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OPTIMAL ACTUATOR DESIGN BASED ON SHAPE CALCULUS*

DANTE KALISET, KARL KUNISCH*, AND KEVIN STURM $§

Abstract. An approach to optimal actuator design based on shape and topology optimisation
techniques is presented. For linear diffusion equations, two scenarios are considered. For the first
one, best actuators are determined depending on a given initial condition. In the second scenario,
optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape
and topological sensitivities of these cost functionals are determined. A numerical algorithm for
optimal actuator design based on the sensitivities and a level-set method is presented. Numerical
results support the proposed methodology.

Key words. shape optimization, feedback control, topological derivative, shape derivative,
level-set method
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1. Introduction. In engineering, an actuator is a device transforming an ex-
ternal signal into a relevant form of energy for the system in which it is embedded.
Actuators can be mechanical, electrical, hydraulic, or magnetic, and are fundamental
in the control loop, as they materialise the control action within the physical system.
Driven by the need to improve the performance of a control setting, actuator/sensor
positioning and design is an important task in modern control engineering which
also constitutes a challenging mathematical topic. Optimal actuator positioning and
design departs from the standard control design problem where the actuator con-
figuration is known a priori, and addresses a higher hierarchy problem, namely, the
optimisation of the control to state map.

There is no unique framework which is followed to address optimal actuator prob-
lems. However, concepts which immediately suggest themselves -at least for linear
dynamics- and which have been addressed in the literature, build on choosing actua-
tor design in such a manner that stabilization or controllability are optimized by an
appropriate choice of the controller. This can involve Riccati equations from linear-
quadratic regulator theory, and appropriately chosen parameterizations of the set of
admissible actuators. The present work partially relates to this stream as we optimise
the actuator design based on the performance of the resulting control loop. Within
this framework, we follow a distinctly different approach by casting the optimal ac-
tuator design problem as shape and topology optimisation problems. The class of
admissible actuators are characteristic functions of measurable sets and their shape
is determined by techniques from shape calculus and optimal control. The class of
cost functionals which we consider within this work are quadratic ones and account
for the stabilization of the closed-loop dynamics. We present the concepts here for
the linear heat equation, but the techniques can be extended to more general classes
of functionals and stabilizable dynamical systems. We believe that the concepts of
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2 KALISE, D., KUNISCH, K. AND STURM, K.

shape and topology optimisation constitute an important tool for solving actuator
positioning problems, and to our knowledge this can be the first step towards this
direction. More concretely, our contributions in this paper are:
i) We study an optimal actuator design problem for linear diffusion equations.
In our setting, actuators are parametrised as indicator functions over a sub-
domain, and are evaluated according to the resulting closed-loop performance
for a given initial condition, or among a set of admissible initial conditions
not exceeding a certain norm.

ii) By borrowing a leaf from shape calculus, we derive shape and topological
sensitivities for the optimal actuator design problem.

iii) Based on the formulas obtained in ii), we construct a gradient-based and a
level-set method for the numerical realisation of optimal actuators.

iv) We present a numerical validation of the proposed computational method-
ology. Most notably, our numerical experiments indicate that throughout
the proposed framework we obtain non-trivial, multi-component actuators,
which would be otherwise difficult to forecast based on tuning, heuristics, or
experts’ knowledge.

Let us, very briefly comment on the related literature. Most of these endeavors
focus on control problems related to ordinary differential equations. We quote the two
surveys papers [12, 27] and [26]. From these publications already it becomes clear that
the notion by which optimality is measured is an important topic in its own right.
The literature on optimal actuator positioning for distributed parameter systems is
less rich but it also dates back for several decades already. From among the earlier
contributions we quote [9] where the topic is investigated in a semigroup setting for
linear systems, [5] for a class of linear infinite dimensional filtering problems, and [11]
where the optimal actuator problem is investigated for hyperbolic problems related to
active noise suppression. In the works [18, 16, 19] the optimal actuator problem is for-
mulated in terms of parameter-dependent linear quadratic regulator problems where
the parameters characterize the position of actuators, with predetermined shape, for
example. By choosing the actuator position in [13] the authors optimise the decay
rate in the one-dimensional wave equation. Our research may be most closely related
to the recent contribution [21], where the optimal actuator design is driven by exact
controllability considerations, leading to actuators which are chosen on the basis of
minimal energy controls steering the system to zero within a specified time uniformly,
for a bounded set of initial conditions. Finally, let us mention that the optimal actu-
ator problem is in some sense dual to optimal sensor location problems [14], which is
of paramount importance.

Structure of the paper. The paper is organised as follows.

In Section 2, the optimal control problems, with respect to which optimal ac-
tuators are sought later, are introduced. While the first formulation depends on a
single initial condition for the system dynamics, in the second formulation the optimal
actuator mitigates the worst closed-loop performance among all the possible initial
conditions.

In Sections 3 and 4 we derive the shape and topological sensitivities associated
to the aforedescribed optimal actuator design problems.

Section 5 is devoted to describing a numerical approach which constructs the
optimal actuator based on the shape and topological derivatives computed in Sections
3 and 4. It involves the numerical realisation of the sensitivities and iterative gradient-
based and level-set approaches.

Finally in Section 6 we report on computations involving numerical tests for our
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OPTIMAL ACTUATOR DESIGN BASED ON SHAPE CALCULUS 3

model problem in dimensions one and two.

1.1. Notation. Let Q ¢ R? d = 1,2, 3 be either a bounded domain with !
boundary 9€) or a convex domain, and let 7" > 0 be a fixed time. The space-time
cylinder is denoted by Q7 = Q x (0,T]. Further by H'(Q) denotes the Sobolev
space of square integrable functions on Q with square integrable weak derivative.
The space Hi(Q) comprises all functions in H'(Q) that have trace zero on 9Q and
H~1(Q) stands for the dual of Hg(£2). The space Co'o’l(ﬁ7 R?) comprises all Lipschitz
continuous functions on Q vanishing on 9. It is a closed subspace of C%!(Q, R?),
the space of Lipschitz continuous mappings defined on Q. Similarly we denote by
Co’k(ﬁ,Rd) all k-times differentiable functions on Q vanishing on Q. We use the
notation df for the Jacobian of a function f. Further B.(z) stands for the open ball
centered at x € RY with radius € > 0. Its closure is denoted B.(z) := B.(z). By
() we denote the set of all measurable subsets w C Q. We say that a sequence (w,)
in P(Q) converges to an element w € YP(Q) if xu,, — Xw in L1(Q2) as n — oo, where
Xw denotes the characteristic function of w. In this case we write w, — w. Notice
that xw, — Xw in L1(Q) as n — oo if and only if x., — Xw In L,(Q2) as n — oo for
all p € [1,00). For two sets A, B C R? we write A € B is A is compact and A C B.

2. Problem formulation and first properties.

2.1. Problem formulation. Our goal is to study an optimal actor positioning
and design problem for a controlled linear parabolic equation. Let U be a closed and
convex subset of Ly(Q) with 0 € Y. For each w € P(Q) the set x, U is a convex
subset of L2(€2). The elements of the space 9)(Q) are referred to as actuators. The
choices U = L2(Q) and U = R, considered as the space of constant functions on €,
will play a special role. Further, U := Lo(0,T;U) denotes the space of time-dependent
controls, which is equipped with the topology induced by the Ly(0,T; Lo(Q2))—norm.
We denote by K a nonempty, weakly closed subset of H}(2). It will serve as the
set of admissible initial conditions for the stable formulation of our optimal actuator
positioning problem.

With these preliminaries we consider for every triplet (w, u, f) € 9(Q)xUx HJ ()
the following linear parabolic equation: find y : Q x [0,T] — R satisfying

(1a) Oy — Ay = xwu in Q x (0,77,
(1b) y=0 on 09 x (0,71,
(1c) y(0) = f on Q.

In the following, we discuss the well-posedness of the system dynamics 1 and the asso-
ciated linear-quadratic optimal control problem, to finally state the optimal actuator
design problem.

Well-posedness of the linear parabolic problem. It is a classical result [10, p. 356,
Theorem 3] that system (1) admits a unique weak solution y = y*“« in W(0,T),
where

W(0,T) :={y € Lo(0,T; H}(Q)) : Oy € L2(0,T; HH(Q))},

which satisfies by definition,
(2) Oy, ) -1 1y + /Q Vy - Vo dr = /wausa dx

for all ¢ € H}(Q) for a.e. t € (0,T], and y(0) = f. For the shape calculus of Section 4
we require that f € HJ(2). In this case the state variable enjoys additional regularity
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4 KALISE, D., KUNISCH, K. AND STURM, K.

properties. In fact, in [10, p. 360, Theorem 5] it is shown that for f € HZ(Q2) the
weak solution y“ 7 satisfies

(3)  y“* e Ly(0,T,H*(Q)) N Lo(0,T; HY(Q)), py™* € Ly(0,T; Lo(Q))
and there is a constant ¢ > 0, independent of w, f and u, such that

@ Ny oy + 1y a2y + 10057 a0 < elllxwullno(may + 1 llm)-
Thanks to the lemma of Aubin-Lions the space

(5)  Z(0,T):={y € Ls(0,T; H*(Q) N Hy(Q)) : dhy € La(0,T; L*(2))}

is compactly embedded into Lo (0,T; H}(Q)).

The linear-quadratic optimal control problem. After having discussed the well-
posedness of the linear parabolic problem, we recall a standard linear-quadratic opti-
mal control problem associated to a given actuator w. Let v > 0 be given. First we
define for every triplet (w, f,u) € 29(Q) x Hg(2) x U the cost functional

T
(6) J(w,u, f) :=A ly T ONLy0) +u®)IZ, (@) dt.
By taking the infimum in (6) over all controls w € U we obtain the function J7, which
is defined for all (w, f) € 9(Q) x Hg(Q):

(7) jl(w7f) = ;2% J(wvuaf)'

It is well known, see e.g. [25] that the minimisation problem on the right hand
side of (7), constrained to the dynamics (1) admits a unique solution. As a result,
the function Ji(w, f) is well-defined. The minimiser @ of (7) depends on the initial
condition f and the set w, i.e., @ = @*/. In order to eliminate the dependence of the
optimal actuator w on the initial condition f we define a robust function 75 by taking
the supremum in (7) over all normalized initial conditions f in K:

(8) Jo(w) = sup  Ji(w,f).
feK,
HfHH[l)(Q)Sl

We show later on that the supremum on the right hand side of (8) is actually attained.

The optimal actuator design problem. We now have all the ingredients to state the
optimal actuator design problem we shall study in the present work. In the subsequent
sections we are concerned with the following minimisation problem

(9) welgf(‘ﬂ) jl(wvf)’ for f € K7
w]=c

where ¢ € (0, |Q]) is the measure of the prescribed volume of the actuator w. That is,

for a given initial condition f and a given volume constraint ¢, we design the actuator

w according to the closed-loop performance of the resulting linear-quadratic control

problem (7). Note that no further constraint concerning the actuator topology is

considered. Buidling upon this problem, we shall also study the problem

(10) wanbo) J2(@),

lwl=c

This manuscript is for review purposes only.
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OPTIMAL ACTUATOR DESIGN BASED ON SHAPE CALCULUS 5

where the dependence of the optimal actuator on the initial condition of the dynamics
is removed by minimising among the set of all the normalised initial condition f € K.

Finally, another problem of interest which can be studied within the present
framework is the optimal actuator positioning problem, where the topology of the
actuator is fixed, and only its position is optimised. Given a fixed set wg C  we
study the optimal actuator positioning problem by solving

(11) JJof | J1((d+X)(wo), f), for f € K,
and
(12) Jof  Fo((id +X)(wo)),

where (id +X)(wo) = {x + X : = € wo}, i.e., we restrict our optimisation procedure
to a set of actuator translations.

Our goal is to characterize shape and topological derivatives for Ji(w, f) (for
fixed f) and Jo(w) in order to develop gradient type algorithms to solve (9) and (10).
The results presented in Sections 3 and 4 can also be utilized to derive optimality
conditions for problems (11) and (12). In addition, we investigate numerically whether
the proposed methodology provides results which coincide with physical intuition.

While the existence of optimal shapes according to (9) and (10) is certainly also
an interesting task, this issue is postponed to future work. We mention [21] where a
problem similar to ours but with different cost functional is considered.

2.2. Optimality system for ;. The unique solution @ € U of the minimisation
problem on the right hand side of (7) can be characterised by the first order necessary
optimality condition

(13) OuJ(w, @, f)(v—1u) >0 forall veU.

The function @ € U satisfies the variational inequality (13) if and only if there is a
multiplier p € W(0,T) such that the triplet (@, 7,p) € Ux W(0,T) x W(0,T) solves

(14a) Oy +Vy-Vodrdt = / Xl dx dt - for all o € W(0,T),
QT QT
(14b) OYp + V) - Vp dx dt = f/ 2y dx dt  for all p € W(0,T),
QT QT
(14c) /(2712 —xwD)(v—u)dr >0 forallveld, ae te(0,T),
Q

supplemented with the initial and terminal conditions (0) = f and p(T) = 0 a.e. in
Q. Two cases are of particular interest to us:
REMARK 2.1. (a) If U = Ly(Q), then (14c) is equivalent to 2vu = X, a.e.
on Q x (0,T).
(b) If U =R, then (14c) is equivalent to 2yu = [ P dx a.e. on (0,T).
2.3. Well-posedness of J,. Given w € 9(Q) and f € K, we use the notation
u/ to denote the unique minimiser of J(w, -, f) over U.

LEMMA 2.2. Let (f,,) be a sequence in K that converges weakly in H () to f €
K, let (w,) be a sequence in Y(Q) that converges to w € YP(N), and let (u,) be a
sequence in U that converges weakly to a function w € U. Then we have

yun,fn,wn N yu,f,w in L2(0,T; H&(Q)) as n — 0o,

15
( ) yun;f'ruwn N yuuf)w m L2(07T’ H2(Q) M H& (Q)) as n — 00.

This manuscript is for review purposes only.
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6 KALISE, D., KUNISCH, K. AND STURM, K.

Proof. The a-priori estimate (4) and the compact embedding Z(0,T) C
Ly(0,T; H}(Q)) show that we can extract a subsequence of (yU=/»“=) that converges
weakly to an element y in Lo (0, T; H?(Q) N H}(2)) and strongly in L2 (0, T; H(2)).
Using this to pass to the limit in (2) with (u, f,w) replaced by (uy, fn,w,) implies by
uniqueness that y = y*Hv. 0
LEMMA 2.3. Let (f,) be a sequence in HE(Q)) converging weakly to f € HL(Q)
and let (w,) be a sequence in P(Q) that converges to w € P(Q). Then we have

(16) afren 5 ahY in Ly(0,T; La(Q)) as n — oo.

Proof. Using estimate (4) we see that for all w € U and n > 0, we have

T
gfnwn _
A ™ 2 fnswn (t)H%Q(Q) + "y||ufmwn (t)”%z(ﬂ) dt

(17) r y
SA lyfen 8)12, q + VU2, g dt

< C(”XwnuH%g(LQ) + ”an%{1)

It follows that (@) := (a»*") is bounded in Ly(0,T; L2(Q)) and hence there is an
element @ € Ly(0,7T; L2(Q2)) and a subsequence (i, ), Un, — @ in L2(0,T; La(R))
as k — oo. In addition this subsequence satisfies iminfy o ||Un, |2, (0,7:22(0)) =
1%l £y 0, 750 (Q))- Since U is closed we also have u € Ly(0,T;U). Together with
Lemma 2.2 we therefore obtain from (17) by taking the lim inf on both sides,

T T
(18) /0 ly™ "< @12, @) + YMaO L, @) dté/o ly™ T Ol ) + ()12, @) dt

for all w € U. This shows that &« = @/ and since @/* is the unique minimiser
of J(w,-,y) the whole sequence (,) converges weakly to @/*. In addition it follows
from the strong convergence y@ " " fnw —y 3. fw iy W (0, T') and estimate (17) that
the norm [|a@/"“" || 1,0, 7:1,(0)) converges to [|[u/*| 1, 0,7:1,(q))- As norm convergence
together with weak convergence imply strong convergence, this shows that @/
converges strongly to @/ in Ly(0,T; Lo(Q)) as was to be shown. |

We now prove that w — Jo(w) is well-defined on ().
LEMMA 2.4. For every w € 9(Q) there ezists f € K satisfying || fllg1q) <1 and

(19) Jo(w) = N (w, f)-

Proof. Let w € () be fixed. In view of 0 € U and (4) and since K C H}(Q) —
Hg (2) we obtain for all f € Hg(Q) with || fllgz) <1,

T
) ) = min @ )< [0 dt < iy < o

Further we can express /> as follows

T
al v fw —fw
(21) Jo(w) = sup /0 ly™ P D17, @) + T D17, ) dt-

fe
Hf”H(]j(SZ)Sl

This manuscript is for review purposes only.
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Let (fn) C K, [|fallm2 (@) < 1 be a maximising sequence, that is,

T
: a I f 0 Zw, fr
(22) J2(w) = lim ly i (D7, + T ! ()17, () dt-

n—oo

The sequence (f,,) is bounded in K and therefore we find a subsequence (f,, ) converg-
ing weakly to an element f € K. Additionally, the limit element satisfies || f| 1) <
lim infy oo || foy [ 2 (0) < 1 and hence || f|[ ) < 1. Since (fn,) is also bounded in
H}(Q) we may assume that (f,,) also converges weakly to f € H}(Q). Thanks to
Lemmas 2.3 and 2.2 we obtain

T
3 ﬁf""w ng, W g, W
To(w) = Tim [y I ()2, g+l ()2, o dt
T
al e fw ~—f,w
- / ™ (1), @ + 113 ()2, q dt.

REMARK 2.5. In view of Lemma 2.4 we write from now on Ja(w) =
max jex, Ji(w,f).

1l k3 ) <1

3. Shape derivative. In this section we prove the directional differentiability
of J» at arbitrary measurable sets. We employ the averaged adjoint approach [23]
which is tailored to the derivation of directional derivatives of PDE constrained shape
functions. Moreover this approach allows us later on to also compute the topological
derivative of [J; and J5 without performing asymptotic analysis which can otherwise
be quite involved [20].

Of course, there are notable alternative approaches, most prominent the material
derivative approach, to prove directional differentiability of shape functions, see e.g.
[15, 6]. For an overview of available methods the reader may consult [24].

3.1. Shape derivative. Given a vector field X € CO'O’I(Q,Rd), we denote by
T/X the perturbation of the identity 77 (z) := = + tX (x) which is bi-Lipschitz for all
t € [0,7x], where 7x := 1/(2||X||co.1). We omit the index X and write T; insteand
of T/ whenever no confusion is possible. A mapping J : 9(Q) — R is called shape
function.

DEFINITION 3.1. The directional derivative of J at w € Y(Q) in direction X €
Co'o’l(ﬁ,Rd) is defined by

(24) DIW)(X) i= lim 2D = T),
t\0 t
We say that J is
(i) directionally differentiable at w (in C%(Q,RY)), if DJ(w)(X) exists for all
X € COYQ,RY),
(ii) differentiable at w (in C%Y(Q,R?)), if DJ(w)(X) emists for all
X e COYQ,RY) and X — DJ(w)(X) is linear and continuous.
The following properties will frequently be used.

LEMMA 3.2. Let Q C R? be open and bounded and pick a vector field X €
CO(Q,RY). (Note that T,(Q) = Q for all t.)

This manuscript is for review purposes only.
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8 KALISE, D., KUNISCH, K. AND STURM, K

(i) We have ast — 0T,

or, — I oT, ' — 1 =
! — 90X  and tf — —0X  strongly in Lo (Q, R?)
det(0T;) — 1 _
% —div(X) strongly in Lo ().

(ii) For all ¢ € L3(Q), we have as t — 0T,
(25) poT; —y strongly in L2().
(iii) Let (¢n) be a sequence in H'(Q) that converges weakly to ¢ € H'(Q). Let

(tn) a null-sequence. Then we have as n — oo,

n Ti, — n 3
W Vo X weakly in La(Q).

(26)
Proof. Ttem (i) is obvious. The convergence result (25) is proved in [7, Lem. 2.1,
p.527] and (26) can be proved in a similar fashion.
Item (iii) is less obvious and we give a proof. For every ¢ > 0 and ¢ € H'(Q),
there is N > 0, such that |(@, — ¢, ¥)g1] < € for all n > N.. By density we find for
every n and every null-sequence (e,), €, > 0 an element @, € C1(Q), such that

(27) 1@n = @nllm < en.

It is clear that ¢, — ¢ weakly in H'(Q) as n — co. We now write

n©Tt, —¥n n = Pn T;, — n — Pn
soottn w_v%.X:(so w)ottn (Pn = @n)

~n T _~n ~
p Pt TP g, X
ln

- V(QOn - @n) - X
(28)

Let x € Q. Applying the fundamental theorem of calculus to s — @, (Ts(z)) on [0, 1]
gives

©n (Ttn (x)) — ¥n (33

(29) :

) :/0 Vén(t + tasX () - X () ds.

We now show that the function g, (z) := fol Voo (z+tn,sX(x)) X (z) converges weakly
to Vi - X in Ly(Q). For this purpose we consider for ¢ € Lo(2),

(30) /Qqnz/J dx = /Q/O Vo (x + thsX(x)) - X(x)y(z) ds du.

Interchanging the order of integration and invoking a change of variables (recall
T:(Q) = Q), we get

1
(31) /Q qntp dz = /0 /Q det(IT; )V, - (X0) 0Ty da ds.

=n(tn,s)

Owing to item (ii) and noting that X o T, ' — X in Lo () as t — 0, we also have
for s € [0, 1] fixed,

(32) det(0T;; " ) (X)) o Tyt — Xop  in Ly(Q,R?)  asn — .

This manuscript is for review purposes only.
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OPTIMAL ACTUATOR DESIGN BASED ON SHAPE CALCULUS 9

As a result using the weak convergence of (@,,) in H(Q), we get for s € [0, 1],
(33) n(tn,S)—>/ V- Xy dr asn— occ.
Q

It is also readily checked using Holder’s inequality that |n(,, s)| < ¢[|[VonllL, |9 L,
for a constant ¢ > 0 independent of s € [0,1]. As a result we may apply Lebegue’s
dominated convergence theorem to obtain

1 1
(34) / Gn¥ dx = / N(tn,s) ds — / 7(0,8) ds = / Vo-Xdr asn— oo.
Q 0 0 Q

This proves that g, converges weakly to Vi - X.
Finally testing (28) with v, integrating over ) and estimating gives

T - m
‘(%@;ns%_v%er)
n L
(3) ® °2Tt —Q
< ol za(enstn + en) + ‘ (t Vs, X, w)
n Lo

with a constant ¢ > 0 only depending on X. Now we choose N, > 1 so large that

5 0T, — G 5
(36) (W —Vyp- X, 1/1) <e foralln> N,.

n L2
Then

b0y — @, N
(@Otn<ﬂ_V%fxw)

tn Lo

(37)

<e+ |(V(¢n - ‘pn) 'Xvw)Ia' + |(v(90n - 90) 'X7¢)L2|
<e+e,+e foraln> max{Ng,]\l}.

Choosing €, := min{t2, e} and combining the previous estimate with (35) shows the
right hand side of (37) can be bounded by 3e. Since € > 0 was arbitrary we see that
(26) holds. O

3.2. First main result: the directional derivative of J>. Given w € 9(Q)
and r > 0, we define the set of maximisers of Jj(w,-) by

(38) Xo(w):={feK: sup  Ji(w, f)=T(w, )}

fEK,

The set X3(w) is nonempty as shown in Lemma 2.4. Before stating our first main
result we make the following assumption.

ASSUMPTION 3.3. For every X € Co'o’l(ﬁ,Rd) and t € [0, 7x] we have
(39) ueEU <= wuoT,elU.

REMARK 3.4. Assumption 3.3 is satisfied for U equal to Lo(Q2) or R.

This manuscript is for review purposes only.
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328 Under the Assumption 3.3 we have the following theorem, where we set g/ :=
329 yf‘w’f’f’“’ and pr = pi7 @ for w € N(Q) and f € K. Furthermore we define for
330 AeR¥™> BeR¥™ g bcecR?

d
331 A:B= Z a;;bij, (a®Db)c:=(b-c)a,

i,5=1

332 where a;j, b;; are the entries of the matrices A, B, respectively.

333 THEOREM 3.5. (a) The directional derivative of Jo() at w in direction X €
334 CY1(Q,RY) is given by
335 (40) DJp(w)(X) = max / Sy (g5, ph af) : 0X + So(f) - X du dt,
fexz(w) Jar
336 where the functions S1(f) := S1(g/,p"*, @) and Sy(f) are given by
(41)

Sl(f) :[(‘gfvw 2 + ’Y|’I]f’w|2 _ gf’“&gﬁf’w + ngaw . Vﬁf’w _ Xwaf’wﬁﬁw)
337 _ ngyb-’ ® Vﬁf’w _ Vﬁf’w ® v?jfv“),

Solf) == VI P

338 and the adjoint p“ satisfies
339 (42) opl — ApPY = =255 in Q x (0,7,
340 (43) P =0 ondQx (0,7,
343 (44) Ty =0 inQ.
343 (b) The directional derivative of J1(-, f) at w in direction X € Co’o’l(ﬁ,Rd) is
344 given by
345 (45) DJi(w, /)(X) = S1(f) : 0X + So(f) - X dx dt,
Qr

346 where So(f) and S1(f) are defined by (41).
347 Proof of item (b). We notice that for r > 0 we have
348 (46 ) =12 24

s (46) max  Ji(w,f)=r hiv Ji(w; )

g oy <7 171223 gy <1

319 Therefore we may assume that f € K with Hf||Hé(Q) < 1. Setting K := {f}, we have
350 for all w € YP(Q),

351 (47) Bw)= max S [f) =%/

1 sz ) €1
352 and hence the result follows from item (a) since X5(w) = {f} is a singleton. The proof
353 of part (a) will be given in the following subsections. d

This manuscript is for review purposes only.
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ot

1 We pause here to comment on the regularity requirements imposed on f. As can be
5 seen from the volume expression (40) we can extend DJ;(w, f) to initial conditions f
in Ly(R). In fact, the only term that requires weakly differentiable initial conditions

IR

357 is the one involving Sy and it can be rewritten as follows for a.e. ¢ € [0, 7],
]. _f.w
So(t)~de:—f V- Xphe(t) de
358 (48) @ @

_ % /Q div(X)fpH (1) + FVPT(¢) - X da,

359 where we used that p/“(t) = 0 on 9. This shows that the shape derivative DJ; (w, f)
360 can be extended to initial conditions f € Ly(Q2). However, it is not possible to obtain
361  the shape derivative for f € Ly() in general. This will become clear in the proof of
362 Theorem 3.5.

363 The next corollary shows that under certain smoothness assumptions on w we
364 can write the integrals (40) and (45) as integrals over dw.
365 COROLLARY 3.6. Let f € K and X € é’o’l(ﬁ,Rd) be given. Assume that w € €
366 and Q are C? domains. Moreover, suppose that either U = Ly(2) or U = R.
367 (a) Given f € Xa(w) define S, (f) = fOT S1(f)(s) ds and
368 So(f) == fOT So(f)(s) ds. Then we have
(49)
369 4 4 _ 4
Sl(f)|w S Wll(wa RdXd)v Sl(f)|Q\LTJ € Wll(Q \ W, RdXd)a SO(f)|w € LQ(wv Rd)7
370 and
371 (50) —div(S1(f) 4+ So(f) =0 ae inwU(Q\D).
372 Moreover (40) can be written as
DJh(w)(X) = max / 1$1(F)v] - X ds
f€x2(w) Ow
373 (51) T
— _w7f _wvf
= max — U X v)dtds
feXa(w) /6w /O P ( )

374 for X € Co’l(Q,Rd), with v the outer normal to w. Here [S)(f)v] :=
375 S1(f)|wv — Sl(f)\g\wy denotes the jump of Sy (f)v across dw.

376 (b) We have that (45) can be written as
T
377 (52) DI (w, f)(X) = — /8w/0 a7 pd (X - v) dt ds
378 for X € C1(Q,RY).
379 Before we prove this corollary we need the following auxiliary result.
380 LEMMA 3.7. Suppose that Q is of class C?. For all f € HL(Q) and w € D(Q),

381  we have

T T
382 (53) / ghe ()0,p (1) dt € WHRQ),  and / Vil (t)-Vghe(t) dt € WEH(R).
0 0
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Proof. From the general regularity results [28, Satz 27.5, pp. 403 and Satz
27.3] we have that p/* € Ly(0,T; H3(Q)) and 0;p"% € Ly(0,T; H(Q)), and g/« €
Ly(0,T; H*(Q)) and 9,57 € Ly(0,T; L2(Q)).

Observe that for almost all ¢ € [0,7] we have 0;p/“(t) € H'(Q) and g/ (t) €
H?(Q). So since H(Q) C Lg(Q) and H3(Q) C C(Q), where we use that  C RY,
d < 3 we also have y/(t)0;p"“ (t) € L¢(Q) and a.e. t € (0,7)

(54) ||??f’w(t)3tl7f’w(t)||L1(Q) < Cllg™~(t) | &2 () ||3tl3f’w(t)||H1(Q)

for an constant C' > 0. Moreover by the product rule we have

(55)  0u, (5" (1)0ip" (1) = 0, (57 (1)) 0 (t) + 5" (1) (0,007 (1)),
——— —— S ———

€HY(Q) €HY ()  eHY(Q) €L2(Q)
so that 0,, (57 (t)0,;p"*(t)) € L1(Q) and

(56) 10z, (57 ()05 () | La@) < Clg"™ Ol @107 ()| 712 (s

for some constant C' > 0. So (54) and (56) imply that ¢ — ||37f’“’(t)8t]3f""(t)||W11(Q)
belongs to L1(0,T). This shows the left inclusion in (53). As for the right hand side
inclusion in (53) notice that for almost all ¢ € [0, T] we have p/*(t) € H?(Q). There-
fore Vp/*(t) € H?(Q) and Vi« (t) € H'(Q) and thus Vi (t) - Vp/¥(t) € Lg(Q).
Similarly we check that 8,,(Vy/“(t) - V' (t)) € Li(Q) and thus ¢ — [[Vy/(t) -
Vple ()llwa @) € L1(0,T), which gives the right hand side inclusion in (53). d

Proof of Corollary 3.6. We assume that Theorem 3.5 holds. As a consequence of
Lemma 3.7 we obtain (49). Then for all X € C}(Q, R?) satisfying X |5, = 0 we have
Ti(w) = (Id+tX)(w) = w for all t € [0, 7x]. Hence DJo(w)(X) = 0 for such vector
fields which gives

(57) 0= DF(w)(X) > /Q $1(f): 90X +80(f) - X da

for all X € C}(Q,R?) satisfying X|s, = 0 and for all f € Xa(w). Since for fixed f
the expression in (57) is linear in X this proves

(58) /Qél(f):aXﬁ—So(f)-de:O

for all X € C1(Q,R?) satisfying X|s, = 0 and for all f € X3(w). Hence testing of
(58) with vector fields X € Cl(w,R?) and X € CL(Q\ @, R?), partial integration and
(49) yield the continuity equation (50). As a result, by partial integration (see e.g.
[17]), we get for all X € CL(Q,RY),

DR()(X) = max /Q $1(f) : 0X +8o(f) - X da

0 - e ([ siom-x ds+/w(‘div(81(_ﬁ)+s°(f))'){ v

+ /Q\w (—=div(S1(f) +So(f)) -X dm),

=0
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which proves the first equality in (51). Now using Lemma 3.7 we see that T(f) :=
Si(f) + fOT X (#)pf# (t) dt belongs to Wi(Q, R¥*9) and hence [T(f)v] = 0 on
dw. Tt follows that [S;(f)v] = — fOT X' (t)pF+ (t) dt which finishes the proof of
(a). Part (b) is a direct consequence of part (a). 0

The following observation is important for our gradient algorithm that we intro-
duce later on.

COROLLARY 3.8. Let the hypotheses of Theorem 3.5 be satisfied. Assume that if
v €U then —v € U. Then we have

(60) Djl(wv_f)(X):Djl(w7f>(X)

for all X € CONQ,RY) and f € H(Q).

Proof. Let f € H}(Q) be given. From the optimality system (14) and the as-
sumption that v € U implies —v € U, we infer that a—F* = —afv g=fv = —gfe
and p~/% = —p/**. Therefore S;(—f) = S1(f) and So(—f) = So(f) and the result
follows from (45). o

The following sections are devoted to the proof of Theorem 3.5(a) .

3.3. Semnsitivity analysis of the state equation. In this paragraph we study
the sensitivity of the solution y of (1) with respect to (w, f,u).

Perturbed state equation. Let X € é’o’l(ﬁ, R?) be a vector field and define T} :=
id+7X. Given u € U, f € H3(Q) and w € Y(Q), we consider (1) with w, := T, (w),

(61) Oy — Aywfer =y u o in Q x (0,77,
(62) y“fer =0 on 0Q x (0,T),
(63) yefen(0)=f in Q.

We define the new variable
(64) yu’f’T = (yu0T71’f’w7) oT;.

Then since X, = xwoTr * and AfoT, = div(A(t)V(foTy)), it follows from (61)-(63)
that

1
(65) Ayl — ) div(A(T)Vy“ ™) = xou  in Q x (0,77,
(66) y“HT =0 on 9Q x (0,7,
(67) y“IT(0)=foT, inQ,
where

A7) := det(dT)OT 0T T, &(7) := | det(IT5)).
Equations (65)-(67) have to be understood in the variational sense, i.e., y*/7 €

W (0, T) satisfying y*/7(0) = f o T, and

(68) (T)aty“’f’Tgo + A(T)Vy“’f’T -V drdt = / E(T)xwup dx dt
Qr

£
Qr
for all ¢ € W(0,T). Since X € éo’l(ﬁ,Rd), we have for fixed 7,
A(Ta ')7 aTA(T7 ) € Loo(Qv RdXd)a 5(7—7 ')7 an(T, ) € Lo (Q)
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Moreover, there are constants ci, co > 0, such that

(69) A(T,x)¢ - ¢ > c1|¢)? forall ¢ € R, foraexcQ, forall 7€ 0,7x]
and

(70) &(ryx) > co foraexeQ, foral7el0,7x]

Apriori estimates and continuity.

LEMMA 3.9. There is a constant ¢ > 0, such that for all (u, f,w) € U x HE(Q) x
D(Q), and T € [0, 7x], we have

Ny T Loy + 19T Ly 2y + 10ey™ 5 | Ly 1)

(71)
< elllxw ull Ly (o) + 1f1[20)s
and
(12) " o + 10" et < elwtlaes + 17 m):

Proof. Estimate (71) is a direct consequence of (4). Let us prove (72). Recalling
yhm = y“"T:l’f’wT o T, a change of variables shows,

[ g s 9yt d
Qr

— gfl(T)|yuoT:l,f,w.,|2 + Afl(,]_)vyuoT:l,f,wT .vyuoT:l,f,wT dx dt
Qr

< C/ |yuoT:1,f,wT|2 + |vyuoT:1,f,wT|2 da dt
Qr

(71) -
< ellXewr w0 T M| Loy + 1 f[1e)

< CllIxwullLoza)) + 1 122),

and we further have

(74) ([ X, wo T;1H%2(L2) = ||\/5qu||%2@2) < C||qu||2Lz(L2)~
Combining (73) and (74) we obtain [|y*“/7 |1, m1) < (Xl Lo(o) + | fllr). In a
similar fashion we can show (72). d

REMARK 3.10. An estimate for the second derivatives of y*“™ of the form

(75) T a2y < ellullpacs) + 1)

may be achieved by invoking a change of variables in the term ||y¢’f||L2(H2) in (71).
This, however, requires the vector field X to be more regular, e.g., CO’Z(Q, R%), and is
not needed below.

After proving apriori estimates we are ready to derive continuity results for the
mapping (u, f,7) = y*I 7.

LEMMA 3.11. For every (w1, u1, f1), (w2, ua, f2) € V(Q) x U x HL(Q), we denote
by y1 and ys the corresponding solution of (61)-(63). Then there is a constant ¢ > 0,
independent of (w1, uq, f1), (wa, ua, f2), such that

ly1 = y2ll Loty + lyr — vallo a2y + 19ey1 — OryellLy(Ly)

(76)
< X = X2l Loy + 11 = follan)-
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Proof. The difference 3 := y; — y1 satisfies in a variational sense

(77) atg - Ag = U1 Xw; — U2Xws in Q2 x (07 TL

(78) g=0 on 0Q x (0,7,

(79) g(O) = fl - fg on Q.

Hence estimate (76) follows from (4). d
As an immediate consequence of Lemma 3.11 we obtain the following result.
LEMMA 3.12. Let w € Y(Q) be given. For all 7, € (0,7x], tn,u € U and f,, f €

HY(Q) satisfying

(80) wp —wu in Lo(0,T;La(Q)), fo—f inHI(Q), 7,—0, asn— oo,

we have

ymde T Synbein Lo (0,T; Hy () asn — oo,
yurufnﬂ'n Ayuhf#u m f[1 (O’T‘7 LQ(Q)) as n — oQ.

(81)

Proof. Thanks to the apriori estimates of Lemma 3.9 there exists y €
Loo(0,T; HY(Q)) N HY(0,T; L2(Q)) and a subsequence (y“mx*/nx>7) converging
weakly-star in Lo, (0,T; H}(Q)) and weakly in H(0,T; Lo(Q)) to y. Since H'(Q)
embeds compactly into L?(2) we may assume, extracting another subsequence, that
fn. — fin Lo(Q) as k — co. By definition gy, := y"=r /7™ satisfies for k > 0,

(82) E(Tn )0y + AT )V - Vo dudt = | £(Tn, )Xo, da dt,

Qr Qr
for all ¢ € W(0,T), and yx(0) = fy, © T%,, on . Using the weak convergence of
Un, , Yr Stated before and the strong convergence obtained using Lemma 3.2,

(83) §(Tn) —1 in LOO(Q)’ A(Tn) — I in LOO(Q, RdXd),

we may pass to the limit in (82) to obtain,

(84) Oyp +Vy-Veodrdt = / Xwt dxdt  for all ¢ € W(0,T).
Qr Qr

Using Lemma 3.2 we see fn, 0T, — fin L2(2) as k — oo, and therefore y(0) = f.

Since the previous equation with y(0) = f admits a unique solution we conclude that

y = y“H¥. As a consequence of the uniqueness of the limit, the whole sequence

ytr: ™ converges to y*7«. This finishes the proof. 0

3.4. Sensitivity of minimisers and maximisers. Let us denote for (7, f) €
[0, 7x] x K the minimiser of u + J(w,,uo Tt f), by @/ ™.

LEMMA 3.13. For every null-sequence (1,,) in [0,7x] and every sequence (f,) in
K converging weakly (in H}(Q)) to f € K, we have
(85) a5 al in Ly(0,T; La(Q))  as n — oc.

Proof. We set w, := w,,. By definition we have /™ = @f»“m o T, . From
Lemma 2.3 we know that u/m“m™ converges to @/ in Ly(0,T; Lo(Q)). Therefore
according to Lemma 3.2 also @/»“m o T, converges in Ly(0,T; Ly(Q)) to a/». This
finishes the proof. 0
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LEMMA 3.14. For every null-sequence (7,) in [0,7x] and every sequence (f),
fn € Xa(wr,), there is a subsequence (fn,) and f € Xo(w), such that fn, — f in
H() as k — .

Proof. We proceed similarly as in the proof of Lemma 3.13. Let 7 € [0, 7x] and
v € U be given. We obtain for all f € K,

(86) J(Wrauf’T oI f) = Ieng(wT,UOTT_l,f) < J(wrvoTTH f).

i
u

Let (f,.) be an arbitrary sequence with f, € X3(w,,). Since ||fn||Hé(Q) < 1 for all
n > 0, there is a subsequence (fy, ) and a function f € K, such that f,, — fin Hj ()
as k — oo and || f| g1 (@) < 1. Thanks to Lemma 3.13 the sequence () defined by

Ty o= wlme T converges to a!* in Ly(0,T; Ly(R)). Moreover, Lemma 3.12 also shows
that y@fre T — @ fw i L(0,T; L2(R2)). By definition for all k > 0 and f € K,

/ ™ T T ()2 4 Al T (8)2 da dt
Qr

< s [T R 4 ofal e (0P deds
feK Qr
”fHHé(Q)Sl

= [y O a0 do
Qr
and therefore passing to the limit k — oo yields, for all f € K,

) [ W OR R draes [T @R 4y 0 dedr
QT QT

This shows that f € X3(w) and finishes the proof. d

3.5. Averaged adjoint equation and Lagrangian. For fixed 7 € [0, 7x] the
mapping ¢ +— T 1 o ¢ is an isomorphism on U, therefore,

(89) mi[rle(wﬂu,f):mi[rJlJ(wT,UOTT_l,f).

ue ue

Hence a change of variables shows,

T
i ) = inf [y O, @ + O],

(90)
D ing / ) (ly" P (OF +y|u(®)?) da dt.
Qr

uelU

Introduce for every quadruple (u, f,y,p) € Ux K x W(0,T) x W(0,T) and for every
7 € [0, 7x] the parametrised Lagrangian

Grvus fop)i= [ 6 (1l +uP) dods
Qr
(91) + / &(1) Oy p dxdt + A(T)Vy - Vp dz dt
Qr

— / E(T)uxwp dx dt + / &(7)(y(0) — f o T;)p(0) dex.
Qr Q
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DEFINITION 3.15. Given (u, f) € U x K, and 7 € [0,7x], the averaged adjoint
state pf™ € W(0,T) is the solution of averaged adjoint equation

1
(92) / 9yG(r,u, f,sy™ T 4+ (1 — s)y" I, p"I7)(p) ds =0 for all ¢ € W(0,T).
0

REMARK 3.16. The averaged adjoint state p™'°7 in our special case only depends
on u and f through the state y*“.

It is evident that (92) is equivalent to
(93)
[ €@aenm I+ Am) Vo VpI T ddt+ [ ¢(opm I (0)0(0) da
Qr Q
== | Oy dudt
Qr

for all ¢ € W(0,T), or equivalently after partial integration in time

(94)

/ —&(T) I + ATV - Vp I T de dt = — | E(r)(y" 0T + y" ) da dt
QT QT

for all p € W(0,T), and p*/"(T) = 0. This is a backward in time linear parabolic
equation with terminal condition zero.

3.6. Differentiability of max-min functions. Before we can pass to the proof
of Theorem 3.5 we need to address a Danskin type theorem on the differentiability of
max-min functions.

Let 4 and U be two nonempty sets and let G : [0, 7] x i x U — R be a function,
7 > 0. Introduce the function ¢ : [0,7] — R,

(95) g(t) :=sup inf G(¢,z,y)
yey el

and let £ : [0,7] = R be any function such that ¢(¢) > 0 for ¢ € (0,7] and £(0) = 0.
We are interested in sufficient conditions that guarantee that the limit

d o+ . g(t) = g(0)
— =1
(96) a?0") = lim =
exists. Moreover we define for ¢ € [0, 7],
(97) B(t) == {y' € V: sup inf G(¢,z,y) = inf G(¢,z,y")}.
yey zeU zel

LEMMA 3.17. Let the following hypotheses be satisfied.
(A0) For ally € U and t € [0, 7] the minimisation problem

(98) inf G(t,z,y)

admits a unique solution and we denote this solution by x*Y.
(A1) For allt in [0,7] the set B(t) is nonempty.
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(A2) The limits

G(tv xt,y, y) — G(O’ xt,y7 y)

(99) Hm o)
and

. G(t7x07y7y) B G(O?mo’y7y)
(100) Hm o)

exist for all y € U and they are equal. We denote the limit by
84G<0+, xo’y, y)

(A8) For all real null-sequences (t,) in (0,7] and all sequences y'~ in B(t,), there
exists a subsequence (tn,) of (tn), and (y'=x) of (y'), and y° in B(0), such

that
(101)
3 G t’n )mtnk)ytnk7 bk ) — G O,-’L‘t"k’ytnk, trg
Jlim. (tn y é& : ( V") _ a,0(00, 200 40
Nk
and
. Gltn >m0’ytnk7 ) — G 0,.T0’ytnk, Loy,
(102) klingo ( ) ! E()t ) ( Y ):8¢G(0+’x0,y07y0).
ng
Then we have
(103) ig(t” + = max 6[G(0+ xo,y y)
de =0 y€V(0) ’ I/

In this section we apply the previous results for £(t) = ¢, and in the following one
for £(t) = |Bi(no)|, no € R For the sake of completeness we give a proof in the
appendix; see [8].

3.7. Proof of Theorem 3.5. The following is a direct consequence of (94) and
Lemma 3.12.

LEMMA 3.18. For all sequences 1, € (0,7x], un,u € U and fn, f € K, such that
(104) Uy, —=u inU,  fo—f i H}(Q), 7,0, asn— oo,

we have

pUm ST e in Lo(0,T; HE(Q))  as n— oo,

105
(105) plndnTn spufe i Y0, T; Lo(Q))  asn — oo,

where p7v € Z(0,T) solves the adjoint equation

V- Vph!e dedt = 7/9 2yl o da dt
T

(106) / —p0yp“ I da dt + /
Qr

Qr

for all o € W(0,T), and p»/*(T) =0 a.e. on Q.

Now we have gathered all the ingredients to complete the proof of Theorem 3.5(a)
on page 9.
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Proof of Theorem 3.5(a) Using the fundamental theorem of calculus we obtain for
all 7 € [0, 7x],

(107)
G(ryu, £y, p Ty — G(ryu, £y, pidom)

1
B / OyG(r,u, f,sy™ 7 + (1= s)y“/ = pf ) (yhm —y*l¥) ds = 0,
0

where in the last step we used the averaged adjoint equation (94). In addition we
have J(w,,uo T Y f) = G(1,u, f,y“*, p»/7), which together with (107) gives

(108) J(wT’ uo T;la f) = G(T7 U, f7 yu,f,w7pu,f,'r).

As a consequence we obtain

(109) Ji(wr, f) = inf G(r,u, fy™ /<, p!7),
We apply Lemma 3.17 with £(t) := ¢,

(110) G(ryu, f) = Glryu, fy, p" ),

U=U,and B={f e K: [[flu <1}

Since the minimization problem (90) admits a unique solution, Assumption (A0) is
satisfied. A minor change in the proof of Lemma 2.4 to accommodate the reparametri-
sation of the domain w shows that (Al) is satisfied as well.

Let (7,,) be an arbitrary null-sequence and let (f,,) be a sequence in K converging
weakly in H}(Q) to f € K, and let us set @, := @/»™. Thanks to Lemma 3.13 we
have that u, converges strongly in Lo(0,T; L2()) to @/*. Moreover Lemma 3.18
implies

plinfnimn —>pﬂf'w’f’“ in Ly(0,T; HY(Q)) asn — oo,

(111) ) L
plnedr T spBTTTe g HY0,T; Le () as n — oo.

Using Lemma 3.7 we see that

(112) AT =L Gu(X) = 0X — X in Lo (QRPY)  asn - o0,
Tn

and

(113) ) =1, div(X) in Loo(Q) asn — oo.

Tn
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Therefore we get
G(Tnv U, fn) — G(07 U, fn)
Tn
— G(T'ﬂd a’ﬂd f’l’L? yﬁnafnvw’pﬁn7fn77—n) B G(07 an? fn’ yﬂnrvfn#‘)’pﬁn?fann)

Tn

n -1 U
= [ ) L et 4, ?) dedt

Qr T
f(Tn) —1

T

(114) 8tyﬁn>fn7w pﬁn:.fnﬂ—n dz dt

_|_
S5S—

T

Al —T_ - -
+/ (n) vyun,fmw . vpurufnﬂ—n dx dt
Q

T Tn
—1 _
_/ E(Tn) anxwpunyfnﬂ-n dl‘ dt
Qr T

anTTn -

+ [ FEetne) - g o) o o )
Q

Tn Tn

and using Lemma 3.2 and (111), we see that the right hand side tends to
(115)

/ div(X)([g7“ ] +yla P + o/ < ph + Vyhe - vpl e —alvphex,) da dt

Qr
1
— | axvylv. vl +oxvphe . vyl + VI Xp5(0) da dt.
Qr

Partial integration in time yields
(116)

i pr ool div(X) do dt = — i oupl gl div(X) da dt — /Q div(X) fp"* (0) du,
T T

where we used 7/ (0) = f and p/*(T) = 0. As a result, inserting (116) into (115),
we see that (115) can be written as

(117) / S (g, pf uf) : 0X + Sy - X dx dt
Qr

with S, S5 being given by (41). Hence we obtain

(118)

ghe 5wl @) L X + 8o - X du dt.

lim G(Tn7an7f’ﬂ) _G(O’an’fn) :/ Sl(
Qp

n—00 Tn

Next let @, o := %%, Then we can show in as similar manner as (118) that
(119)

hm G(Tna ﬂn,()» fn) -

n—00 Tn

G0, @m0 fn) _ / S1(5, p", ul ) 90X + 8o - X dx dt.
Qr

Hence choosing (f,) to be a constant sequence we see that (A2) is satisfied.
But also (A3) is satisfied since according to Lemma 3.14 we find for every null-
sequence (7,) in [0, 7x] and every sequence (fy,), fn € X2(w,, ), a subsequence (fy, )
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and f € X3(w), such that f,, — f in H3(Q) as k — oo. Now we use (118) and
(119) with f, replaced by this choice of f,,, and conclude that (A3) holds. Thus all
requirements of Lemma 3.17 are satisfied and this ends the proof of Theorem 3.5(a).

4. Topological derivative. In this section we will derive the topological deriva-
tive of the shape functions J; and J» introduced in (7) and (8), respectively. The
topological derivative, introduced in [22], allows to predict the position where small
holes in the shape should be inserted in order to achieve a decrease of the shape
function.

4.1. Definition of topological derivative. We begin by introducing the so-
called topological derivative. For more details we refer to [20].

DEFINITION 4.1 (Topological derivative). The topological derivative of a shape
funcional J : P(Q) = R at w € P(Q) in the point ng € Q\ dw is defined by

limeo JAB (o) =J@)
120 TJ(w = | Be (110)
(120) («)(m) { RETE £ PAY

4.2. Second main result: topological derivative of J,. Given w € ()
we set we 1= Q\ B(no) if no € w and w, := w U B(ng) if no € Q\ @. Denote by a/e
the minimiser of the right hand side of (7) with w = w..

ASSUMPTION 4.2. Let § > 0 be so small that Bs(ng) € Q. We assume that for all
(f,w) € V x D(Q) we have ul* € C(Bs(no)). Furthermore we assume that for every
sequence (wy) in P(Q) converging to w € P(N) and every weakly converging sequence
fn— finV we have

(121) Jim @/ — a1, 0.1:0(85 (o)) = O-

REMARK 4.3. Lemmas 2.3, 2.2 show that Assumption 4.2 is satisfied in case U
is equal to Lo(QQ) or R. Indeed in case U = R we have shown in Remark 2.1,(b) that
2va S (t) = fw o) dx so that u*/ is independent of space and Assumption 4.2
is satisfied thanks to Lemma 2.3. In case U = Lo(Q2) Remark 2.1,(a) shows that
2vu~f = pfw. In Lemma /.7 below we show that (f,w) — p™* : V x P(Q) —
C([0,T) x Bs(no)) is continuous for small 5 > 0, when V is equipped with the weak
convergence we also see that in this case Assumption 4.2 is satisfied.

For w € 9(Q) and f € K, we set g/ := yﬁw’f’f’w and pf* = pﬂw’fvaw. The
main result that we are going to establish reads as follows.

THEOREM 4.4. Let w € Y(Q) be open. Let Assumption 4.2 be satisfied at ng €
Q\ Ow. Then the topological derivative of w — Ja(w) at w in ngy is given by

- B .
— Jo @ (0, 8)p" (no,5) s if o € w,

122) T =
(122) Ja(w)(m) = max { I @ (no, 5)p" (o, 5) ds - if o € Q\ @,

where the adjoint p7 belongs to C([0,T] x Bs(no)) and satisfies

(123) ophe — ApfY = —25/  in Q x (0,7,
(124) P =0 ondQx(0,T),
(125) pPeT)=0 inQ.
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COROLLARY 4.5. Let the assumptions of the previous theorem be satisfied. Let
f €V be given. Then topological derivative of w — J1(w, f) at w in ng is given by

o B .
— Jo @ (xo, s)p" (no,5) ds if o € w,

(126) TI(w, £)(no) = {fOT ul (w0, 8)p" (no, s) ds ifno € Q\ o,

where p solves the adjoint equation (123).

_ Proof. For the same arguments as in proof of Theorem 3.5 we may assume that
f € K with ||f|lv < 1. Setting K := {f} we obtain for all w € 9(Q),

(127) Jo(w) = max S, f) = Nw.f)

,
lfllv<t

and hence the result follows from Theorem 3.5 since Xa(w) = {f} is a singleton. O

COROLLARY 4.6. Let the hypotheses of Theorem 4.4 be satisfied. Assume that if
v €U then —v € U. Then we have

(128) le (w7 7f)(770) = le (wa f)(ﬂo)

forallng € Q\ 0w and f € V.

Proof. Let f € V be given. From the optimality system (14) and the assumption
that v € U implies —v € U, we infer that a—fv = —afv, g~/ = —gfH and
pf* = —p/“. Now the result follows from (126). |

4.3. Averaged adjoint equation and Lagrangian. Throughout this section
we fix an open set w € YP(Q) and pick ny € w. The case 17y € N\ @ is treated similarly.
Let us define w, := w \ Be(1o), € > 0.

For every quadruple (u, f,y,p) € Ux K x W(0,T) x W(0,T) and every € > 0 we
define the parametrised Lagrangian,

G(e,u, f,y,p) ::/ y? + yu? dx dt + Owyp + Vy - Vp dxdt

(129) 2r r

—/Xﬁwﬂﬁ+/wmﬁﬁﬂm@@%
Qr Q

We denote by y*7/< € W(0,T) the solution of the state equation (1) with y = x.,. in
(1a). Then, similarly to (92), we introduce the averaged adjoint: find p*-¥:¢ € W (0, T),
such that

1

(130) [ 0,Gleu froy™ <+ (1= )y p ) () da =0 forall g € W(O.T)
0

or equivalently after partial integration in time, p*/¢(T) = 0 and

(131) / —pdipt e + V- Vpl© da dt = —/ (y" e+ y*“ T do dt
QT QT

for all ¢ € W(0,T).
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699 4.4. Proof of Theorem 4.4.

700 LEMMA 4.7. Let § > 0 be such that Bs(ny) € Q. For all sequences ¢, € (0,1],
701 unp,u € U and f,, f € K, such that

702 (132) U, ~u inU, fo—=f nV, € —0 asn— oo,
703 we have
plmdmen pl@in Ly(0,T; H}(Q) asn — oo,

704 (133
o1 (133) pumfmen spd@ g HY0,T; Le(Q))  as n — oo.

705 Moreover there is a subsequence (p“rx-frx¢nx), such that
706 (134) pUnfresene el @ gn ([0, T) x Bs(no))  as n — oo.

707 Proof. The first two statements follow by a similar arguments as used in Lemma 3.18.1
708 To prove the third we have by interior regularity of parabolic equations that

(135)
09 ptIe € Z(0,T) = Lo (0, T; H* (Bs(n0)))NH (0, T; Hy (Bs (110)))NH? (0, T; La(Bs (o))

710 and we have the apriori bound

2
S0 () P a0, 7:1424 (B3 o)
< C(Hy%f, + yuyf||L2(H2) + HE(yWﬁE + yu’f)HLz(Lz))7
712 see e.g. [10, p.365-367, Thm.6]. Hence (134) follows since the space Z(0,T) embeds
713 compactly into C([0,T] x Bs(no)) - O

714  Proof of Theorem 4.4 Proceeding as in the proof of Theorem 3.5 we obtain using
715 the averaged adjoint equation,

f6 (137) Tesu, £) = Glesu, £y, pI <)

717 for (€,u, f) € [0,1] x U x K, where G is defined in (129). Hence to prove Theorem 4.4
718 it suffices to apply Lemma 3.17 with

(138) Gleu, f) = Gleu, f,y" I, p*te),

U:=U, U :={f e K: ||fl|lv <1} and £(e) = |Bc(no)|. Since the minimisation
problem in (7) is uniquely solvable and in view of Lemma 2.4 Assumptions (A0) and
(A1) are satisfied. We turn to verifying (A2) and (A3) next.

Let (e,) be an arbitrary null-sequence and let (f,,) be a sequence in K converging
weakly in V to f € K. Thanks to Assumption 4.2 the sequence (Ty,), @y, := @/m“en
converges strongly in L1(0,T;C(Bs(no))) to u = uf* € L1(0,T;C(Bs(no))). There-
fore (recall the notation pf“en = pin-f@en) we obtain

(139)
G(€n7un,fn)7G(0,Un,fn) _ / / fn €n dZE dt
‘BETL 770 | en (710)

1
| Be,, (10)] (
= L / / (plen — ) da dt
‘ en (M0)] en(770)
1
(
1
(

711 (136)

=)

-~ ~1 ~ ~ =~ =~ =3
NN NN N NN
T = W N = O

D C

Ud

-3
(V)
-~

“dz dt
- [Be,(m0) |/ /smo)

x, t)p"* (x,t) dx dt.
-~ 1Be, (m0) |/ /m(m
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Further for all n,

— 7fn7w
(140) ‘BE,L(UO)l ’fO fBen(TIO —u)p dz dt‘
< |p'me ||C([0,T]x35(no))Han - a||L1(07T§C(B&(770)))
and
1 T m =fnren _ 5f;
(141) G [ o S0 a0y TP pre) da dt

< ||n i

L1(0.7:¢(Bs (o) 1B lc(10.71% Bs (no))-

Since z — fo (z,t)p*(x,t) dt is continuous in a neighborhood of 79 we also have

(142) lim / / a(z, t)p"e (x,t) do dt = / a(no, t)p" (o, t) dt.
n— oo ‘ 770 | 617,(770)

Hence in view of (139) we obtain

. G(eruanvfn) 7G(07ﬂnaf'n)
143 1
143 Jm B.. ()]

T
—— [ a9 1) de
0
Next let @, o := @/*°. Then we can show in as similar manner as (143) that

(14.4) lim G(6"7ﬁna07fn) B G(Ovﬁn,mfn
e |B'5n (TIO)‘

T
) = —/0 ﬂ(’l]mt)ﬁf’w(n()at) dt

Hence choosing (f,,) to be a constant sequence we see that (A2) is satisfied.

But also (A3) is satisfied since according to Lemma 3.14 we find for every null-
sequence (7,) in [0, 7x] and every sequence (f,), fn € X2(w,,), a subsequence (fy,)
and f € Xa(w), such that f,, — fin H}(Q) as k — oo. Now we use (143) and (144)
with f,, replaced by this choice of f,,, and conclude that (A3) holds.

5. Numerical approximation of the optimal shape problem. In this sec-
tion we discuss the formulation of numerical methods for optimal positioning and
design which are based on the formulae introduced in previous sections. We begin
by introducing the discretisation of the system dynamics and the associated linear-
quadratic optimal control problem. Then, the optimal actuator design problem is
addressed by approximating the shape and topological derivatives, which are embed-
ded into a gradient-based approach and a level-set method, respectively.

5.1. Discretisation and Riccati equation. Let 7" > 0. We choose the spaces
K = H}(Q) and U = R, so that the control space U is equal to L(0,T;R). The cost
functional reads

(145) Ta(w,£) = inf S, 1) = [ Io@Eao) +hult) e+ allwl = 2, a >0,

where y is the solution of the state equation

(146) Oy(x,t) = o Ay(z,t) + xw(x)u(t) (x,t) € Qx (0,T],
(147) y(z, t) =0 (z,t) € 0N x (0,T],
(148) y(0,2) = f 2€Q,
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and Q is a polygonal domain. The cost J in (145) includes the additional term
a(|w|—¢)? which accounts for the volume constraint |w| = ¢ in a penalty fashion. This
slightly modifies the topological derivative formula, as it will be shown later. We derive
a discretised version of the dynamics (146)-(148) via the method of lines. For this, we
introduce a family of finite-dimensional approximating subspaces V;, C H}(Q2), where
h stands for a discretisaton parameter typically corresponding to gridsize in finite
elements/differences, but which can also be related to a spectral approximation of the
dynamics. For each fj, € V},, we consider a finite-dimensional nodal/modal expansion
of the form

N
(149) =) fi¢;, fi€R, ¢ €V,
j=1

where {¢;}¥, is a basis of V;,. We denote the vector of coefficients associated to
the expansion by ih = (f1,..., f~)". In the method of lines, we approximate the
solution y of (146)-(148) by a function y;, in C*([0, T]; V4 (R2)) of the type

N
t) = Zyj(t)%‘ (z)

for which we follow a standard Galerkin ansatz. Inserting y;, in the weak formulation
(2) and testing with ¢ = ¢, k = 1,..., N leads to the following system of ordinary
equations,

(150) 7, () = Ang, (1) + Buun(t) te (0,71, y,(0)=f,,

where M, K, € RV*YN and Bh’ih € RY are given by

(151) Ap==M;"Sy, By=M"'By, f, =M},
with
(152) (Mn)ij = (i 0j)L2 s (Sh)ij = 0(Vei, Véi)iL,
(Bh)j:(Xwa¢j)L27 (fh) (f7¢])L27 Za]:1a7N
Note that y, = yzhi “ depends on f3, up, and w. Given a discrete initial condition
fn € Vi(Q), the discrete costs are defined by
(153)
T
Jin(w, fr) == 1nf Jh(w u, fr) = 1n€fU/ Mhyh + un ()] dt + ajw] — ¢)?,
Up,
0
and
(154) Jon(w) = sup  Jin(w, fn)

fn€Vh
lfnllg1 <1
The solution of the linear-quadratic optimal control problem in (153) is given by

a () = =y B a(t)y,,
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where II;, € RV*N satisfies the differential matrix Riccati equation

d
_inh = ApIl, + 1, Ay — 10, Byy "By I, + My, in [0,7), II,(T) =0.

The coefficient vector of the discrete adjoint state ﬁfl’““’ (t) at time ¢ can be recovered

directly by E£h7“(t) = 2l (t)y, (t). Let us define the discrete analog of (38),

(155) Xop(w) ={fn€Vi: fsu‘g Tin(w, fr) = Tin(w, fn)}-
hEVh
[1fnll g1 <1

Since we have the relation

(156) Tin(w, fn) = MR(0)f,, f, )L, + alw] — ¢)?,

the maximisers fj, € X3 (w) can be computed by solving the generalised Eigenvalue
problem: find (Ap, fr) € R x V}, such that

(157) (I14(0) ~ M), = 0.

The biggest A;, = A\7*** is then precisely the value 73, (w) and the normalised Eigen-
vectors for this Eigenvalue are the elements in Xg 5 (w):

(158) Xon(w) = {fn: f, € ker((I1,(0) — A K,)) and [f, || = 1}.

REMARK 5.1. It is readily checked that if fi, € Xop(w), then also —fi, € Xo 5 (w).
So if the Eigenspace for the largest eigenvalue is one-dimensional we have %o p(w) =
{fn,—fn}. However, we know according to Corollary 3.8 (now in a discrete setting)
that

(159) TTn(w, fr)(1m0) = T T w(w, — fr) (10)

for all ng € Q\ Ow and f, € V. Hence we can evaluate the topological derivative
T Jo.n(w) by picking either fi, or —fn. A similar argumentation holds for the shape
derivative.

5.2. Optimal actuator positioning: Shape derivative. Here we precise the
gradient algorithm based upon a numerical realisation of the shape derivative. We
consider (146)-(148) with its discretisation (150). Given a simply connected actuator
wp C Q we employ the shape derivative of J; to find the optimal position. Let f;, € Vj,.
According to Corollary 3.6 the derivative of Ji 5 in the case i = R is given by

T
(160) DJyp(w, fu)(X) = —/ 7Ttﬁ*“‘”(t)/o (s, )(X (5) - v(s)) ds dt

Ow

for X € Co'l(ﬁ, R?). We assume that w € Q. We define the vector b € R? with the
components

(161) b ;:/{9 E{L’“‘”(t)/o Pi (s, ) (eq - v(s)) ds dt,

where e; denotes the canonical basis of I%d. From this we can construct an admissible
descent direction by choosing any X € C'(Q, R%) with X |5, = b. Then it is obvious
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that DJy p(w, fr)(X) < 0. Let us use the the notation b = —V.J1 ,(w, fr). We write
(id+tVJ1 p(w, frn))(w) to denote the moved actuator w via the vector b. Note that
only the position, but not the shape of w changes by this operation. We refer to this
procedure as Algorithm 1 below.

Algorithm 1 Shape derivative-based gradient algorithm for actuator positioning
Input: wy € P(Q), fi, € Vi, by := =V T n(wo, frn), n =0, By >0, and € > 0.
while |b,| > ¢ do

if jl,h((id +ﬁnbn)(wn)a fh) < jl,h(wn; fh) then
Bn+1 < Bn
Wn41 < (ld +ﬂnbn)(wn)
b1 — —VI1n(wntt, fn)
n<n+1
else
decrease 3,
end if
end while
return optimal actuator positioning wep:

5.3. Optimal actuator design: Topological derivative. As for the shape
derivative, we now introduce a numerical approximation of the topological deriva-
tive formula which is embedded into a level-set method to generate an algorithm
for optimal actuator design, i.e. including both shaping and position. According to
Theorem 4.4 the discrete topological derivative of J; p, is given by
(162)

Falme pi (o, t) dt — 2a(|w| —¢) iy € w,

T : =M
T, fa) o) {— Tl (0pf (no, ) dt + 2a(|w| — ¢)  ifno € Q\ @,

The level-set method is well-established in the context of shape optimisation and
shape derivatives [2]. Here we use a level-set method for topological sensitivities as
proposed in [4]. We recall that compared to the the formulation based on shape sensi-
tivities, the topological approach has the advantage that multi-component actuators
can be obtained via splitting and merging.

For a given actuator w C (2, we begin by defining the function

T
g (0) = - / af (0P () dt +20(w| — o), (€Q

which is continuous since the adjoint is continuous in space. Note that p/»* and
/" depend on the actuator w. For other types of state equations where the shape
variable enters into the differential operator (e.g. transmission problems [3]) this may
not be the case and thus it particular of our setting. The necessary optimality condi-
tion for the cost function Jq 5 (w, f5) using the topological derivative are formulated
as

for all x € w,

0
(163)
g}{h”w(x) >0 forallzeQ\m.
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fnow

Since g,’:’““ is continuous this means that g;"** vanishes on 0w and hence

T
(164) / @ (OpI (¢ 1) dt = 2a(jw| — ), for all ¢ € dw.
0

An (actuator) shape w that satisfies (163) is referred to as stationary (actuator) shape.
It follows from (162) and (163), that g/"* vanishes on the actuator boundary dw of
a stationary shape w.
We now describe the actuator w via an arbitrary level-set function ¥y € V4, such
that w = { € Q : ¥y, (z) < 0} is achieved via an update of an initial guess v
Shown

Ih

(165) Z—H = (L= Bn)¥n + B || Fhown

. wpi={reQ:yp(x) <0},

where 3, is the step size of the method. The idea behind this update scheme is the
following: if ¢} (z) < 0 and gf’“w"( ) > 0, then we add a positive value to the level-
set function, which means that we aim at removing actuator material. Similarly, if
Yp(x) > 0 and g,f’““’" () < 0, then we create actuator material. In all the other cases
the sign of the level-sets remains unchanged. We present our version of the level-set
algorithm in [4], which we refer to as Algorithm 2.

Algorithm 2 Level set algorithm for optimal actuator design

Input: ¥9 € V4(Q), wo := {z € Q,¢)(x) <0}, Bo > 0, fn € Vi, and € > 0.
while ||wp+1 —wy| > € do

it Jin({pt' <0} fa) <1 h(wh < 0}, fr) then

sWn

P (U B+ By
6n+1 — /Bn
Wn41 {¢n+1 <0}
n+<n+1
else
decrease 3,
end if
end while
return optimal actuator Wopt

Algorithm 2 is embedded inside a continuation approach over the quadratic
penalty parameter « in (153), leading to actuators which approximate the size con-
straint in a sensible way, as opposed to a single solve with a large value of «.

Finally, for the functional [J5(w) we may employ similar algorithms for shape and
topological derivatives. We update the initial condition f5 € X2 5 (w) at each iteration
whenever the actuator w is modified.

6. Numerical tests. We present a series of one and two-dimensional numerical
tests exploring the different capabilities of the developed approach.

Test parameters and setup. We establish some common settings for the experi-
ments. For the 1D tests, we consider a piecewise linear finite element discretisation
with 200 elements over Q = (0,1), with v = 1073, ¢ = 0.01, ¢ = 0.2, and ¢ = 10~ ".
For the 2D tests, we resort to a Galerkin ansatz where the basis set is composed by the
eigenfunctions of the Laplacian with Dirichlet boundary conditions over = (0,1)2.
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We utilize the first 100 eigenfunctions. This idea has been previously considered in the
context of optimal actuator positioning in [18], and its advantage resides in the lower
computational burden associated to the Riccati solve. The actuator size constraint is
set to ¢ = 0.04. An important implementation aspect relates to the numerical approx-
imation of the linear-quadratic optimal control problem for a given actuator. For the
sake of simplicity, we consider the infinite horizon version of the costs J; and Js. In
this way, the optimal control problems are solved via an Algebraic Riccati Equation
approach. The additional calculations associated to J, and the set X3(w) are reduced
to a generalized eigenvalue problem involving the Riccati operator II. The shape
and topological derivative formulae involving the finite horizon integral of u and p are
approximated with a sufficiently large time horizon, in this case T = 1000.

Actuator size constraint. While in the abstract setting the actuator size constraint
determines the admissible set of configurations, its numerical realisation follows a
penalty approach, i.e. Ji(w, f) is as in (145),

Ti(w, f) = TP w, ) + T W),

where leQ(w, f) is the original linear-quadratic (LQ) performance measure, and
J*(w) = a(|w|] — ¢)? is a quadratic penalization from the reference size. The cost
Jo is treated analogously. In order to enforce the size constraint as much as possible
and to avoid suboptimal configurations, the quadratic penalty is embedded within a
homotopy/continuation loop. For a low initial value of «, we perform a full solve of
Algorithm 2, which is then used to initialized a subsequent solve with an increased
value of a. As it will be discussed in the numerical tests, for sufficiently large val-
ues of & and under a gradual increase of the penalty, results are accurate within the
discretisation order.

Algorithm 2 and level-set method. The main aspect of Algorithm 2 is the level-
set update of the function zbﬁ“ which dictates the new actuator shape. In order to
avoid the algorithm to stop around suboptimal solutions, we proceed to reinitialize the
level-set function every 50 iterations. This is a well-documented practice for the level-
set method, and in particular in the context of shape/topology optimisation [2, 4].
Our reinitialization consists of reinitialising 1/)2”'1 to be the signed distance function
of the current actuator. The signed distance function is efficiently computed via the
associated Eikonal equation, for which we implement the accelerated semi-Lagrangian
method proposed in [1], with an overall CPU time which is negligible with respect to
the rest of the algorithm.

Practical aspects. All the numerical tests have been performed on an Intel Core i7-
7500U with 8GB RAM, and implemented in MATLAB. The solution of the LQ control
problem is obtained via the ARE command, the optimal trajectories are integrated
with a fourth-order Runge-Kutta method in time. While a single LQ solve does not
take more than a few seconds in the 2D case, the level-set method embedded in a
continuation loop can scale up to approximately 30 mins. for a full 2D optimal shape
solve.

6.1. Optimal actuator positioning through shape derivatives. In the first
two tests we study the optimal positioning problem (11) of a single-component ac-
tuator of fixed width 0.2 via the gradient-based approach presented in Algorithm 1.
Tests are carried out for a given initial condition yo(x), i.e. the J7 setting.

Test 1. We start by considering yo(x) = sin(7x), so the test is fully symmetric,
and we expect the optimal position to be centered in the middle of the domain, i.e.
at © = 0.5. Results are illustrated in Figure 1, where it can be observed that as
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the actuator moves from its initial position towards the center, the cost [J; decays
until reaching a stationary value. Results are consistent with the result obtained by
inspection (Figure 1 left), where the location of the center of the actuator has been
moved throughout the entire domain.

—Initial actuator|
N 0.9
...... Final actuator

— 7 (w)

08/ ] 06

os} | 05
0a 0.4
02l | 03
o 02 04 06 08 1 R —F 04 06 08 1 0 50 100 150 200 250
Actuator center location x Iterations

Fia. 1. Test 1. Left: different single-component actuators with different centers have been
spanned over the domain, locating the minimum value of J1 for the center at x = 0.5. Center:
starting from an initial guess for the actuator far from 0.5, the gradient-based approach of Algorithm
1 locates the optimal position in the middle. Right: as the actuator moves towards the center in the
subsequent iterations of Algorithm 1, the value J1 decays until reaching a stationary point.

Test 2. We consider the same setting as in the previous test, but we change
the initial condition of the dynamics to be yo(z) = 100|z — 0.7]* + z(x — 1), so the
setting is asymmetric and the optimal position is different from the center. Results
are shown in Figure 2, where the numerical solution coincides with the result obtained
by inspecting all the possible locations.

— Final actuator
,,,,, Initial actuator|

0 H 2 " " , "
0 02 04 06 08 1 Oy 02 04 06 08 1 107 50 100 150 200 250
Actuator center location - Iterations

Fic. 2. Test 2. Left: inspecting different values of J1 by spanning actuators with different
centers, the optimal center location is found to be close to 0.2 . Center: the gradient-based approach
steers the initial actuator to the optimal position. Right: the value [J1 decays until reaching a
stationary point, which coincides with the minimum for the first plot on the left.

6.2. Optimal actuator design through topological derivatives. In the
following series of experiments we focus on 1D optimal actuator design, i.e. problems
(9) and (10) without any further parametrisation of the actuator, thus allowing multi-
component structures. For this, we consider the approach combining the topological
derivative, with a level-set method, as summarized in Algorithm 2.

Test 3. For yo(z) = max(sin(37z),0)?, results are presented in Figures 3 and
4 . As it can be expected from the symmetry of the problem, and from the initial
condition, the actuator splits into two equally sized components. We carried out two
types of tests, one without and one with a continuation strategy with respect to .
Without a continuation strategy, choosing a = 10% we obtain the result depicted in
Figure 3 (b). With a continuation strategy, as the penalty increases, the size of the
components decreases until approaching the total size constraint. The behavior of
this continuation approach is shown in Table 1. When « is increased, the size of
the actuator tends to 0.2, the reference size, while the LQ part of [J;, tends to a
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stationary value. For a final value of o = 10%, the overall cost J; obtained via the
continuation approach is approx. 80 times smaller than the value obtained without
any initialisation procedure, see Figure 3 (b)-(d). Figure 4 illustrates some basic
relevant aspects of the level-set approach, such as the update of the shape (left), the
computation of the level-set update upon j3,, and ¢} (middle), and the decay of the
value Jy (right).

12 - 12 . 12 . 12

08
0.6
04

0.2

(a) yo(x) (b) & = 103, no init. (c) a=10"1 (d) o =103

Fic. 3. Test 3. (a) Initial condition yo(z) = max(sin(3wz),0)2. (b) Optimal actuator for
a = 103, without initialization via increasing penalization. (c) Optimal actuator for oo = 1071, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for o = 103, via increasing
penalization.

a T 1LQ Jf (size) iterations

0.1 1.84x1072 1.62x1072 2.30x1073 (0.35) 225

)
1 235%x1072 2.26x1072  9.10x107* (0.23) 226
10 2.56x1072 2.46x1072  1.00x1073 (0.21) 316
10 3.46x1072 2.46x1072 1.00x1072 (0.21) 226
10° 0.12 2.46x1072  1.00x107! (0.21) 226
10%* 8.18 8.00x1072  8.10 (0.29) 629

TABLE 1
Test 8. optimisation values for yo(r) = max(sin(37wx),0)2. FEach row is initialized with the
optimal actuator corresponding to the previous one, except for the last row with o = 103, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2.

Test 4. We repeat the setting of Test 3 with a nonsymmetric initial condition
yo(z) = sin(3mx)* X {z<2/3} (). Results are presented in Table 2 and Figure 5, which
illustrate the effectivity of the continuation approach, which generates an optimal
actuator with two components of different size, see Figure 5d and compare with Figure
5b.

Test 5. We now turn our attention to the optimal actuator design for the worst-
case scenario among all the initial conditions, i.e. the J5 setting. Results are presented
in Figure 6 and Table 3. The worst-case scenario corresponds to the first eigenmode
of the Riccati operator (Figure 6a), which generates a two-component symmetric
actuator (Figure 6d). This is only observed within the continuation approach. For a
large value of o without initialisation, we obtain a suboptimal solution with a single
component (last row of Table 3, Figure 6b).

Test 6. As an extension of the capabilities of the proposed approach, we explore
the J5 setting with space-dependent diffusion. For this test, the diffusion operator
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-7
1.2 60 10°
= Current actuator j
Rejected update 5 1
1 =
4
08 102
3
0.6 : P 2
- T S P ) S L 1
04 10
0
02 — (1= Bty
! === Fgis, /19|
0 - — -2 10°
0 0.2 0.4 0.6 0.8 1 0 0.5 1 0 5 10 15

Iterations

FiG. 4. Test 3. Level set method implemented in Algorithm 2. Left: starting from an initial
actuator, the topological derivative of the cost is computed and an updated actuator is obtained.
The new shape s evaluated according to its closed-loop performance. If the update is rejected, the
parameter By, is reduced. Middle: the level-set approach generates an update of the actuator shape
based on the information from ¢y, Bn and gw,, . Right: This iterative loop generates a decay in the
total cost J1, (which accounts for both the closed-loop performance of the actuator and its volume
constraint).

a T Je T (size) iterations

0.1 6.48x1072 6.31x1072 1.7x1073 (0.33) 229

1 8.0x107%2 6.31x1072 1.69-2 (0.33) 226

10 0.176 0.164 1.23x1072 (0.235) 226

102 0.207 0.184 2.25x1072 (0.215) 316

10° 0.234 0.209 2.50x1072 (0.195) 316

10* 0.459 0.209 0.250 (0.195) 316

10%* 9.09 9.66x1072 9 (0.23) 629
TABLE 2

Test 4. optimisation values for yo(z) = sin(37x)?X,<2/3(x). Each row is initialized with the
optimal actuator corresponding to the previous one, except for the last row with o = 10%x, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2 .

oAy is rewritten as div(o(z)Vy), with o(z) = (1 — max(sin(97),0)) X z<0.51 (7) +
1073, Tterates of the continuation approach are presented in Table 4. Again, the
lack of a proper initialization of Algortithm 2 with a large value of « leads to a poor
satisfaction of both the size constraint and the LQ performance, which is solved via
the increasing penalty approach. A two-component actuator present in the area of
smaller diffusion is observed in Figure 7d.

6.3. Two-dimensional optimal actuator design. We now turn our attention
into assessing the performance of Algorithm 2 for two-dimensional actuator topology
optimisation. While this problem is computationally demanding, the increase of de-
grees of freedom can be efficiently handled via modal expansions, as explained at the
beginning of this Section. We explore both the [J; and 7> settings.
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0.8 08 08 08

06 06 06 s

o o4 04 04

0.2 0.2 02 02

00 0.2 0.4 0.6 08 1 00 0.2 0.4 0.6 08 1 00 0.2 0.4 0.6 08 1 00 0.2 0.4 0.6 0.8 1
(a) yo(z) (b) @ = 10%, no init. (c) a=10"1 (d) o = 10

Fi1G. 5. Test 4. (a) Initial condition yo(z) = sin(37rw)2x{z<2/3} (z). (b) Optimal actuator for
o = 10*, without initialization via increasing penalization. (c) Optimal actuator for o = 1071, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for a = 10*, via increasing
penalization.

15 12 12 12

1 { 1 { 1

1 08 08 08
06 1 06 1 06
05 { 04 { 04 { 04

0.2 0.2 0.2

0 : . . 0 0 : . 0 . .
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

(a) X2(w) (b) o = 102, no init. (c) a=10"1 (d) o =102

F1G. 6. Test 5. (a) First eigenmode of the Riccati operator, which corresponds to the set X2 (w).
(b) Optimal actuator for a = 103, without initialization via increasing penalization. (c) Optimal
actuator for a = 1071, subsequently used in the quadratic penalty approach. (d) Optimal actuator
for a = 103, via increasing penalization.

a T TLe JsX(size) iterations
0.1 0.402 0.401 1.1x1073 (0.305) 307

1 0.369 0.364 4.0x107% (0.22) 225

10 0.343 0.342 1.0x1073 (0.19) 228

10% 0.352 0.342 1.0x1072 (0.19) 226

103 0.442 0.342 0.1 (0.19) 226
10%* 0.761 0.536 0.225 (0.215) 941

TABLE 3

Test 5. optimisation values for Jo. FEach row is initialized with the optimal actuator corre-
sponding to the previous one, except for the last row with o = 10%3*. The reference size for the
actuator s 0.2 .

Test 7. This experiment is a direct extension of Test 3. We consider a unilaterally
symmetric initial condition yo(x1,22) = max(sin(4n(z; — 1/8)),0)3 sin(rxo)?, induc-
ing a two-component actuator. The desired actuator size is ¢ = 0.04. The evolution
of the actuator design for increasing values of the penalty parameter « is depicted in
Figure 8. We also study the closed-loop performance of the optimal shape. For this
purpose the running cost associated to the optimal actuator is compared against an
ad-hoc design, which consists of a cylindrical actuator of desired size placed in the
center of the domain, see Figure 9 . The closed-loop dynamics of the optimal actuator
generate a stronger exponential decay compared to the uncontrolled dynamics and the
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a Ja QLQ J5 (size) iterations
0.1 1.792 1.743 4.97x10~2 (0.908) 194
1 2240 1.743 0.497 (0.908) 228
10 4.734 4.462 0.272 (0.365) 225
102 3.134 3.071 6.25%x1072 (0.175) 538
103 1.023 0.998 0.025 (0.195) 226
104 1.248 0.998 0.250 (0.195) 226
10** 28.19 3.195 25.0 (0.25) 673
TABLE 4

Test 6. Jo values with space-dependent diffusion o(x) = (1 — max(sin(97x),0))X{r<0.5} () +
1073, Each row is initialized with the optimal actuator corresponding to the previous one, except
for the last row with o = 10**. The reference size for the actuator is 0.2 .

12 12 12

08 08 08

0.6 1 0.6 1 0.6

04 | 0.4 | 0.4

0.2 0.2 0.2

(a) X2(w) (b) o(x) (¢) a=0.1 (d) a =10

Fic. 7. Test 6. (a) First eigenmode of the Riccati operator, which corresponds to the set
X2(w). (b) space-dependent diffusion coefficient o(z) = (1 — max(sin(97z),0))X{z<0.5} (z) + 1073,
(¢) Optimal actuator for oo = 10, subsequently used in the quadratic penalty approach. (d) Optimal
actuator for o = 10%, via increasing penalization.

ad-hoc shape.

Test 8. In an analogous way as in Test 5, we study the optimal design problem
associated to J,. The first eigenmode of the Riccati operator is shown in Figure 10a.
The increasing penalty approach (Figs. 10c to 10f) shows a complex structure, with
a hollow cylinder and four external components. The performance of the closed-loop
optimal solution is analysed in Figure 11, with a considerably faster decay compared
to the uncontrolled solution, and to the ad-hoc design utilised in the previous test.

Concluding remarks. In this work we have developed an analytical and com-
putational framework for optimisation-based actuator design. We derived shape and
topological sensitivities formulas which account for the closed-loop performance of a
linear-quadratic controller associated to the actuator configuration. We embedded
the sensitivities into gradient-based and level-set methods to numerically realise the
optimal actuators. Our findings seem to indicate that from a practical point of view,
shape sensitivities are a good alternative whenever a certain parametrisation of the
actuator is fixed in advance and only optimal position is sought. Topological sensi-
tivities are instead suitable for optimal actuator design in a wider sense, allowing the
emergence of nontrivial multi-component structures, which would be difficult to guess
or parametrise a priori. This is a relevant fact, as most of the engineering literature
associated to computational optimal actuator positioning is based on heuristic meth-
ods which strongly rely on experts’ knowledge and tuning. Extensions concerning
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%102

35

25

(a) yo(z1,22) (b) Y+t

(¢) a=0.1 (d)a=1

(e) a =1x 102 (f) a = 10*

FiGc. 8. Test 7. (a) initial condition yo(x1,z2) = max(sin(4r(x1 — 1/8)),0)3 sin(wx2)? for Ji
optimisation. (b) within the level-set method, the actuator is updated according to the zero level-set
of the function 1/)2'*'1‘ (¢) to (f) optimal actuators for different volume penalties.

995 robust control design and semilinear parabolic equation are in our research roadmap.

996 Appendix.
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10°¢
R
= 10
4o
4
%c 1071° \_\ ‘-/
2 e Incontrolled dynamics v
= —- =Controlled w/suboptimal shape \.
Controlled w/optimal shape i
10—20 L ¥
0 5 10 15 20 25 30

Time [s]

Fic. 9. Test 7. Closed-loop performance for different shapes. The running cost in Ji is
evaluated for uncontrolled dynamics (u = 0), an ad-ho cylindrical actuator located in the center of
the domain, and the optimal shape (Figure 8f). Closed-loop dynamics of the optimal shape decay
faster.

Differentiability of maximum functions. In order to prove Lemma 3.17 we
recall the following Danskin-type lemmas.

Let 2U; be a nonempty set and let G : [0,7] x U; — R be a function, 7 > 0.
Introduce the function ¢; : [0,7] — R,

(166) gl(t) ‘= sup Q(Lm),

reU,
and let £ : [0,7] — R be any function such that £(¢) > 0 for ¢ € (0,7] and ¢(0) = 0.
We give sufficient conditions that guarantee that the limit

(0%) := lim gt — 1) (t) — 91(0)

1 -
(167) ar’ o ()

exists. For this purpose we introduce for each ¢ the set of maximisers

(168) Uy (t) = {2' € Uy : sup G(t,r) =G(t,a")}.

The next lemma can be found with slight modifications in [7, Theorem 2.1, p. 524].

LEMMA 6.1. Let the following hypotheses be satisfied.
(A1) (i) For allt in [0, 7] the set V1(t) is nonempty,
(i) the limit

. G(t,2) - G(0,2)
—+ e ) )
(169) 0G(07, ) := }{% o)
exists for all x € B1(0).
(A2) For all real null-sequences (ty,) in (0,7] and all sequence (xy,,) in V1 (t,), there
exists a subsequence (tn,) of (tn), (zt,,) in Vi(ty,) and xo in V1(0), such
that

(170) iy G @n,) =G0,

_ +
k—00 U(tn,) = 0G(07, zo)-
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%102

(a) X2(w) (b) Y+t

(e) a =102 (f) a = 10*

F1G. 10. Test 8. (a) first eigenmode of the Riccati operator. (b) within the level-set method, the
actuator is updated according to the zero level-set of the function z/J,’I”Ll. (¢) to (f) optimal actuators
for different volume penalties.

1017 Then g1 is differentiable at t = 0T with derivative

d
_tgl(t)|t=0+ = max 9,G(0", ).

1018 (171) d z€B1(0)
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10°;
R
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Controlled w/optimal shape ]
10—20 L
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Fic. 11. Test 8. Closed-loop performance for different shapes. The running cost in J2 is
evaluated for uncontrolled dynamics (u = 0), a suboptimal cylindrical actuator of size c located in
the center of the domain, and the optimal shape with five components (Figure 10f). Closed-loop
dynamics of the optimal shape decay faster.

Proof of Lemma 3.17. Our strategy is to prove Lemma 3.17 by applying
Lemma 6.1 to the function G(t,y) := infyey G(¢,x,y) with Uy := Y. This will
show that g(t) := sup,cq G(t,y) is right-differentiable at ¢t = 0. By construction
Assumption (A0) of Lemma 3.17 is satisfied.

Step 1: For every t € [0, 7] and y € U we have G(t,y) = G(¢,z"?,y). Hence

G(t.y) — 9(0,y) =G(t, 2", y) — G(0,2°,y)
= G(t’ $t7y? y) - G(O7 xtwa y) + G(O, -Tt’ya y) - G(O, Z‘O’yz y)

(172)
>0

> G(tv xt7y7 y) - G(Ov mt,y’ y)
and similarly

G(t,y) — G(0,y) =G(t, 2", y) — G(0,2%Y,y)
= Gt y) = G(t,aV,y) +G(t,a",y) = G0,V y)
<0
< G(t, 2", y) — G(0,z°Y,y).

(173)

Therefore using Assumption (A2) of Lemma 3.17 we obtain from (99) and (100)

g(t7y) - g(oa y) Z 8@G(0+,x0’y7y) 2 limsup g(tvy) - g(07y) i

174 lim inf
(174) R0 o(t) N0 £t)

Hence Assumption (A1) of Lemma 6.1 is satisfied.
Step 2: For every ¢ € [0,7] and y' € B(t) we have G(t,y") = G(t,z"¥",y') and
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hence
(175)
G(t.y") — G(0,y") =G(t, 2"V y') — G(0,2°¥", y")
=G(t, 2" y") = G0, 2", y') + G(0,2"Y" ") — G(0,2°%" 3"

>0
>G(t, 2™yt — G0, 28yt
and similarly
(176)
G(t,y") — G(0,y") =G(t, 2™ y') — G(t, 2V, y") +G(t, 2™ y") — G(0,2°Y", y")

<0

<Gt 2™ yt) — G(0,2%Y" yt).

Thanks to Assumption (A3) of Lemma 3.17 For all real null-sequences (t,,) in (0, 7]
and all sequences (y'), y'» € U(t,), there exists a subsequence (t,, ) of (t,), (y'*)
of (y), and y° in Y(0), such that

tn tng,
G(t’ﬂk ) l‘t”k Y " ) ytnk ) B G(O7 xtnk Y iy 9 ytnk )

(arn)  lim T = 0,G (07, 2" ")
ng
and
n 09"k o, ) _ 0,y ™k tn
(178) fim Gln @ 5oy™) = GOTH Tye) g g 09 40).
k—o0 g(tnk)
Hence choosing t = t,,, in (175) we obtain
tWr _— t’n/»
liming 9o y™) = G(0,y™)
k— o0 g(tnk)
(179) <1§’> li i Gl @ ™yt ) = GO alre V7, gyt )
k—o0 f(tnk)
oGt 20 y0)
and similarly choosing t = t,,, in (176) we get
£ ytme) — tn
Jimn sup 9 ¥) = G0, 57)
(176) 0,y"™k oty ) 0,y ™k o tn
(180) 2 i sup Gltn,, ) — G0, )
O 9,60+, 207", ).
Combining (179) and (180) we conclude that
£ ytme) — tn
(181) tim U™ ) ZGOY™) _ 5 g+ 4007 40y,

which is precisely Assumption (A2) of Lemma 6.1.
Step 1 and Step 2 together show that Assumptions (A1) and (A2) of Lemma 6.1
are satisfied and this finishes the proof.
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