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Abstract. An approach to optimal actuator design based on shape and topology optimisation3
techniques is presented. For linear diffusion equations, two scenarios are considered. For the first4
one, best actuators are determined depending on a given initial condition. In the second scenario,5
optimal actuators are determined based on all initial conditions not exceeding a chosen norm. Shape6
and topological sensitivities of these cost functionals are determined. A numerical algorithm for7
optimal actuator design based on the sensitivities and a level-set method is presented. Numerical8
results support the proposed methodology.9
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1. Introduction. In engineering, an actuator is a device transforming an ex-13

ternal signal into a relevant form of energy for the system in which it is embedded.14

Actuators can be mechanical, electrical, hydraulic, or magnetic, and are fundamental15

in the control loop, as they materialise the control action within the physical system.16

Driven by the need to improve the performance of a control setting, actuator/sensor17

positioning and design is an important task in modern control engineering which18

also constitutes a challenging mathematical topic. Optimal actuator positioning and19

design departs from the standard control design problem where the actuator con-20

figuration is known a priori, and addresses a higher hierarchy problem, namely, the21

optimisation of the control to state map.22

There is no unique framework which is followed to address optimal actuator prob-23

lems. However, concepts which immediately suggest themselves -at least for linear24

dynamics- and which have been addressed in the literature, build on choosing actua-25

tor design in such a manner that stabilization or controllability are optimized by an26

appropriate choice of the controller. This can involve Riccati equations from linear-27

quadratic regulator theory, and appropriately chosen parameterizations of the set of28

admissible actuators. The present work partially relates to this stream as we optimise29

the actuator design based on the performance of the resulting control loop. Within30

this framework, we follow a distinctly different approach by casting the optimal ac-31

tuator design problem as shape and topology optimisation problems. The class of32

admissible actuators are characteristic functions of measurable sets and their shape33

is determined by techniques from shape calculus and optimal control. The class of34

cost functionals which we consider within this work are quadratic ones and account35

for the stabilization of the closed-loop dynamics. We present the concepts here for36

the linear heat equation, but the techniques can be extended to more general classes37

of functionals and stabilizable dynamical systems. We believe that the concepts of38
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shape and topology optimisation constitute an important tool for solving actuator39

positioning problems, and to our knowledge this can be the first step towards this40

direction. More concretely, our contributions in this paper are:41

i) We study an optimal actuator design problem for linear diffusion equations.42

In our setting, actuators are parametrised as indicator functions over a sub-43

domain, and are evaluated according to the resulting closed-loop performance44

for a given initial condition, or among a set of admissible initial conditions45

not exceeding a certain norm.46

ii) By borrowing a leaf from shape calculus, we derive shape and topological47

sensitivities for the optimal actuator design problem.48

iii) Based on the formulas obtained in ii), we construct a gradient-based and a49

level-set method for the numerical realisation of optimal actuators.50

iv) We present a numerical validation of the proposed computational method-51

ology. Most notably, our numerical experiments indicate that throughout52

the proposed framework we obtain non-trivial, multi-component actuators,53

which would be otherwise difficult to forecast based on tuning, heuristics, or54

experts’ knowledge.55

Let us, very briefly comment on the related literature. Most of these endeavors56

focus on control problems related to ordinary differential equations. We quote the two57

surveys papers [12, 27] and [26]. From these publications already it becomes clear that58

the notion by which optimality is measured is an important topic in its own right.59

The literature on optimal actuator positioning for distributed parameter systems is60

less rich but it also dates back for several decades already. From among the earlier61

contributions we quote [9] where the topic is investigated in a semigroup setting for62

linear systems, [5] for a class of linear infinite dimensional filtering problems, and [11]63

where the optimal actuator problem is investigated for hyperbolic problems related to64

active noise suppression. In the works [18, 16, 19] the optimal actuator problem is for-65

mulated in terms of parameter-dependent linear quadratic regulator problems where66

the parameters characterize the position of actuators, with predetermined shape, for67

example. By choosing the actuator position in [13] the authors optimise the decay68

rate in the one-dimensional wave equation. Our research may be most closely related69

to the recent contribution [21], where the optimal actuator design is driven by exact70

controllability considerations, leading to actuators which are chosen on the basis of71

minimal energy controls steering the system to zero within a specified time uniformly,72

for a bounded set of initial conditions. Finally, let us mention that the optimal actu-73

ator problem is in some sense dual to optimal sensor location problems [14], which is74

of paramount importance.75

Structure of the paper. The paper is organised as follows.76

In Section 2, the optimal control problems, with respect to which optimal ac-77

tuators are sought later, are introduced. While the first formulation depends on a78

single initial condition for the system dynamics, in the second formulation the optimal79

actuator mitigates the worst closed-loop performance among all the possible initial80

conditions.81

In Sections 3 and 4 we derive the shape and topological sensitivities associated82

to the aforedescribed optimal actuator design problems.83

Section 5 is devoted to describing a numerical approach which constructs the84

optimal actuator based on the shape and topological derivatives computed in Sections85

3 and 4. It involves the numerical realisation of the sensitivities and iterative gradient-86

based and level-set approaches.87

Finally in Section 6 we report on computations involving numerical tests for our88
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model problem in dimensions one and two.89

1.1. Notation. Let Ω ⊂ Rd, d = 1, 2, 3 be either a bounded domain with C1,190

boundary ∂Ω or a convex domain, and let T > 0 be a fixed time. The space-time91

cylinder is denoted by ΩT := Ω × (0, T ]. Further by H1(Ω) denotes the Sobolev92

space of square integrable functions on Ω with square integrable weak derivative.93

The space H1
0 (Ω) comprises all functions in H1(Ω) that have trace zero on ∂Ω and94

H−1(Ω) stands for the dual of H1
0 (Ω). The space

◦
C0,1(Ω,Rd) comprises all Lipschitz95

continuous functions on Ω vanishing on ∂Ω. It is a closed subspace of C0,1(Ω,Rd),96

the space of Lipschitz continuous mappings defined on Ω. Similarly we denote by97
◦
Ck(Ω,Rd) all k-times differentiable functions on Ω vanishing on ∂Ω. We use the98

notation ∂f for the Jacobian of a function f . Further Bε(x) stands for the open ball99

centered at x ∈ Rd with radius ε > 0. Its closure is denoted Bε(x) := Bε(x). By100

Y(Ω) we denote the set of all measurable subsets ω ⊂ Ω. We say that a sequence (ωn)101

in Y(Ω) converges to an element ω ∈ Y(Ω) if χωn → χω in L1(Ω) as n → ∞, where102

χω denotes the characteristic function of ω. In this case we write ωn → ω. Notice103

that χωn → χω in L1(Ω) as n → ∞ if and only if χωn → χω in Lp(Ω) as n → ∞ for104

all p ∈ [1,∞). For two sets A,B ⊂ Rd we write A b B is A is compact and A ⊂ B.105

2. Problem formulation and first properties.106

2.1. Problem formulation. Our goal is to study an optimal actor positioning107

and design problem for a controlled linear parabolic equation. Let U be a closed and108

convex subset of L2(Ω) with 0 ∈ U . For each ω ∈ Y(Ω) the set χωU is a convex109

subset of L2(Ω). The elements of the space Y(Ω) are referred to as actuators. The110

choices U = L2(Ω) and U = R, considered as the space of constant functions on Ω,111

will play a special role. Further, U := L2(0, T ;U) denotes the space of time-dependent112

controls, which is equipped with the topology induced by the L2(0, T ;L2(Ω))−norm.113

We denote by K a nonempty, weakly closed subset of H1
0 (Ω). It will serve as the114

set of admissible initial conditions for the stable formulation of our optimal actuator115

positioning problem.116

With these preliminaries we consider for every triplet (ω, u, f) ∈ Y(Ω)×U×H1
0 (Ω)117

the following linear parabolic equation: find y : Ω× [0, T ]→ R satisfying118

∂ty −∆y = χωu in Ω× (0, T ],(1a)119

y = 0 on ∂Ω× (0, T ],(1b)120

y(0) = f on Ω.(1c)121122

In the following, we discuss the well-posedness of the system dynamics 1 and the asso-123

ciated linear-quadratic optimal control problem, to finally state the optimal actuator124

design problem.125

Well-posedness of the linear parabolic problem. It is a classical result [10, p. 356,126

Theorem 3] that system (1) admits a unique weak solution y = yu,f,ω in W (0, T ),127

where128

W (0, T ) := {y ∈ L2(0, T ;H1
0 (Ω)) : ∂ty ∈ L2(0, T ;H−1(Ω))},129

which satisfies by definition,130

(2) 〈∂ty, ϕ〉H−1,H1
0

+

∫
Ω

∇y · ∇ϕ dx =

∫
Ω

χωuϕ dx131

for all ϕ ∈ H1
0 (Ω) for a.e. t ∈ (0, T ], and y(0) = f . For the shape calculus of Section 4132

we require that f ∈ H1
0 (Ω). In this case the state variable enjoys additional regularity133
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properties. In fact, in [10, p. 360, Theorem 5] it is shown that for f ∈ H1
0 (Ω) the134

weak solution yω,u,f satisfies135

(3) yu,f,ω ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), ∂ty

u,f,ω ∈ L2(0, T ;L2(Ω))136

and there is a constant c > 0, independent of ω, f and u, such that137

(4) ‖yu,f,ω‖L∞(H1) + ‖yu,f,ω‖L2(H2) + ‖∂tyu,f,ω‖L2(L2) ≤ c(‖χωu‖L2(L2) + ‖f‖H1).138

Thanks to the lemma of Aubin-Lions the space139

(5) Z(0, T ) := {y ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) : ∂ty ∈ L2(0, T ;L2(Ω))}140

is compactly embedded into L∞(0, T ;H1
0 (Ω)).141

The linear-quadratic optimal control problem. After having discussed the well-142

posedness of the linear parabolic problem, we recall a standard linear-quadratic opti-143

mal control problem associated to a given actuator ω. Let γ > 0 be given. First we144

define for every triplet (ω, f, u) ∈ Y(Ω)×H1
0 (Ω)×U the cost functional145

(6) J(ω, u, f) :=

∫ T

0

‖yu,f,ω(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt.146

By taking the infimum in (6) over all controls u ∈ U we obtain the function J1, which147

is defined for all (ω, f) ∈ Y(Ω)×H1
0 (Ω):148

(7) J1(ω, f) := inf
u∈U

J(ω, u, f).149

It is well known, see e.g. [25] that the minimisation problem on the right hand150

side of (7), constrained to the dynamics (1) admits a unique solution. As a result,151

the function J1(ω, f) is well-defined. The minimiser u of (7) depends on the initial152

condition f and the set ω, i.e., u = uω,f . In order to eliminate the dependence of the153

optimal actuator ω on the initial condition f we define a robust function J2 by taking154

the supremum in (7) over all normalized initial conditions f in K:155

(8) J2(ω) := sup
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f).156

We show later on that the supremum on the right hand side of (8) is actually attained.157

The optimal actuator design problem. We now have all the ingredients to state the158

optimal actuator design problem we shall study in the present work. In the subsequent159

sections we are concerned with the following minimisation problem160

inf
ω∈Y(Ω)
|ω|=c

J1(ω, f), for f ∈ K,
(9)161

where c ∈ (0, |Ω|) is the measure of the prescribed volume of the actuator ω. That is,162

for a given initial condition f and a given volume constraint c, we design the actuator163

ω according to the closed-loop performance of the resulting linear-quadratic control164

problem (7). Note that no further constraint concerning the actuator topology is165

considered. Buidling upon this problem, we shall also study the problem166

inf
ω∈Y(Ω)
|ω|=c

J2(ω),
(10)167
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where the dependence of the optimal actuator on the initial condition of the dynamics168

is removed by minimising among the set of all the normalised initial condition f ∈ K.169

Finally, another problem of interest which can be studied within the present170

framework is the optimal actuator positioning problem, where the topology of the171

actuator is fixed, and only its position is optimised. Given a fixed set ω0 ⊂ Ω we172

study the optimal actuator positioning problem by solving173

inf
X∈Rd

J1((id +X)(ω0), f), for f ∈ K,(11)174

and175

inf
X∈Rd

J2((id +X)(ω0)),(12)176

where (id +X)(ω0) = {x + X : x ∈ ω0}, i.e., we restrict our optimisation procedure177

to a set of actuator translations.178

Our goal is to characterize shape and topological derivatives for J1(ω, f) (for179

fixed f) and J2(ω) in order to develop gradient type algorithms to solve (9) and (10).180

The results presented in Sections 3 and 4 can also be utilized to derive optimality181

conditions for problems (11) and (12). In addition, we investigate numerically whether182

the proposed methodology provides results which coincide with physical intuition.183

While the existence of optimal shapes according to (9) and (10) is certainly also184

an interesting task, this issue is postponed to future work. We mention [21] where a185

problem similar to ours but with different cost functional is considered.186

2.2. Optimality system for J1. The unique solution ū ∈ U of the minimisation187

problem on the right hand side of (7) can be characterised by the first order necessary188

optimality condition189

(13) ∂uJ(ω, ū, f)(v − ū) ≥ 0 for all v ∈ U.190

The function ū ∈ U satisfies the variational inequality (13) if and only if there is a191

multiplier p ∈W (0, T ) such that the triplet (u, y, p) ∈ U×W (0, T )×W (0, T ) solves192 ∫
ΩT

∂tyϕ+∇y · ∇ϕ dx dt =

∫
ΩT

χωuϕ dx dt for all ϕ ∈W (0, T ),(14a)193 ∫
ΩT

∂tψp+∇ψ · ∇p dx dt = −
∫

ΩT

2yψ dx dt for all ψ ∈W (0, T ),(14b)194 ∫
Ω

(2γu− χωp̄)(v − u) dx ≥ 0 for all v ∈ U , a.e. t ∈ (0, T ),(14c)195
196

supplemented with the initial and terminal conditions y(0) = f and p(T ) = 0 a.e. in197

Ω. Two cases are of particular interest to us:198

Remark 2.1. (a) If U = L2(Ω), then (14c) is equivalent to 2γū = χωp̄ a.e.199

on Ω× (0, T ).200

(b) If U = R, then (14c) is equivalent to 2γū =
∫
ω
p̄ dx a.e. on (0, T ).201

2.3. Well-posedness of J2. Given ω ∈ Y(Ω) and f ∈ K, we use the notation202

uf,ω to denote the unique minimiser of J(ω, ·, f) over U.203

Lemma 2.2. Let (fn) be a sequence in K that converges weakly in H1
0 (Ω) to f ∈204

K, let (ωn) be a sequence in Y(Ω) that converges to ω ∈ Y(Ω), and let (un) be a205

sequence in U that converges weakly to a function u ∈ U. Then we have206

yun,fn,ωn → yu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

yun,fn,ωn ⇀ yu,f,ω in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) as n→∞.

(15)207
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Proof. The a-priori estimate (4) and the compact embedding Z(0, T ) ⊂208

L2(0, T ;H1
0 (Ω)) show that we can extract a subsequence of (yun,fn,ωn) that converges209

weakly to an element y in L2(0, T ;H2(Ω) ∩H1
0 (Ω)) and strongly in L2(0, T ;H1

0 (Ω)).210

Using this to pass to the limit in (2) with (u, f, ω) replaced by (un, fn, ωn) implies by211

uniqueness that y = yu,f,w.212

Lemma 2.3. Let (fn) be a sequence in H1
0 (Ω) converging weakly to f ∈ H1

0 (Ω)213

and let (ωn) be a sequence in Y(Ω) that converges to ω ∈ Y(Ω). Then we have214

(16) ūfn,ωn → ūf,ω in L2(0, T ;L2(Ω)) as n→∞.215

Proof. Using estimate (4) we see that for all u ∈ U and n ≥ 0, we have216 ∫ T

0

‖yū
fn,ωn ,fn,ωn(t)‖2L2(Ω) + γ‖ūfn,ωn(t)‖2L2(Ω) dt

≤
∫ T

0

‖yu,fn,ωn(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt

≤ c(‖χωnu‖2L2(L2) + ‖fn‖2H1).

(17)217

It follows that (ūn) := (ūfn,ωn) is bounded in L2(0, T ;L2(Ω)) and hence there is an218

element ū ∈ L2(0, T ;L2(Ω)) and a subsequence (ūnk), ūnk ⇀ ū in L2(0, T ;L2(Ω))219

as k → ∞. In addition this subsequence satisfies lim infk→∞ ‖ūnk‖L2(0,T ;L2(Ω)) ≥220

‖ū‖L2(0,T ;L2(Ω)). Since U is closed we also have ū ∈ L2(0, T ;U). Together with221

Lemma 2.2 we therefore obtain from (17) by taking the lim inf on both sides,222

(18)

∫ T

0

‖yū,f,ω(t)‖2L2(Ω) + γ‖ū(t)‖2L2(Ω) dt ≤
∫ T

0

‖yu,f,ω(t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt223

for all u ∈ U. This shows that ū = ūf,ω and since ūf,ω is the unique minimiser224

of J(ω, ·, y) the whole sequence (ūn) converges weakly to ūf,ω. In addition it follows225

from the strong convergence yū
fn,ωn ,fn,ω → yū

f,ω,f,ω inW (0, T ) and estimate (17) that226

the norm ‖ūfn,ωn‖L2(0,T ;L2(Ω)) converges to ‖ūf,ω‖L2(0,T ;L2(Ω)). As norm convergence227

together with weak convergence imply strong convergence, this shows that ūfn,ωn228

converges strongly to ūf,ω in L2(0, T ;L2(Ω)) as was to be shown.229

We now prove that ω 7→ J2(ω) is well-defined on Y(Ω).230

Lemma 2.4. For every ω ∈ Y(Ω) there exists f ∈ K satisfying ‖f‖H1
0 (Ω) ≤ 1 and231

(19) J2(ω) = J1(ω, f).232

Proof. Let ω ∈ Y(Ω) be fixed. In view of 0 ∈ U and (4) and since K ⊂ H1
0 (Ω) ↪→233

H1
0 (Ω) we obtain for all f ∈ H1

0 (Ω) with ‖f‖H1
0 (Ω) ≤ 1,234

(20) J1(ω, f) = min
u∈U

J(ω, u, f) ≤
∫ T

0

‖y0,f,ω(t)‖2L2(Ω) dt ≤ c‖f‖
2
H1

0 (Ω) ≤ cr
2.235

Further we can express J2 as follows236

(21) J2(ω) = sup
f∈K

‖f‖
H1

0(Ω)
≤1

∫ T

0

‖yū
f,ω,f,ω(t)‖2L2(Ω) + γ‖ūf,ω(t)‖2L2(Ω) dt.237
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Let (fn) ⊂ K, ‖fn‖H1
0 (Ω) ≤ 1 be a maximising sequence, that is,238

(22) J2(ω) = lim
n→∞

∫ T

0

‖yū
ω,fn ,fn,ω(t)‖2L2(Ω) + γ‖ūω,fn(t)‖2L2(Ω) dt.239

The sequence (fn) is bounded in K and therefore we find a subsequence (fnk) converg-240

ing weakly to an element f ∈ K. Additionally, the limit element satisfies ‖f‖H1
0 (Ω) ≤241

lim infk→∞ ‖fnk‖H1
0 (Ω) ≤ 1 and hence ‖f‖H1

0 (Ω) ≤ 1. Since (fnk) is also bounded in242

H1
0 (Ω) we may assume that (fnk) also converges weakly to f ∈ H1

0 (Ω). Thanks to243

Lemmas 2.3 and 2.2 we obtain244

J2(ω) = lim
k→∞

∫ T

0

‖yū
fnk

,ω
,fnk ,ω(t)‖2L2(Ω) + γ‖ūfnk ,ω(t)‖2L2(Ω) dt

=

∫ T

0

‖yū
f,ω,f,ω(t)‖2L2(Ω) + γ‖ūf,ω(t)‖2L2(Ω) dt.

(23)245

Remark 2.5. In view of Lemma 2.4 we write from now on J2(ω) =246

max f∈K,
‖f‖

H1
0(Ω)
≤1

J1(ω, f).247

3. Shape derivative. In this section we prove the directional differentiability248

of J2 at arbitrary measurable sets. We employ the averaged adjoint approach [23]249

which is tailored to the derivation of directional derivatives of PDE constrained shape250

functions. Moreover this approach allows us later on to also compute the topological251

derivative of J1 and J2 without performing asymptotic analysis which can otherwise252

be quite involved [20].253

Of course, there are notable alternative approaches, most prominent the material254

derivative approach, to prove directional differentiability of shape functions, see e.g.255

[15, 6]. For an overview of available methods the reader may consult [24].256

3.1. Shape derivative. Given a vector field X ∈
◦
C0,1(Ω,Rd), we denote by257

TXt the perturbation of the identity TXt (x) := x+ tX(x) which is bi-Lipschitz for all258

t ∈ [0, τX ], where τX := 1/(2‖X‖C0,1). We omit the index X and write Tt insteand259

of TXt whenever no confusion is possible. A mapping J : Y(Ω) → R is called shape260

function.261

Definition 3.1. The directional derivative of J at ω ∈ Y(Ω) in direction X ∈262
◦
C0,1(Ω,Rd) is defined by263

(24) DJ(ω)(X) := lim
t↘0

J(Tt(ω))− J(ω)

t
.264

We say that J is265

(i) directionally differentiable at ω (in
◦
C0,1(Ω,Rd)), if DJ(ω)(X) exists for all266

X ∈ C0,1(Ω,Rd),267

(ii) differentiable at ω (in
◦
C0,1(Ω,Rd)), if DJ(ω)(X) exists for all268

X ∈
◦
C0,1(Ω,Rd) and X 7→ DJ(ω)(X) is linear and continuous.269

The following properties will frequently be used.270

Lemma 3.2. Let Ω ⊆ Rd be open and bounded and pick a vector field X ∈271
◦
C0,1(Ω,Rd). (Note that Tt(Ω) = Ω for all t.)272
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(i) We have as t→ 0+,273

∂Tt − I
t

→ ∂X and
∂T−1

t − I
t

→ −∂X strongly in L∞(Ω,Rd×d)274

det(∂Tt)− 1

t
→div(X) strongly in L∞(Ω).275

276

(ii) For all ϕ ∈ L2(Ω), we have as t→ 0+,277

ϕ ◦ Tt →ϕ strongly in L2(Ω).(25)278279

(iii) Let (ϕn) be a sequence in H1(Ω) that converges weakly to ϕ ∈ H1(Ω). Let280

(tn) a null-sequence. Then we have as n→∞,281

ϕn ◦ Ttn − ϕn
tn

⇀∇ϕ ·X weakly in L2(Ω).(26)282
283

Proof. Item (i) is obvious. The convergence result (25) is proved in [7, Lem. 2.1,284

p.527] and (26) can be proved in a similar fashion.285

Item (iii) is less obvious and we give a proof. For every ε > 0 and ψ ∈ H1(Ω),286

there is N > 0, such that |(ϕn − ϕ,ψ)H1 | ≤ ε for all n ≥ Nε. By density we find for287

every n and every null-sequence (εn), εn > 0 an element ϕ̃n ∈ C1(Ω), such that288

(27) ‖ϕ̃n − ϕn‖H1 ≤ εn.289

It is clear that ϕ̃n ⇀ ϕ weakly in H1(Ω) as n→∞. We now write290

ϕn ◦ Ttn − ϕn
tn

−∇ϕn ·X =
(ϕn − ϕ̃n) ◦ Ttn − (ϕn − ϕ̃n)

tn
−∇(ϕn − ϕ̃n) ·X

+
ϕ̃n ◦ Ttn − ϕ̃n

tn
−∇ϕ̃n ·X.

(28)291

Let x ∈ Ω. Applying the fundamental theorem of calculus to s 7→ ϕ̃n(Ts(x)) on [0, 1]292

gives293

(29)
ϕ̃n(Ttn(x))− ϕ̃n(x)

tn
=

∫ 1

0

∇ϕ̃n(x+ tnsX(x)) ·X(x) ds.294

We now show that the function qn(x) :=
∫ 1

0
∇ϕ̃n(x+tnsX(x))·X(x) converges weakly295

to ∇ϕ ·X in L2(Ω). For this purpose we consider for ψ ∈ L2(Ω),296

(30)

∫
Ω

qnψ dx =

∫
Ω

∫ 1

0

∇ϕ̃n(x+ tnsX(x)) ·X(x)ψ(x) ds dx.297

Interchanging the order of integration and invoking a change of variables (recall298

Tt(Ω) = Ω), we get299

(31)

∫
Ω

qnψ dx =

∫ 1

0

∫
Ω

det(∂T−1
stn)∇ϕ̃n ·

(
(Xψ) ◦ T−1

stn

)
dx︸ ︷︷ ︸

:=η(tn,s)

ds.300

Owing to item (ii) and noting that X ◦ T−1
t → X in L∞(Ω) as t → 0, we also have301

for s ∈ [0, 1] fixed,302

(32) det(∂T−1
stn)(Xψ) ◦ T−1

stn → Xψ in L2(Ω,R2) as n→∞.303
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As a result using the weak convergence of (ϕ̃n) in H1(Ω), we get for s ∈ [0, 1],304

(33) η(tn, s)→
∫

Ω

∇ϕ ·Xψ dx as n→∞.305

It is also readily checked using Hölder’s inequality that |η(tn, s)| ≤ c‖∇ϕ̃n‖L2
‖ψ‖L2

306

for a constant c > 0 independent of s ∈ [0, 1]. As a result we may apply Lebegue’s307

dominated convergence theorem to obtain308

(34)

∫
Ω

qnψ dx =

∫ 1

0

η(tn, s) ds→
∫ 1

0

η(0, s) ds =

∫
Ω

∇ϕ ·X dx as n→∞.309

This proves that qn converges weakly to ∇ϕ ·X.310

Finally testing (28) with ψ, integrating over Ω and estimating gives311 ∣∣∣∣(ϕn ◦ Ttn − ϕntn
−∇ϕn ·X,ψ

)
L2

∣∣∣∣
≤ c‖ψ‖L2

(εn/tn + εn) +

∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ̃n ·X,ψ

)
L2

∣∣∣∣(35)312

with a constant c > 0 only depending on X. Now we choose Ñε ≥ 1 so large that313

(36)

∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ ·X,ψ

)
L2

∣∣∣∣ ≤ ε for all n ≥ Ñε.314

Then315 ∣∣∣∣( ϕ̃n ◦ Ttn − ϕ̃ntn
−∇ϕ̃n ·X,ψ

)
L2

∣∣∣∣
≤ ε+ |(∇(ϕ̃n − ϕn) ·X,ψ)L2 |+ |(∇(ϕn − ϕ) ·X,ψ)L2 |
≤ ε+ εn + ε for all n ≥ max{Nε, Ñε}.

(37)316

Choosing εn := min{t2n, ε} and combining the previous estimate with (35) shows the317

right hand side of (37) can be bounded by 3ε. Since ε > 0 was arbitrary we see that318

(26) holds.319

3.2. First main result: the directional derivative of J2. Given ω ∈ Y(Ω)320

and r > 0, we define the set of maximisers of J1(ω, ·) by321

(38) X2(ω) := {f̄ ∈ K : sup
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f) = J1(ω, f̄)}.322

The set X2(ω) is nonempty as shown in Lemma 2.4. Before stating our first main323

result we make the following assumption.324

Assumption 3.3. For every X ∈
◦
C0,1(Ω,Rd) and t ∈ [0, τX ] we have325

(39) u ∈ U ⇐⇒ u ◦ Tt ∈ U .326

Remark 3.4. Assumption 3.3 is satisfied for U equal to L2(Ω) or R.327
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Under the Assumption 3.3 we have the following theorem, where we set ȳf,ω :=328

yū
ω,f ,f,ω and p̄f,ω := pū

ω,f ,f,ω for ω ∈ Y(Ω) and f ∈ K. Furthermore we define for329

A ∈ Rd×d, B ∈ Rd×d, a, b, c ∈ Rd330

A : B =

d∑
i,j=1

aijbij , (a⊗ b)c := (b · c)a,331

where aij , bij are the entries of the matrices A,B, respectively.332

Theorem 3.5. (a) The directional derivative of J2(·) at ω in direction X ∈333
◦
C0,1(Ω,Rd) is given by334

(40) DJ2(ω)(X) = max
f∈X2(ω)

∫
ΩT

S1(ȳf,ω, p̄f,ω, ūf,ω) : ∂X + S0(f) ·X dx dt,335

where the functions S1(f) := S1(ȳf,ω, p̄f,ω, ūf,ω) and S0(f) are given by336

S1(f) =I(|ȳf,ω|2 + γ|ūf,ω|2 − ȳf,ω∂tp̄f,ω +∇ȳf,ω · ∇p̄f,ω − χωūf,ωp̄f,ω)

−∇ȳf,ω ⊗∇p̄f,ω −∇p̄f,ω ⊗∇ȳf,ω,

S0(f) =− 1

T
∇f p̄f,ω

(41)

337

and the adjoint p̄f,ω satisfies338

∂tp̄
f,ω −∆p̄f,ω = −2ȳf,ω in Ω× (0, T ],(42)339

p̄f,ω = 0 on ∂Ω× (0, T ],(43)340

p̄f,ω(T ) = 0 in Ω.(44)341342

(b) The directional derivative of J1(·, f) at ω in direction X ∈
◦
C0,1(Ω,Rd) is343

given by344

(45) DJ1(ω, f)(X) =

∫
ΩT

S1(f) : ∂X + S0(f) ·X dx dt,345

where S0(f) and S1(f) are defined by (41).346

Proof of item (b). We notice that for r > 0 we have347

(46) max
f∈K,

‖f‖
H1

0(Ω)
≤r

J1(ω, f) = r2 max
f∈ 1

rK,
‖f‖

H1
0(Ω)
≤1

J1(ω, f).348

Therefore we may assume that f̄ ∈ K with ‖f̄‖H1
0 (Ω) ≤ 1. Setting K := {f̄}, we have349

for all ω ∈ Y(Ω),350

(47) J2(ω) = max
f∈K,

‖f‖
H1

0(Ω)
≤1

J1(ω, f) = J1(ω, f̄)351

and hence the result follows from item (a) since X2(ω) = {f̄} is a singleton. The proof352

of part (a) will be given in the following subsections.353
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We pause here to comment on the regularity requirements imposed on f . As can be354

seen from the volume expression (40) we can extend DJ1(ω, f) to initial conditions f355

in L2(Ω). In fact, the only term that requires weakly differentiable initial conditions356

is the one involving S0 and it can be rewritten as follows for a.e. t ∈ [0, T ],357 ∫
Ω

S0(t) ·X dx = − 1

T

∫
Ω

∇f ·Xp̄f,ω(t) dx

=
1

T

∫
Ω

div(X)fp̄f,ω(t) + f∇p̄f,ω(t) ·X dx,

(48)358

where we used that p̄f,ω(t) = 0 on ∂Ω. This shows that the shape derivative DJ1(ω, f)359

can be extended to initial conditions f ∈ L2(Ω). However, it is not possible to obtain360

the shape derivative for f ∈ L2(Ω) in general. This will become clear in the proof of361

Theorem 3.5.362

The next corollary shows that under certain smoothness assumptions on ω we363

can write the integrals (40) and (45) as integrals over ∂ω.364

Corollary 3.6. Let f ∈ K and X ∈
◦
C0,1(Ω,Rd) be given. Assume that ω b Ω365

and Ω are C2 domains. Moreover, suppose that either U = L2(Ω) or U = R.366

(a) Given f ∈ X2(ω) define Ŝ1(f) :=
∫ T

0
S1(f)(s) ds and367

Ŝ0(f) :=
∫ T

0
S0(f)(s) ds. Then we have368

Ŝ1(f)|ω ∈W 1
1 (ω,Rd×d), Ŝ1(f)|Ω\ω ∈W 1

1 (Ω \ ω,Rd×d), Ŝ0(f)|ω ∈ L2(ω,Rd),

(49)
369

and370

(50) − div(Ŝ1(f)) + Ŝ0(f) = 0 a.e. in ω ∪ (Ω \ ω).371

Moreover (40) can be written as372

DJ2(ω)(X) = max
f∈X2(ω)

∫
∂ω

[Ŝ1(f)ν] ·X ds

= max
f∈X2(ω)

−
∫
∂ω

∫ T

0

ūω,f p̄ω,f (X · ν) dt ds

(51)373

for X ∈
◦
C1(Ω,Rd), with ν the outer normal to ω. Here [Ŝ1(f)ν] :=374

Ŝ1(f)|ων − Ŝ1(f)|Ω\ων denotes the jump of Ŝ1(f)ν across ∂ω.375

(b) We have that (45) can be written as376

(52) DJ1(ω, f)(X) = −
∫
∂ω

∫ T

0

ūω,f p̄ω,f (X · ν) dt ds377

for X ∈
◦
C1(Ω,Rd).378

Before we prove this corollary we need the following auxiliary result.379

Lemma 3.7. Suppose that Ω is of class C2. For all f ∈ H1
0 (Ω) and ω ∈ Y(Ω),380

we have381

(53)

∫ T

0

ȳf,ω(t)∂tp̄
f,ω(t) dt ∈W 1

1 (Ω), and

∫ T

0

∇p̄f,ω(t)·∇ȳf,ω(t) dt ∈W 1
1 (Ω).382
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Proof. From the general regularity results [28, Satz 27.5, pp. 403 and Satz383

27.3] we have that p̄f,ω ∈ L2(0, T ;H3(Ω)) and ∂tp̄
f,ω ∈ L2(0, T ;H1(Ω)), and ȳf,ω ∈384

L2(0, T ;H2(Ω)) and ∂tȳ
f,ω ∈ L2(0, T ;L2(Ω)).385

Observe that for almost all t ∈ [0, T ] we have ∂tp̄
f,ω(t) ∈ H1(Ω) and ȳf,ω(t) ∈386

H2(Ω). So since H1(Ω) ⊂ L6(Ω) and H2(Ω) ⊂ C(Ω), where we use that Ω ⊂ Rd,387

d ≤ 3 we also have ȳf,ω(t)∂tp̄
f,ω(t) ∈ L6(Ω) and a.e. t ∈ (0, T )388

(54) ‖ȳf,ω(t)∂tp̄
f,ω(t)‖L1(Ω) ≤ C‖ȳf,ω(t)‖H2(Ω)‖∂tp̄f,ω(t)‖H1(Ω)389

for an constant C > 0. Moreover by the product rule we have390

(55) ∂xj (ȳ
f,ω(t)∂tp̄

f,ω(t)) = ∂xj (ȳ
f,ω(t))︸ ︷︷ ︸

∈H1(Ω)

∂tp̄
f,ω(t)︸ ︷︷ ︸

∈H1(Ω)

+ ȳf,ω(t)︸ ︷︷ ︸
∈H1(Ω)

(∂xj∂tp̄
f,ω(t))︸ ︷︷ ︸

∈L2(Ω)

,391

so that ∂xj (ȳ
f,ω(t)∂tp̄

f,ω(t)) ∈ L1(Ω) and392

(56) ‖∂xj (ȳf,ω(t)∂tp̄
f,ω(t))‖L1(Ω) ≤ C‖ȳf,ω(t)‖H1(Ω)‖∂tp̄f,ω(t)‖H1(Ω)393

for some constant C > 0. So (54) and (56) imply that t 7→ ‖ȳf,ω(t)∂tp̄
f,ω(t)‖W 1

1 (Ω)394

belongs to L1(0, T ). This shows the left inclusion in (53). As for the right hand side395

inclusion in (53) notice that for almost all t ∈ [0, T ] we have p̄f,ω(t) ∈ H3(Ω). There-396

fore ∇p̄f,ω(t) ∈ H2(Ω) and ∇ȳf,ω(t) ∈ H1(Ω) and thus ∇ȳf,ω(t) · ∇p̄f,ω(t) ∈ L6(Ω).397

Similarly we check that ∂xj (∇ȳf,ω(t) · ∇p̄f,ω(t)) ∈ L1(Ω) and thus t 7→ ‖∇ȳf,ω(t) ·398

∇p̄f,ω(t)‖W 1
1 (Ω) ∈ L1(0, T ), which gives the right hand side inclusion in (53).399

Proof of Corollary 3.6. We assume that Theorem 3.5 holds. As a consequence of400

Lemma 3.7 we obtain (49). Then for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 we have401

Tt(ω) = (id +tX)(ω) = ω for all t ∈ [0, τX ]. Hence DJ2(ω)(X) = 0 for such vector402

fields which gives403

(57) 0 = DJ2(ω)(X) ≥
∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx404

for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 and for all f ∈ X2(ω). Since for fixed f405

the expression in (57) is linear in X this proves406

(58)

∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx = 0407

for all X ∈ C1
c (Ω,Rd) satisfying X|∂ω = 0 and for all f ∈ X2(ω). Hence testing of408

(58) with vector fields X ∈ C1
c (ω,Rd) and X ∈ C1

c (Ω\ω,Rd), partial integration and409

(49) yield the continuity equation (50). As a result, by partial integration (see e.g.410

[17]), we get for all X ∈ C1
c (Ω,Rd),411

DJ2(ω)(X) = max
f∈X2(ω)

∫
Ω

Ŝ1(f) : ∂X + Ŝ0(f) ·X dx

= max
f∈X2(ω)

(∫
∂ω

[Ŝ1(f)ν] ·X ds+

∫
ω

(−div(Ŝ1(f) + Ŝ0(f))︸ ︷︷ ︸
=0

·X dx

+

∫
Ω\ω

(−div(Ŝ1(f) + Ŝ0(f))︸ ︷︷ ︸
=0

·X dx

)
,

(59)412
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which proves the first equality in (51). Now using Lemma 3.7 we see that T(f) :=413

Ŝ1(f) +
∫ T

0
χωū

f,ω(t)p̄f,ω(t) dt belongs to W 1
1 (Ω,Rd×d) and hence [T(f)ν] = 0 on414

∂ω. It follows that [Ŝ1(f)ν] = −
∫ T

0
χωū

f,ω(t)p̄f,ω(t) dt which finishes the proof of415

(a). Part (b) is a direct consequence of part (a).416

The following observation is important for our gradient algorithm that we intro-417

duce later on.418

Corollary 3.8. Let the hypotheses of Theorem 3.5 be satisfied. Assume that if419

v ∈ U then −v ∈ U . Then we have420

(60) DJ1(ω,−f)(X) = DJ1(ω, f)(X)421

for all X ∈
◦
C0,1(Ω,Rd) and f ∈ H1

0 (Ω).422

Proof. Let f ∈ H1
0 (Ω) be given. From the optimality system (14) and the as-423

sumption that v ∈ U implies −v ∈ U , we infer that u−f,ω = −uf,ω, ȳ−f,ω = −ȳf,ω424

and p̄−f,ω = −p̄f,ω. Therefore S1(−f) = S1(f) and S0(−f) = S0(f) and the result425

follows from (45).426

The following sections are devoted to the proof of Theorem 3.5(a) .427

3.3. Sensitivity analysis of the state equation. In this paragraph we study428

the sensitivity of the solution y of (1) with respect to (ω, f, u).429

Perturbed state equation. Let X ∈
◦
C0,1(Ω,Rd) be a vector field and define Tτ :=430

id +τX. Given u ∈ U , f ∈ H1
0 (Ω) and ω ∈ Y(Ω), we consider (1) with ωτ := Tτ (ω),431

∂ty
u,f,ωτ −∆yu,f,ωτ = χωτu in Ω× (0, T ],(61)432

yu,f,ωτ = 0 on ∂Ω× (0, T ],(62)433

yu,f,ωτ (0) = f in Ω.(63)434435

We define the new variable436

(64) yu,f,τ := (yu◦T
−1,f,ωτ ) ◦ Tτ .437

Then since χωτ = χω ◦T−1
τ and ∆f ◦Tt = div(A(t)∇(f ◦Tt)), it follows from (61)-(63)438

that439

∂ty
u,f,τ − 1

ξ(τ)
div(A(τ)∇yu,f,τ ) = χωu in Ω× (0, T ],(65)440

yu,f,τ = 0 on ∂Ω× (0, T ],(66)441

yu,f,τ (0) = f ◦ Tτ in Ω,(67)442443

where444

A(τ) := det(∂Tτ )∂T−1
τ ∂T−>τ , ξ(τ) := |det(∂Tτ )|.445

Equations (65)-(67) have to be understood in the variational sense, i.e., yu,f,τ ∈446

W (0, T ) satisfying yu,f,τ (0) = f ◦ Tτ and447 ∫
ΩT

ξ(τ)∂ty
u,f,τϕ+A(τ)∇yu,f,τ · ∇ϕ dx dt =

∫
ΩT

ξ(τ)χωuϕ dx dt(68)448

449

for all ϕ ∈W (0, T ). Since X ∈
◦
C0,1(Ω,Rd), we have for fixed τ ,

A(τ, ·), ∂τA(τ, ·) ∈ L∞(Ω,Rd×d), ξ(τ, ·), ∂τξ(τ, ·) ∈ L∞(Ω).
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Moreover, there are constants c1, c2 > 0, such that450

(69) A(τ, x)ζ · ζ ≥ c1|ζ|2 for all ζ ∈ Rd, for a.e x ∈ Ω, for all τ ∈ [0, τX ]451

and452

(70) ξ(τ, x) ≥ c2 for a.e x ∈ Ω, for all τ ∈ [0, τX ].453

Apriori estimates and continuity.454

Lemma 3.9. There is a constant c > 0, such that for all (u, f, ω) ∈ U×H1
0 (Ω)×455

Y(Ω), and τ ∈ [0, τX ], we have456

(71)
‖yu,f,ωτ ‖L∞(H1) + ‖yu,f,ωτ ‖L2(H2) + ‖∂tyu,f,ωτ ‖L2(L2)

≤ c(‖χωτu‖L2(L2) + ‖f‖H1),
457

and458

(72) ‖yu,f,τ‖L∞(H1) + ‖∂tyu,f,τ‖L2(L2) ≤ c(‖χωu‖L2(L2) + ‖f‖H1).459

Proof. Estimate (71) is a direct consequence of (4). Let us prove (72). Recalling460

yu,f,τ = yu◦T
−1
τ ,f,ωτ ◦ Tτ , a change of variables shows,461 ∫

ΩT

|yu,f,τ |2 + |∇yu,f,τ |2 dx dt

=

∫
ΩT

ξ−1(τ)|yu◦T
−1
τ ,f,ωτ |2 +A−1(τ)∇yu◦T

−1
τ ,f,ωτ · ∇yu◦T

−1
τ ,f,ωτ dx dt

≤ c
∫

ΩT

|yu◦T
−1
τ ,f,ωτ |2 + |∇yu◦T

−1
τ ,f,ωτ |2 dx dt

(71)

≤ c(‖χωτu ◦ T−1
τ ‖L2(L2) + ‖f‖H1)

≤ C(‖χωu‖L2(L2)) + ‖f‖H1),

(73)462

and we further have463

‖χωτu ◦ T−1
τ ‖2L2(L2) = ‖

√
ξχωu‖2L2(L2) ≤ c‖χωu‖

2
L2(L2).(74)464

Combining (73) and (74) we obtain ‖yu,f,τ‖L2(H1) ≤ c(‖χωu‖L2(L2) + ‖f‖H1). In a465

similar fashion we can show (72).466

Remark 3.10. An estimate for the second derivatives of yu,f,τ of the form467

(75) ‖yu,f,τ‖L2(H2) ≤ c(‖u‖L2(L2) + ‖f‖H1)468

may be achieved by invoking a change of variables in the term ‖yu,fτ ‖L2(H2) in (71).469

This, however, requires the vector field X to be more regular, e.g.,
◦
C2(Ω,Rd), and is470

not needed below.471

After proving apriori estimates we are ready to derive continuity results for the472

mapping (u, f, τ) 7→ yu,f,τ .473

Lemma 3.11. For every (ω1, u1, f1), (ω2, u2, f2) ∈ Y(Ω)×U×H1
0 (Ω), we denote474

by y1 and y2 the corresponding solution of (61)-(63). Then there is a constant c > 0,475

independent of (ω1, u1, f1), (ω2, u2, f2), such that476

‖y1 − y2‖L∞(H1) + ‖y1 − y2‖L2(H2) + ‖∂ty1 − ∂ty2‖L2(L2)

≤ c(‖χω1
u1 − χω2

u2‖L2(L2) + ‖f1 − f2‖H1).
(76)477
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Proof. The difference ỹ := y1 − y1 satisfies in a variational sense478

∂tỹ −∆ỹ = u1χω1 − u2χω2 in Ω× (0, T ],(77)479

ỹ = 0 on ∂Ω× (0, T ],(78)480

ỹ(0) = f1 − f2 on Ω.(79)481482

Hence estimate (76) follows from (4).483

As an immediate consequence of Lemma 3.11 we obtain the following result.484

Lemma 3.12. Let ω ∈ Y(Ω) be given. For all τn ∈ (0, τX ], un, u ∈ U and fn, f ∈485

H1(Ω0) satisfying486

(80) un ⇀ u in L2(0, T ;L2(Ω)), fn ⇀ f in H1
0 (Ω), τn → 0, as n→∞,487

we have488

yun,fn,τn
∗
⇀yu,f,ω in L∞(0, T ;H1

0 (Ω)) as n→∞,
yun,fn,τn ⇀yu,f,ω in H1(0, T ;L2(Ω)) as n→∞.

(81)489

Proof. Thanks to the apriori estimates of Lemma 3.9 there exists y ∈490

L∞(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) and a subsequence (yunk ,fnk ,τnk ) converging491

weakly-star in L∞(0, T ;H1
0 (Ω)) and weakly in H1(0, T ;L2(Ω)) to y. Since H1(Ω)492

embeds compactly into L2(Ω) we may assume, extracting another subsequence, that493

fnk → f in L2(Ω) as k →∞. By definition yk := yunk ,fnk ,τnk satisfies for k ≥ 0,494 ∫
ΩT

ξ(τnk)∂tykϕ+A(τnk)∇yk · ∇ϕ dx dt =

∫
ΩT

ξ(τnk)χωunkϕ dx dt,(82)495

496

for all ϕ ∈ W (0, T ), and yk(0) = fnk ◦ Tτnk on Ω. Using the weak convergence of497

unk , yk stated before and the strong convergence obtained using Lemma 3.2,498

(83) ξ(τn)→ 1 in L∞(Ω), A(τn)→ I in L∞(Ω,Rd×d),499

we may pass to the limit in (82) to obtain,500 ∫
ΩT

∂tyϕ+∇y · ∇ϕ dx dt =

∫
ΩT

χωuϕ dx dt for all ϕ ∈W (0, T ).(84)501

502

Using Lemma 3.2 we see fnk ◦ Tτnk → f in L2(Ω) as k →∞, and therefore y(0) = f .503

Since the previous equation with y(0) = f admits a unique solution we conclude that504

y = yu,f,ω. As a consequence of the uniqueness of the limit, the whole sequence505

yun,fn,τn converges to yu,f,ω. This finishes the proof.506

3.4. Sensitivity of minimisers and maximisers. Let us denote for (τ, f) ∈507

[0, τX ]×K the minimiser of u 7→ J(ωτ , u ◦ T−1
τ , f), by ūfn,τn .508

Lemma 3.13. For every null-sequence (τn) in [0, τX ] and every sequence (fn) in509

K converging weakly (in H1
0 (Ω)) to f ∈ K, we have510

(85) ūfn,τn → ūf,ω in L2(0, T ;L2(Ω)) as n→∞.511

Proof. We set ωn := ωτn . By definition we have ūfn,τn = ūfn,ωτn ◦ Tτn . From512

Lemma 2.3 we know that ūfn,ωτn converges to ūfn,ω in L2(0, T ;L2(Ω)). Therefore513

according to Lemma 3.2 also ūfn,ωτn ◦Tτn converges in L2(0, T ;L2(Ω)) to ūfn,ω. This514

finishes the proof.515
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Lemma 3.14. For every null-sequence (τn) in [0, τX ] and every sequence (fn),516

fn ∈ X2(ωτn), there is a subsequence (fnk) and f ∈ X2(ω), such that fnk ⇀ f in517

H1
0 (Ω) as k →∞.518

Proof. We proceed similarly as in the proof of Lemma 3.13. Let τ ∈ [0, τX ] and519

v ∈ U be given. We obtain for all f ∈ K,520

(86) J(ωτ , u
f,τ ◦ T−1

τ , f) = inf
u∈U

J(ωτ , u ◦ T−1
τ , f) ≤ J(ωτ , v ◦ T−1

τ , f).521

Let (f̄n) be an arbitrary sequence with f̄n ∈ X2(ωτn). Since ‖f̄n‖H1
0 (Ω) ≤ 1 for all522

n ≥ 0, there is a subsequence (f̄nk) and a function f̄ ∈ K, such that f̄nk ⇀ f̄ in H1
0 (Ω)523

as k → ∞ and ‖f̄‖H1
0 (Ω) ≤ 1. Thanks to Lemma 3.13 the sequence (ūk) defined by524

ūk := ūf̄nk ,τnk converges to ūf̄,ω in L2(0, T ;L2(Ω)). Moreover, Lemma 3.12 also shows525

that yūk,f̄nk ,τnk → yū
f̄,ω,f̄,ω in L2(0, T ;L2(Ω)). By definition for all k ≥ 0 and f ∈ K,526 ∫

ΩT

|yū
f,τnk ,f,τnk (t)|2 + γ|ūf,τnk (t)|2 dx dt

≤ sup
f∈K

‖f‖
H1

0(Ω)
≤1

∫
ΩT

|yū
f,τnk ,f,τnk (t)|2 + γ|ūf,τnk (t)|2 dx dt

=

∫
ΩT

|yūk,f̄nk ,τnk (t)|2 + γ|ūk(t)|2 dx dt

(87)527

and therefore passing to the limit k →∞ yields, for all f ∈ K,528 ∫
ΩT

|yū
f,ω,f,ω(t)|2 + γ|ūf,ω(t)|2 dx dt ≤

∫
ΩT

|yū
f̄,ω,f̄,ω(t)|2 + γ|ūf̄,ω(t)|2 dx dt.(88)529

This shows that f ∈ X2(ω) and finishes the proof.530

3.5. Averaged adjoint equation and Lagrangian. For fixed τ ∈ [0, τX ] the531

mapping ϕ 7→ T−1
τ ◦ ϕ is an isomorphism on U, therefore,532

(89) min
u∈U

J(ωτ , u, f) = min
u∈U

J(ωτ , u ◦ T−1
τ , f).533

Hence a change of variables shows,534

inf
u∈U

J(ωτ , u, f) = inf
u∈U

∫ T

0

‖yu,f,ωτ (t)‖2L2(Ω) + γ‖u(t)‖2L2(Ω) dt

(89)
= inf

u∈U

∫
ΩT

ξ(τ)
(
|yu,f,τ (t)|2 + γ|u(t)|2

)
dx dt.

(90)535

Introduce for every quadruple (u, f, y, p) ∈ U×K ×W (0, T )×W (0, T ) and for every536

τ ∈ [0, τX ] the parametrised Lagrangian537

G̃(τ, u, f, y, p) :=

∫
ΩT

ξ(τ)
(
|y|2 + γ|u|2

)
dxdt

+

∫
ΩT

ξ(τ) ∂ty p dx dt+A(τ)∇y · ∇p dx dt

−
∫
ΩT

ξ(τ)uχωp dx dt+

∫
Ω

ξ(τ)(y(0)− f ◦ Tτ )p(0) dx.

(91)538
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Definition 3.15. Given (u, f) ∈ U × K, and τ ∈ [0, τX ], the averaged adjoint539

state pu,f,τ ∈W (0, T ) is the solution of averaged adjoint equation540

(92)

∫ 1

0

∂yG̃(τ, u, f, syu,f,τ + (1− s)yu,f,ω, pu,f,τ )(ϕ) ds = 0 for all ϕ ∈W (0, T ).541

Remark 3.16. The averaged adjoint state pu,f,τ in our special case only depends542

on u and f through the state yu,f,τ .543

It is evident that (92) is equivalent to544

∫
ΩT

ξ(τ)∂tϕp
u,f,τ +A(τ)∇ϕ · ∇pu,f,τ dx dt+

∫
Ω

ξ(τ)pu,f,τ (0)ϕ(0) dx

= −
∫
ΩT

ξ(τ)(yu,f,τ + yu,f,ω)ϕ dx dt

(93)

545

for all ϕ ∈W (0, T ), or equivalently after partial integration in time546

∫
ΩT

−ξ(τ)ϕ∂tp
u,f,τ +A(τ)∇ϕ · ∇pu,f,τ dx dt = −

∫
ΩT

ξ(τ)(yu,f,τ + yu,f,ω)ϕ dx dt

(94)

547

for all ϕ ∈ W (0, T ), and pu,f,τ (T ) = 0. This is a backward in time linear parabolic548

equation with terminal condition zero.549

3.6. Differentiability of max-min functions. Before we can pass to the proof550

of Theorem 3.5 we need to address a Danskin type theorem on the differentiability of551

max-min functions.552

Let U and V be two nonempty sets and let G : [0, τ ]×U×V→ R be a function,553

τ > 0. Introduce the function g : [0, τ ]→ R,554

(95) g(t) := sup
y∈V

inf
x∈U

G(t, x, y)555

and let ` : [0, τ ] → R be any function such that `(t) > 0 for t ∈ (0, τ ] and `(0) = 0.556

We are interested in sufficient conditions that guarantee that the limit557

(96)
d

d`
g(0+) := lim

t↘0+

g(t)− g(0)

`(0)
558

exists. Moreover we define for t ∈ [0, τ ],559

(97) V(t) := {yt ∈ V : sup
y∈V

inf
x∈U

G(t, x, y) = inf
x∈U

G(t, x, yt)}.560

Lemma 3.17. Let the following hypotheses be satisfied.561

(A0) For all y ∈ V and t ∈ [0, τ ] the minimisation problem562

(98) inf
x∈U

G(t, x, y)563

admits a unique solution and we denote this solution by xt,y.564

(A1) For all t in [0, τ ] the set V(t) is nonempty.565

This manuscript is for review purposes only.



18 KALISE, D., KUNISCH, K. AND STURM, K.

(A2) The limits566

(99) lim
t↘0

G(t, xt,y, y)−G(0, xt,y, y)

`(t)
567

and568

(100) lim
t↘0

G(t, x0,y, y)−G(0, x0,y, y)

`(t)
569

exist for all y ∈ U and they are equal. We denote the limit by570

∂`G(0+, x0,y, y).571

(A3) For all real null-sequences (tn) in (0, τ ] and all sequences ytn in V(tn), there572

exists a subsequence (tnk) of (tn), and (ytnk ) of (ytn), and y0 in V(0), such573

that574

(101)

lim
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0)575

and576

(102) lim
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0).577

Then we have578

(103)
d

d`
g(t)|t=0+ = max

y∈V(0)
∂`G(0+, x0,y, y).579

In this section we apply the previous results for `(t) = t, and in the following one580

for `(t) = |Bt(η0)|, η0 ∈ Rd. For the sake of completeness we give a proof in the581

appendix; see [8].582

3.7. Proof of Theorem 3.5. The following is a direct consequence of (94) and583

Lemma 3.12.584

Lemma 3.18. For all sequences τn ∈ (0, τX ], un, u ∈ U and fn, f ∈ K, such that585

(104) un ⇀ u in U, fn ⇀ f in H1
0 (Ω), τn → 0, as n→∞,586

we have587

pun,fn,τn →pu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

pun,fn,τn ⇀pu,f,ω in H1(0, T ;L2(Ω)) as n→∞,
(105)588

where pu,f,ω ∈ Z(0, T ) solves the adjoint equation589 ∫
ΩT

−ϕ∂tpu,f,ω dx dt+

∫
ΩT

∇ϕ · ∇pu,f,ω dx dt = −
∫
ΩT

2yu,f,ωϕ dx dt(106)590

for all ϕ ∈W (0, T ), and pu,f,ω(T ) = 0 a.e. on Ω.591

Now we have gathered all the ingredients to complete the proof of Theorem 3.5(a)592

on page 9.593

This manuscript is for review purposes only.



OPTIMAL ACTUATOR DESIGN BASED ON SHAPE CALCULUS 19

Proof of Theorem 3.5(a) Using the fundamental theorem of calculus we obtain for594

all τ ∈ [0, τX ],595

G̃(τ, u, f,yu,f,τ , pu,f,τ )− G̃(τ, u, f, yu,f,τ , pu,f,τ )

=

∫ 1

0

∂yG̃(τ, u, f, syu,f,τ + (1− s)yu,f,ω, pu,f,τ )(yu,f,τ − yu,f,ω) ds = 0,

(107)

596

where in the last step we used the averaged adjoint equation (94). In addition we597

have J(ωτ , u ◦ T−1
τ , f) = G̃(τ, u, f, yu,f,ω, pu,f,τ ), which together with (107) gives598

(108) J(ωτ , u ◦ T−1
τ , f) = G̃(τ, u, f, yu,f,ω, pu,f,τ ).599

As a consequence we obtain600

(109) J1(ωτ , f) = inf
u∈U

G̃(τ, u, f, yu,f,ω, pu,f,τ ).601

We apply Lemma 3.17 with `(t) := t,602

(110) G(τ, u, f) := G̃(τ, u, f, yu,f,ω, pu,f,τ ),603

U = U, and V = {f ∈ K : ‖f‖H1
0 (Ω) ≤ 1}.604

Since the minimization problem (90) admits a unique solution, Assumption (A0) is605

satisfied. A minor change in the proof of Lemma 2.4 to accommodate the reparametri-606

sation of the domain ω shows that (A1) is satisfied as well.607

Let (τn) be an arbitrary null-sequence and let (fn) be a sequence in K converging608

weakly in H1
0 (Ω) to f ∈ K, and let us set ūn := ūfn,τn . Thanks to Lemma 3.13 we609

have that ūn converges strongly in L2(0, T ;L2(Ω)) to ūf,ω. Moreover Lemma 3.18610

implies611

pūn,fn,τn →pū
f,ω,f,ω in L2(0, T ;H1

0 (Ω)) as n→∞,

pūn,fn,τn ⇀pū
f,ω,f,ω in H1(0, T ;L2(Ω)) as n→∞.

(111)612

Using Lemma 3.7 we see that613

(112)
A(τn)− I

τn
→ div(X)− ∂X − ∂X> in L∞(Ω,Rd×d) as n→∞,614

and615

(113)
ξ(τn)− 1

τn
→ div(X) in L∞(Ω) as n→∞.616

This manuscript is for review purposes only.



20 KALISE, D., KUNISCH, K. AND STURM, K.

Therefore we get617

G(τn, ūn, fn)−G(0, ūn, fn)

τn

=
G̃(τn, ūn, fn, y

ūn,fn,ω, pūn,fn,τn)− G̃(0, ūn, fn, y
ūn,fn,ω, pūn,fn,τn)

τn

=

∫
ΩT

ξ(τn)− 1

τ

(
|yūn,fn,ω|2 + γ|ūn|2

)
dxdt

+

∫
ΩT

ξ(τn)− 1

τ
∂ty

ūn,fn,ω pūn,fn,τn dx dt

+

∫
ΩT

A(τn)− I
τn

∇yūn,fn,ω · ∇pūn,fn,τn dx dt

−
∫
ΩT

ξ(τn)− 1

τ
ūnχωp

ūn,fn,τn dx dt

+

∫
Ω

(ξ(τn)− 1

τn
(yūn,fn,ω(0)− fn ◦ Tτn)− fn ◦ Tτn − fn

τn

)
pūn,fn,τn(0) dx

(114)618

and using Lemma 3.2 and (111), we see that the right hand side tends to619

∫
ΩT

div(X)(|ȳf,ω|2 + γ|ūf,ω|2 + ∂tȳ
f,ωp̄f,ω +∇ȳf,ω · ∇p̄f,ω − ūf,ωp̄f,ωχω) dx dt

−
∫

ΩT

∂X∇ȳf,ω · ∇p̄f,ω + ∂X∇p̄f,ω · ∇ȳf,ω +
1

T
∇f ·Xp̄f,ω(0) dx dt.

(115)

620

Partial integration in time yields621

(116)∫
ΩT

p̄f,ω∂tȳ
f,ω div(X) dx dt = −

∫
ΩT

∂tp̄
f,ω ȳf,ω div(X) dx dt−

∫
Ω

div(X)fp̄f,ω(0) dx,622

where we used ȳf,ω(0) = f and p̄f,ω(T ) = 0. As a result, inserting (116) into (115),623

we see that (115) can be written as624

(117)

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt625

with S1,S2 being given by (41). Hence we obtain626

(118)

lim
n→∞

G(τn, ūn, fn)−G(0, ūn, fn)

τn
=

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt.627

Next let ūn,0 := ūfn,0. Then we can show in as similar manner as (118) that628

(119)

lim
n→∞

G(τn, ūn,0, fn)−G(0, ūn,0, fn)

τn
=

∫
ΩT

S1(ȳf,ω, p̄f,ω, uf,ω) : ∂X + S0 ·X dx dt.629

Hence choosing (fn) to be a constant sequence we see that (A2) is satisfied.630

But also (A3) is satisfied since according to Lemma 3.14 we find for every null-631

sequence (τn) in [0, τX ] and every sequence (fn), fn ∈ X2(ωτn), a subsequence (fnk)632
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and f ∈ X2(ω), such that fnk ⇀ f in H1
0 (Ω) as k → ∞. Now we use (118) and633

(119) with fn replaced by this choice of fnk , and conclude that (A3) holds. Thus all634

requirements of Lemma 3.17 are satisfied and this ends the proof of Theorem 3.5(a).635

4. Topological derivative. In this section we will derive the topological deriva-636

tive of the shape functions J1 and J2 introduced in (7) and (8), respectively. The637

topological derivative, introduced in [22], allows to predict the position where small638

holes in the shape should be inserted in order to achieve a decrease of the shape639

function.640

4.1. Definition of topological derivative. We begin by introducing the so-641

called topological derivative. For more details we refer to [20].642

Definition 4.1 (Topological derivative). The topological derivative of a shape643

funcional J : Y(Ω)→ R at ω ∈ Y(Ω) in the point η0 ∈ Ω \ ∂ω is defined by644

(120) T J(ω)(η0) =

{
limε↘0

J(ω\B̄ε(η0))−J(ω)
|B̄ε(η0)| if η0 ∈ ω,

limε↘0
J(ω∪Bε(η0))−J(ω)

|Bε(η0)| if η0 ∈ Ω \ ω
.645

4.2. Second main result: topological derivative of J2. Given ω ∈ Y(Ω)646

we set ωε := Ω \ B̄(η0) if η0 ∈ ω and ωε := ω ∪Bε(η0) if η0 ∈ Ω \ ω. Denote by ūf,ωε647

the minimiser of the right hand side of (7) with ω = ωε.648

Assumption 4.2. Let δ > 0 be so small that B̄δ(η0) b Ω. We assume that for all649

(f, ω) ∈ V ×Y(Ω) we have uf,ω ∈ C(B̄δ(η0)). Furthermore we assume that for every650

sequence (ωn) in Y(Ω) converging to ω ∈ Y(Ω) and every weakly converging sequence651

fn ⇀ f in V we have652

(121) lim
n→∞

‖ufn,ωn − uf,ω‖L1(0,T ;C(B̄δ(η0))) = 0.653

Remark 4.3. Lemmas 2.3, 2.2 show that Assumption 4.2 is satisfied in case U654

is equal to L2(Ω) or R. Indeed in case U = R we have shown in Remark 2.1,(b) that655

2γūω,f (t) =
∫
ω
p̄f,ω(t,x) dx, so that ūω,f is independent of space and Assumption 4.2656

is satisfied thanks to Lemma 2.3. In case U = L2(Ω) Remark 2.1,(a) shows that657

2γūω,f = p̄f,ω. In Lemma 4.7 below we show that (f, ω) 7→ p̄f,ω : V × Y(Ω) →658

C([0, T ] × B̄δ(η0)) is continuous for small δ > 0, when V is equipped with the weak659

convergence we also see that in this case Assumption 4.2 is satisfied.660

For ω ∈ Y(Ω) and f ∈ K, we set ȳf,ω := yū
ω,f ,f,ω and p̄f,ω := pū

ω,f ,f,ω. The661

main result that we are going to establish reads as follows.662

Theorem 4.4. Let ω ∈ Y(Ω) be open. Let Assumption 4.2 be satisfied at η0 ∈663

Ω \ ∂ω. Then the topological derivative of ω 7→ J2(ω) at ω in η0 is given by664

(122) T J2(ω)(η0) = max
f∈X2(ω)

{
−
∫ T

0
uf,ω(η0, s)p̄

f,ω(η0, s) ds if η0 ∈ ω,∫ T
0
uf,ω(η0, s)p̄

f,ω(η0, s) ds if η0 ∈ Ω \ ω,
665

where the adjoint p̄f,ω belongs to C([0, T ]×Bδ(η0)) and satisfies666

∂tp̄
f,ω −∆p̄f,ω = −2ȳf,ω in Ω× (0, T ],(123)667

p̄f,ω = 0 on ∂Ω× (0, T ],(124)668

p̄f,ω(T ) = 0 in Ω.(125)669670
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Corollary 4.5. Let the assumptions of the previous theorem be satisfied. Let671

f ∈ V be given. Then topological derivative of ω 7→ J1(ω, f) at ω in η0 is given by672

(126) T J1(ω, f)(η0) =

{
−
∫ T

0
uf,ω(x0, s)p̄

f,ω(η0, s) ds if η0 ∈ ω,∫ T
0
uf,ω(x0, s)p̄

f,ω(η0, s) ds if η0 ∈ Ω \ ω,
673

where p̄f,ω solves the adjoint equation (123).674

Proof. For the same arguments as in proof of Theorem 3.5 we may assume that675

f̄ ∈ K with ‖f̄‖V ≤ 1. Setting K := {f̄} we obtain for all ω ∈ Y(Ω),676

(127) J2(ω) = max
f∈K,
‖f‖V ≤1

J1(ω, f) = J1(ω, f̄)677

and hence the result follows from Theorem 3.5 since X2(ω) = {f̄} is a singleton.678

Corollary 4.6. Let the hypotheses of Theorem 4.4 be satisfied. Assume that if679

v ∈ U then −v ∈ U . Then we have680

(128) T J1(ω,−f)(η0) = T J1(ω, f)(η0)681

for all η0 ∈ Ω \ ∂ω and f ∈ V .682

Proof. Let f ∈ V be given. From the optimality system (14) and the assumption683

that v ∈ U implies −v ∈ U , we infer that u−f,ω = −uf,ω, ȳ−f,ω = −ȳf,ω and684

p̄−f,ω = −p̄f,ω. Now the result follows from (126).685

4.3. Averaged adjoint equation and Lagrangian. Throughout this section686

we fix an open set ω ∈ Y(Ω) and pick η0 ∈ ω. The case η0 ∈ Ω\ω is treated similarly.687

Let us define ωε := ω \Bε(η0), ε > 0.688

For every quadruple (u, f, y, p) ∈ U×K ×W (0, T )×W (0, T ) and every ε ≥ 0 we689

define the parametrised Lagrangian,690

G̃(ε, u, f, y, p) :=

∫
ΩT

y2 + γu2 dx dt+

∫
ΩT

∂typ+∇y · ∇p dx dt

−
∫
ΩT

χωεup dx dt+

∫
Ω

(y(0)− f ◦ Tτ )p(0) dx.

(129)691

We denote by yu,f,ε ∈W (0, T ) the solution of the state equation (1) with χ = χωε in692

(1a). Then, similarly to (92), we introduce the averaged adjoint: find pu,f,ε ∈W (0, T ),693

such that694

(130)

∫ 1

0

∂yG̃(ε, u, f, σyu,f,ε + (1− σ)yu, pu,f,ε)(ϕ) dσ = 0 for all ϕ ∈W (0, T )695

or equivalently after partial integration in time, pu,f,ε(T ) = 0 and696

(131)

∫
ΩT

−ϕ∂tpu,f,ε +∇ϕ · ∇pu,f,ε dx dt = −
∫

ΩT

(yu,f,ε + yu,f )ϕ dx dt697

for all ϕ ∈W (0, T ).698
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4.4. Proof of Theorem 4.4.699

Lemma 4.7. Let δ > 0 be such that B̄δ(η0) b Ω. For all sequences εn ∈ (0, 1],700

un, u ∈ U and fn, f ∈ K, such that701

(132) un ⇀ u in U, fn ⇀ f in V, εn → 0, as n→∞,702

we have703

pun,fn,εn →pu,f,ω in L2(0, T ;H1
0 (Ω)) as n→∞,

pun,fn,εn ⇀pu,f,ω in H1(0, T ;L2(Ω)) as n→∞.
(133)704

Moreover there is a subsequence (punk ,fnk ,εnk ), such that705

(134) punk ,fnk ,εnk → pu,f,ω in C([0, T ]× B̄δ(η0)) as n→∞.706

Proof. The first two statements follow by a similar arguments as used in Lemma 3.18.707

To prove the third we have by interior regularity of parabolic equations that708

(135)
pu,f,ε ∈ Z̃(0, T ) := L2(0, T ;H4(Bδ(η0)))∩H1(0, T ;H1

0 (Bδ(η0)))∩H2(0, T ;L2(Bδ(η0)))709

and we have the apriori bound710

(136)

∑2
k=0 ‖

(
d
dt

)k
pu,f,ε‖L2(0,T ;H4−2k(Bδ(η0)))

≤ c(‖yu,f,ε + yu,f‖L2(H2) + ‖ ddt (y
u,f,ε + yu,f )‖L2(L2)),

711

see e.g. [10, p.365-367, Thm.6]. Hence (134) follows since the space Z̃(0, T ) embeds712

compactly into C([0, T ]× B̄δ(η0)) .713

Proof of Theorem 4.4 Proceeding as in the proof of Theorem 3.5 we obtain using714

the averaged adjoint equation,715

(137) J(ε, u, f) = G̃(ε, u, f, yu,f,ω, pu,f,ε)716

for (ε, u, f) ∈ [0, 1]×U×K, where G̃ is defined in (129). Hence to prove Theorem 4.4717

it suffices to apply Lemma 3.17 with718

(138) G(ε, u, f) := G̃(ε, u, f, yu,f,ω, pu,f,ε),719

U := U, V := {f ∈ K : ‖f‖V ≤ 1} and `(ε) = |Bε(η0)|. Since the minimisation720

problem in (7) is uniquely solvable and in view of Lemma 2.4 Assumptions (A0) and721

(A1) are satisfied. We turn to verifying (A2) and (A3) next.722

Let (εn) be an arbitrary null-sequence and let (fn) be a sequence in K converging723

weakly in V to f ∈ K. Thanks to Assumption 4.2 the sequence (un), ūn := ūfn,ωεn724

converges strongly in L1(0, T ;C(B̄δ(η0))) to u = uf,ω ∈ L1(0, T ;C(B̄δ(η0))). There-725

fore (recall the notation p̄f,ωεn = pūn,f,ωεn ) we obtain726

G(εn, ūn, fn)−G(0, ūn, fn)

|Bεn(η0)|
=− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ūnp̄
fn,εn dx dt

=− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ūn(p̄fn,εn − p̄f,ω) dx dt

− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

(ūn − ū)p̄f,ω dx dt

− 1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ū(x, t)p̄f,ω(x, t) dx dt.

(139)

727
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Further for all n,728

(140)
1

|Bεn (η0)|

∣∣∣∫ T0 ∫Bεn (η0)
(ūn − ū)p̄fn,ω dx dt

∣∣∣
≤ ‖p̄fn,ω‖C([0,T ]×B̄δ(η0))‖ūn − ū‖L1(0,T ;C(B̄δ(η0)))

729

and730

(141)
1

|Bεn (η0)|

∣∣∣∫ T0 ∫Bεn (η0)
ūn(p̄fn,εn − p̄f,ω) dx dt

∣∣∣
≤ ‖ūn‖L1(0,T ;C(B̄δ(η0)))‖p̄fn,εn − p̄fn,ω‖C([0,T ]×B̄δ(η0)).

731

Since x 7→
∫ T

0
ū(x, t)p̄f,ω(x, t) dt is continuous in a neighborhood of η0 we also have732

(142) lim
n→∞

1

|Bεn(η0)|

∫ T

0

∫
Bεn (η0)

ū(x, t)p̄f,ω(x, t) dx dt =

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt.733

Hence in view of (139) we obtain734

lim
n→∞

G(εn, ūn, fn)−G(0, ūn, fn)

|Bεn(η0)|
= −

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt(143)735

Next let ūn,0 := ūfn,0. Then we can show in as similar manner as (143) that736

lim
n→∞

G(εn, ūn,0, fn)−G(0, ūn,0, fn)

|Bεn(η0)|
= −

∫ T

0

ū(η0, t)p̄
f,ω(η0, t) dt(144)737

Hence choosing (fn) to be a constant sequence we see that (A2) is satisfied.738

But also (A3) is satisfied since according to Lemma 3.14 we find for every null-739

sequence (τn) in [0, τX ] and every sequence (fn), fn ∈ X2(ωτn), a subsequence (fnk)740

and f ∈ X2(ω), such that fnk ⇀ f in H1
0 (Ω) as k →∞. Now we use (143) and (144)741

with fn replaced by this choice of fnk , and conclude that (A3) holds.742

5. Numerical approximation of the optimal shape problem. In this sec-743

tion we discuss the formulation of numerical methods for optimal positioning and744

design which are based on the formulae introduced in previous sections. We begin745

by introducing the discretisation of the system dynamics and the associated linear-746

quadratic optimal control problem. Then, the optimal actuator design problem is747

addressed by approximating the shape and topological derivatives, which are embed-748

ded into a gradient-based approach and a level-set method, respectively.749

5.1. Discretisation and Riccati equation. Let T > 0. We choose the spaces750

K = H1
0 (Ω) and U = R, so that the control space U is equal to L2(0, T ; R). The cost751

functional reads752

J1(ω, f) = inf
u∈U

J(ω, u, f) =

T∫
0

‖y(t)‖2L2(Ω) + γ|u(t)|2 dt+ α(|ω| − c)2, α > 0,(145)753

754

where y is the solution of the state equation755

∂ty(x, t) = σ∆y(x, t) + χω(x)u(t) (x, t) ∈ Ω× (0, T ],(146)756

y(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],(147)757

y(0, x) = f x ∈ Ω ,(148)758759
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and Ω is a polygonal domain. The cost J in (145) includes the additional term760

α(|ω|−c)2 which accounts for the volume constraint |ω| = c in a penalty fashion. This761

slightly modifies the topological derivative formula, as it will be shown later. We derive762

a discretised version of the dynamics (146)-(148) via the method of lines. For this, we763

introduce a family of finite-dimensional approximating subspaces Vh ⊂ H1
0 (Ω), where764

h stands for a discretisaton parameter typically corresponding to gridsize in finite765

elements/differences, but which can also be related to a spectral approximation of the766

dynamics. For each fh ∈ Vh, we consider a finite-dimensional nodal/modal expansion767

of the form768

(149) fh =

N∑
j=1

fjφj , fj ∈ R , φj ∈ Vh ,769

where {φi}Ni=1 is a basis of Vh. We denote the vector of coefficients associated to
the expansion by f

h
:= (f1, . . . , fN )>. In the method of lines, we approximate the

solution y of (146)-(148) by a function yh in C1([0, T ];Vh(Ω)) of the type

yh(x, t) =

N∑
j=1

yj(t)φj(x) ,

for which we follow a standard Galerkin ansatz. Inserting yh in the weak formulation770

(2) and testing with ϕ = φk, k = 1, . . . , N leads to the following system of ordinary771

equations,772

(150) ẏ
h
(t) = Ahyh(t) +Bhuh(t) t ∈ (0, T ], y

h
(0) = f

h
,773

where Mh,Kh ∈ RN×N and Bh, fh ∈ RN are given by774

Ah = −M−1
h Sh , Bh = M−1B̂h , f

h
:= M−1

h f̂
h
,(151)775

with776

(Mh)ij = (φi, φj)L2 , (Sh)ij = σ(∇φi,∇φj)L2 ,

(B̂h)j = (χω, φj)L2
, (f̂h)j := (f, φj)L2

, i, j = 1, . . . , N .
(152)777

Note that y
h

= y
uh,fh

,ω

h depends on fh, uh, and ω. Given a discrete initial condition778

fh ∈ Vh(Ω), the discrete costs are defined by779

(153)

J1,h(ω, fh) := inf
uh∈U

Jh(ω, u, fh) = inf
uh∈U

T∫
0

(y
h
)>Mhyh + γ|uh(t)|2 dt+ α(|ω| − c)2,780

and781

(154) J2,h(ω) = sup
fh∈Vh
‖fh‖H1≤1

J1,h(ω, fh).782

The solution of the linear-quadratic optimal control problem in (153) is given by783

ūω,fh(t) = −γ−1B>h Πh(t)y
h
,784
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where Πh ∈ RN×N satisfies the differential matrix Riccati equation785

− d

dt
Πh = AhΠh + ΠhAh −ΠhBhγ

−1B>h Πh +Mh in [0, T ), Πh(T ) = 0 .786

The coefficient vector of the discrete adjoint state p̄fh,ωh (t) at time t can be recovered787

directly by p̄fh,ω
h

(t) = 2Πh(t)y
h
(t). Let us define the discrete analog of (38),788

(155) X2,h(ω) := {f̄h ∈ Vh : sup
fh∈Vh
‖fh‖H1≤1

J1,h(ω, fh) = J1,h(ω, f̄h)}.789

Since we have the relation790

(156) J1,h(ω, fh) = (Πh(0)f
h
, f
h
)L2

+ α(|ω| − c)2,791

the maximisers fh ∈ X2,h(ω) can be computed by solving the generalised Eigenvalue792

problem: find (λh, fh) ∈ R× Vh such that793

(157) (Πh(0)− λhSh)f
h

= 0.794

The biggest λh = λmaxh is then precisely the value J2,h(ω) and the normalised Eigen-795

vectors for this Eigenvalue are the elements in X2,h(ω):796

(158) X2,h(ω) = {fh : f
h
∈ ker((Πh(0)− λmaxh Kh)) and ‖f

h
‖ = 1}.797

Remark 5.1. It is readily checked that if fh ∈ X2,h(ω), then also −fh ∈ X2,h(ω).798

So if the Eigenspace for the largest eigenvalue is one-dimensional we have X2,h(ω) =799

{fh,−fh}. However, we know according to Corollary 3.8 (now in a discrete setting)800

that801

(159) T J1,h(ω, fh)(η0) = T J1,h(ω,−fh)(η0)802

for all η0 ∈ Ω \ ∂ω and fh ∈ Vh. Hence we can evaluate the topological derivative803

T J2,h(ω) by picking either fh or −fh. A similar argumentation holds for the shape804

derivative.805

5.2. Optimal actuator positioning: Shape derivative. Here we precise the806

gradient algorithm based upon a numerical realisation of the shape derivative. We807

consider (146)-(148) with its discretisation (150). Given a simply connected actuator808

ω0 ⊂ Ω we employ the shape derivative of J1 to find the optimal position. Let fh ∈ Vh.809

According to Corollary 3.6 the derivative of J1,h in the case U = R is given by810

(160) DJ1,h(ω, fh)(X) = −
∫
∂ω

ūfh,ωh (t)

∫ T

0

p̄fh,ωh (s, t)(X(s) · ν(s)) ds dt811

for X ∈
◦
C1(Ω,Rd). We assume that ω b Ω. We define the vector b ∈ Rd with the812

components813

(161) bi :=

∫
∂ω

ūfh,ωh (t)

∫ T

0

p̄fh,ωh (s, t)(ei · ν(s)) ds dt,814

where ei denotes the canonical basis of Rd. From this we can construct an admissible815

descent direction by choosing any X̃ ∈
◦
C1(Ω,Rd) with X̃|∂ω = b. Then it is obvious816
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that DJ1,h(ω, fh)(X̃) ≤ 0. Let us use the the notation b = −∇J1,h(ω, fh). We write817

(id +t∇J1,h(ω, fh))(ω) to denote the moved actuator ω via the vector b. Note that818

only the position, but not the shape of ω changes by this operation. We refer to this819

procedure as Algorithm 1 below.820

Algorithm 1 Shape derivative-based gradient algorithm for actuator positioning

Input: ω0 ∈ Y(Ω), fh ∈ Vh, b0 := −∇J1,h(ω0, fh), n = 0, β0 > 0, and ε > 0.
while |bn| ≥ ε do

if J1,h((id +βnbn)(ωn), fh) < J1,h(ωn, fh) then
βn+1 ← βn
ωn+1 ← (id +βnbn)(ωn)
bn+1 ← −∇J1,h(ωn+1, fh)
n← n+ 1

else
decrease βn

end if
end while
return optimal actuator positioning ωopt

5.3. Optimal actuator design: Topological derivative. As for the shape821

derivative, we now introduce a numerical approximation of the topological deriva-822

tive formula which is embedded into a level-set method to generate an algorithm823

for optimal actuator design, i.e. including both shaping and position. According to824

Theorem 4.4 the discrete topological derivative of J1,h is given by825

(162)

T J1,h(ω, fh)(η0) =

{∫ T
0
ufh,ωh (t)p̄fh,ωh (η0, t) dt− 2α(|ω| − c) if η0 ∈ ω,

−
∫ T

0
ufh,ωh (t)p̄fh,ωh (η0, t) dt+ 2α(|ω| − c) if η0 ∈ Ω \ ω,

826

The level-set method is well-established in the context of shape optimisation and827

shape derivatives [2]. Here we use a level-set method for topological sensitivities as828

proposed in [4]. We recall that compared to the the formulation based on shape sensi-829

tivities, the topological approach has the advantage that multi-component actuators830

can be obtained via splitting and merging.831

For a given actuator ω ⊂ Ω, we begin by defining the function832

gfh,ωh (ζ) = −
∫ T

0

ufh,ωh (t)pfh,ωh (ζ, t) dt+ 2α(|ω| − c), ζ ∈ Ω833

which is continuous since the adjoint is continuous in space. Note that pfh,ω and834

ufh,ω depend on the actuator ω. For other types of state equations where the shape835

variable enters into the differential operator (e.g. transmission problems [3]) this may836

not be the case and thus it particular of our setting. The necessary optimality condi-837

tion for the cost function J1,h(ω, fh) using the topological derivative are formulated838

as839

gfh,ωh (x) ≤ 0 for all x ∈ ω,

gfh,ωh (x) ≥ 0 for all x ∈ Ω \ ω.
(163)840
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Since gfh,ωh is continuous this means that gfh,ωh vanishes on ∂ω and hence841

(164)

∫ T

0

ufh,ωh (t)pfh,ωh (ζ, t) dt = 2α(|ω| − c) , for all ζ ∈ ∂ω.842

An (actuator) shape ω that satisfies (163) is referred to as stationary (actuator) shape.843

It follows from (162) and (163), that gfh,ωh vanishes on the actuator boundary ∂ω of844

a stationary shape ω.845

We now describe the actuator ω via an arbitrary level-set function ψh ∈ Vh, such846

that ω = {x ∈ Ω : ψh(x) < 0} is achieved via an update of an initial guess ψ0
h847

(165) ψn+1
h = (1− βn)ψnh + βn

gfh,ωnh

‖gfh,ωnh ‖
, ωn := {x ∈ Ω : ψnh(x) < 0},848

where βn is the step size of the method. The idea behind this update scheme is the849

following: if ψnh(x) < 0 and gfh,ωnh (x) > 0, then we add a positive value to the level-850

set function, which means that we aim at removing actuator material. Similarly, if851

ψnh(x) > 0 and gfh,ωnh (x) < 0, then we create actuator material. In all the other cases852

the sign of the level-sets remains unchanged. We present our version of the level-set853

algorithm in [4], which we refer to as Algorithm 2.854

Algorithm 2 Level set algorithm for optimal actuator design

Input: ψ0
h ∈ Vh(Ω), ω0 := {x ∈ Ω, ψ0

h(x) < 0}, β0 > 0, fh ∈ Vh, and ε > 0.
while ‖ωn+1 − ωn‖ ≥ ε do

if J1,h({ψn+1
h < 0}, fh) < J1,h({ψnh < 0}, fh) then

ψn+1
h ← (1− βn)ψnh + βn

g
fh,ωn
h

‖gfh,ωnh ‖
βn+1 ← βn
ωn+1 ← {ψn+1

h < 0}
n← n+ 1

else
decrease βn

end if
end while
return optimal actuator ωopt

Algorithm 2 is embedded inside a continuation approach over the quadratic855

penalty parameter α in (153), leading to actuators which approximate the size con-856

straint in a sensible way, as opposed to a single solve with a large value of α.857

Finally, for the functional J2(ω) we may employ similar algorithms for shape and858

topological derivatives. We update the initial condition fh ∈ X2,h(ω) at each iteration859

whenever the actuator ω is modified.860

6. Numerical tests. We present a series of one and two-dimensional numerical861

tests exploring the different capabilities of the developed approach.862

Test parameters and setup. We establish some common settings for the experi-863

ments. For the 1D tests, we consider a piecewise linear finite element discretisation864

with 200 elements over Ω = (0, 1), with γ = 10−3, σ = 0.01, c = 0.2, and ε = 10−7.865

For the 2D tests, we resort to a Galerkin ansatz where the basis set is composed by the866

eigenfunctions of the Laplacian with Dirichlet boundary conditions over Ω = (0, 1)2.867
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We utilize the first 100 eigenfunctions. This idea has been previously considered in the868

context of optimal actuator positioning in [18], and its advantage resides in the lower869

computational burden associated to the Riccati solve. The actuator size constraint is870

set to c = 0.04. An important implementation aspect relates to the numerical approx-871

imation of the linear-quadratic optimal control problem for a given actuator. For the872

sake of simplicity, we consider the infinite horizon version of the costs J1 and J2. In873

this way, the optimal control problems are solved via an Algebraic Riccati Equation874

approach. The additional calculations associated to J2 and the set X2(ω) are reduced875

to a generalized eigenvalue problem involving the Riccati operator Πh. The shape876

and topological derivative formulae involving the finite horizon integral of u and p are877

approximated with a sufficiently large time horizon, in this case T = 1000.878

Actuator size constraint. While in the abstract setting the actuator size constraint
determines the admissible set of configurations, its numerical realisation follows a
penalty approach, i.e. J1(ω, f) is as in (145),

J1(ω, f) = J LQ1 (ω, f) + J α1 (ω) ,

where J LQ1 (ω, f) is the original linear-quadratic (LQ) performance measure, and879

J α1 (ω) = α(|ω| − c)2 is a quadratic penalization from the reference size. The cost880

J2 is treated analogously. In order to enforce the size constraint as much as possible881

and to avoid suboptimal configurations, the quadratic penalty is embedded within a882

homotopy/continuation loop. For a low initial value of α, we perform a full solve of883

Algorithm 2, which is then used to initialized a subsequent solve with an increased884

value of α. As it will be discussed in the numerical tests, for sufficiently large val-885

ues of α and under a gradual increase of the penalty, results are accurate within the886

discretisation order.887

Algorithm 2 and level-set method. The main aspect of Algorithm 2 is the level-888

set update of the function ψn+1
h which dictates the new actuator shape. In order to889

avoid the algorithm to stop around suboptimal solutions, we proceed to reinitialize the890

level-set function every 50 iterations. This is a well-documented practice for the level-891

set method, and in particular in the context of shape/topology optimisation [2, 4].892

Our reinitialization consists of reinitialising ψn+1
h to be the signed distance function893

of the current actuator. The signed distance function is efficiently computed via the894

associated Eikonal equation, for which we implement the accelerated semi-Lagrangian895

method proposed in [1], with an overall CPU time which is negligible with respect to896

the rest of the algorithm.897

Practical aspects. All the numerical tests have been performed on an Intel Core i7-898

7500U with 8GB RAM, and implemented in MATLAB. The solution of the LQ control899

problem is obtained via the ARE command, the optimal trajectories are integrated900

with a fourth-order Runge-Kutta method in time. While a single LQ solve does not901

take more than a few seconds in the 2D case, the level-set method embedded in a902

continuation loop can scale up to approximately 30 mins. for a full 2D optimal shape903

solve.904

6.1. Optimal actuator positioning through shape derivatives. In the first905

two tests we study the optimal positioning problem (11) of a single-component ac-906

tuator of fixed width 0.2 via the gradient-based approach presented in Algorithm 1.907

Tests are carried out for a given initial condition y0(x), i.e. the J1 setting.908

Test 1. We start by considering y0(x) = sin(πx), so the test is fully symmetric,909

and we expect the optimal position to be centered in the middle of the domain, i.e.910

at x = 0.5. Results are illustrated in Figure 1, where it can be observed that as911
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the actuator moves from its initial position towards the center, the cost J1 decays912

until reaching a stationary value. Results are consistent with the result obtained by913

inspection (Figure 1 left), where the location of the center of the actuator has been914

moved throughout the entire domain.

Fig. 1. Test 1. Left: different single-component actuators with different centers have been
spanned over the domain, locating the minimum value of J1 for the center at x = 0.5. Center:
starting from an initial guess for the actuator far from 0.5, the gradient-based approach of Algorithm
1 locates the optimal position in the middle. Right: as the actuator moves towards the center in the
subsequent iterations of Algorithm 1, the value J1 decays until reaching a stationary point.

915

Test 2. We consider the same setting as in the previous test, but we change916

the initial condition of the dynamics to be y0(x) = 100|x − 0.7|4 + x(x − 1), so the917

setting is asymmetric and the optimal position is different from the center. Results918

are shown in Figure 2, where the numerical solution coincides with the result obtained919

by inspecting all the possible locations.

Fig. 2. Test 2. Left: inspecting different values of J1 by spanning actuators with different
centers, the optimal center location is found to be close to 0.2 . Center: the gradient-based approach
steers the initial actuator to the optimal position. Right: the value J1 decays until reaching a
stationary point, which coincides with the minimum for the first plot on the left.

920

6.2. Optimal actuator design through topological derivatives. In the921

following series of experiments we focus on 1D optimal actuator design, i.e. problems922

(9) and (10) without any further parametrisation of the actuator, thus allowing multi-923

component structures. For this, we consider the approach combining the topological924

derivative, with a level-set method, as summarized in Algorithm 2.925

Test 3. For y0(x) = max(sin(3πx), 0)2, results are presented in Figures 3 and926

4 . As it can be expected from the symmetry of the problem, and from the initial927

condition, the actuator splits into two equally sized components. We carried out two928

types of tests, one without and one with a continuation strategy with respect to α.929

Without a continuation strategy, choosing α = 103 we obtain the result depicted in930

Figure 3 (b). With a continuation strategy, as the penalty increases, the size of the931

components decreases until approaching the total size constraint. The behavior of932

this continuation approach is shown in Table 1. When α is increased, the size of933

the actuator tends to 0.2, the reference size, while the LQ part of J1, tends to a934
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stationary value. For a final value of α = 104, the overall cost J1 obtained via the935

continuation approach is approx. 80 times smaller than the value obtained without936

any initialisation procedure, see Figure 3 (b)-(d). Figure 4 illustrates some basic937

relevant aspects of the level-set approach, such as the update of the shape (left), the938

computation of the level-set update upon βn and ψnh (middle), and the decay of the939

value J1 (right).940

(a) y0(x) (b) α = 103, no init. (c) α = 10−1 (d) α = 103

Fig. 3. Test 3. (a) Initial condition y0(x) = max(sin(3πx), 0)2. (b) Optimal actuator for
α = 103, without initialization via increasing penalization. (c) Optimal actuator for α = 10−1, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for α = 103, via increasing
penalization.

α J1 J LQ1 J α1 (size) iterations

0.1 1.84×10−2 1.62×10−2 2.30×10−3 (0.35) 225
1 2.35×10−2 2.26×10−2 9.10×10−4 (0.23) 226
10 2.56×10−2 2.46×10−2 1.00×10−3 (0.21) 316
102 3.46×10−2 2.46×10−2 1.00×10−2 (0.21) 226
103 0.12 2.46×10−2 1.00×10−1 (0.21) 226
103* 8.18 8.00×10−2 8.10 (0.29) 629

Table 1
Test 3. optimisation values for y0(x) = max(sin(3πx), 0)2. Each row is initialized with the

optimal actuator corresponding to the previous one, except for the last row with α = 103∗, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2 .

Test 4. We repeat the setting of Test 3 with a nonsymmetric initial condition941

y0(x) = sin(3πx)2χ{x<2/3}(x). Results are presented in Table 2 and Figure 5, which942

illustrate the effectivity of the continuation approach, which generates an optimal943

actuator with two components of different size, see Figure 5d and compare with Figure944

5b.945

Test 5. We now turn our attention to the optimal actuator design for the worst-946

case scenario among all the initial conditions, i.e. the J2 setting. Results are presented947

in Figure 6 and Table 3. The worst-case scenario corresponds to the first eigenmode948

of the Riccati operator (Figure 6a), which generates a two-component symmetric949

actuator (Figure 6d). This is only observed within the continuation approach. For a950

large value of α without initialisation, we obtain a suboptimal solution with a single951

component (last row of Table 3, Figure 6b).952

Test 6. As an extension of the capabilities of the proposed approach, we explore953

the J2 setting with space-dependent diffusion. For this test, the diffusion operator954
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Fig. 4. Test 3. Level set method implemented in Algorithm 2. Left: starting from an initial
actuator, the topological derivative of the cost is computed and an updated actuator is obtained.
The new shape is evaluated according to its closed-loop performance. If the update is rejected, the
parameter βn is reduced. Middle: the level-set approach generates an update of the actuator shape
based on the information from ψn

h , βn and gωn . Right: This iterative loop generates a decay in the
total cost J1, (which accounts for both the closed-loop performance of the actuator and its volume
constraint).

α J1 J LQ1 J α1 (size) iterations

0.1 6.48×10−2 6.31×10−2 1.7×10−3 (0.33) 229
1 8.0×10−2 6.31×10−2 1.69-2 (0.33) 226
10 0.176 0.164 1.23×10−2 (0.235) 226
102 0.207 0.184 2.25×10−2 (0.215) 316
103 0.234 0.209 2.50×10−2 (0.195) 316
104 0.459 0.209 0.250 (0.195) 316
104* 9.09 9.66×10−2 9 (0.23) 629

Table 2
Test 4. optimisation values for y0(x) = sin(3πx)2χx<2/3(x). Each row is initialized with the

optimal actuator corresponding to the previous one, except for the last row with α = 104∗, illustrating
that incorrectly initialized solves lead to suboptimal solutions. The reference size for the actuator is
0.2 .

σ∆y is rewritten as div(σ(x)∇y), with σ(x) = (1 − max(sin(9πx), 0))χ{x<0.5}(x) +955

10−3. Iterates of the continuation approach are presented in Table 4. Again, the956

lack of a proper initialization of Algortithm 2 with a large value of α leads to a poor957

satisfaction of both the size constraint and the LQ performance, which is solved via958

the increasing penalty approach. A two-component actuator present in the area of959

smaller diffusion is observed in Figure 7d.960

6.3. Two-dimensional optimal actuator design. We now turn our attention961

into assessing the performance of Algorithm 2 for two-dimensional actuator topology962

optimisation. While this problem is computationally demanding, the increase of de-963

grees of freedom can be efficiently handled via modal expansions, as explained at the964

beginning of this Section. We explore both the J1 and J2 settings.965
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(a) y0(x) (b) α = 104, no init. (c) α = 10−1 (d) α = 104

Fig. 5. Test 4. (a) Initial condition y0(x) = sin(3πx)2χ{x<2/3}(x). (b) Optimal actuator for

α = 104, without initialization via increasing penalization. (c) Optimal actuator for α = 10−1, sub-
sequently used in the quadratic penalty approach. (d) Optimal actuator for α = 104, via increasing
penalization.

(a) X2(ω) (b) α = 103, no init. (c) α = 10−1 (d) α = 103

Fig. 6. Test 5. (a) First eigenmode of the Riccati operator, which corresponds to the set X2(ω).
(b) Optimal actuator for α = 103, without initialization via increasing penalization. (c) Optimal
actuator for α = 10−1, subsequently used in the quadratic penalty approach. (d) Optimal actuator
for α = 103, via increasing penalization.

α J2 J LQ2 J α2 (size) iterations

0.1 0.402 0.401 1.1×10−3 (0.305) 307
1 0.369 0.364 4.0×10−4 (0.22) 225
10 0.343 0.342 1.0×10−3 (0.19) 228
102 0.352 0.342 1.0×10−2 (0.19) 226
103 0.442 0.342 0.1 (0.19) 226
103* 0.761 0.536 0.225 (0.215) 941

Table 3
Test 5. optimisation values for J2. Each row is initialized with the optimal actuator corre-

sponding to the previous one, except for the last row with α = 103*. The reference size for the
actuator is 0.2 .

Test 7. This experiment is a direct extension of Test 3. We consider a unilaterally966

symmetric initial condition y0(x1, x2) = max(sin(4π(x1 − 1/8)), 0)3 sin(πx2)3, induc-967

ing a two-component actuator. The desired actuator size is c = 0.04. The evolution968

of the actuator design for increasing values of the penalty parameter α is depicted in969

Figure 8. We also study the closed-loop performance of the optimal shape. For this970

purpose the running cost associated to the optimal actuator is compared against an971

ad-hoc design, which consists of a cylindrical actuator of desired size placed in the972

center of the domain, see Figure 9 . The closed-loop dynamics of the optimal actuator973

generate a stronger exponential decay compared to the uncontrolled dynamics and the974
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α J2 J LQ2 J α2 (size) iterations

0.1 1.792 1.743 4.97×10−2 (0.908) 194
1 2.240 1.743 0.497 (0.908) 228
10 4.734 4.462 0.272 (0.365) 225
102 3.134 3.071 6.25×10−2 (0.175) 538
103 1.023 0.998 0.025 (0.195) 226
104 1.248 0.998 0.250 (0.195) 226
104* 28.19 3.195 25.0 (0.25) 673

Table 4
Test 6. J2 values with space-dependent diffusion σ(x) = (1 −max(sin(9πx), 0))χ{x<0.5}(x) +

10−3. Each row is initialized with the optimal actuator corresponding to the previous one, except
for the last row with α = 104*. The reference size for the actuator is 0.2 .

(a) X2(ω) (b) σ(x) (c) α = 0.1 (d) α = 104

Fig. 7. Test 6. (a) First eigenmode of the Riccati operator, which corresponds to the set
X2(ω). (b) space-dependent diffusion coefficient σ(x) = (1 −max(sin(9πx), 0))χ{x<0.5}(x) + 10−3.
(c) Optimal actuator for α = 10, subsequently used in the quadratic penalty approach. (d) Optimal
actuator for α = 104, via increasing penalization.

ad-hoc shape.975

Test 8. In an analogous way as in Test 5, we study the optimal design problem976

associated to J2. The first eigenmode of the Riccati operator is shown in Figure 10a.977

The increasing penalty approach (Figs. 10c to 10f) shows a complex structure, with978

a hollow cylinder and four external components. The performance of the closed-loop979

optimal solution is analysed in Figure 11, with a considerably faster decay compared980

to the uncontrolled solution, and to the ad-hoc design utilised in the previous test.981

Concluding remarks. In this work we have developed an analytical and com-982

putational framework for optimisation-based actuator design. We derived shape and983

topological sensitivities formulas which account for the closed-loop performance of a984

linear-quadratic controller associated to the actuator configuration. We embedded985

the sensitivities into gradient-based and level-set methods to numerically realise the986

optimal actuators. Our findings seem to indicate that from a practical point of view,987

shape sensitivities are a good alternative whenever a certain parametrisation of the988

actuator is fixed in advance and only optimal position is sought. Topological sensi-989

tivities are instead suitable for optimal actuator design in a wider sense, allowing the990

emergence of nontrivial multi-component structures, which would be difficult to guess991

or parametrise a priori. This is a relevant fact, as most of the engineering literature992

associated to computational optimal actuator positioning is based on heuristic meth-993

ods which strongly rely on experts’ knowledge and tuning. Extensions concerning994
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(a) y0(x1, x2) (b) ψn+1
h

(c) α = 0.1 (d) α = 1

(e) α = 1× 102 (f) α = 104

Fig. 8. Test 7. (a) initial condition y0(x1, x2) = max(sin(4π(x1 − 1/8)), 0)3 sin(πx2)3 for J1
optimisation. (b) within the level-set method, the actuator is updated according to the zero level-set
of the function ψn+1

h . (c) to (f) optimal actuators for different volume penalties.

robust control design and semilinear parabolic equation are in our research roadmap.995

Appendix.996
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Fig. 9. Test 7. Closed-loop performance for different shapes. The running cost in J1 is
evaluated for uncontrolled dynamics (u ≡ 0), an ad-ho cylindrical actuator located in the center of
the domain, and the optimal shape (Figure 8f). Closed-loop dynamics of the optimal shape decay
faster.

Differentiability of maximum functions. In order to prove Lemma 3.17 we997

recall the following Danskin-type lemmas.998

Let V1 be a nonempty set and let G : [0, τ ] × V1 → R be a function, τ > 0.999

Introduce the function g1 : [0, τ ]→ R,1000

(166) g1(t) := sup
x∈V1

G(t, x),1001

and let ` : [0, τ ] → R be any function such that `(t) > 0 for t ∈ (0, τ ] and `(0) = 0.1002

We give sufficient conditions that guarantee that the limit1003

(167)
d

d`
g1(0+) := lim

t↘0

g1(t)− g1(0)

`(t)
1004

exists. For this purpose we introduce for each t the set of maximisers1005

(168) V1(t) = {xt ∈ V1 : sup
x∈V1

G(t, x) = G(t, xt)}.1006

The next lemma can be found with slight modifications in [7, Theorem 2.1, p. 524].1007

Lemma 6.1. Let the following hypotheses be satisfied.1008

(A1) (i) For all t in [0, τ ] the set V1(t) is nonempty,1009

(ii) the limit1010

(169) ∂`G(0+, x) := lim
t↘0

G(t, x)− G(0, x)

`(t)
1011

exists for all x ∈ V1(0).1012

(A2) For all real null-sequences (tn) in (0, τ ] and all sequence (xtn) in V1(tn), there1013

exists a subsequence (tnk) of (tn), (xtnk ) in V1(tnk) and x0 in V1(0), such1014

that1015

(170) lim
k→∞

G(tnk , xtnk )− G(0, xtnk )

`(tnk)
= ∂`G(0+, x0).1016
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(a) X2(ω) (b) ψn+1
h

(c) α = 0.1 (d) α = 10

(e) α = 102 (f) α = 104

Fig. 10. Test 8. (a) first eigenmode of the Riccati operator. (b) within the level-set method, the
actuator is updated according to the zero level-set of the function ψn+1

h . (c) to (f) optimal actuators
for different volume penalties.

Then g1 is differentiable at t = 0+ with derivative1017

(171)
d

dt
g1(t)|t=0+ = max

x∈V1(0)
∂`G(0+, x).1018
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Fig. 11. Test 8. Closed-loop performance for different shapes. The running cost in J2 is
evaluated for uncontrolled dynamics (u ≡ 0), a suboptimal cylindrical actuator of size c located in
the center of the domain, and the optimal shape with five components (Figure 10f). Closed-loop
dynamics of the optimal shape decay faster.

Proof of Lemma 3.17. Our strategy is to prove Lemma 3.17 by applying1019

Lemma 6.1 to the function G(t, y) := infx∈VG(t, x, y) with V1 := V. This will1020

show that g(t) := supy∈V G(t, y) is right-differentiable at t = 0+. By construction1021

Assumption (A0) of Lemma 3.17 is satisfied.1022

Step 1: For every t ∈ [0, τ ] and y ∈ V we have G(t, y) = G(t, xt,y, y). Hence1023

G(t, y)− G(0, y) =G(t, xt,y, y)−G(0, x0,y, y)

= G(t, xt,y, y)−G(0, xt,y, y) +G(0, xt,y, y)−G(0, x0,y, y)︸ ︷︷ ︸
≥0

≥ G(t, xt,y, y)−G(0, xt,y, y)

(172)1024

and similarly1025

G(t, y)− G(0, y) =G(t, xt,y, y)−G(0, x0,y, y)

= G(t, xt,y, y)−G(t, x0,y, y)︸ ︷︷ ︸
≤0

+G(t, x0,y, y)−G(0, x0,y, y)

≤ G(t, x0,y, y)−G(0, x0,y, y).

(173)1026

Therefore using Assumption (A2) of Lemma 3.17 we obtain from (99) and (100)1027

(174) lim inf
t↘0

G(t, y)− G(0, y)

`(t)
≥ ∂`G(0+, x0,y, y) ≥ lim sup

t↘0

G(t, y)− G(0, y)

`(t)
.1028

Hence Assumption (A1) of Lemma 6.1 is satisfied.1029

Step 2: For every t ∈ [0, τ ] and yt ∈ V(t) we have G(t, yt) = G(t, xt,y
t

, yt) and1030
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hence1031

G(t, yt)− G(0, yt) =G(t, xt,y
t

, yt)−G(0, x0,yt , yt)

=G(t, xt,y
t

, yt)−G(0, xt,y
t

, yt) +G(0, xt,y
t

, yt)−G(0, x0,yt , yt)︸ ︷︷ ︸
≥0

≥G(t, xt,y
t

, yt)−G(0, xt,y
t

, yt)

(175)

1032

and similarly1033

G(t, yt)− G(0, yt) =G(t, xt,y
t

, yt)−G(t, x0,yt , yt)︸ ︷︷ ︸
≤0

+G(t, x0,yt , yt)−G(0, x0,yt , yt)

≤G(t, x0,yt , yt)−G(0, x0,yt , yt).

(176)

1034

Thanks to Assumption (A3) of Lemma 3.17 For all real null-sequences (tn) in (0, τ ]1035

and all sequences (ytn), ytn ∈ V(tn), there exists a subsequence (tnk) of (tn), (ytnk )1036

of (ytn), and y0 in V(0), such that1037

(177) lim
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0)1038

and1039

(178) lim
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0).1040

Hence choosing t = tnk in (175) we obtain1041

lim inf
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)

(175)

≥ lim inf
k→∞

G(tnk , x
tnk ,y

tnk , ytnk )−G(0, xtnk ,y
tnk , ytnk )

`(tnk)

(177)
= ∂`G(0+, x0,y0

, y0)

(179)1042

and similarly choosing t = tnk in (176) we get1043

lim sup
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)

(176)

≤ lim sup
k→∞

G(tnk , x
0,y

tnk , ytnk )−G(0, x0,y
tnk , ytnk )

`(tnk)

(178)
= ∂`G(0+, x0,y0

, y0).

(180)1044

Combining (179) and (180) we conclude that1045

(181) lim
k→∞

G(tnk , y
tnk )− G(0, ytnk )

`(tnk)
= ∂`G(0+, x0,y0

, y0),1046

which is precisely Assumption (A2) of Lemma 6.1.1047

Step 1 and Step 2 together show that Assumptions (A1) and (A2) of Lemma 6.11048

are satisfied and this finishes the proof.1049
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[13] P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of ac-1086
tuators, SIAM J. Control Optim., 44 (2005), pp. 349–366, https://doi.org/10.1137/1087
S0363012903436247, http://dx.doi.org/10.1137/S0363012903436247.1088

[14] M. Hintermüller, C. N. Rautenberg, M. Mohammadi, and M. Kanitsar, Optimal sensor1089
placement: a robust approach, WIAS preprint, (2016), p. 34 pp., http://www.wias-berlin.1090
de/preprint/2287/wias preprints 2287.pdf.1091

[15] K. Ito, K. Kunisch, and G. H. Peichl, Variational approach to shape derivatives, ESAIM1092
Control Optim. Calc. Var., 14 (2008), pp. 517–539, https://doi.org/10.1051/cocv:2008002,1093
http://dx.doi.org/10.1051/cocv:2008002.1094

[16] D. Kasinathan and K. Morris, H∞-optimal actuator location, IEEE Trans. Automat. Con-1095
trol, 58 (2013), pp. 2522–2535, https://doi.org/10.1109/TAC.2013.2266870, http://dx.doi.1096
org/10.1109/TAC.2013.2266870.1097

[17] Laurain, A. and Sturm, K., Distributed shape derivative via averaged adjoint method and1098
applications, ESAIM: M2AN, 50 (2016), pp. 1241–1267.1099

[18] K. Morris, Linear-quadratic optimal actuator location, IEEE Trans. Automat. Control, 561100
(2011), pp. 113–124, https://doi.org/10.1109/TAC.2010.2052151, http://dx.doi.org/10.1101
1109/TAC.2010.2052151.1102

[19] K. Morris, M. A. Demetriou, and S. D. Yang, Using H2-control performance metrics for1103
the optimal actuator location of distributed parameter systems, IEEE Trans. Automat.1104
Control, 60 (2015), pp. 450–462, https://doi.org/10.1109/TAC.2014.2346676, http://dx.1105
doi.org/10.1109/TAC.2014.2346676.1106

[20] A. A. Novotny and J. Soko lowski, Topological derivatives in shape optimization, Interac-1107
tion of Mechanics and Mathematics, Springer, Heidelberg, 2013, https://doi.org/10.1007/1108
978-3-642-35245-4, http://dx.doi.org/10.1007/978-3-642-35245-4.1109
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