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Abstract. An explicit feedback controller is proposed for stabilization of linear parabolic equations,
with a time-dependent reaction-convection operator. The range of the feedback controller is finite-
dimensional, and its dimension depends polynomially on a suitable norm of the reaction-convection
operator. A sufficient condition for stabilizability is given, which involves the asymptotic behavior of the
eigenvalues of the (time-independent) diffusion operator, the norm of the reaction-convection operator,
and the norm of the nonorthogonal projection onto the controller’s range along a suitable infinite
dimensional (higher-modes) eigenspace. To construct the explicit feedback, the essential step consists
in computing the nonorthogonal projection. Numerical simulations are presented, in 1D and 2D,
showing the practicability of the controller and its response to measurement errors.
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1. Introduction

We consider a nonautonomous evolutionary system in the abstract form

ẏ(t) +Ay(t) +Arc(t)y(t)−
M∑
i=1

ui(t)Ψi = 0, y(0) = y0, (1.1)

where y is the unknown state, y0 and Ψi, i ∈ {1, 2, . . . , M}, are given in a Hilbert space H, and u(t) =
(u1, . . . , uM )(t) is a control function at our disposal, taking values in RM .

We want to find general conditions on the linear operators A, and Arc, and on the family of actuators {Ψi |
i ∈ {1, 2, . . . ,M}}, which will allow us to guarantee the existence of a stabilizing feedback control. Roughly
speaking, the operators A and Arc will play the roles of a diffusion-like and a reaction-convection-like operator,
respectively. For example, we may think of the parabolic equation (e.g., under homogeneous Dirichlet boundary
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e-mail: sergio.rodrigues@ricam.oeaw.ac.at
1



2 K. Kunisch and S. S. Rodrigues

conditions)

ẏ(x, t)− ν∆y(x, t) + a(x, t)y(x, t) +∇ ·
(
b(x, t)y(x, t)

)
−

M∑
i=1

ui(t)Ψi(x) = 0, y(0) = y0, (1.2)

where ν > 0 and the given functions a and b, defined for (x, t) ∈ Ω × [0,+∞), take values in R and Rd,
respectively. In this case Ay = −ν∆y, and Arcy = ay +∇ · (by).

The motivation for considering such a system (1.1) comes mainly from recent works on stabilization to time-
dependent trajectories [1, 7, 11, 15, 16, 21, 25], where a system in the form (1.1) arises from the linearization
around the targeted trajectory. Local stabilization to time-dependent trajectories of a given nonlinear system
will (under some conditions on the nonlinearity) follow from the stabilization to zero of system (1.1), together
with a suitable fixed point argument.

In [7] the controllers Ψi are localized in a small subset of ω ⊂ Ω and are constructed from suitably trun-
cated eigenfunctions of the Dirichlet Laplacian in L2(Ω)3 operator and it is proven that if we use a big enough
number of eigenfunctions then we can stabilize the system. In [16] the controllers are constructed in a similar
way (though the eigenfunctions are those of the Dirichlet Laplacian in L2(O) for an interval O ⊆ Ω containing
the support of the control) and some estimates on the number of actuators are given, which depend exponen-
tially on a suitable norm |Arc|X of the operator Arc, where X is a suitable Banach space. Again in [16], the
authors perform numerical simulations which suggest that a better estimate might exist. They also show that,
taking eigenfunctions of the Laplacian in L2(Ω) as actuators, leads to an estimate which depends polynomially
on |Arc|X . Notice that, in this case the support ω of the controller is Ω.

In [11, 15, 21], the actuators are not anymore necessarily constructed explicitly from the truncated eigen-
functions of the Laplacian operator. Moreover, a sufficient condition for stabilizability is given depending on a
suitable norm |1ω(1− PU )1ω|X where PU is the orthogonal projection onto U := span{Ψi | i ∈ {1, 2, . . . ,M}}.
In this case similar estimates on the number M of actuators can be given, for suitably chosen piecewise constant
actuators, but again depending exponentially on a suitable norm |Arc|X . The numerical simulations we find in
these works also suggest that a better estimate for the number of actuators could exist. The reason for the
exponential dependence of the estimates on M , in the above works, is due to the fact that the null controllability
of the system (for controls in L2(ω)) is used, for which the norm of the associated control depends exponentially
on |Arc|X . In this manuscript we follow a different procedure where we do not use/need the null controllability
of the system and in this way we can remove the exponential dependence of the numbers of controls on |Arc|X .

Of course, the number of required actuators will depend on the type of actuators we have at our disposal.
We will keep this in mind hereafter (see, in particular, the condition for stabilizability (3.2:CSa)). In fact,
for Arcy = ρy with ρ < 0 we cannot stabilize (1.1) if all of our actuators are orthogonal to a given eigenfunction φ
of A whose associated eigenvalue α satisfies ρ+ α < 0.

We are going to present a setting, for the parabolic equation (1.2), where the number of actuators, which are
needed for stabilizability, depends polynomially on the norm of Arc. Still, the support of the control can be a
small subset, and the actuators can be piecewise constant.

Furthermore, while in [11, 15, 16, 21] the stabilizing feedback control operator was taken as the solution of
an appropriate differential Riccati equation, here we give an explicit simple form of the feedback operator. In
particular, for the simulations we do not need to solve any matrix Riccati equation. We recall that solving
a matrix Riccati equation is a difficult numerical task for large matrices, which arise from high resolution
approximations.

The feedback control. Let PF : H → F stand for the orthogonal projection in H onto a given finite-
dimensional space F ⊂ H. Further, let EM be the span of the eigenfunctions of the operator A associated
with the (repeated) first M eigenvalues. We denote the linear span of our actuators by U = span{Ψi | i ∈
{1, 2, . . . , M}}. We will assume that our actuators satisfy H = U ⊕E⊥M . We can see that U = EM satisfies the
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last condition, but we do not assume that our actuators are eigenfunctions. Actually, we are particularly inter-
ested in the case where the actuators Ψi are locally supported indicator functions, which are more appropriate
for real-world applications.

To describe a consequence of the central result of this paper, let P
E⊥M
U : H → U stand for the (nonorthogonal)

projection onto U along E⊥M . If

µM := αM+1 −
(

6 + 4
∣∣∣PE⊥MU ∣∣∣2

L(H)

)
|Arc|2X > 0, (1.3)

for a suitable Banach space X, then a feedback stabilizing control is given by

y → K(t)y := P
E⊥M
U (Ay +Arc(t)y − λy) ,

for any given constant λ > 0. More precisely, the system

ẏ(t) +Ay(t) +Arc(t)y(t)−K(t)y(t) = 0, y(0) = y0,

is exponentially stable: there exist suitable constants µ > 0 and D ≥ 1 such that

|y(t)|2H ≤ De−µ(t−s) |y(s)|2H , for all t ≥ s ≥ 0.

In the case of the parabolic equation (1.2), we know that αM+1 → +∞ as M → +∞. So (1.3) will hold

for a big enough M providing we can construct U = U(M) so that
∣∣∣PE⊥MU ∣∣∣2

L(H)
increases slower than αM+1,

that is, so that lim
M→+∞

αM+1

∣∣∣PE⊥MU ∣∣∣−2

L(H)
→ +∞. Notice that in the case U = EM , then P

E⊥M
EM

is an orthogonal

projection,
∣∣∣PE⊥MEM ∣∣∣L(H)

= 1, and the latter condition reduces to lim
M→+∞

αM+1 = +∞, which is known to hold.

Moreover (1.3) reads αM+1 > 10 |Arc|2X , which will clearly be satisfied for big enough M .

In the case U 6= EM , the projection P
E⊥M
U is nonorthogonal and

∣∣∣PE⊥MU ∣∣∣
L(H)

> 1. In this case condition (1.3) is

not trivial and will be checked numerically. The simulations, for system (1.2), show that for piecewise constant
actuators and by fixing the total volume of the support of the actuators, we can construct U(M) so that∣∣∣PE⊥MU ∣∣∣2

L(H)
remains bounded. Consequently, in case we know the asymptotic behavior of the eigenvalues αM ,

we can also find an estimate for the number M of actuators. Suppose we can indeed construct U(M) so that∣∣∣PE⊥MU(M)

∣∣∣2
L(H)

≤ C1 for all M ≥ 1. For a parabolic equation as (1.2) we know that the eigenvalues of the Laplacian

satisfy αM ≥ C2M
2
d , see [18]. Thus, (1.3) will follow from

(M + 1) > C
− d2
2 (6 + 4C1)

d
2 |Arc|dX . (1.4)

In particular M depends polynomially on |Arc|X , which improves the exponential dependence derived in [11,

15, 16, 21]. Differently from those previous works, here the support ω =
M⋃
i=1

supp Ψi of the controller is not fixed

a priori (still, its volume |ω| can be small).

While we are particularly interested in the nonautonomous case, the results are, of course, valid also in the
autonomous case. However, we recall that in the autonomous case other tools, like the spectral properties of
the system operator A + Arc can be used to construct a stabilizing controller and to give estimates on the
dimension of its range (in both cases of internal and boundary controls). We refer to the works [2, 4–6, 8, 24]
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and references therein. Unfortunately, the spectral properties of A+Arc(t) seem to be (at least, by themselves)
not appropriate for studying the stability of the corresponding nonautonomous system, see [28]. In [4, 5] the
feedbacks are constructed explicitly, while in [2, 6, 8, 24] they are Riccati based feedbacks.

The results in this work will be applied to internal controls for parabolic equations. The extension of our
procedure to the case of boundary controls is not clear yet, and will be addressed in a future work.

The rest of the paper is organized as follows. In section 2 we recall some results concerning weak solutions for
parabolic-like systems and the properties of nonorthogonal projections. In section 3 we prove our main result.
In section 4 we discuss the sufficient condition (1.3). In section 5 we present the results of some numerical
simulations showing the performance of our feedback and its robustness against estimation errors. Finally, in
section 6 we present additional remarks concerning our results.

Notation. We follow [11, 15, 16, 21]. We write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Rr := (r, +∞), for r ∈ R, and N0 := N \ {0}. We denote by Ω ⊂ Rd a bounded open
connected subset, with d ∈ N0.

For a normed space X, we denote by | · |X the corresponding norm, by X ′ its dual, and by 〈·, ·〉X′,X the
duality between X ′ and X. The dual space is endowed with the usual dual norm: |f |X′ := sup{〈f, x〉X′,X | x ∈
X and |x|X = 1}. In case X is a Hilbert space we denote the inner product by (·, ·)X .

Given an open interval I ⊆ R and two Banach spaces X, Y , we write W (I, X, Y ) := {f ∈ L2(I, X) | ∂tf ∈
L2(I, Y )}, where the derivative ∂tf is taken in the sense of distributions. This space is endowed with the natural

norm |f |W (I,X, Y ) :=
(
|f |2L2(I,X) + |∂tf |2L2(I, Y )

)1/2
. In the case X = Y we write H1(I, X) := W (I, X, X).

If the inclusions X ⊆ Z and Y ⊆ Z are continuous, where Z is a Hausdorff topological space, then we can

define the Banach spaces X × Y , X ∩ Y , and X + Y , endowed with the norms |(a, b)|X×Y :=
(
|a|2X + |b|2Y

) 1
2 ;

|a|X∩Y := |(a, a)|X×Y ; and |a|X+Y := inf(aX , aY )∈X×Y
{
|(aX , aY )|X×Y | a = aX + aY

}
, respectively. We can

show that, if X and Y are endowed with a scalar product, then also X × Y , X ∩ Y , and X + Y are. In case we
know that X ∩ Y = {0}, we say that X + Y is a direct sum and we write X ⊕ Y instead.

Again, if X and Y are endowed with a scalar product, then also W (I, X, Y ) is. The space of continuous linear
mappings from X into Y will be denoted by L(X → Y ). When X = Y we simply denote L(X) := L(X → X).

If the inclusion X ⊆ Y is continuous, we write X ↪−→ Y ; we write X
d
↪−→ Y , respectively X

c
↪−→ Y , if the

inclusion is also dense, respectively compact.
The kernel and range of a linear mapping A : Z → W , between vector spaces Z and W , will be denoted

Ker(A) := {x ∈ Z | Ax = 0} and Ran(A) := {Ax | x ∈ Z}, respectively.
C [a1,...,ak] denotes a nonnegative function of nonnegative variables aj that increases in each of its arguments.
Finally, C, Ci, i = 0, 1, . . . , stand for unessential positive constants.

2. Preliminaries

Here we introduce the general properties we ask for the operators A, and Arc, and derive some results on the
regularity of the solutions for system (1.1).

2.1. Assumptions on the state operators

Let us be given a Hilbert space H that we will consider as pivot space, that is, H ′ = H. Let V be another
Hilbert space with V ⊆ H.

Assumption 2.1. A ∈ L(V → V ′), and (y, z) 7→ 〈Ay, z〉V ′, V is a complete scalar product in V.

From now we will suppose that V is endowed with the scalar product (y, z)V := 〈Ay, z〉V ′, V , which still
makes V a Hilbert space. Necessarily, A is symmetric and A : V → V ′ is an isometry.

Assumption 2.2. The inclusion V ⊆ H is dense, continuous, and compact. That is, V
d, c
↪−−→ H.
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Necessarily, we have that

〈y, z〉V ′, V = (y, z)H , for all (y, z) ∈ H × V,

and also that the operator A is densely defined in H, with domain D(A) := {u ∈ V | Au ∈ H} endowed with
the scalar product (y, z)D(A) := (Ay, Az)H , and the inclusions

D(A)
d, c
↪−−→ V

d, c
↪−−→ H

d, c
↪−−→ V ′

d, c
↪−−→ D(A)′.

Further, A has a compact inverse A−1 : H → D(A), and we can find a nondecreasing system of (repeated)
eigenvalues (αn)n∈N0

and a corresponding complete basis of eigenfunctions (en)n∈N0
:

0 < α1 ≤ α2 ≤ · · · ≤ αn ≤ αn+1 → +∞ and Aen = αnen.

We can define, for every β ∈ R, the fractional powers Aβ , of A, by

Aβ
+∞∑
n=1

ynen :=

+∞∑
n=1

αβnynen,

and the corresponding domains D(A|β|) := {y ∈ H | A|β|y ∈ H}, and D(A−|β|) := D(A|β|)′. We have

that D(Aβ)
d, c
↪−−→ D(Aβ1), for all β > β1, and we can see that D(A0) = H, D(A1) = D(A), D(A

1
2 ) = V .

For the time-dependent operators we assume the following:

Assumption 2.3. For almost every t > 0 we have Arc(t) ∈ L(H → V ′), and there is a nonnegative constant Crc

such that, |Arc|L∞(R0,L(H→V ′)) ≤ Crc.

2.2. Weak solutions

We recall a regularity result for system

ẏ(t) +Ay(t) +Arc(t)y(t) + f(t) = 0, y(s0) = y0. (2.1)

That is, for (1.1) with a general external force in place of the control, and with the initial time shifted to t =
s0 ≥ 0. In what follows s0 and s1 stand for two nonnegative real numbers and I for a finite interval as follows.

I := (s0, s1), 0 ≤ s0 < s1. Further |I| := s1 − s0. (2.2)

Throughout the paper we assume that y0 ∈ H.

Lemma 2.4. Given f ∈ L2(I, V ′), there is a weak solution y ∈ W (I, V, V ′) for (2.1). Moreover y is unique
and depends continuously on the data:

|y|2W (I, V, V ′) ≤ C [|I|, Crc]

(
|y(s0)|2H + |f |2L2(I, V ′)

)
.

The proof is omitted since it follows by well known arguments.

Definition 2.5. For f ∈ L2
loc(Rs0 , V ′), the function y defined in Rs0 by the property that y|(s0, s) coincides

with the weak solution of (2.1) in (s0, s) for all s > s0, is well defined. It is called the global weak solution
of (2.1) in the half-line Rs0 = (s0, +∞).
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2.3. Nonorthogonal projections

We are going to use some nonorthogonal projection operators associated with a suitable direct sum splitting
the Hilbert space H.

Definition 2.6. Two closed subspaces F ⊂ H and E ⊂ H are said complementary in the Hilbert space H if
we have the direct sum H = F ⊕ E . The projection onto F along E will be denoted

P EF : H → F , x 7→ xF

where xF is defined by
x = xF + xE and (xF , xE) ∈ F × E .

Remark 2.7. The continuity of the projection P EF is well known, see [12, section 2.4, Theorem 2.10]. Notice
that PFE = 1− P EF . Here “1” is understood to be the identity operator on H.

The projection P EF is orthogonal if E = F⊥. We shall denote orthogonal projections simply as

PF := PF
⊥

F .

Henceforth, let us fix two sets {f1, f2, . . . , fM} ⊂ H and {g1, g2, . . . , gM} ⊂ H in the Hilbert space H. We
assume that the vectors of each set are linearly independent and consider the M -dimensional subspaces F :=
span{f1, f2, . . . , fM} and G := span{g1, g2, . . . , gM}.

We denote the “coordinates to span” mapping as follows

[F ] : MM×1 → F , [F ]v = [F ]


v1

v2

...
vM

 :=

M∑
i=1

vifi,

whereMm×n denotes the space of (m×n)-matrices with real entries. Notice that [F ] depends on the (ordered)
basis {f1, . . . , fM}. We define [G] : MM×1 → G analogously. We will also denote the matrix

[(G,F)H ] := [(gi, fj)H ] ∈MM×M

whose entry in the i-th row and j-th column is (gi, fj)H . Further for a given vector y ∈ H, we introduce the
vectors

[(G, y)H ] :=


(g1, y)H
(g2, y)H

...
(gM , y)H

 and [(y,F)H ] :=
[
(y, f1)H (y, f2)H . . . (y, fM )H

]
.

Lemma 2.8. The following conditions are equivalent

(a): H = F ⊕ G⊥,

(b): [(G,F)H ] is invertible,

(c): PGF = G.

Proof. We will show the implications (a)⇒(c)⇒(b)⇒(a).
(a)⇒(c): G = PGH = PG(F ⊕ G⊥) = PGF .
(c)⇒(b): Given v ∈ Ker[(G,F)H ], we have y = [F ]v ∈ F

⋂
G⊥, which implies PGy = 0. Since (PG |F ) : F → G

is necessarily an isomorphism, and 0 = PGy = (PG |F )y, it follows that y = 0 and v = [F ]−1y = 0.
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(b)⇒(a): Let h ∈ H. We can write

h = z + w, with (z, w) ∈ (F + G⊥)× (F + G⊥)⊥.

Therefore we have that w ∈ F⊥
⋂
G, which implies that 0 = [(w,F)H ] = ([G]−1w)>[(G,F)H ], where B> denotes

the transpose of the matrix (vector) B. Necessarily [G]−1w = 0 and so w = 0, which gives us h = z ∈ F + G⊥.
We can concude that H = F + G⊥. Finally, if v ∈ F

⋂
G⊥ we find that 0 = [(G, v)H ] = [(G,F)H ]([F ]−1v),

which implies that [F ]−1v = 0, hence v = 0. �

Lemma 2.9. If H = F ⊕ G⊥, then the associated propjection onto F along G⊥ is given by

PG
⊥

F y =
(
[F ] ◦ [(G,F)H ]−1

)
[(G, y)H ], for all y ∈ H. (2.3a)

If in addition each of the sets {f1, f2, . . . , fM} and {g1, g2, . . . , gM} is orthonormal, then

PG
⊥

F = PF ◦ [G] ◦ ([(G,F)H ][(F ,G)H ])−1 ◦ [G]−1 ◦ PG . (2.3b)

Proof. Let us denote the mapping y 7→ Py :=
(
[F ] ◦ [(G,F)H ]−1

)
[(G, y)H ]. It follows that for any pair (f, h) ∈

F × G⊥,

P(f + h) = Pf.
Next notice that [(G,F)H ]v = [(G, [F ]v)H ], which implies v = [(G,F)H ]−1[(G, [F ]v)H ], for any given vector v ∈
MM×1. Therefore, since f = [F ][F ]−1f

P(f + h) =
(
[F ] ◦ [(G,F)H ]−1

)
[(G, [F ][F ]−1f)H ] = [F ][F ]−1f = f,

that is, necessarily PG
⊥

F = P.
If the sets {f1, f2, . . . , fM} and {g1, g2, . . . , gM} are orthonormal, then it is clear that for all (y, v) ∈ H ×

MM×1,

[(G, y)H ] = ([G]−1 ◦ PG)y and PF ([G]v) = [F ]([(F ,G)H ]v)

which, together with (2.3a), leads us to

PG
⊥

F y =
(
[F ] ◦ [(G,F)H ]−1

)
[(G, y)H ] = (PF ◦ [G] ◦ [(F ,G)H ]−1 ◦ [(G,F)H ]−1 ◦ [G]−1 ◦ PG)y,

which is equivalent to (2.3b). �

Now we present a corollary on the computation of the norm
∣∣∣PG⊥F ∣∣∣

L(H)
, which we will use in the numerical

simulations.

Corollary 2.10. If each of the sets {f1, f2, . . . , fM} and {g1, g2, . . . , gM} is orthonormal and if H = F ⊕ G⊥,
then the projection onto F satisfies

∣∣∣PG⊥F ∣∣∣2
L(H)

=

(
min
θ
{θ is an eigenvalue of [(G,F)H ][(F ,G)H ]}

)−1

.

Proof. First of all, note that it follows, from Lemma 2.8, that [(G,F)H ][(F ,G)H ] is symmetric and positive
definite. It is well known that the orthogonal projections PF and PG have norm 1. It is also true that the
mappings [G] ∈ L(MM×1,G) and [F ] ∈ L(MM×1,F) are bijective isometries (we suppose MM×1 ∼ RM
endowed with the usual Euclidean scalar product). Now we observe that the mapping [(G,F)H ]−1 ∈ L(MM×1)



8 K. Kunisch and S. S. Rodrigues

is exactly the mapping sending the coordinates k of a vector field g = [G]k ∈ G to the coordinates of the

projection PG
⊥

F g ∈ F . Therefore we have that

∣∣∣PG⊥F ∣∣∣2
L(H)

= sup
k∈MM×1\{0}

|[(G,F)H ]−1k|2MM×1

|k|2MM×1

= sup
k∈MM×1\{0}

([(G,F)H ]−1k)>[(G,F)H ]−1k
k>k

= sup
k∈MM×1\{0}

k>([(G,F)H ][(F,G)H ])−1k
k>k

= max
β
{β is an eigenvalue of ([(G,F)H ][(F ,G)H ])−1}.

The proof is finished. �

3. The stabilizing feedback control

Here we present the stabilizing control for system (1.1), provided a general condition is satisfied by the set
of actuators.

Given M ∈ N0, let EM be the space spanned by the eigenfunctions associated with the first M eigenvalues
of A:

EM := span{en | Aen = αnen and n ∈ {1, 2, . . . ,M}}, M ≥ 1. (3.1)

Remark 3.1. The spaces EM = PEMH are well defined as soon as the complete basis of eigenfunctions {en |
Aen = αnen, n ∈ N0} has been fixed (and further ordered for eigenfunctions corresponding to the same
eigenvalue).

3.1. The condition for stabilizability

We will show that a sufficient condition for the existence of a stabilizing control taking values in a sub-
space U = span{Ψ1,Ψ2, . . . ,ΨM} ⊂ H is given by

H = U ⊕ E⊥M , (3.2:CSa)

αM+1 > inf
γ∈R2

0,
(2−γ1−γ2)>0

1

(2− γ1 − γ2)

(
γ−1

1 Ξ1 + γ−1
2

(
2 + 2

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
Ξ2

)
, (3.2:CSb)

where

Ξ1 := sup
(t,Y )∈R0×(E⊥M∩V )

|〈Arc(t)Y, Y 〉V ′,V |2R
|Y |2H |Y |

2
V

≤
∣∣∣PE⊥MArcPE⊥M

∣∣∣2
L∞(R0,L(H,V ′))

, (3.3a)

Ξ2 :=
∣∣∣PEMArcPE⊥M

∣∣∣2
L∞(R0,L(H,V ′))

. (3.3b)

In particular, we note that when Ξ2 = 0, as in the case Arcy = ρy for some constant ρ ∈ R, then the

norm
∣∣∣PE⊥MU ∣∣∣2

L(H)
of the projection plays no role in (3.2:CSb).

Observe that from (3.2:CSa) it necessarily follows that U is a M -dimensional space, because (3.2:CSa)
implies EM = PEMH = PEM (U ⊕ E⊥M ) = PEMU , then the vectors in {Ψ1,Ψ2, . . . ,ΨM} are necessarily linearly
independent.

Lemma 3.2. Assume that U satisfies (3.2:CSa), then we also have V ′ = U ⊕ E⊥,V
′

M . Here the space E⊥,V
′

M

stands for the orthogonal complement of EM in V ′.
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Proof. Let x ∈ V ′. Then x ∈ EM⊕E⊥,V
′

M ⊆ U+E⊥M+E⊥,V
′

M ⊆ U+E⊥,V
′

M . We can conclude that V ′ = U+E⊥,V
′

M .

Now if y ∈ U
⋂
E⊥,V

′

M , then for all w ∈ EM

(y, w)H = (A−
1
2 y,A−

1
2Aw)H = (y,Aw)V ′ = 0,

since A maps EM onto itself. That is, y ∈ U
⋂
E⊥M = {0}. �

From Lemma 3.2 the projections P
E⊥M
U ∈ L(H) and PU

E⊥M
∈ L(H) can be extended to projections P

E⊥,V
′

M

U ∈

L(V ′) and PU
E⊥,V

′
M

∈ L(V ′). Hereafter, for simplicity, we will still denote the latter by P
E⊥M
U ∈ L(V ′) and PU

E⊥M
∈

L(V ′) instead.

Lemma 3.3. Assume that U satisfies (3.2:CSa), then we have the following properties.

PEM = PEMP
E⊥M
U , P

E⊥M
U = P

E⊥M
U PEM , and PUE⊥M

= PE⊥M + PUE⊥M
PEM .

Proof. The proof is straightforward. �

We recall the interval I = (s0, s1) in (2.2).

Lemma 3.4. Let U ⊂ H satisfy (3.2:CSa), w0 ∈ E⊥M , and q ∈ H1(I, EM ). Then there exists a weak solution,
taking its values in E⊥M ⊂ H, for the system

Q̇+ PUE⊥M

(
(A+Arc) (Q+ q)

)
+ PUE⊥M

q̇ = 0, Q(s0) = w0. (3.4)

Moreover the solution is unique and depends continuously on the data as follows:

|Q|2W (I,V,V ′) ≤ C[
|I|,M,Crc,

∣∣∣∣PUE⊥
M

∣∣∣∣
L(V ′)

,

∣∣∣∣PE⊥MU ∣∣∣∣
L(H)

] (|w0|2H + |q|2H1(I,H)

)
. (3.5)

Proof. Existence of a solution satisfying (3.4) follows by standard arguments. We restrict ourselves to the
following estimates, which will in particular show the structure of the constant C in (3.5). We look for Q taking

its values in V
⋂
E⊥M = V

⋂
PU
E⊥M

H. Observe that A maps V
⋂
E⊥M into E⊥,V

′

M ⊂ V ′. For Q ∈ V
⋂
E⊥M we have

that AQ ∈ E⊥,V
′

M , PU
E⊥M

AQ = AQ, and in particular 〈PU
E⊥M

AQ, Q〉V ′, V = |Q|2V . Taking the duality product

with 2Q in (3.4), and using Lemma 3.3, we obtain

d

dt
|Q|2H = −2 |Q|2V − 2〈PUE⊥MAq,Q〉V ′,V − 2〈PUE⊥MArc(Q+ q), Q〉V ′,V − 2〈PUE⊥M q̇, Q〉V ′,V

= −2 |Q|2V − 2〈PE⊥MArcQ,Q〉V ′,V − 2〈PUE⊥MPEMArcQ,Q〉V ′,V

− 2〈PUE⊥MAq,Q〉V ′,V − 2〈PUE⊥MArcq,Q〉V ′,V − 2〈PUE⊥M q̇, Q〉V ′,V

and for any given positive constants γ1, γ2, and γ3,

d

dt
|Q|2H ≤ −(2− γ1 − γ2 − 3γ3) |Q|2V + γ−1

1 Ξ1 |Q|2H + γ−1
2

∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)
Ξ2 |Q|2H

+ γ−1
3

∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)

(
|q|2V + |q̇|2V ′

)
+ γ−1

3

∣∣∣PUE⊥M ∣∣∣2L(V ′)
Ξ3 |q|2H
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with Ξ1 and Ξ2 as in (3.3a)-(3.3b) and with

Ξ3 := |PU⊥ArcPEM |
2
L(V ′) .

For X ↪−→ Y , let us denote by |ι|L(X→Y ) the norm of the inclusion mapping ι(x) = x for all x ∈ X. If X0 ⊆ X
is a subspace of X we also denote by

∣∣ι|X0

∣∣
L(X→Y )

the norm of the inclusion X0 ↪−→ Y . Recall that for p ∈ EM ,

we have |p|2H ≤ αM |p|2V ′ . Also, for z ∈ E⊥M we have |z|2V ′ ≤ α−1
M+1 |p|

2
H . Therefore, using Lemma 3.3 and the

identity 1 = P
E⊥M
U + PU

E⊥M
, we find

∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)
≤
∣∣∣ι|E⊥M ∣∣∣2L(H,V ′)

∣∣∣PUE⊥MPEM ∣∣∣2L(H,H)

∣∣ι|EM ∣∣2L(V ′,H)
|PEM |

2
L(V ′,V ′)

≤ α−1
M+1

∣∣∣PUE⊥MPEM ∣∣∣2L(H)
αM ≤

∣∣∣PEM − PE⊥MU ∣∣∣2
L(H)

≤ 2 + 2
∣∣∣PE⊥MU ∣∣∣2

L(H)
,

which, since |ι|2L(H,V ′) ≤ α
−1
1 , leads us to

d

dt
|Q|2H ≤ −(2− γ1 − γ2 − 3γ3) |Q|2V +

(
γ−1

1 Ξ1 + γ−1
2

(
2 + 2

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
Ξ2

)
|Q|2H

+ γ−1
3

(∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)
+
∣∣∣PUE⊥M ∣∣∣2L(V ′)

Ξ3

)(
αM |q|2H + |q|2H + α−1

1 |q̇|
2
H

)
. (3.6)

For any time t ∈ I and any triple (γ1, γ2, γ3) ∈ R3
0 such that that 2 − γ1 − γ2 − 3γ3 > 0, by Gronwall’s

inequality we obtain

|Q(t)|2H ≤ eD1(t−s0)
(
|w0|2H +D2 |q|2H1(I,H)

)
(3.7)

with

D1 := C2
rc

(
γ−1

1 + 2γ−1
2 + 2γ−1

2

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
,

D2 := γ−1
3

(∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)
+
∣∣∣PUE⊥M ∣∣∣2L(V ′)

Ξ3

)(
1 + αM + α−1

1

)
,

where C2
rc was defined in Assumption 2.3. Some more standard estimates lead us to (3.5).

Finally, the uniqueness of Q follows from the fact that the difference between two solutions will solve (3.4)
with q = 0 and w0 = 0, and in that case the right hand side of (3.7) vanishes. �

3.2. The explicit closed loop system

Hereafter we suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. The following theorem shows that
condition (3.2:CS) guarantees the existence of a finite dimensional explicit stabilizing feedback operator.

Theorem 3.5. Let λ > 0. If U satisfies (3.2:CS), then the system

ẏ(t) +Ay(t) +Arc(t)y(t)− PE
⊥
M

U

(
Ay(t) +Arc(t)y(t)− λy(t)

)
= 0, (3.8a)

y(0) = y0, (3.8b)

has a unique weak solution. Moreover there is a pair of constants D ≥ 1 and µ > 0 such that

|y(t)|2H ≤ De−µ(t−s0) |y(s0)|2H , for all t ≥ s0 ≥ 0. (3.9)
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Proof. Let us take q = e−λtPEM y0 and w0 = PE⊥M y0, and let Q be the corresponding solution to system (3.4).

Then, we observe that y = Q+ q solves (3.8). In fact

ẏ = −PUE⊥M
(

(A+Arc) (Q+ q)
)
− PUE⊥M q̇ + q̇ = −PUE⊥M

(
(A+Arc) y

)
+ P

E⊥M
U q̇

= −
(

1− PE
⊥
M

U

)(
(A+Arc) y

)
− λPE

⊥
M

U q,

where we have used 1 = P
E⊥M
U + PU

E⊥M
(cf. Remark 2.7). Therefore (3.8a) follows. Clearly we also have y(0) =

Q(0) + q(0) = w0 + PEM y0 = y0.
From (3.2:CSb) we can choose a pair (γ̃1, γ̃2) such that 2− γ̃1 − γ̃2 > 0 and

µ := (2− γ̃1 − γ̃2)αM+1 −
(
γ̃−1

1 Ξ1 + γ̃−1
2

(
2 + 2

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
Ξ2

)
> 0.

Then we can also choose a small enough γ̃3 > 0 such that

µγ̃ := (2− γ̃1 − γ̃2 − 3γ̃3)αM+1 −
(
γ̃−1

1 Ξ1 + γ̃−1
2

(
2 + 2

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
Ξ2

)
> 0.

Therefore, from (3.6) and the Gronwall’s inequality, it follows that, for any t ≥ s0 ≥ 0,

|Q(t)|2H ≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2

∫ t

s0

e−µγ̃(t−s)(|q(s)|2H + |q̇(s)|2H ds

≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)

∫ t

s0

e−µγ̃(t−s)e−2λ(s−s0)|q(s0)|2H ds (3.10)

with D̃2 := γ̃−1
3

(∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)
+
∣∣∣PUE⊥M ∣∣∣2L(V ′)

Ξ3

)(
1 + αM + α−1

1

)
.

Now, if 2λ 6= µγ̃ , we obtain

|Q(t)|2H ≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)|q(s0)|2He−µγ̃t+2λs0
e(µγ̃−2λ)t − e(µγ̃−2λ)s0

µγ̃ − 2λ

≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)|q(s0)|2H |µγ̃ − 2λ|−1e−µ(t−s0)

with µ := min{µγ̃ , 2λ} > 0.
On the other hand, if 2λ = µγ̃ we obtain

|Q(t)|2H ≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)|q(s0)|2H
∫ t

s0

e−µγ̃(t−s0) ds

≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)|q(s0)|2He−µγ̃(t−s0)(t− s0)

≤ e−µγ̃(t−s0)|Q(s0)|2H + D̃2(1 + λ2)|q(s0)|2He−µ(t−s0)e−1(µγ̃ − µ)−1

for any µ < µγ̃ . Notice that e−1(µγ̃ − µ)−1 = max
s>0

e−(µγ̃−µ)ss.

Thus, in either case, there exists a constant D3 such that

|Q(t)|2H ≤ e−µγ̃(t−s0)|Q(s0)|2H +D3e−µ(t−s0)|q(s0)|2H ,
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with µ < min{µγ̃ , 2λ}. This implies that

|y(t)|2H = |Q(t)|2H + |q(t)|2H ≤ e−µγ̃(t−s0) |Q(s0)|2H + (1 +D3)e−µ(t−s0) |q(s0)|2H
≤ De−µ(t−s0) |y(s0)|2H (3.11)

with µ < min{µγ̃ , 2λ} > 0 and D := 1 +D3 ≥ 1. �

Next we prove that our feedback operator in Theorem 3.5 is bounded.

Theorem 3.6. The feedback operator in Theorem 3.5

y → K(t)y := P
E⊥M
U (Ay +Arc(t)y − λy)

and its associated control η(t) := K(t)y(t) are bounded:

|K|L∞(R0,L(H)) ≤
∣∣∣PE⊥MU ∣∣∣

L(V ′,H)

(
α

1
2

M + |Arc|L∞(R0,L(H,V ′)) + λα
− 1

2
1

)
, (3.12a)∣∣∣e ε2 (t−s0)η

∣∣∣2
L2(Rs0 ,H)

≤ |K|2L∞(R0,L(H))

D

µ− ε
|y(s0)|2H , for any ε < µ, (3.12b)

with µ as in (3.9).

Proof. Recalling that P
E⊥M
U = P

E⊥M
U PEM and PEMA = APEM , we find

|K(t)|L(H) ≤
∣∣∣PE⊥MU ∣∣∣

L(V ′,H)

(∣∣A|EM ∣∣L(H,V ′)
+ |Arc(t)|L(H,V ′) + λα

− 1
2

1

)
,

which implies that

|K|L∞(R0,L(H)) ≤
∣∣∣PE⊥MU ∣∣∣

L(V ′,H)

(
α

1
2

M + |Arc|L∞(R0,L(H,V ′)) + λα
− 1

2
1

)
,

Now from (3.9) we find that the associated control η(t) satisfies, for any ε < µ,∣∣∣e ε2 (t−s0)η
∣∣∣2
L2(Rs0 ,H)

≤ |K|2L∞(R0,L(H))

∣∣∣e ε2 (t−s0)y
∣∣∣2
L2(Rs0 ,H)

≤ |K|2L∞(R0,L(H))

D

µ− ε
|y(s0)|2H ,

which completes the proof. �

Remark 3.7. We can prove that under the same condition (3.2:CS) the feedback given by y → K∗(t)y :=

−PE
⊥
M

U (Arc(t)y − λy) is also stabilizing (which corresponds to take q∗ = PEM y as the solution of the system
q̇∗ = −Aq∗ − λq∗, q∗(0) = PEM y(0)). In this case, in (3.12a) we obtain a better estimate |K∗|L∞(R0,L(H)) ≤∣∣∣PE⊥MU ∣∣∣

L(V ′,H)

(
|Arc|L∞(R0,L(H,V ′)) + λα

− 1
2

1

)
. However, from simulations we have performed (and will not present

here) it is not clear whether the associated bound constant D in (3.9) (and in (3.12b)) will be smaller for K∗
than for K. Thus, we have chosen to consider the feedback K only, whose associated projection q = PEM y is
more explicit.

Remark 3.8. We observe that the stabilization result in Theorem 3.5 still holds true when EM is replaced by a

space spanned by any set of M linearly independent eigenfunctions, say by ẼM = span{eσ(i) | i ∈ {1, 2, . . . ,M}}
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with σ : N0 → N0 being an increasing function. For that we just need to replace the condition (3.2:CS) by the
analogous one with

(ẼM ,min{αj | αj /∈ {ασ(1), ασ(2), . . . ασ(M)}})
in the place of (EM , αM+1). This will be used in section 4.8.

4. Remarks on the proposed sufficient condition for stability

By considering the values (γ1, γ2) = ( 1
2 ,

1
2 ) we conclude that (3.2:CSb) holds if

αM+1 >

(
6 + 4

∣∣∣PE⊥MU ∣∣∣2
L(H)

)
|Arc|2L∞(R0,L(H,V ′)) . (4.1)

which is exactly (1.3), in the Introduction.

Once we know |Arc|2L∞(R0,L(H,V ′)) and αM+1, we can investigate (4.1), by computing
∣∣∣PE⊥MU ∣∣∣2

L(H)
.

In applications the actuators will be in a suitable class U (of functions). For example, for parabolic equa-
tions (1.2), we could consider actuators which are supported in an apriori given subset, or we could consider
piecewise constant actuators.

The question is: given |Arc|2L∞(R0,L(H,V ′)) can we find M and actuators {ΨM
i | i = 1, 2, . . . ,M} ⊂ U so

that U = U(M) = span{ΨM
i | i = 1, 2, . . . ,M} satisfies (4.1)?

For a general |Arc|2L∞(R0,L(H,V ′)) we can say that (4.1) will hold for big enough M if we know that

lim
M→+∞

αM+1

∣∣∣PE⊥MU ∣∣∣−2

L(H)
= +∞. (4.2)

This results in the question: can we find a large enough M and a set of actuators {ΨM
i | i = 1, 2, . . . ,M} so

that their span, U = U(M) = span{ΨM
i | i = 1, 2, . . . ,M}, satisfies (4.2)? We recall that the answer is not

trivial when U 6= EM because
∣∣∣PE⊥MU ∣∣∣

L(H)
> 1 and, depending on U , may take arbitrary large values.

4.1. The case M = 0. Free dynamics

Taking no control in (3.8a) is equivalent to taking U = {0}. That is, the free dynamics is followed. This
corresponds to take M = 0, once we define E0 := {0}. Indeed, we have H = U ⊕ H = U ⊕ E⊥M , and

PEM = 0 = P
E>M
U . In particular (3.2:CSa) is satisfied.

Since, for M = 0 we have that Ξ2 = 0, the condition for stability (3.2:CSb) reads for free dynamics

α1 > inf
γ1∈R0,

(2−γ1)>0

1

(2− γ1)γ1
Ξ1 = Ξ1 = sup

(t,Y )∈R0×V

|〈Arc(t)Y, Y 〉V ′,V |2R
|Y |2H |Y |

2
V

.

4.2. Checking the proposed sufficient condition numerically

We assume here that the complete system of eigenfunctions {ei | i ∈ N0} of A is orthonormal in the H-scalar
product. We can also suppose that {ΨM

i | i = 1, 2, . . . ,M} is an orthonormal family in the H-scalar product,
otherwise we just orthonormalize it.

From Corollary 2.10, condition (4.2) will follow from

lim
M→+∞

αM+1 min Eig([Θ(M)]) = +∞, (4.3)
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where for simplicity we have denoted by Eig(([Θ(M)]) the set of eigenvalues of the symmetric matrix

[Θ(M)] := [(EM ,U)H ][(U , EM )H ]. (4.4)

Now we show how we are going to check (4.3) numerically, in the case of a parabolic equation as in (1.2) under
homogeneous Dirichlet boundary conditions, with A = −ν∆: V → V ′, ν > 0.

In this setting we will have the spaces H = L2(Ω), V = H1
0 (Ω), and V ′ = H−1(Ω).

We will consider a given triangulation ΩD of the domain Ω with nodes x. As basis functions we take the
usual piecewise linear (hat) functions.

For a given (regular enough) function u, let u(x) denote the column vector of the values of u at the nodes.
Let M denote the mass matrix associated to our finite-element subspace in H. We take the following discrete

approximations:

[(U , EM )H ] ≈ P(M) :=


ΨM

1 (x)>

ΨM
2 (x)>

...
ΨM
M (x)>

M
[
e1(x) e2(x) . . . eM (x)

]
,

[Θ(M)] ≈ [Θ(M)] := P(M)>P(M),

and

min Eig([Θ(M)]) ≈ min Eig([Θ(M)]).

The matrix P(M)>P(M) is symmetric and positive semidefinite. By (3.2:CSa) and Lemma 2.8 the ma-
trix [Θ(M)] is invertible. Up to discretization, this translates to the assumption that [Θ(M)] is positive definite,
that is, min Eig([Θ(M)]) > 0.

Denoting ϑM := min Eig([Θ(M)]), condition (4.3) will read

lim
M→+∞

αM+1ϑM = +∞. (4.5)

4.3. Construction of the actuators in one dimension

We will perform some 1D simulations on the interval Ω = (0, L), for piecewise constant actuators and A =
−ν∆ = −ν∂xx. For a suitable chosen U = U(M), the simulations suggest that ϑM ≥ δ > 0 remains away from
zero, with δ independent of M , when the total length of the actuators support is fixed. This confirms (4.5).

In this 1D case the finite elements are chosen with respect to the partition x =
[
0h 1h . . . Nh

]>
of Ω,

where h = L/N . We fix the total length of the support of the control, by setting the total volume to be rL,
with r ∈ (0, 1).

Piecewise constant actuators {ΨM
i | i = 1, 2, . . . ,M} are constructed as follows: consider the M -th normalized

eigenfunction eM (x) = ( 2
L )

1
2 sin(Mπx

L ) whose extrema are located at

qj = (2j − 1)
L

2M
, j = 1, 2, . . . ,M.

Now we set the actuators as the indicator functions

ΨM
i (x) := 1ωi(x) :=

{
1, if x ∈ ωi;
0, if x ∈ (0, L) \ ωi;

,



Stabilization for nonautonomous parabolic systems 15

with

ωi := (qj −
rL

2M
, qj +

rL

2M
), i = 1, 2, . . . ,M.

Note that all actuators have the same support length: length(supp(ΨM
i )) = rL

M , and the total length of the

support of the control is independent of M : length

(
M⋃
i=1

supp(ΨM
i )

)
=

M∑
i=1

length(supp(ΨM
i )) = rL.

4.4. The particular case of a constant reaction

From condition (3.2:CS) we see that
∣∣∣PE⊥MU ∣∣∣

L(H)
will play no role when Ξ2 =

∣∣∣PEMArcPE⊥M

∣∣∣2
L∞(R0,L(H,V ′))

= 0.

This is the case for a constant reaction Arcy = ρy.
With ρ < 0, the uncontrolled system

ẏ +Ay + ρy = 0

is not stable if ρ < −α1. In this case
∣∣∣PE⊥MArcPE⊥M

∣∣∣2
L∞(R0,L(H,V ′))

= α−1
M+1ρ

2, and the sufficient condi-

tion (3.2:CS) reduces to

H = U ⊕ E⊥M

αM+1 > inf
γ1∈R0,

(2−γ1)>0

1

(2− γ1)
γ−1

1 α−1
M+1ρ

2 = α−1
M+1ρ

2.

In particular, here the norm
∣∣∣PE⊥MU ∣∣∣

L(H)
plays no role. That is, it is sufficient to take M actuators such that

αM+1 > ρ and H = U ⊕ E⊥M . Recall that the latter identity is equivalent to the invertibility of [Θ(M)], which
can be checked numerically.

Notice, however that
∣∣∣PUE⊥MPEM ∣∣∣2L(V ′)

and
∣∣∣PUE⊥M ∣∣∣2L(V ′)

|PU⊥ArcPEM |
2
L(V ′) still play a role to the constant D

in (3.11), and thus also in the norm of the feedback control in (3.12b).

4.5. The particular case of a conservative convection

It is well known that the parabolic system (1.2), under homogeneous Dirichlet boundary conditions is stable
with a = 0 and with a general b ∈ L∞(R0 × Ω,Rd) satisfying ∇ · b = 0. We can see that condition (3.2:CS)
reflects this fact. Indeed, in this case we have 〈Arcy, y〉V ′,V = 〈∇ · (by), y〉V ′,V = 0. Thus, for M = 0, we obtain
that Ξ1 = 0. From section 4.1 we conclude that the uncontrolled system is stable, since α1 > 0.

4.6. Numerical examples

Here we perform simulations concerning the computation of ϑM =
∣∣∣PE⊥MU ∣∣∣−2

L(H)
appearing in the sufficient

condition (4.5). We would like to have ϑM > 0 as large as possible, and remaining away from 0 as M increases.
Our actuators 1ωi = 1ωi(x) will be constructed as in section 4.3 (in the figures “Dact = mxe” underlines that

the actuators are distributed following the extrema of the eigenfunction eM ). Figure 1 show those actuators for
selected values of M , for L = 1.

To compute ϑM we have proceeded as follows. We have considered the basis {sin( iπxL ) | i ∈ {1, 2, . . . ,M}}
for EM and the basis {1ωi | i ∈ {1, 2, . . . ,M}}} for U . Then we have orthonormalized these bases, con-
structed [Θ(M)], and computed ϑM . The orthonormalization have been done numerically through the Gram–
Schmidt procedure (in the “mass” scalar product (v, w) 7→ w>Mv).
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Figure 1. The family of actuators.

In Figure 2(a) we see how ϑM depends on M , for several rates r of the control support volume rL. It seems
that, for fixed r, ϑM tends to a positive constant, thus remaining away from zero.

Further ϑM increases with r ∈ (0, 1
2 ). That is, as we would intuitively expect, the norm of PEMU gets larger

as the volume of the control support gets smaller.
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(b) Dependence on r

Figure 2. The smallest eigenvalue of [Θ(M)].

In Figure 2(b) we see how ϑM depends on r, for a fixed given pair (M,L).

The simulations suggest that there exist a constant C = C(r) > 0 so that
∣∣∣PE⊥MU ∣∣∣2

L(H)
≤ C(r). Notice that

for Ω = (0, L), the eigenvalues of A = −ν∆ are ν π
2

L2M
2 which allows us to obtain an estimate

M > ν−
1
2 L
π (6 + 4C(r))

1
2 |Arc|L∞(R0,L(H,V ′))

on the number of actuators which allow us to stabilize the system.
In Figure 2(b) we can also see that such dependence does not depend on L, once (r,M) is given. Indeed

this follows from the fact that for a given two intervals (0, L1) and (0, L2), for normalized eigenfunctions eLni =

( 2
Ln

)
1
2 sin( iπxLn ) ∈ L2((0, Ln)), and for normalized actuators ψLna,b(x) = ( 1

Ln(b−a) )
1
2 1(Lna,Lnb)(x) ∈ L2((0, Ln)),

with 1 > b > a > 0, we have that,

(eL1
i , ψL1

a,b)L2((0,L1)) = (eL1
i , ψL2

a,b)L2((0,L2)).
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This means that, for normalized eigenfunctions and actuators, the entries in [(EM ,U)H ] and in [Θ(M)] do
not depend on the lenght Ln provided, when taking actuators 1(L1a,L1b) in (0, L1), we take the corresponding
actuators 1(L2a,L2b) on (0, L2).

4.7. On the placement of the actuators

Intuitively we expect that distributing the actuators over the interval Ω = (0, L) is better than concentrating
them in some region. This is confirmed in Figures 3 and 4. The uniformly distributed actuators 1ωi (“Dact = uni”
in figures) correspond to

ωi =
(

iL
M+1 −

rL
2M , iL

M+1 + rL
2M

)
, i = 1, . . . ,M,

while the concentrated actuators (“Dact = con” in figures) correspond to a uniform partition of (L2 −
rL
2 ,

L
2 + rL

2 ):

ωj =
(
L
2 −

rL
2 + (j − 1) rLM , L2 −

rL
2 + j rLM

)
, j = 1, . . . ,M.
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Figure 3. Uniformly distributed actuators.
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Figure 4. Concentrated actuators.

We see that the distributed actuators present an analogous behavior as those constructed as in section 4.3,
and ϑM remains away from 0. For the concentrated actuators ϑM reaches values very close to zero. The
simulations were done in Matlab with machine “precision” eps ≈ 2.2204

1016 .
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4.8. Construction of the actuators in higher dimensional domains

For general domains Ω ⊂ Rd the eigenvalues of the Dirichlet Laplacian, see [18, Corollary 1], satisfy αM ≥
CdM

2
d , with Cd = (2π) |Bd|−

2
d |Ω|−

2
d d
d+2 , where |Bd| denotes the volume of the unit ball in Rd and |Ω| the

volume of Ω. Therefore, condition (4.1) follows from

M + 1 > Cd
− d2

(
6 + 4

∣∣∣PE⊥MU ∣∣∣2
L(H)

) d
2

|Arc|dL∞(R0,L(H,V ′)) , (4.6)

which gives us an estimate for M which depends polynomially on |Arc|dL∞(R0,L(H,V ′)).

Now the question we may ask is whether we can also construct the actuators U(M) so that the norm∣∣∣PE⊥MU ∣∣∣2
L(H)

remains bounded as M increases.

4.8.1. The case of a Rectangle

In the case of a rectangle Ω× =
d

×
n=1

(0, Ln) we know that the eigenfunctions of ∆ are the products of the 1D

eigenfunctions. Now we fix r ∈ (0, 1) and define, in each interval (0, Ln), the 1D actuators as in section 4.3 (say
covering a total region of volume rLn), and their linear span U = (U)n. The notation (·)n simply means that
we are referring to the domain (0, Ln). Next, we consider actuators defined in Ω× which are the products of
those 1D actuators. That is, normalized eigenfunctions and actuators read, respectively

e×[j] = e1
j1(x1)e2

j2(x2) . . . edjd(xd) and Ψ×[j] = Ψ
1

j1(x1)Ψ
2

j2(x2) . . .Ψ
d

jd
(xd), j ∈ Nd0,

where x = (x1, x2, . . . , xd) ∈ Ω×. For example, we have e2
j2

(x2) = ( 2
L2

)
1
2 sin( j2πx2

L2
) ∈ (EM )2 and Ψ

3

j3(x3) =
1
|ωj3 |

1ωj3 (x3) ∈ (U)3.

Now we recall Remark 3.8 and consider the spaces

ẼMd = E×M := span
{
e×[j] | j ∈ {1, 2, . . . ,M}

d
}

and U× = span
{

Ψ×[j] | j ∈ {1, 2, . . . ,M}
d
}
.

Let us denote Hn := L2((0, Ln)), for n ∈ {1, 2, . . . , d}, and H× := L2(Ω×). We will also use the notation (·)n
for operators, to underline that the operator (P )n is understood to be in L(Hn). Namely, the projections

(P
E⊥M
U )n and (PEM )n are in L(Hn).

We “extend” the projections (P
E⊥M
U )n to operators (P

E⊥M
U )×n in L(H×) defined as

(P
E⊥M
U )×n f(x) :=

M∑
jn=1

(∫ Ln

0

f(x1, x2, . . . , xn, . . . , xd)e
n
jn(xn) dxn

)
(P

E⊥M
U )ne

n
jn(xn). (4.7)

We have the following Lemmas 4.1 and 4.2, whose proofs are given in the appendix.

Lemma 4.1. We have H× = U× ⊕ E×M , and the projection P
E×⊥M
U× coincides with the composition

P◦ := (P
E⊥M
U )×d ◦ (P

E⊥M
U )×d−1 ◦ · · · ◦ (P

E⊥M
U )×2 ◦ (P

E⊥M
U )×1 .

Recall that, from section 4.6, we know that ϑ−1
M =

∣∣∣(PE⊥MU )n

∣∣∣2
Hn

is independent of Ln (cf. Figure 2(b)).

Lemma 4.2. We have that |P◦|2L(H×) = ϑ−dM .
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Now, recalling Remark 3.8, we can see that α̃M := (M+1)2π2

L2
n

+
∑

n∈{1,2,...,d}\n

π2

L2
n

is the smallest eigenvalue

of the Dirichlet Laplacian in Ẽ⊥Md = E×⊥M , which corresponds to the eigenfunction e×[j] with [j] defined by

jn =

{
1, if n 6= n,

M + 1, if n = n,
where n := min{n ∈ {1, 2, . . . , d} | Ln = max

m∈{1,2,...,d}
Lm}.

Hence, for the parabolic equation (1.2) in the rectangle Ω×, recalling (4.1) and Remark 3.8, we have that

the stability of the corresponding system (3.8) follows from α̃M >
(
6 + 4ϑ−dM

)
|Arc|2L∞(R0,L(H,V ′)). Since α̃M ≥

π2

L2
n

(
(M + 1)2 + d− 1

)
, the relationM+1 ≥ Ln

π

(
6 + 4ϑ−dM

) 1
2 |Arc|L∞(R0,L(H,V ′)) implies stability of system (3.8).

Recalling that there areMd actuators in E×⊥M , we can derive the estimateMsuff+1 ≥
(
Ln
π

)d (
6 + 4ϑ−dM

) d
2 |Arc|dL∞(R0,L(H,V ′))

on the number of actuators which allow us to stabilize the system. The latter estimate is analogous to (4.6),
differing only by a constant factor. Notice also that the eigenvalues α̃M satisfy α̃M ≥M2, and the subsequence
of the (ordered and repeated) eigenvalues αMd satisfy αMd ≥ Cd(M

d)
2
d = CdM

2. So the asymptotic behavior
of α̃M and αMd are analogous.

Notice, however, that in 1D the actuators cover, in each (0, Ln), a total volume |ωLn | = rLn, while in dD

they cover a volume |ω×| = rd×dn=1 Ln. That is, the relative volume covered by the actuators is smaller:
|ω×|
|Ω×| = rd < r =

|ωLn |
|(0,Ln)| .

Summarizing, we have seen that

∣∣∣∣P Ẽ⊥MdU×

∣∣∣∣2
L(L2(Ω×))

≤ ϑ−dM remains bounded, provided the 1D projections do:∣∣∣(PE⊥MU )n

∣∣∣2
L(L2((0,Ln)))

= ϑ−1
M ≤ C for all M ∈ N. From the simulations in section 4.6, ϑ−1

M ≤ C(r) remains

bounded. For rectangles Ω× ⊂ Rd we can always find/construct a big enough number M = Msuff of actuators

depending polynomially on |Arc|L∞(R0,L(H,V ′)) (linearly on |Arc|dL∞(R0,L(H,V ′))), so that system (3.8) is stable.

4.8.2. The case of a general domain

We conjecture that, for general (regular enough) domains Ω ⊂ Rd, the norm
∣∣∣PE⊥MU ∣∣∣2

L(L2(Ω))
will remain

bounded provided we distribute piecewise constant actuators as uniformly as possible over Ω. And thus, we will
be able to find a number M , as (4.6), of actuators, so that system (3.8) is stable.

5. Simulations for the closed-loop system

As described in section 4.2 the spatial discretization is carried out by piecewise linear finite elements. For
the full discretization the Crank–Nicolson scheme is used for temporal discretization for the grid defined by
{tj = jk : j ∈ N}, with the time-step k > 0.

5.1. A constant reaction in 1D

We consider system (1.2) on the interval Ω = (0, L) with a constant reaction and no convection

a(x, t) = ρ := −35ν( πL )2, b(x, t) = 0, (5.1a)

and the initial condition

y0 = 0.05 sin( 1πx
L ). (5.1b)
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That is, Arc = ρ < 0. Under our feedback control, as in Theorem 3.5, the system reads

ẏ − ν∆y + ρy − PE
⊥
M

U (−ν∆y + ρy − λy) = 0, (5.2)

y|∂Ω = 0, and y(0) = y0. (5.3)

We will take L = 1 and ν = 0.1. For the ordered eigenvalues αi = ν( πL )2i2 of A = −ν∆, we can find −α1−ρ > 0,
which implies that the free (uncontrolled) dynamics system ẏunc − ν∆yunc + ρyunc = 0 is unstable. Indeed, the
free dynamics solution corresponding to yunc(0) = y0 is yunc(t) = e(−ρ−α1)ty0, t ≥ 0.

Since α5 < −ρ = |ρ|R < α6, from the discussion in section 4.4, our closed-loop system (5.2) is stable provided
we take M = 5 actuators spanning U such that H = U ⊕E⊥M . This is satisfied for actuators as in Figures 1, 3,
or 4. The stabilizing effect is confirmed in Figures 5, 6, and 7. Note, however, that the location of the actuators
has a significant influence on the value of ϑM and on the magnitudes reached by the (norm of the) solution
and by the control. This confirms the fact, already mentioned in section 4.4, that though in this case the norm

of P
E⊥M
U plays no role in the condition for stability (3.2:CS), it still makes a considerable difference concerning

the bound D in (3.11), which provides us a bound for the magnitudes reached by the norm of the solution.

The projection P
E⊥M
U has been constructed following (2.3a) from the basis {sin( iπxL ) | i ∈ {1, . . . ,M}} for EM

and from the basis {1ωi | i ∈ {1, . . . ,M}}} for U . The (numerically) orthonormalized bases have been used only
for the computation of ϑM .

To see the performance of the proposed feedback, the control will be switched on only during a time inter-
val FeedOn. That is, for time t /∈ FeedOn we follow the free dynamics. We plot the results on the behavior of
the norm of the solution in two cases, FeedOn = (0.1, 1) and FeedOn = (0.05, 0.75). The magnitudes of the
control actuators will be plotted only for the latter case. Recall (from sections 4.3 and 4.7) that the actuators 1ωi
are numbered from left to right, that is, ωi = (ai, bi) with ai < bi ≤ ai+1 < bi+1 (cf. Figures 1, 3, and 4). In
Figures 5, 6, and 7 their corresponding magnitudes are ordered from top to bottom.

Again for the latter case we also plot the control and solution at a selected instant of time t = 0.1.
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Figure 5. Located at extremizers of the M -th eigenfunction.

Finally, in this example, M = 5 is sharp, that is, with 4 actuators the proposed feedback is not able to stabilize
the system, because the solution of (5.2), with M = 4 and issued from y0 = e5, is given by y(t) = e(−α5−ρ)ty0,
which coincides with the free dynamics solution and whose norm goes to +∞ with time. Notice that in this
case we even cannot stabilize the system if we take the first 4 eigenfunctions as actuators, because the dynamics

onto the subspace E⊥4 will remain free for any given control v (replacing P
E⊥M
U (−ν∆y + ρy − λy) and) taking

values in E4.
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Figure 6. Uniformly distributed.
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Figure 7. Concentrated at the center.

5.2. A general reaction-convection term in 1D

In Figure 8 we see the performance of the proposed feedback for a reaction-convection term depending on
both space and time variables. More precisely, we have taken

a(x, t) = −35ν( πL )2 − 10 |sin(4t)x cos(xt)|R , b(x, t) = −4 cos(3πt)− 5(L−xL )2 + 2, (5.4a)

and the initial condition

y0(x) = sin( 13πx
L ). (5.4b)

We see that for small M (in {0, 1, 2}) our closed-loop system is not stable, while it is stable for large M .

We also see that for M ≥ 7 the exponential decreasing rate of |y|2H is close to 16 = 2λ. This rate cannot be
improved (e.g., by adding more actuators) because it coincides with the exact decreasing rate we have imposed

for the norm |PEM y|
2
H of the finite-dimensional projection onto EM (cf.(3.11), where µ < 2λ).

We see that in a neighborhood of t = 0 the norm of the (free dynamics) solution is decreasing. This is

because our initial condition is in E⊥
M̃

with large enough M̃ = 12. Notice that we have d
dt |y|

2
H ≤ −2 |y|2V +

2 |Arc|L(H,V ′) |y|H |y|V , which implies d
dt |y|

2
H ≤ (−α

M̃+1
+ |Arc|2L(H,V ′)) |y|

2
H , at the initial time.

After some time the norm of the uncontrolled solution is increasing. We can conclude that the reaction-
convection operator is necessarily transferring energy to the space E

M̃
. In this situation a control is needed to

stabilize the system, and we see that our feedback controller is able to do it (for large enough M).
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Figure 8. Feedback performance. Dependence on the number M of actuators.

5.3. Response to measurement errors

To apply a feedback control in applications we will need to know the state y(t) at time t. Then we can
compute our control K(t)y(t) which shall be input to the system. Often it is not possible to know y(t) exactly,
but we can obtain suitable estimates for y(t). For example, from measurements of suitable outputs of the system
we can sometimes construct a dynamical observer which provides us with an estimate ŷ(t) for y(t).

Once we have an estimate ŷ(t) for y(t), we can compute an estimate of our control as K(t)ŷ(t). Feedback
controls are known to be, in general, able to respond to (small) measurement/estimation errors. In Figure 9 we
confirm that our proposed feedback is robust against such errors. As the magnitude of the noise (measurement
error), η := ŷ(t)− y(t), gets smaller the solution goes to a smaller neighborhood of zero.

We present the results corresponding to simulations of the system (3.8) with a perturbed feedback (i.e., with
an estimated feedback control K(t)ŷ(t)):

ẏ − ν∆y + ay +∇ · (by)− PE
⊥
M

U (−ν∆ŷ + aŷ +∇ · (bŷ)− λŷ) = 0, (5.5)

y|∂Ω = 0, and y(0) = y0. (5.6)

where ŷ := y + η.
We will take the noise in the form η = η1y+ η2 having a component η1y which is proportional to the state y

and a component η2 which is independent of the state. We will test with three types of hypothetical noise η
(“typnoi” in figures):

• η(x, t) = expl(t, x, ζ)

:= eζ
((

sin(20πt) + 0.1 sin(100π(t+ x))− 1
)
y(x, t) + cos(10πt) + .1 cos(200π(t+ x))

)
,

• η(x, t) = rndn(t, x, ζ)

:= eζ
(

(min{1,max{−1, vran1(x, t)}} − 1)y(x, t) + min{1,max{−1, vran2(x, t)}}
)
,

• η(x, t) = rndm(t, x, ζ)

:= eζ
(

(vran3(x, t)− 1.5)y(x, t) + vran4(x, t)− vran5(x, t)
)
.

The functions rndn and rndm are “random” and are to be understood as follows: once we have solved our
system up to time tm = mk, say we have just found y(tm), then we generate random vectors vrani(tm) ∈ RN+1,
from which we construct the noise functions rndn and rndm at time t = tm.
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For rndn(t, x, ζ) the vectors vrani(tm), are generated by the Matlab function randn, while for rndm(t, x, ζ)
they are generated by the the Matlab function rand.

In Figure 9 we take M = 6 actuators. The simulations correspond to the data (a, b) as in (5.4a), and the
initial condition is taken

y0(x) = 10 sin( 13πx
L ).

We test with several values of ζ (“magnoi” in figures), to see the response of our feedback as the magnitude
of the noise decreases. We see that the magnitude of the noise decreases with ζ. When ζ = −∞ (−Inf in the
figures) the noise vanishes.

0 0.2 0.4 0.6 0.8 1

time t

-50

-40

-30

-20

-10

0

10

log(|y|2H )

magnoi = -1
magnoi = -3
magnoi = -4
magnoi = -9
magnoi = -10
magnoi = -Inf

N = 10000 k = 0.0001
L = 1, r = 0.1
λ = 8, typnoi = expl
M =6, Dact =mxe
FeedOn = [0, 1]

0 0.2 0.4 0.6 0.8 1

time t

-50

-40

-30

-20

-10

0

10

log(|y|2H )

magnoi = -1
magnoi = -3
magnoi = -4
magnoi = -9
magnoi = -10
magnoi = -Inf

N = 10000 k = 0.0001
L = 1, r = 0.1
λ = 8, typnoi = rndm
M =6, Dact =mxe
FeedOn = [0, 1]

0 0.2 0.4 0.6 0.8 1

time t

-50

-40

-30

-20

-10

0

10

log(|y|2H )

magnoi = -1
magnoi = -3
magnoi = -4
magnoi = -9
magnoi = -10
magnoi = -Inf

N = 10000 k = 0.0001
L = 1, r = 0.1
λ = 8, typnoi = rndn
M =6, Dact =mxe
FeedOn = [0, 1]

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

Noise η(t) at time t = 0.1

0 0.2 0.4 0.6 0.8 1

time t

-40

-20

0

20

log(|η|2
H
)

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

Noise η(t) at time t = 0.1

0 0.2 0.4 0.6 0.8 1

time t

-40

-20

0

20

log(|η|2
H
)

0 0.2 0.4 0.6 0.8 1

x

-1

0

1

Noise η(t) at time t = 0.1

0 0.2 0.4 0.6 0.8 1

time t

-40

-20

0

20

log(|η|2
H
)

Figure 9. Response to measurement errors.

5.4. Numerical simulations in 2D

Now we present the results of a simulation for a parabolic equation in a domain Ω ⊂ R2. In the previous
examples for an 1D interval (0, L) we knew the analytic expression for the Dirichlet Laplacian eigenfunctions,

e1D
n = ( 2

L )
1
2 sin(nπx1

L ). Then for the numerical simulations we can just evaluate this functions at the mesh points

and construct the numerical projection P
E⊥M
U from those vectors. Now we are going to consider a domain Ω ⊂ R2

where we do not know the analytic expression for the eigenfunctions. In this case we have to compute the
eigenpairs numerically. In Figure 10 we plot the first 5 computed eigenpairs (ei, αi), i ∈ {1, 2, 3, 4, 5} of −∆.
We test with 4 actuators 1ωi where the location of each ωi is also plotted in Figure 10, together with the
triangular mesh we used in our simulations.



24 K. Kunisch and S. S. Rodrigues

We can see that the first 4 eigenvalues are simple. We have chosen to place the actuators close to the
extremizers of the 4-th eigenfunction e4. This was motivated from the results obtained in 1D for the actuators
constructed as in section 4.3 and by trying to place them “as uniformly as possible” (as “suggested” at the end

of section 4.8). We have the volume ratio r =
|⋃4

i=1 ωi|
|Ω| = 4

36+2π ≈ 0.0946.
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Figure 10. Eigenpairs of −∆ and actuators.

In Figure 11 we see the response of our feedback to measurement errors. Again the robustness of our feedback
is confirmed. The norm of solution goes to a smaller neighborhood of 0 as the magnitude of the noise gets smaller.
We see also that the numerical noisy solution is more sensitive to the time-step k than the unperturbed solution.
However, qualitatively the behavior is similar.

Finally, in Figure 11 in the case of the larger time interval, the norm is plotted only for 1001 equidistant time
instants, namely for t = iksub, i = 0, 1, . . . , 1000.

The results of the simulations correspond to the parabolic equation (1.2) under Dirichlet boundary conditions
and

a(t, x1, x2) = −0.1− 0.2| sin(t+ x1)|R, b(t, x1, x2) =

(
0.1(x1 + x2)

0.1 cos(t)x1x2

)
,

{
ν = 0.1,
y0 = 0.01e1.

(5.7)

Notice that the first 5 eigenvalues of −ν∆ extend from α1 ≈ 0.077249 to α5 ≈ 0.24751.

5.5. On the parameter λ

We see that our feedback essentially imposes/chooses the projection of the (unperturbed) solution to be
q(t) = PEM y(t) = e−λtPEM y(0). The parameter λ is at our disposal and its choice plays a role in the behavior
of the closed-loop system. In Figure 12(a), with the data as in section 5.4 and (5.7), we can see that a larger λ > 0
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Figure 11. Response to measurement errors.

may provide a faster decreasing, but they also have larger associated transient bounds (the norm of the solution
attains larger values for a transient time).

In Figure 12(b) we see the magnitudes (ordered from top to bottom) of the actuators corresponding to the last
case plotted in Figure 12(a) (recall the ordering of the actuators in Figure 10). We can also see, in Figure 12(c),
that the free dynamics is unstable.

Again for the last case plotted in 12(a) we see the corresponding solution and control, at a selected instant
of time, in Figure 13.
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Figure 12. Dependence on λ and free dynamics.

6. Final remarks

We present here a short discussion on the manuscript results and on related interesting questions to be
investigated in future works.

6.1. On the main result

Recall that in Theorem 3.5 we have the Assumptions 2.1, 2.2, and 2.3 and the sufficient condition (3.2:CS)
for the stability of the closed-loop system (3.8).
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Figure 13. Solution and control at a selected time instant

Assumptions 2.1, 2.2, and 2.3 are quite general and are fulfilled for systems other than “pure” parabolic
as (1.2). For example, they are satisfied for the Oseen–Stokes system

ẏ − νPH∆y + PH
(
〈v · ∇〉y + 〈y · ∇〉v

)
= 0,

which can be seen as the linearization of the Navier–Stokes system around a given targeted trajectory v.
Here PH : L2(Ω,Rd) → H is the Leray orthogonal projection onto the space H = {z ∈ L2(Ω,Rd) | div z =
0 and z · n = 0}, where d ∈ {2, 3}, Ω is an open (smooth) bounded domain, and n is the unit outward normal
to the boundary Γ = ∂Ω. For the case of Dirichlet boundary conditions, Assumptions 2.1, 2.2, are satisfied by
the Stokes operator A = −νPH∆ with V = H1

0 (Ω,Rd)
⋂
H and D(A) = H2(Ω,Rd)

⋂
V . Assumption 2.3 will

be satisfied for a regular enough function v, by using well known estimates for the term Arc(t)y = PH
(
〈v(t) ·

∇〉y + 〈y · ∇〉v(t)
)
. We refer the reader to [7, 27]. See also [26] and [22, section 6] and references therein for

other boundary conditions. In particular, the main stabilization results derived on section 3 are valid for the
Oseen–Stokes system. Here we restrict ourselves to the simulations for our closed loop parabolic equations, but
it is interesting, in a future work, to perform some simulations of the corresponding closed loop Oseen–Stokes
system. And in particular to check condition (3.2:CS).

6.2. On the application to nonlinear systems

For future work it is of interest to investigate the response of our proposed feedback when applied to a
nonlinear equation. Due to Theorem 3.6, and following a standard argument as in [7, section 4] we can stabilize
the nonlinear system (for a suitable class of nonlinearities as in [21], and for strong solutions), provided the
initial condition is taken in a small neighborhood of 0. In particular, it can be of interest to compare the size of
this neighborhood with the size of the corresponding neighborhood associated with the Riccati based feedback,
for example, considered in [11, 15, 16, 21].

6.3. A comparison to Riccati feedback

While in the autonomous case, computing a Riccati based feedback operator Π can be already a difficult
numerical task, it becomes even more involved in our nonautonomous setting where (in theory) we would need
to solve backwards in time a differential Riccati equation in the time interval (0,+∞). This is, of course,
unfeasible (in practice). In spite of this, in [16] the authors propose an end point condition Π(T ) for the
differential Riccati equation to be solved in a finite interval (0, T ), T > 0. For works related with the numerical
computation/approximation of the Riccati equations we refer the reader to [3, 9, 10, 13, 17].

The construction of the explicit feedback controller K we propose is in general an easier/faster numerical
task. Indeed its construction, with M actuators, boils down to the computation of the first M eigenfunctions
of the Laplacian. Furthermore, once those eigenfunctions are available, we can perform the simulations for any
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other reaction-convection term just by solving the explicit closed-loop system. On the other hand, for Riccati
based feedback we need to solve a differential Riccati equation for each reaction-convection term.

6.4. On the location of the actuators

In view of the discussion in sections 4.6 and 4.7, we may ask ourselves the question on the best place-
ment/location of the actuators. For example, it is interesting to know what is the best location (i.e., the pairs
{(center,orientation)i | i ∈ {1, 2, 3, 4}}) inside Ω of the 4 actuator regions as in Figure 10, in order to maxi-
mize ϑM . We refer to [19, 20] where the question of optimal actuator location is addressed, with the goal of
minimizing a quadratic cost functional. See also to the recent works [14, 23] concerning the problem of optimal
actuators design (where the goal is again to minimize a suitable cost functional, but where the shape of the
control’s (or each actuator’s) support is not fixed apriori).

— Appendix —

A.1. Proof of Lemma 4.1

We first show that the range of the composition P◦ is contained in U×. Given a function f ∈ H× we

have that (P
E⊥M
U )×1 f =

M∑
j1=1

f1
j1

(x2, . . . , xd)Ψ
1

j1(x1). Similarly, we find the identities (P
E⊥M
U )×2 ◦ (P

E⊥M
U )×1 f =

M∑
j1,j2=1

f1
(j1,j2)(x3, . . . , xd)Ψ

1

j1(x1)Ψ
2

j2(x2) and P◦f =
∑

[j]∈{1,2,...,M}d
f1

[j]Ψ
×
[j]. Thus

P◦f ∈ U×, for all f ∈ H×. (A.1)

Next, we show that (1−P◦)f ∈ E×⊥M . From (4.7) and the Fubini’s Theorem it follows that, for any f ∈ H×
and any eigenfunction e×[i] ∈ E

×
M , we have

(
(P

E⊥M
U )×n f, e

×
[i]

)
H×

=

M∑
jn=1

∫ L1

0

dx1· · ·
∫ Ln−1

0

dxn−1

∫ Ln+1

0

dxn+1· · ·
∫ Ld

0

gjnn dxd

∫ Ln

0

hndxn

with

gjnn =

(∫ Ln

0

f(x1, x2, . . . , xn, . . . , xd)e
n
jn(xn) dxn

)
×

r∈{1,...,d}\{n}
erir (xr),

hn =
(

(P
E⊥M
U )ne

n
jn(xn)

)
enin(xn).

Since (1− (P
E⊥M
U )n)enjn(xn) ∈ (E⊥M )n and enin(xn) ∈ (EM )n it follows that∫ Ln

0

hndxn =

∫ Ln

0

hn +
(

1− (P
E⊥M
U )n

)
enjn(xn)enin(xn)dxn =

∫ Ln

0

enjn(xn)enin(xn)dxn

=

{
1, if jn = in, and

0, if jn 6= in,

from which we obtain that, for all f ∈ H× and all [i] ∈ {1, 2, . . . ,M}d,

(
(P

E⊥M
U )×n f, e

×
[i]

)
H×

=

∫ L1

0

dx1· · ·
∫ Ln−1

0

dxn−1

∫ Ln+1

0

dxn+1· · ·
∫ Ld

0

ginn dxd =
(
f, e×[i]

)
H×

.
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which implies that for all g ∈ H× and all [i] ∈ {1, 2, . . . ,M}d,

(P◦g, e×[j])H× =
(

(P
E⊥M
U )×d

(
(P

E⊥M
U )×d−1 ◦ · · · ◦ (P

E⊥M
U )×1 g

)
, e×[i]

)
H×

=
(

(P
E⊥M
U )×d−1 ◦ · · · ◦ (P

E⊥M
U )×1 g, e

×
[i]

)
H×

= ... = (g, e×[i])H× .

That is,

g − P◦g ∈ E×⊥M , for all g ∈ H×. (A.2)

Finally, we show that H× = U× ⊕ E×⊥M . From (A.1) and (A.2) it follows that H× = U× + E×⊥M . Let now

v ∈ U×
⋂
E×⊥M which we may write as

v =
∑

[j]∈{1,2,...,M}d
v[j]Ψ

×
[j].

Therefore, for any eigenfunction e×[i] ∈ E
×
M we have 0 = (v, e×[i])H× , that is,

0 =
∑

j∈{1,2,...,M}d
v[j](Ψ

×
[j], e

×
[i])H× (A.3)

which gives us

0 =
∑

[j]∈{1,2,...,M}d
v[j]

d

×
n=1

(Ψ
n

jn , e
n
in)Hn =

M∑
jd=1

wjd(Ψ
n

jd
, enid)Hd . (A.4)

with

wjd :=
∑

j∈{1,2,...,M}d−1

v[(j,jd)]

(
d−1

×
n=1

(Ψ
n

jn , e
n
in)Hn

)
.

We know that Z := [((U)n, (E
⊥
M )n)Hn ] ∈ MM×M is invertible (because so is [Θ(M)] = Z>Z, cf. (4.4) and

Figure 2).
Now, with w := [wj1 , wj2 , . . . , wjd ] ∈ M1×M , from (A.3) we arrive at 0 = wZ, which implies that w = 0.

That is, 0 = wjd , for all jd ∈ {1, 2, . . . ,M}.
For a fixed jd ∈ {1, 2, . . . ,M} the equation 0 = wjd is similar to (A.3). Thus we can repeat the argument to

conclude that

0 = wjd−1,jd :=
∑

j∈{1,2,...,M}d−2

v[(j,jd−1,jd)]

(
d−2

×
n=1

(Ψ
n

jn , e
n
in)Hn

)
,

for all (jd−1, jd) ∈ {1, 2, . . . ,M}2, and

0 = wj1,...,jd := v[j], for all j ∈ {1, 2, . . . ,M}d.

Therefore v = 0, and

H× = U× ⊕ E×⊥M . (A.5)

From (A.1), (A.2), and (A.5), we necessarily have P◦ = P
E×⊥M
U× . �
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A.2. Proof of Lemma 4.2

Recalling (4.7), we denote, for all m ∈ N0 and all f ∈ H×,

Ifm = Ifm(x1, x2, . . . , xn−1, xn+1, . . . , xd) :=

∫ Ln

0

f(x1, x2, . . . , xn, . . . , xd)e
n
m(xn) dxn.

Observe that we may write f =
∑+∞
m=1 I

f
me

n
m(xn),

(P
E⊥M
U )×n f =

M∑
jn=1

Ijnf(P
E⊥M
U )ne

n
jn(xn), and

∫ Ln

0

f2 dxn =

+∞∑
m=1

(Ifm)2,

from which we obtain, since Ifm does not depend on xn,∣∣∣(PE⊥MU )×n f
∣∣∣2
H×

=

∫
Ω×

(
(P

E⊥M
U )×n f

)2

dΩ×

=

∫ L1

0

dx1· · ·
∫ Ln−1

0

dxn−1

∫ Ln+1

0

dxn+1· · ·
∫ Ld

0

dxd

∫ Ln

0

(P
E⊥M
U )n

M∑
jn=1

Ifjne
n
jn(xn)

2

dxn.

Then, from ∫ Ln

0

(
(P

E⊥M
U )nv

)2

dxn =
∣∣∣(PE⊥MU )nv

∣∣∣2
Hn
≤ ϑ−1

M |v|
2
Hn

, for any v ∈ Hn,

∫ Ln

0

 M∑
jn=1

Ifjne
n
jn(xn)

2

dxn =

M∑
jn=1

(Ifjn)2 ≤
∫ Ln

0

f2 dxn,

it follows that
∣∣∣(PE⊥MU )×n f

∣∣∣2
H×
≤ ϑ−1

M |f |
2
H× , which leads us to |P◦|2L(H×) ≤

d

×
n=1

∣∣∣(PE⊥MU )×n

∣∣∣2
H×
≤ ϑ−dM . To finish

the proof we now find ζ ∈ H× such that

|ζ|H× = 1 and |P◦ζ|H× = ϑ
− d2
M . (A.6)

We start by observing that

∣∣∣(PE⊥MU )n

∣∣∣
L(Hn)

= sup
φ∈Hn\{0}

∣∣∣∣(PE⊥MU )n(PEM )nφ

∣∣∣∣
Hn

|φ|Hn
≤ sup
φ∈Hn\{0}

∣∣∣(PEMU )n(PEM )nφ
∣∣∣
Hn

|(PEM )nφ|
Hn

= sup
ξ∈(EM )n\{0}

∣∣∣(PEMU )nξ
∣∣∣
Hn

|ξ|Hn
= sup
ξ∈(EM )n
|ξ|Hn=1

∣∣∣(PEMU )nξ
∣∣∣
Hn

.

Necessarily
∣∣∣(PE⊥MU )n

∣∣∣
L(Hn)

= sup
ξ∈(EM )n
|ξ|Hn=1

∣∣∣(PE⊥MU )nξ
∣∣∣
Hn

and, since {η ∈ (EM )n | |η|Hn = 1} is compact, there

exists a maximixer ξn ∈ (EM )n, with
∣∣ξn∣∣Hn = 1 and

∣∣∣(PE⊥MU )nξn

∣∣∣
Hn

=
∣∣∣(PE⊥MU )n

∣∣∣
L(Hn)

= ϑ
− 1

2

M . Finally, we see
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that ξ×(x) :=×dn=1 ξn(xn) satisfies

∣∣ξ×∣∣2
H×

=
d

×
n=1

∣∣ξn∣∣2Hn = 1 and
∣∣P◦ξ×∣∣2H× =

d

×
n=1

∣∣∣(PE⊥MU )nξn

∣∣∣2
Hn

= ϑ−dM .

That is, ζ := ξ× satisfies (A.6). �
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[23] Y. Privat, E. Trélat, and E. Zuazua. Actuator design for parabolic distributed parameter systems with the moment

method. SIAM J. Control Optim., 55(2):1128–1152, 2017. doi:10.1137/16M1058418.
[24] J.-P. Raymond and L. Thevenet. Boundary feedback stabilization of the two-dimensional Navier–Stokes equations

with finite-dimensional controllers. Discrete Contin. Dyn. Syst., 27(3):1159–1187, 2010. doi:10.3934/dcds.2010.

27.1159.
[25] S. S. Rodrigues. Feedback boundary stabilization to trajectories for 3D Navier–Stokes equations. (accepted, condi-

tionally), 2015. arXiv:1508.00829 [math.OC]. URL: http://arxiv.org/abs/1508.00829.
[26] R. Temam. Navier–Stokes Equations and Nonlinear Functional Analysis. Number 66 in CBMS-NSF Regional Conf.

Ser. Appl. Math. SIAM, Philadelphia, 2nd edition, 1995. doi:10.1137/1.9781611970050.
[27] R. Temam. Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, RI,

reprint of the 1984 edition, 2001. URL: http://www.ams.org/bookstore-getitem/item=CHEL-343-H.
[28] M.Y. Wu. A note on stability of linear time-varying systems. IEEE Trans. Automat. Control, 19(2):162, 1974.

doi:10.1109/TAC.1974.1100529.

http://dx.doi.org/10.1109/TAC.2010.2052151
http://dx.doi.org/10.1109/TAC.2010.2052151
http://dx.doi.org/10.1109/ACC.2016.7525303
http://dx.doi.org/10.1109/ACC.2016.7525303
http://arxiv.org/abs/1608.02412v2
http://dx.doi.org/10.1016/j.jfa.2017.01.014
http://dx.doi.org/10.1137/16M1058418
http://dx.doi.org/10.3934/dcds.2010.27.1159
http://dx.doi.org/10.3934/dcds.2010.27.1159
http://arxiv.org/abs/1508.00829
http://dx.doi.org/10.1137/1.9781611970050
http://www.ams.org/bookstore-getitem/item=CHEL-343-H
http://dx.doi.org/10.1109/TAC.1974.1100529

	1. Introduction
	2. Preliminaries
	2.1. Assumptions on the state operators
	2.2. Weak solutions
	2.3. Nonorthogonal projections

	3. The stabilizing feedback control
	3.1. The condition for stabilizability
	3.2. The explicit closed loop system

	4. Remarks on the proposed sufficient condition for stability
	4.1. The case M=0. Free dynamics
	4.2. Checking the proposed sufficient condition numerically
	4.3. Construction of the actuators in one dimension
	4.4. The particular case of a constant reaction
	4.5. The particular case of a conservative convection
	4.6. Numerical examples
	4.7. On the placement of the actuators
	4.8. Construction of the actuators in higher dimensional domains

	5. Simulations for the closed-loop system
	5.1. A constant reaction in 1D
	5.2. A general reaction-convection term in 1D
	5.3. Response to measurement errors
	5.4. Numerical simulations in 2D
	5.5. On the parameter 

	6. Final remarks
	6.1. On the main result
	6.2. On the application to nonlinear systems
	6.3. A comparison to Riccati feedback
	6.4. On the location of the actuators
	Appendix
	A.1. Proof of Lemma 4.1
	A.2. Proof of Lemma 4.2

	References



