Ω ∪ ΓN is regular then Ω is a weakly Lipschitz domain and, for d ∈ {2, 3}, vice

versa.

In our analysis, we require the domain Ω to satisfy both De�nition a.1 and De�nition a.2 since

we use results from [3, 15] as well as from [24]. However, the notions of strongly and weakly

Lipschitz domains are not equivalent; examples of weakly but not strongly Lipschitz domains

can be found in, e.g., [16, Sec. 6]. Although it is commonly accepted that strongly Lipschitz

domains are regular (or, equivalently for domains, that they are weakly Lipschitz), despite our

best e�orts we could not �nd a proof of this fact in the literature. For the sake of completeness,

we therefore provide one here.

Lemma a.1. If a domain Ω ⊂ Rd
satis�es De�nition a.1, then it also satis�es De�nition a.2.

Proof. Let Ω ⊂ Rd
, d ∈ N, denote the set in question and let x̂ ∈ ∂Ω. Due to De�nition a.1 there

exist an open neighborhood V̂ of x̂ and a Lipschitz continuous function η : Rd−1 → R such that

Ω ∩ V̂ = {x ∈ V̂ : η(x1, . . . ,xd−1) < xd } and η(x̂1, . . . , x̂d−1) = x̂d . De�ning

Λ̂ : Rd → Rd , Λ̂(x) := (x1, . . . ,xd−1,η(x1, . . . ,xd−1) − xd )
T ,

we observe that Ω ∩ V̂ = {x ∈ V̂ : Λ̂d (x) < 0}. Clearly, Λ̂ is Lipschitz. Moreover, since

Λ̂(Λ̂(x)) = x for all x ∈ Rd
, we infer that Λ̂ and its inverse mapping Ξ̂ := Λ̂−1 = Λ̂ are

bijective. (In the following, we nevertheless distinguish between Λ̂ and its inverse for the sake

of transparency.) Since Λ̂ is Lipschitz continuous, Ξ̂ maps open sets to open sets. De�ning

ŷ := Λ̂(x̂) we note that Ξ̂ maps Bδ (ŷ) for every δ > 0 bijectively to Ξ̂(Bδ (ŷ)), which is an

open neighborhood of x̂ . In particular, there is δ > 0 such that Ξ̂ maps Bδ (ŷ) bijectively to

V := Ξ̂(Bδ (ŷ)) with V ⊂ V̂ . Consequently, Ξ(y) := Ξ̂(ŷ + δy) maps B1(0) bijectively to V , is

Lipschitz continuous, and has the Lipschitz continuous inverse Λ(x) := (Λ̂(x) − ŷ)/δ . It follows

that

Ω ∩V = {x ∈ V : Λ̂d (x) < 0} = {Ξ(y) ∈ Rd
: y ∈ B1(0), Λ̂d (Ξ(y)) < 0}.
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This implies that

Λ(Ω ∩V ) = {y ∈ Rd
: y ∈ B1(0), ŷd + δyd < 0} = {y ∈ Rd

: y ∈ B1(0), yd < 0},

where we have used ŷd = 0. Summarizing, we have established that for x̂ ∈ ∂Ω, there is an

open neighborhood V of x̂ and a Lipschitz continuous bijection Λ : V → B1(0) with Lipschitz

continuous inverse such that Λ(Ω ∩ V ) = {y ∈ B1(0) : yd < 0}. That is, G := Ω satis�es

De�nition a.2. �
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