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ANALYSIS OF OPTIMAL CONTROL PROBLEMS OF SEMILINEAR
ELLIPTIC EQUATIONS BY BV-FUNCTIONS *
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Abstract. Optimal control problems for semilinear elliptic equations with control costs in the
space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and
hence ’simple’ controls, with few jumps. Existence of optimal controls, necessary and sufficient
optimality conditions of first and second order are analysed. Special attention is paid on the effect
of the choice of the vector norm in the definition of the BV-seminorm for the optimal primal and
adjoined variables.
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1. Introduction. This paper is dedicated to the study of the optimal control
problem

u€EBV (w)

1 2
(P) min J(u):2/Q|y—yd|2dx+a/|Vu|+§(/u(x)dm) +%/u2(m)dx,
where y is the unique solution to the Dirichlet problem

Ay + f(z,y) = ux, inQ,
{ y = 0 onl. (1.1)

The control domain w is an open subset of (2. We assume that « >0, 8 >0, v > 0,
ya € L?(Q), and Q is a bounded domain in R™, n = 2 or 3, with Lipschitz boundary
I". Additionally we make the following hypothesis:

ifn=3, then 7 >0 is assumed. (1.2)

Here, BV (w) denotes the space of functions of bounded variation in w and [ [Vu]
stands for the total variation of u. The assumptions on the nonlinear term f(z,y) in
the state equation will be formulated later. By introducing the penalty term involving
the mean of u when 8 > 0 we realize the fact that constants functions constitute the
kernel of the BV-seminorm. If v = 0, in dependence on the order of the nonlinearity
f it can be necessary to choose § > 0 to guarantee that (P) admits a solution.

The use of the BV-seminorm in (P) enhances that the optimal controls are piece-
wise constant in space. Thus the cost functional in (P) models the objective of simul-
taneously determining a control of simple structure and resulting in a state y = y(u)
which is as close to y4 as possible. Comparing with the common formulation of using
L?(w) or LP(w) control-cost functionals, with p > 2 to match the nonlinearity f, these
later functionals will produce smooth optimal controls which may be more intricate

*The first author was supported by Spanish Ministerio de Economia y Competitividad under

project MTM2014-57531-P. The second was supported by the ERC advanced grant 668998 (OCLOC)
under the EUs H2020 research program.
fDepartamento de Matemética Aplicada y Ciencias de la Computacién, E.T.S.1. Industriales y de
Telecomunicacién, Universidad de Cantabria, 39005 Santander, Spain (eduardo.casas@unican.es).
Hnstitute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, A-
8010 Graz, Austria (karl.kunisch@uni-graz.at).

L]


http://www.editorialmanager.com/svaa/download.aspx?id=10596&guid=f9aafd37-1b8b-4597-b2cd-fc7a0ab30c64&scheme=1
http://www.editorialmanager.com/svaa/download.aspx?id=10596&guid=f9aafd37-1b8b-4597-b2cd-fc7a0ab30c64&scheme=1

2 E6. CASAS AND K. KUNISCH

to realize in practice than controls which result from the BV —formulation. Piecewise
constant behavior of the optimal controls can also be obtained by introducing bilat-
eral bounds a < u(z) < b together with only the tracking term in (P). In this case we
can expect optimal controls which exhibit bang-bang structure. If an L!(w) control
cost term is added then the optimal control will be of the form bang-zero-bang. But
this type of behavior is distinctly different from that which is allowed in (P), since the
value of the piecewise constants plateaus is not prescribed. This is distinctly different
from the bilaterally constraint case where the optimal control typically assumes one
of the extreme values a or b. This in turn can lead to unnecessarily high control costs.

Possibly one of the first papers where this was pointed out, but not systematically
investigated is [15]. In [9] semilinear parabolic equations with temporally dependent
BV-functions as controls were investigated. Thus we were focusing on controls which
are optimally switching in time. The analysis for this case is simpler and exploits
specific properties of BV-functions in dimension one. Numerically the simple structure
of the controls which is obtained for BV-constrained control problems was already
demonstrated in [5, 9] and a recent master thesis [19]. BV-seminorm control costs
are also employed in [8], where the control appears as coefficient in the p-Laplace
equation. Beyond these papers the choice of the control costs related to BV-norms or
BV-seminorms has not received much attention in the optimal control literature yet.

In mathematical image analysis, to the contrary, the BV-seminorm has received
a tremendous amount of attention. The beginning of this activity is frequently dated
o0 [22]. Let us also mention the recent paper [2] which gives interesting insight into
the structure of the subdifferential of the BV-seminorm. Fine properties of BV-
functions, in the context of image reconstruction problems, in particular the stair
casing effect were, analyzed for the one-dimensional case in [21], and in higher dimen-
sions in [20, 14], for example. In [13] the authors provided a convergence analysis
for BV-regularized mathematical imaging problems by finite elements, paying special
attention to the choice of the vector norm in the definition of the BV-seminorm.

Let us also compare the use of the BV-term in (P) with the efforts that have
been made for studying optimal control problems with sparsity constraints. These
formulations involve either measure-valued norms of the control or L!-functionals
combined with pointwise constraints on the control. We cite [5, 7] from among the
many results which are now already available. The BV-seminorm therefore can also
be understood as a sparsity constraint for the first derivative.

Let us briefly describe the structure of the paper. Section 2 contains an analysis
of the state equation and the smooth part of the cost-functional. The non-smooth
part of the cost-functional is investigated in Section 3. Special attention is given to
the consequences which arise from the specific choice which is made for the vector
norm in the variational definition of the BV-seminorm. In particular, we consider
the Euclidean and the infinity norms. Existence of optimal solutions and first order
optimality conditions are obtained in Section 4. Second order sufficient optimality
conditions are provided in Section 5. Finally in Section 6 we consider (P) with an
additional H'(w) regularisation term and investigate the asymptotic behavior as the
weight of the H'(w) regularisation tends to 0.

2. Analysis of the state equation and the cost functional. We recall that
a function u € L' (w) is a function of bounded variation if its distributional derivatives
Ox,u, 1 <14 < n, belong to the Banach space of real and regular Borel measures M (w).
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Given a measure p € M(w), its norm is given by

Iilisacey =sup{ [ zdus = € Colw) and [l < 1} = 1)
w

where Cy(w) denotes the Banach space of continuous functions z : @ — R such that
z = 0 on Ow, and || is the total variation measure associated with p. On the product
space M(w)™ we define the norm

el ey = sup{/ zdp:z € Co(w)™ and |z(x)] <1 Vo € w},

where | - | is a norm in R™.
On BV (w) we consider the usual norm

lull Bvw) = lullzrw) + IVull pmoyns

that makes BV (w) a Banach space; see [1, Chapter 3] or [18, Chapter 1] for details.
We recall that the total variation of w is given by

VUl pmoy = sup{/ divzudr: z € Cg°(w)" and |2(z)| <1 Vz € w}.
We also use the notation

/ IVl = [Vl pagoyr.

w

as already employed in (P). For these topologies V : BV (w) — M(w)" is a linear
continuous mapping.
In the sequel we will denote

1
Ay = ol / u(z)dx and @ =wu—a, forevery u € BV (w).
w w

By using [1, Theorem 3.44] it is easy to deduce that there exists a constant C,, such
that

1
[ull = lau| + | Vull pg)» < max (L, m)llul\gvm < Colfull- (2.1)

In addition, we mention that BV (w) is the dual space of a separable Banach space.

Therefore every bounded sequence {uy}7°, in BV (w) has a subsequence converging
weakly* to some u € BV (w). The weak™ convergence uy 2w implies that up, — u
strongly in L'(w) and Vug — Vu in M(w)™; see [1, pages 124-125]. We will also use
that BV (w) is continuously embedded in LP(w) with 1 < p < ~"=, and compactly
embedded in LP(0,T) for every p < -"5; see [1, Corollary 3.49]. From this property
we deduce that the convergence uj, — u in BV (w) implies that u, — u strongly in
every LP(0,T) for all p < -T5.

We make the following assumption on the nonlinear term of the state equation.

We assume that f: Q x R — R is a Borel function, of class C? with respect to the
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last variable, and satisfies for almost all x € Q)

0) € LP(Q) with p > g (2.2)

(z,9) >0 VyeR, (2.3)

o’ f
Tjﬁ(x’y)

f('v
of
dy

VM > 03C)y : ’ggj(m,y)‘ + <Cy Vyl <M, (2.4)

VM > 0 and Vp > 03Je > 0 such that
0% f 0?

/ .
Tyg(w7y2) - 87y2(3371/1) < pif lya —y1| < e and |y1|, [y2| < M.

Let us observe that if f is an affine function, f(z,y) = co(z)y + do(z), then
(2.2)-(2.5) hold if cg > 0 in ©, cg € L>®(Q), and dy € LP(Q).

By using these assumptions, the following theorem can be proved in a standard
way; see, for instance, [26, §4.2.4]. For the Holder continuity result, the reader is
referred to [17, Theorem 8.29].

PROPOSITION 2.1. For every u € LP(w) the state equation (1.1) has a unique
solution y,, € C(Q) N HE(Q) for some o € (0,1). In addition, for every M > 0 there
exists a constant Kp; such that

||yu||c<f(§z) + ||yu||Hg(Q) <Ky Vue LP(w): lull oy < M. (2.6)

In the sequel we will denote Y = C(Q)NH} () and S : LP(w) — Y the mapping
associating to each control v the corresponding state S(u) = y,,. We have the following
differentiability property of S.

PROPOSITION 2.2. The mapping S : LP(w) — Y is of class C%. For all elements
u,v and w of LP(w), the functions z, = S'(u)v and 2y, = S”(u)(v,w) are the solutions
of the problems

—Az + g(:myu)z =vXw 0§,

3y (2.7)
=0 on F7
and
of >’f ;
“Bet G @)t gz, =0 i (2.9
z2=0 on F,
respectively.

The proof is a consequence of the implicit function theorem. Let us give a sketch.
We define the space

V={yeY:AyeLP(Q)}
endowed with the norm

lyllv = lyllc@) + 19lla2 @) + 1AYllLs o)
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Thus, V is a Banach space. Now we introduce the mapping F : V x LP(Q) — L?(Q)
by

Fly,u) = Ay + f(z,y) — u.
From (2.4) we deduce that F is of class C? and

OF B af

From the monotonicity condition (2.3), we obtain that %(y, u) : V —s LP(Q) is an
isomorphism. Hence, the implicit function theorem and Proposition 2.1 with w =
imply the existence of a C? mapping S Lp () — Y associating to every element
u its corresponding state S(u) = y,. When w ¢ 2, we use that S = S o S, where
S, : LP(w) — LP(Q) is defined by S,u = ux,. Hence the chain rule leads to the
result.

Next, we separate the smooth and the non smooth parts in J: J(u) = F(u) +
aG(u) with

F(u) = ;/Q|yuyd|2dx+g(/wu(as)dx)2+;/wu2(x) dx and G(u) = g(Vu),

where g : M(w)” — R is given by g(u) = [|it[| m(w)»- In the rest of this section we
study the differentiability of F'. From Proposition 2.2 and the chain rule the following
proposition can be obtained.

PROPOSITION 2.3. The functional F : L?*(w) — R is of class C%. The deriva-
tives of F' are given by

F'(u)v = /w [gﬁu(:zz) + yu(z) + B( /w u(s) ds)}v(x) dz, (2.9)

and
o f
1/ _ _ - J
F"(u)(v,w) —/Q(l (puayQ (x7yu))zvzwd:v—i—’y/wvwdx—i—b’(/wvdx)(/wwdac)
(2.10)
with z, = S (w)v, 2z, = S (w)w, and ¢, €Y the adjoint state which satisfies
of :
-A wt 5 (T, Yu)Pu = Yu — ZTLQ,
Put 5y (@ Yu)Pu = hu =y (2.11)

pu =0 on I

The C(Q) regularity of ¢, follows from the assumptions on yg € L%(Q2) and the
fact that y,, € L>=(9).

Remark 2.4. If n = 2, since BV (w) is embedded in L?(w), then the functional
F : BV(w) — R is well defined and it is of class C? with derivatives given by (2.9)
and (2.10). However, if n = 3, then BV (w) is only embedded in L*/?(w). Hence, for
elements uw € BV (w) Proposition 2.1 is not applicable and, therefore, the functional
F is not defined in BV (w). To deal with the case n = 3 we introduced the assumption
(1.2), i.e. v > 0. Hence, the functional F : BV (w) N L?(w) — R is well defined and
of class C?.
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The assumption (1.2) can be avoided if we suppose that the nonlinearity f(x,y)
has only polynomial growth of arbitrary order in y. In this case, Propositions 2.1 and
2.2 hold if we change Y to Y, = LY(Q) N H(Q) with ¢ < oo arbitrarily big. We recall
that for a right hand side of the state equation belonging to L3/%(Q) the solution of
the state equation does not belong to L>(§Y), in general, even for linear equations.
However, since L*?(Q) ¢ W=13(Q), we can use [25, Theorem 4.2] to deduce that
yu € LU(Q) Vg < co. To analyze the semilinear case one can follow the classical
approach of truncation of the nonlinear term, Schauder’s fix point theorem, and L9-
estimates from the linear case combined with the monotonicity of the nonlinear term.
Finally, since vy = 0, we have that the functional F : BV (w) — R is of class C?.

Remark 2.5. In the state equation, the Laplace operator —A can be replaced by a
more general linear elliptic operator with bounded coefficients. All the results proved
in this paper hold for these general operators.

3. Analysis of the functional G. Now, we analyze the functional G. We
already expressed G as the composition G = g o V. Concerning the functional g,
we note that it is Lipschitz continuous and convex. Hence, it has a subdifferential
and a directional derivative, which are denoted by d¢g(u) and ¢'(u;v), respectively.
Before giving an expression for g’(u;v), we have to specify the norm that we use in
R™. Indeed, in the definition of the norm |||/ r¢()» We have considered a generic
norm | - | in R™. The choice of the specific norm strongly influences the structure of
the optimal controls. In this paper, we focus on the Euclidean and the | - |, norms,
which lead to different properties for g, that we consider separately in the following
two subsections. To illustrate one aspect, let us observe that the use of the |- |o norm
on R™ in the definition of | - || p¢(.)» implies that

n

il amerr =D Itsllame) Vi€ Mw)™ (3.1)

Jj=1

In particular, it holds that

/ Vul = 10x,ull mw) Yu € BV (w).

j=1

However, for the Euclidean norm we have, in general, that
n 1/2
Il # (3 Iilae) - (3.2)
j=1

Indeed, the identity (3.1) is an immediate consequence of the definitions of the norms
|- M(w) and ||| pg(wyn - To verify (3.2) we give an example. Let us fix n different points
{€9}"_, in w and take € > 0 small enough such that the balls B, (£?) are disjoint. Now,
applying Uryshon’s lemma, cf. [23, Lemma 2.12], we get functions z; € Cp(w) such
that 0 < z;(7) < 1Vz € w, (€%) =1 and supp(z;) C B:(£Y). We set 2z = (z1,...,2,)

and g1 = (¢1,...,0¢n). Then, since |z(x)[2 <1 Vo € w, we have
st = Y- [ ale)dust) = 3 (6) =n.
i=1v i=1

On the other hand, we get

i /
(Y lslu) = va
j=1
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3.1. The use of the Euclidean norm |- |3. In order to give an expression for
g'(p;v), let us introduce some notation. We recall that if 4 € M(w)™, its associated
total variation measure is defined as a positive scalar measure as follows

|| (A) = sup { Z |1(Ex)|2 : {Ex i C B are pairwise disjoint and A = U Ek},
k=1 k=1

where B is the o-algebra of Borel sets in w, and |u(Fj)|2 denotes the Euclidean norm
in R™ of the vector u(Ey). Let us denote by h, the Radon-Nikodym derivative of u
with respect to |u|. Thus we have

h, € L' (w,|u]), |hu(z)|a =1 for |u|—a.e.z € w and p(A) = / hy(z) dlu|(z) VA € B.
A

Given a second vector measure v € M(w)", the following Lebesgue decomposition
holds: v = v, + vs, dv, = h,d|u|, where v, and v, are the absolutely continuous and
singular parts of v with respect to |u|, and h, is the Radon-Nikodym derivative of v
with respect to |p|. Then, the following identity is fulfilled

My = IVall a4+ Vsl meyn = / ho () ]2 dl () + [[vs | aa -

The reader is referred to [1, Chapter 1].
Now, we analyze the subdifferential dg(u). It is well known that an element
A€ 9g(p) if

Av =)+ [l s < Va0 € M) (33)

This is equivalent to the next two relations

(A 1) = [l mey (3.4)
) < Il myn Vv € M(w)™. (3.5)

Observe that A belongs to the dual of M(w)™, which is not a distributional space. In
the special case where A € Cp(w)™, we can establish some precise relations between A
and p. Before proving these relations, let us mention that here we have

1 2llco @)y = sup{|z(z)|2 : z € w} Vz e Co(w)".

PROPOSITION 3.1. If A € Co(w)" N Ag(u), then |[Acywyn < 1. Moreover, if
u # 0, then the following properties hold
1. Moy =1, and
2. supp(p) C {x e w: |A(x)|]2 = 1}.
Proof. The inequality ||Al|c,wy» < 1 follows from (3.5). Additionally, if u # 0,
then (3.4) implies 1. To prove 2. we use (3.4) as follows

/ dlul (@) = [ill sy = (0 ) = / A(z) dpz) = / A(@) - by () | ().

w

Then, using that [A(z)]z < 1 Vx € w and |h,(z)|2 = 1 |pf-a.e. in w we deduce from
the identity

/ dlul(z) = / A(@) - h() dlpel(z)
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that A(x)-h,(z) =1 |pl-a.e. inw. Using again that |h,(z)|2 = 1, |u|-a.e., we conclude
that A(z) = h,(z), |u|-a.e. Therefore, we have that

ul({fr € w: M) < 13) =0,

which implies 2. O
Next we study the directional derivatives of g.
PROPOSITION 3.2. Let pu,v € M(w)™, then

§(wiv) = / o dp+ sl oy (3.6)

where v = v, + vs = hyd|p] + vs is the Lebesgue decomposition of v respect to |p].
Proof. As above, let us write dyu = h,d|p|. Then we have

1+ vl pmeyr — Il aey

"(u;v) = lim
g (wsv) Ty ;
i 12+ pvall meoyn + loVsl oy — 1l meyn
[N P
1
= ;%; |hu(x) + phy(x)|2d|pl(z) — [ |hu(@)]2dp](z) | + [[Vs] A

 h(@) + pha ()]s — [hu(@)]s
= 1 d + S w)n
/w liny ; () + 15 | e

By EACHEC
w (@)l

Since the quotients are dominated by |h,|2, we applied Lebesgue’s dominated con-

vergence theorem above. Moreover, we use that |h,(z)|2 = 1 |p|-a.e. in w in the last

equality and also to justify the differentiability of the norm |- | at every h,(x) with
z in the support of |u|. O

Now, we come back to the mapping G. To this end, let us recall that the adjoint
operator V* is defined by

\VARE [M((U)n]* — BV(M)*, <v*)‘vu>BV(w)*,BV(w) = <>\, Vu>[M(w)n]*,M(w)n.
PROPOSITION 3.3. The following identities hold for all u € BV (w):
0G(u) = (g o V)(u) = V*0g(Vu), (3.7)

G'(wi) = (9o VY (o) = [ hd(T0) +[(Vohlsrs  (38)

w

dlpal(@) + sl gy = / hu dps + Vsl gy

where Vv = h,d|Vu| + (Vv)s is the Lebesque decomposition of Vv with respect to
[Vul.

Proof. Since V : BV (w) — M(w)™ is a linear and continuous mapping and
g : M(w)™ — R is convex and continuous, we can apply the chain rule [16, Chapter I,
Proposition 5.7] to deduce that d(go V)(u) = V*9g(Vu), which immediately leads to
(3.7).

To verify (3.8) it is enough to observe that

(90 V) (u;0) = g'(Vu; Vo)
and to apply (3.6). O
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3.2. The use of the |- |, norm. The use of |- |, norm implies that
1 zllco @)y = sup{|z(z)]|e : © € w} Vz € Co(w)™.

We recall that every scalar real measure p € M(w) admits a Jordan decomposition
= pt —pu~, where pt and p~ are positive measures with disjoint supports. Further,
if h, is the Radon-Nikodym derivative of p with respect to ||, then p = htd|u| and
u~ = h~d|u|, where h = h™ — h™ is the decomposition of % in positive and negative
parts.

PROPOSITION 3.4. If A € Co(w)"NAg (), then || Ajllcyw) <1 forallj=1,...,n
Moreover, if i; # 0, then the following properties hold

1 Njlleow) = 1, and
2. supp(uj‘) C{z €w: \j(x) = +1} and supp(p; ) C {z € w: \j(z) = —1}.
Proof. Inserting (3.1) in (3.4) and (3.5) we get

Nu i) Z il M) (3.9)

M: i M:

(vis A <Z||vz||M @ e Mw)" (3.10)

.
Il
_

Let us fix 1 < j < n and take in (3.10) v; = 0 for every i # j and v; = +0, with
T € w arbitrary. Then, we obtain

(@) = (v, ) < [Vl meew) = 1.

This proves that [A\j(z)] <1 Vz € w for every j. Now, we assume that p; # 0. From
(3.9) we infer

Z ||/féz||./\/l (w) = Z /,Lz, < Z ||MZHM(w ||/\ ”Co (w) < Z ”/J/zHM(w
i=1

This implies that ||A;||¢,() = 1 for every i such that p; # 0. Hence, 1. holds. The
second part was proved in [6, Lemma 3.4]. O

Now, we compute the directional derivatives of ¢'(u;v). Then, we have the fol-
lowing expression which is similar but different from the one obtained in Proposition
3.2.

PROPOSITION 3.5. Let pi,v € M(w)", then

g (sv) = / o da+ vl = / Py dias + 1)l o (311)

j=1

where v; = (Vj)a + (Vj)s = hy,d|p;| + (v)s is the Lebesgue decomposition of v; with
respect to |p;| for 1 < j <mn.
Proof. For the proof it is enough use (3.1) to obtain

n

+ pv w)™ w)n . i T pvi w)™ T 4 w)"
¢ () = lim 1+ prllmeoye = lllaeeoyn i l12i + pvill meeoyr = Ilitill me .
N0 P Py PN\O P

Then, we proceed as in the proof of [10, Proposition 3.3]. O
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With the same proof we infer that Proposition 3.3 is also true for the |- |o, norm
with (3.8) being interpreted as follows

= { /w hy,j d(Og,u) + ||(az/U)s||M(w)}, (3.12)

where 0, v = hy ;0. ul 4 (0z;v)s is the Lebesgue decomposition of d, ;v with respect
to |0z ul.

4. Existence of an optimal control and first order optimality conditions.
The proof of the existence of an optimal control follows the lines of [9, Theorem 3.1]
with the obvious modifications.

THEOREM 4.1. Let us assume that one of the following assumptions hold.

1. p+~v>0.
2. There exist q € [1,2) and C > 0 such that
of
8—(x,y) <CA+1y|?) for a.a. x € Q and Vy € R.
Yy

Then, problem (P) has at least one solution. Moreover, if f is affine with respect to
y, the solution is unique.

Now, we prove the first order optimality conditions satisfied by any local minimum
of (P).

THEOREM 4.2. Let @ be a local solution of (P). Then, there exists A € 0g(Vi)
such that

a(S\,Vv>[M(w)n]*7M(w)n+/ (@—i—vﬂ—h@’/ ﬂdz)vd;v =0 Vv € BV(w)NL*(w), (4.1)

where ¢ € H}(Q) N C(Q) is the adjoint state corresponding to .

Proof. Let us denote by @ € C(Q)N H}(Q) the adjoint state corresponding to the
local solution 4. Given v € BV (w) N L?(w), from the local optimality of % and the
convexity of G we deduce for every 0 < p < 1 small enough

0 < J(@+ pv) — J(a) _ F(u+ pv) — F(a) +aG(ﬂ+pv)—G(ﬂ)

- p p P

F(a+ f“;) — @ | siet+ o) - ).

<

Passing to the limit as p — 0 in the above inequality and using (2.9) we obtain for
every v € BV (w)

0< / (gb(w) +ya(z) + /3/ ﬂds)v(x) dz + a|G (@ +v) — G(a)].
Replacing v by u — @, this inequality can be written

_é/w <¢+7a+5/wﬂd8) (u—a)dz + G(u) < G(u) Vu € BV (w) N L ().
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This along with (3.7) implies

_é(@‘F'}/ﬂ“v‘B/ ﬂds) € 0G(u) = V*dg(Vu).

w

Hence, there exists A € dg(Va) C [M(w)"]* such that

(A V) (M) M) = E/ {@—i—ﬁ/ﬁds}vdm Vv € BV (w) N L (w),

which implies (4.1). O

Since A € M(w)™ and M (w)™ is not a distribution space, sometimes it can be more
convenient to handle a different optimality system involving distributional spaces,
mainly if we think of the numerical analysis. To this end, we present the following
equivalent optimality conditions.

THEOREM 4.3. Let us assume that n = 2. Given @ € BV (w), let § and ¢ be the
associated state and adjoint state. Then, there exists A € Og(Va) satisfying (4.1) if
and only if there exists ® € Co(w)™ such that

a(Vu, @) pf(w)yn,Co(w)n +/ [(,5 +yu+ B/ ads}vdx =0 Vv e BV(w), (4.2)

(VU, @) M), Cow)r < IVl myn Vo € M(w)™, (4.3)
<Vﬂ, >M(w)n7c'0(w)n = ||V17,||M(w)n. (4.4)

Proof. Assume that A € dg(Vu) satisfies (4.1). We define a linear form Tj in
M(w)™ as follows

D(Ty) ={Vv:ve BV(w)} and To(p) = (A, VU) m(w)n] M)n if o= Vo.

From (3.4) and (3.5) we have

To(Va) = [Vl pmew)y, (4.5)

To(p) < llpllmeyn Vi € D(To). (4.6)
We prove that Tj is weakly* continuous on its domain. Let {ur}r C D(Tp) and
p € D(Ty) be such that pp — p in M(w)™. By definition of D(T,) there exists
elements {vy}r C BV (w) and v € BV (w) such that p, = Vi, and p = Vo. Without
loss of generality we assume that the integrals of each v, and v in w are zero. Using
(2.1), we know that {vy }, is bounded in BV (w). From the continuity of the embedding

BV (w) C L?(w) due to n = 2 and the convergence Vv, — Vv in M(w)", we obtain
that vy — v in L?(w). Therefore, we get with (4.1)

kl;rrgo To(px) = klir&(A,Vvk)[M(w)n}*,M(w)n

= lim ;1/ [@+7ﬁ+ﬂ/ﬁds]vkdaj (4.7

k—oco «
71 B B ~ B
= ;/ |:<,0 + YU =+ ﬂ/ uds}vdz = <>\’vv>[M(w)n]*7M(w)n = To(lu)’

which implies the weak® continuity of T;. Hence, there exists a weakly™ continuous
linear form 7" : M(w)" — R extending Tp; [24, Theorem 3.6]. In this case, we know
that T can be identified with an element ® € Cy(w)™, i.e.

HWZW@MMMWMZ/éW Vi€ M(w)";
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see [3, Proposition 3.14]. The function ® fulfills (4.2)-(4.4). Indeed, (4.2) follows from
the definition of Ty and (4.1), and (4.3)-(4.4) are the same as (4.5)-(4.6).

Reciprocally, assume that ® € Cp(w)" satisfies (4.2)—(4.4). This time we define
the linear operator

D(Tp) ={Vv:v e BV(w)} and Ty(u) = (Vv, ®) pmw)n,co(w) if = V.

From (4.3) we know that Tj is a continuous operator in D(Tp) for the strong topology
of M(w)", and [|To||(am(w)n)» < 1. Hence, the Hahn-Banach theorem implies the
existence of an operator A € [M(w)"]* extending Ty and such that [[A[[jaqw)yn« < 1.
This along with (4.3) implies that

<§\7V’EL> = ||Va||/\/l(w)”7
A ) < vl meyn Vv € M(w)™.

Hence, we have A € dg(Va); see (3.3)-(3.5). Finally, (4.1) follows from (4.2) and the
definition of Ty. This concludes the proof. O

Remark 4.4. Theorem 4.3 is still valid in dimension n = 3 if we take v =0 and
we assume that the nonlinearity of f(x,y) has a polynomial growth of arbitrary order
with respect to the variable y; see Remark 2.4. Indeed, let us observe that the limit
(??) is still valid because vy, — v in L3/?(Q) and ¢+ B J., uds is a continuous function
in .

Remark 4.5. It would be interesting to prove the existence of a function ® €
Co(w)" N Ag(Va) satisfying (4.3)—(4.5). Indeed, Theorem 4.3 does not guarantee that
|@llcy@y» < 1. In this hypothetic case, we could deduce from Propositions 3.1 and
3.4 the following sparsity structure of V.

1. For the | - | norm, if Vi # 0 we have ||®|| ¢y = 1 and

supp(Va) C {r € w: [®(x)| = 1}.
2. For the | - [oo norm, for any 1 < j < n such that if 0,4 # 0 we have
[1®)llca@w) =1, and

supp([0,,u]t) C {z € w: ®j(z) = +1},

supp([0,,u]”) C {z € w: ®j(x) = —1}.
5. Second order optimality conditions. The goal of this section is to prove
necessary and sufficient second order optimality conditions for problem (P). In the
whole section, 4 will denote a fixed element of BV (w)NL?(w) satisfying the optimality

conditions given in Theorem 4.2. As in Section 3, we will distinguish the cases where
the norms |- | and | - |o in R™ are used in the definition of the measure ||V || pqw)n -

5.1. The use of the |- |, norm. As pointed out in (3.1), the use of the |- |
norm in R™ leads to the identity

Vol = - 105, vlaacr = 3 { [ ol sl + 10z, 0) e} 1)
j=1 j=1 w

Vv € BV (w), where 0,,v = hy j{0y, 1|+ (02,v) is the Lebesgue decomposition of 0, v
with respect to the measure |8gu]ﬂ|7 1 < j < n. Moreover, for every 1 < j < n there
exists a Borel function h; such that

\hj(z)] =1, |0,,u|—ae., and 0,0 = h;|0,,1l. (5.2)
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In the sequel, we will denote hy, = (hy1,...,hyn) and b = (hy,..., hy).

First, we state the second order necessary optimality conditions. To this end we
define the cone of critical directions Cj as the closure in L?(w) of the cone

By = {ve BV(w)NL*(w) : F'(@)v + oG’ (4;v) = 0
and h, j € L*(|0,,4l), 1 < j < n}. (5.3)

Then, we have the following result.

THEOREM 5.1. If 4 is a local minimum of (P), then F"(u)v? > 0 Yv € Cy.

Proof. We will prove the result for every v € E;. Then, the theorem follows by

using the continuity of quadratic from v € L*(w) — F”(a)v? € R. Given v € Ey and
p > 0 we set

1 .
wpj ={r €w:plhy;(z)| < 5} 1<j<n.

We have with Schwarz inequality

10,1l \ wpy) < 2 / oy ()] |, @

WA\Wp,j

< 2p\f10n, 1l \ o) ([ Ihos(a) dios, )

WA\Wp, j

1/2
b

which implies
- 2 N2 .
\/ 10z, 1|(w\ wpj) < 2p</\ |ho.j ()] d|8mju|> 1<j<n. (5.4)
WA\Wp, j
Taking into account (5.2) we get for 1 < j <mn

|7 (%) + phoj(@)] — [y (2)]

p
Using this identity and (5.1) we get

G(a+ pv) — G(a)

= hv,j(x)ﬁj(a:) [0, 0] —a.e. € w, ;.

p
n |7L+ph7|7|7l| _
_ Z {/ J v,J J d|8xju| + ||(ax]U)SHM(W)W}
j=1 Wp,j P
n “—LJ +th,j - |}_L|
+Z/w _ p

=S { [ s 0l + e, haacr )
1 w

d|0,, 1l

h; + phy ;| — |h;
+Z/ R
j=1 w\wp,j P
zz{/hv,j 4021+ (Do, 0)sl oy
j=1 ¥

- |hj + phoj| = |hy] ~ _ )
* Z {/ ) ; p] |0y, ] — " 'v(hv,jhj)d@xju\}.
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Now, from (3.12), (5.2), Schwarz inequality, and (5.4) we infer

G(a+ pv) — G(a) . = / _
< G(u;v)+2 hy,1d|0; ;0
p w0 +2) [ bl

w\wp,j

< G'(a +2Z,/|a l(w \ wp.y) (/ hoj )|2d|8T]u|)
<G/ (u;v +4pZ/ ‘ d|8x7u|

“"p]

Next we use the local optimality of @. By a Taylor expansion of F' around @ and
using that v € Ey, we get for p > 0 small enough

0< J(u+pv)—J(u) = p[F'(a)v + aG'(u;v)]

%(F”(u+9 v)v +8a2/ x)[? dlaxgul)

“’n]

(F//(u—i—ﬂpv v —|—80¢Z/ z)|? d|8xju\>

‘*’P;

with 0 < 6§, < 1. Dividing the above expression by p%/2, passing to the limit as
p — 0, and taking into account that h,; € L*(|0,,1|) and |0y, a|(w \ wp,;) — 0, we
conclude that F”(u)v? > 0. O

For the sufficient second order conditions we introduce the critical cones

CI ={v € BV(w)N L3 (w) : F'(@)v + aG' (@ v) < 7|20l 20} (5.5)

where 7 > 0 and z, = S’'(@)v. The reader is referred to [4] for some second order
conditions based on these cones; see also [11] and [12]. Let us observe that (4.1) and
the inequality G'(@;v) > (A, VU) A (w)n]* , M(w)» imply that Yo € BV (w) N L?(w)

F'(@)v + oG (5 0) > F'(@)v 4+ a(X, VO) pr(w)n] M) = 0. (5.6)

THEOREM 5.2. Letu € BV (w)NL?(w) satisfy the first order optimality conditions
stated in Theorem 4.2 and the second order condition

36 >0 and 37 > 0: F"(a)v* > 6||zv\|%2(g) Vv € CF. (5.7)
Then, there exist k > 0 and € > 0 such that
_ R _ _
J(@) + Sllye = 9liz) < J(w) Vue BV(@)NL W)« u—all2w) <& (5.8)

where y,, = S(u) and § = S(u).
Proof. We follow the proof of [4, Theorem 3.6] with some changes. First, from [4,
Lemma 2.7] we deduce the existence of €9 > 0 such that

0
" (w) = (@) < Izl 72y Yo € L2 (w) and all [lu = @l|2) <20 (5.9)

Moreover, from Proposition 2.2 we deduce the existence of a constant Cy > 0 such
that

2ol L2() = 1" (@)v| 2() < CillvllL2w) Yo € LP(w). (5.10)
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Now, from (2.6) we have that there exists a constant K such that |[y.[lcq) < K if
lu — 1l 12(w) < 0. From the adjoint state equation (2.11) and (2.3) we deduce that
leullc@ < K for every [lu — 1l|p2() < €0 and some constant K. Finally, using
these estimates, (2.4) and the expression (2.10) we infer the existence of a constant
C5 > 0 such that

F'(u)v® > |0l 72 (0 —Callzul 20 for all [lu—al| 2wy < €0 and Vo € L (w). (5.11)

Now, we set

€ = min {50, (54_2%}

with 7 and § given in (5.7). Let u € BV (w) N L*(w) such that |lu — @2y < e. We
distinguish two cases.

Case I: u—u € CT. Making a Taylor expansion of F' around @, using the convexity
of G and (5.6), (5.7) and (5.9), we get for some 0 < 6 <1

1
J(u) — J(u) > [F'(u)(u—u) + oG (u;u —u)] + §F”(ﬂ +0(u — ) (u—u)?
1 1
> S (@) (u~ u)® + SUF"(@+0(u =) = F"(@))(u— u)?
g 2 0 2 g 2
2 §||Zu—a||L2(Q) - ZH%—EHB(Q) = 1||Zu—a||L2(Q)- (5.12)
Case II: w —u ¢ C7. This implies that
F'(u)(u—u) + oG (t;u — ) > 7| zu—allr2(0)- (5.13)

Moreover, from (5.10) and the definition of € we infer

2
lzu—allL2() < Cillu — @llp2 o) < ﬁ,
and therefore
0+ Cy
or llzu—allz2) < 1. (5.14)

Using again the convexity of G, (5.11), (5.13) and (5.14) we infer
1
J(u) — J(u) > [F'(u)(u—u) + oG (u;u —u)] + §F”(12 +0(u — ) (u—u)?
> 7| zu-allz2@) — Collzu-alliz(o)

0+ Cs Cs )
2 9 ||Zu—a|\%2(9) - 7”%—&”%2(9) = §||Zu—ﬂ||2L?(Q)' (5.15)

From (5.12) and (5.15) we deduce that [4, page 2364]
L0 _
J(u) = J(a) > 1||ZU,EH%2(Q) Yu € BV (w) N L*(w) : |lu — Ul L2y < €.
Finally, choosing ¢ still smaller, if necessary, we have that [4, page 2364]

1 _ _
§||yu — yHL2(Q) < ||Zu_aHL2(Q) Yu € BV((U) n L2(w) : ||7.L — u||L2(w) <e.
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The last two inequalities imply (5.8) with x = 2. O

We observe that (5.7) is a sufficient second order condition for strict local opti-
mality of % in the L?(w) sense. Moreover, by using (5.8) we can prove stability of
the optimal states with respect to perturbations in the data of the control problem.
However, it does not provide information on the optimal controls. If v > 0 we can
change (5.7) by a stronger assumption leading to a quadratic growth of the controls
instead of the states; i.e. [lyu — |72 can be replaced by [lu — al|75(,, in (5.8).
However, if v = 0, then this is not possible; see [4].

THEOREM 5.3. Suppose that v > 0 and let u € BV (w) N L*(w) satisfy the first
order optimality conditions stated in Theorem 4.2 and the second order condition

36 >0 and 37 > 0: F"(@)v* > 8|[v[|F2(,y Vv € CF. (5.16)
Then, there exist k > 0 and € > 0 such that
J(a) + gHu - ﬂ||2L2(w) < J(u) Yu€ BV(w)NL*w): lu—1ilr2w <e.  (5.17)

Proof. Using again [4, Lemma 2.7] along with (5.10) we infer the existence of
€ > 0 such that

6
[[F"(u) — F"(a)]v?| < §||UH%2(Q) Vo € L*(w) and all |lu — | p2() < €. (5.18)

Arguing similarly to (5.12), but using (5.16) and (5.18) we obtain for every u €
BV (w) N L?(w) such that ||u — @l 12() <€ and u —u € CF,

1

J(w) — J(@) > [F'(@)(u — a) + oG (t;u — )] + 5F”(a +0(u—0))(u—u)?
> %F"(ﬂ)(u —a)% + %[F”(ﬂ +0(u—1)) — F"(0)](u —u)?
> 2 a3y — o= Al = o= 3. (519

Thus, (5.17) holds with k = g assuming that u —u € C7. Now, we argue by contra-
diction, and we assume that there do not exist x > 0 and ¢ > 0 such that (5.17) holds
for all the elements u € BV (w) N L*(w) with [[u — @ z2() < . This implies that for
every integer k > 0, there exists an element u; € BV (w) N L?(w) with

1 1
||’LLk — 7_1,||L2(w) < E and J(ﬂ) + %Huk — a||%2(w) > J(uk) (520)

From (5.19) we know that ux, — @ ¢ CZ, hence with (5.14)

0+ Cy

F'(u)(ux — @) + oG (@ up — 1) > 7|20, —allL2(0) 2 l2uwe—allZzi)  (5:21)

for every k large enough. Using (5.11), (5.20) and (5.21) we obtain
1 _ _
%Huk - U||i2(w) > J(ux) — J(w)

> [F'(@) (ug — ) + oG’ (@ u, — 0)] + %F”(ﬂ + O (up — @) (wp — @)°

6+ Cs 0 _ Co Y _
B ||Zufﬂ\|%2(sz) + §Huk - U||%2(w) - 7H2ura||2L2(Q) 2 §||Uk - U||2L2(w)7

with is a contradiction because v > 0. O

>
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5.2. The use of the |- |2 norm. Given an element v € BV (w), we consider
the Lebesgue decomposition of Vv with respect to the positive measure |Val: Vo =
hyd|Va| + (Vv)s. Hence, we have

IVl vt =/ (o ()2 d[ VU] + V)5 M) (5.22)
We also set Vi = h|Va|, where |h(z)|2 = 1 |Vi|-a.e. in w. Then, we have with (3.8)
& (0) = /(1} ) IV + (V)] o (5.23)

Now, we define the cone of critical directions
={v € BV(w)NL*(w) : F'(@)v+ oG’ (@;v) = 0 and |h,|» € L*(|Va])}. (5.24)

Then, we have the following second order necessary optimality conditions.
THEOREM 5.4. If @ is a local minimum of (P), then

F(a)? + a/ (Iho(@) — (hia) - ho(@))?) dIVa] 0 VoeCo (525)

Proof. For fixed v € Cy and given p > 0, we define

1
wp={z €W plhu(@)lz < 5}

Arguing as in the proof of Theorem 5.1 we get the following inequality analogous to

(5.4)
Vil e, <2 [ \ ho@Edval)” (5.26)

w\wp

Using the differentiability of the |- [;-norm x € R" — |z|y for every = # 0, the fact
that |h(z)|2 = 1 |Val-a.e., the Schwarz inequality, and (5.26) we get for 0 < §,(z) <1

G(u+ pv) — G(u)

P
|h + phyla = |hl2 |h + phyla = |hl2 o
=/ ——————d|Va| + [[(VV)s]| m(w) + ——d|Vu|
wp p w\w, p
hy h+0,phy) - hy
:/ |:h~hv+ p( | ‘2 ( - P ) . )} d|V’l_L|
" |h + 0,phy|2 |h + 0,ph, |3

|h + phv|2 — |7l\2
(V0 s gy + / e

P |03 (h+ 0ppha) - h
v) d|Vau| + */ - d|\Vu
/w( Jdival 2 Ju, LIh+0,phyl2 |h + 0,ph,|3 } vl

|V

+ 1(VV)sll moyn + 2/ |ho|2 d| V|

UJUJ

<

(h - ho) AVl + [[(V0) sl ateye

h-h
|hol3 (h+ 0,phy) - hy - / ) .

h ) d|Val +8 ho|2d|Val}.
/W |:|h+9pphv|2 |h—|—9pphv|§’ ] IV |3 d| |}

IS

_|_

w\w,
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Using this inequality and the local optimality of %, we infer with uw, = @ + 6,pv,
0<6,<1,

U — T 2
0 < J(i+ pv) — J (1) = p{pf(a)v+aG(u+Pv) G(U)} N %F”(up)zﬂ
(4 I (57 p2 1" 2
< plF'(@)v + oG (@ v)] + 5 F" (up)v
o3 (h+ 0,phy) -y / L
’ h |k dval +8 hyl3 d|Val ¢
a‘/“’p |:|h+aﬂphv|2 |h+9pphv|g ] | u| « w\wp| |2 | u‘}

Now, taking into account that v € Cy and dividing the above inequality by p?/2 we
get

hol3 (h 4 8,phy) - - -
0<FE” 2 / _holy (ot Opphu) B d|V 8/ hy |3 d|Vl.
< Fup)v”+a ., [\h+9pphv|2 EXNE } |Vl +8a w\%\ |5 d|Val

Finally, using that |Vi|(w\ w,) — 0 as p — 0, |h(z)]2 = 1, and

< 1= plhy(z)l2 < [P+ Oppholz <1+ plhy(@)]2 <

N w

|Vl-a.e. in w,,

| —

we pass to the limit as p — 0 in the above inequality with the aid of the Lebesgue
dominated convergence theorem and we obtain (5.25). O

Remark 5.5. The reader can easily check that Theorems 5.2 and 5.3 also hold
when the | - |2 norm is used. However, to reduce the gap between the mecessary and
sufficient conditions for optimality, we should prove that the conditions

Flap +a [ (@B - () - bo(@)?) diVal 2 8@ Vo€ Cf

and

Fap +a [ (I@f - (i) - bo(@)?) diVal 2 Slola o e C

imply (5.8) and (5.17), respectively. This, however, remains as a challenge.

6. A regularization of problem (P). Here we briefly discuss the effect of an
H'(w)-regularization term on the first order optimality conditions. For ¢ > 0 we
consider

€
P, in Jo(u)=J -
(Pe) Lomn (w) = J(u) + 5

/ |Vu(z)|? da,
subject to (1.1), and denote a solution by u.. Let us set
Je(u) = Fe(u) + G(u),

where F(u) = F(u) + § [ |Vu|?>dx for u € H'(w). We have

F!/(u)v = F'(u)v + 6/ Vu-Vudzr, and 0G(u) = V*dg(Vu) for u € H' (w),
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where now V : H'(w) — L*(w)", and g : L*(w)" — R is given by g(v) = ||v[|1(w)n-
We have the analog of Theorem 4.2, i.e. for every local solution u. of (P.) there exists
Ae € 0G(Vue) such that

(e, V) 2 (yn + Fl(ue)v = 0, for all v € H'(w). (6.1)
Let us focus on A € 9g(Vu,) next. It is equivalent to
(Xes Ve) = [[Ve| p1(wyn, and (Ae,v) < [[v]| g1y for all v € L (w)"™. (6.2)

The use of the Euclidean norm | - |5: Here (6.2) results in

n n

z:(/\eﬂ',oh'mu6 :/ Z|8 ue]? da: and Z iy Vi) _/(Zn: |vi|2)%da:, (6.3)
w woi=1

i=1

for all v € L'(w)"™. The second expression in (6.3) implies that [[A]| e rn) < 1.
Moreover, if Vu, # 0,

| Aell oo (w,mmy = 1 and supp Vue C {z € w: [Ac(z)]2 = 1}. (6.4)

The first claim follows from the equality in (6.3). This equality can also be expressed
as [ |Vueladr = [ (Vue-Ac) dz, which, together with [A(z)|s < 1 implies the second
assertion in (6.4).

The use of the |- |o-norm: In this case (6.2) results in

> (A On,ue) = Znazzueuﬂ(w and Z ci> Vi) <Z|m||L1(w)7 (6.5)
i=1

for all v € L'(w)™. This implies that [[Ac ||z < 1 for all j = 1,...,n and if
Op,ue #0

[Acjllzoe () =1, and supp (8gcj.ue)jE Cl{rew: A ,; ==£1} (6.6)

In fact, forany 1 < j < mn,let v; = 0foralli # j and v; = A ; on Sj ={z: A, > 1},
and equal to 0 otherwise. Then [¢+(X2; — Ac;)(2)dx < 0, while the integrand is

strictly positive a.e. Hence meas(S;') = 0. In an analogous form we exclude the case
Ae,j < —1, and hence [|Ac j||L~ () < 1, for all j. Using the first expression in (6.5) we
have

Z ||8xiu€||L1(w) = Z()\e %63?1“6 < Z ||8 u6||L1
=1

=1 =1

which implies (6.6).
Asymptotic behavior: Finally we consider the asymptotic behavior of (6.1), (6.2)
as € — 0. From the inequality J.(u.) < J(0) for all ¢ > 0, we deduce with (1.2)
the boundedness of {u.}. in BV (w) N L?*(w). Moreover, (6.4) and (6.6) imply the
boundedness of {\.}. in L>(w)". Hence there exists (u,)\) € (BV(w) N L?(w)) x
L (w)™ such that on a subsequence (uc, \¢) — (@i, A) weakly* in (BV (w) N L?(w)) x
L% (w). Moreover y,,. — yz in L?(Q).

Now, given an arbitrary element u € H!(w), the optimality of u. and the structure
of J implies

J(a) < 11m1nf J(ue) < limsup J(ue) < limsup Je (ue) < limsup Je(u) = J(u).

e—0 e—0 e—0
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Since H'(2) is dense in BV (w) N L?(w), the above inequality implies that @ is a
solution of (P) and

J(@) = lim J(ue) = limsup J¢ (ue) = inf (P) = J(a). (6.7)

e—=0 e—0

This implies that J(u.) — J(u) and § [ [Vuc|* dz — 0. Moreover, from the conver-
gence properties of {u.}. and {y.}. we deduce that

1 8 11 B .\
§||yu5 — Yall72(0) + 3 (/ Ug dw) ] = §Hya — Yl T2 + 5 (/ de) , (6.8)

/|Va| gnggf/ V. (6.9)

Combining (6.8) with the convergence J(u.) — J(u) we infer

lim
e—0

. Y 2 V=2 .
tiny (Fecloc + [ 9ud) = Jaley +o [ 190l @10

If v = 0 then this identity is reduced to [ |Vu.| — [ |Val|. Let us prove that
this convergence property also holds for v > 0. Using (6.10), the convergence u. — 4
in L?(w), and (6.9) we obtain

Y= .. .
Sl < liminf [luc|72,) < lim sup e 172 o

. Y 2 .. _
< o - —
_m?:élp<2||uE|L2(w)+a/w|qu> allggfL|Vu5|

Yis - - Vs
< (Fale +o [ 9a1) ~a [ 190 = halac,
w w

Therefore, |uc| 72wy — ||@]|z2(w) holds. Combining this fact with the weak conver-
gence we conclude that u. — u strongly in L?(w). Inserting this in (6.10) it follows
that [ [Vuc| — [ |Val.

From (6.1) we have that

a(Ae, Vo) + / ((p(ue) + Yyue + 6/

w w

U dz)vda: - e/ uAvdr =0, Yve C5°(w).
Taking the limit € — 0 we obtain

a(\, Vv) +/

w

(tp(ﬁ)-l-vﬁ—&-ﬁ/ﬂdz)vdxzo, Yo € C§° (w),

which corresponds to (4.1). Moreover, the above relation implies that A € L2 (w),
and

—adivX+<p(a)+w+ﬁ/adz=0 in L*(w). (6.11)

w

This relation can also be deduced from (4.1). Thus div A from Section 4 coincides
with div A obtained by regularisation and it is uniquely defined by (6.11).
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From (6.1), the above identity, and the established convergence ¢ [ |Vu.|* dz — 0
we find

1 1
lim (A, Vue) = — lim — F! (ue)ue = — lim — (F'(ue)u€ — e/ |V, |? dx)
e—0 e—0 e—=0 « w

- —éF’(a)a — _(div ), a).

Now, from (6.2) and the convergence [ [Vu|— [ |Vi| we infer

;l—r{(l)()‘m Vue) = [V pn-

From the last two identities, and using again (6.2) along with the convergence A\, — X
in L*°(w) we obtain

(—=divA, @) = ||Vl pr(wyn, and (A, v) < [v[p1(ye for all v € L' (w)™.

This corresponds to (X, V@) (r1(w)n)= My = Vil mwyns and (A, v) < [[v]| pq(y» for
all v € M(w)™, which was obtained in Theorem 4.2 with A € dg(Va) C [M(w)™]*.

7. Conclusions. An analysis for BV-regularised optimal control problems asso-
ciated to semilinear elliptic equations was provided. Existence, first order necessary
and second order sufficient optimality conditions were investigated. Special attention
was given to the different cases which arise due to the choice of a particular vector
norm in the definition of the BV-seminorm. If (P) is additionally regularised by an
H'(w)-seminorm, then the set where the gradient of the optimal solution vanishes,
can be characterised conveniently by an adjoint variable, see (6.4) and (6.6). For
the original problem (P) without H'(w)-seminorm regularisation, such a transparent
description of the set where the measure |Va| vanishes is not available, rather it was
replaced by the properties specified in Theorem 4.3.
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