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Abstract

We study the optimality systems of optimal control problems governed by
nonlinear elliptic state systems whose variational formulations are variational-
hemivariational inequalities. We first prove the existence of solutions to the
inequality problems and show the solution mappings are weakly upper semi-
continuous. Then we establish the existence theorem of optimal pairs to
nonsmooth cost functionals. Under appropriate conditions, the approxima-
tion results and abstract necessary optimality conditions of first order are
derived. Moreover, we take the obstacle problem with nonmonotone pertur-
bation as an example and derive the optimality system precisely.
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1. Introduction

Optimal control problems for equations and variational inequalities have
been formulated and studied in numerous publications in the past several
decades; see, e.g., [1–8] and the references therein. In this paper, we consider
optimal control problems in which the variational formulations of the state
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equations are variational-hemivariational inequalities. The main emphasis is
put on the existence of optimal pairs, approximations and necessary opti-
mality conditions of first order. More precisely, we study the optimal control
problems, (OP) for short, as follows.
Minimize the functional

G(y, u) = g(y) + h(u) (1.1)

on all (y, u) ∈ V × U , subject to

(VI-HVI)

{
Ay + ∂ϕ(y) + ∂j(·, y) 3 f +Bu in Ω

y = 0 on ∂Ω,
(1.2)

where y is the state, u is the control, and V and U are referred to as the state
and control spaces, respectively. The cost functional G(y, u) may be nons-
mooth, and A is supposed to be a second order elliptic differential operators
of the form

Ay(x) =
N∑
i=1

∂

∂xi
ai(x,∇y) + a0(x, y). (1.3)

Further ∂ϕ(y) stands for the convex subdifferential of ϕ(y), while ∂j(·, y) is
understood to be ∂j(·, y)(x) = ∂j(x, y(x)) a.e. x ∈ Ω, and the latter denotes
the Clarke generalized gradient of a locally Lipschitz continuous function j
with respect to y(x). Assume V = H1

0 (Ω) and f + Bu ∈ V ∗ = H−1(Ω).
Then we see that the variational formulation of the state system (1.2) is the
following variational-hemivariational inequality

〈Ay−f −Bu, v−y〉+
∫

Ω

j0(x, y; v−y)dx+ϕ(v)−ϕ(y) ≥ 0, ∀ v ∈ V, (1.4)

where j0(x, y; v − y) is the Clarke generalized directional derivative of j. In
particular, if ϕ(u) is the indication function with respect to a nonempty,
closed and convex subset K ⊂ V , i.e.,

ϕ(u) = IK(u) =

{
0, if u ∈ K

+∞, otherwise,
(1.5)

then inequality (1.4) is equivalent to

〈Ay −Bu− f, v − y〉+

∫
Ω

j0(x, y; v − y)dx ≥ 0, ∀v ∈ K. (1.6)
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Further, if we define

K := {v ∈ V : v(x) ≥ ψ(x) a.e. x ∈ Ω} for some ψ ∈ V, (1.7)

then (1.6) is well-known as the obstacle problem described by hemivariational
inequality. We recall that the notion of hemivariational inequality was intro-
duced by P.D. Panagiotopoulos in the 1980s for mechanical problems with
nonconvex and nonsmooth energy functionals (so-called superpotentials); see
[9, 10]. Based on the generalized gradient of F.H. Clarke, hemivariational in-
equalities generalize the classical variational ones and have been proved to
be useful tools to deal with the problems involving nonmonotone and possi-
bly multivalued relations. We refer the readers to [11–15] and the references
therein for more details on the theory and applications in this field.

Now we give a brief remark on some related literature. Based on finite
element approximation, the initial attempts towards the existence of optimal
pairs of hemivariational inequalities can be found in [16–18], and the existence
and necessary optimality conditions in [19, 20]. Thereafter, the optimal shape
design of hemivariational inequalities was considered in [21, 22]. Recent
studies in this field include [23–28] but they focus on existence results. In this
work, however, we put the emphasis on existence and approximation results,
and necessary optimality conditions of a class of variational-hemivariational
inequalities.

The rest of this paper is organized as follow. In Section 2, we present
some preliminary material on monotone operators, convex and nonsmooth
analysis. Section 3 is devoted to the existence of solutions to the state system
and optimal pairs to the optimal control problems (Theorems 3.2, 3.6). The
approximation results and the abstract necessary optimality conditions are
derived in Section 4 (Theorems 4.5, 4.6). In the last section, we focus on
a class of obstacle problems with nonlinear and nonmonotone perturbation.
The complete optimality system is presented (Theorem 5.4).

2. Preliminaries

In this section, we summarize some preliminary material on monotone op-
erators, convex and nonsmooth analysis. We refer the reader to monographs
and textbooks; e.g., [11, 12, 29, 30] for the notations and related proofs.

Let X be a real reflexive Banach space, X∗ its dual and 〈·, ·〉 the duality
pairing between X and X∗. Let φ : X → R ∪ {+∞} be a convex functional
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with effective domain D(φ) := {u ∈ X : φ(u) < +∞}. We say φ is proper
if it is not identically equal to positive infinity. The subdifferential of φ at
u ∈ X is defined by

∂φ(u) := {w ∈ X∗ : φ(v)− φ(u) ≥ 〈w, v − u〉, for all v ∈ X}. (2.1)

We say a single-valued operator T : X → X∗ is hemicontinuous if the real-
valued function λ 7→ 〈T (u + λv), w〉 is continuous on [0, 1] for all u, v, w ∈
X. The operator T is said to be demicontinuous if un → u in X implies
Tun → Tu weakly in X∗, and it is said to be weakly-strongly continuous,
if un → u weakly in X implies Tun → Tu in X∗. Moreover, T is called
pseudomonotone, if it is bounded and if from un → u weakly in X and
lim sup〈Tun, un − u〉 ≤ 0, it follows that lim inf〈Tun, un − v〉X ≥ 〈Tu, u −
v〉 for all v ∈ X.

Remark 2.1. An equivalent definition of pseudomonotonicity of T : X →
X∗ is given by: T is bounded and if un → u weakly in X and lim sup〈Tun, un−
u〉X ≤ 0, then we have

lim
n→∞
〈Tun, un − u〉 = 0 and Tun → Tu weakly in X∗.

Moreover, every monotone and hemicontinuous operator is pseudomonotone
(see, e.g. [30, Proposition 27.6 ]).

Definition 2.2. A multivalued operator T : D(T ) ⊂ X → 2X
∗

is said to be
monotone, if

〈y1 − y2, x1 − x2〉 ≥ 0, ∀x1, x2 ∈ D(T ), ∀ y1 ∈ T (y1), y2 ∈ T (y2).

T is said to be maximal monotone if T is monotone and there is no monotone
extension in X ×X∗, i.e., for x ∈ X, y ∈ X∗ if

〈y1 − y, x1 − x〉 ≥ 0, ∀x1 ∈ D(T ), ∀ y1 ∈ T (x),

then we have x ∈ D(T ) and y ∈ T (x).

It is well known that the subdifferential operator ∂φ defined by (2.1) is max-
imal monotone.

Let X, Y be Banach Spaces and T : X → 2Y a multivalued operator. The
inverse image of E ⊂ Y under T is the set

T−1(E) := {x ∈ X : T (x) ∩ E 6= ∅},
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and by Gr(T ) we denote the graph of T , defined by

Gr(T ) := {(x, y) ∈ X × Y : y ∈ T (x)}.

Then T : X → 2Y is called to be upper semicontinuous (resp. weakly upper
semicontinuous) if for all D ⊂ Y closed (resp. weakly closed), we have that
F−1(D) is closed (resp. weakly closed) in X.

Definition 2.3. A multivalued operator T : X → 2X
∗

is said to be pseu-
domonotone if the following conditions are satisfied:

(i) for each u ∈ X, T (u) ⊂ X∗ is nonempty, bounded, closed and convex;

(ii) the restriction of T to each finite-dimensional subspace F of X is weakly
upper semicontinuous as an operator from F to X∗ ;

(iii) let un ∈ X and u∗n ∈ X∗ with u∗n ∈ T (un) , from un → u weakly in X
and lim sup〈u∗n, un − u〉X ≤ 0, it follows: to each element v ∈ X, there
exists a u∗(v) ∈ T (u) such that

lim inf
n→∞

〈u∗n, un − v〉 ≥ 〈u∗(v), u− v〉.

Note that pseudomonotone mappings is invariant under addition of operators;
see e.g., [11, Proposition 2.4].

Lemma 2.4. (cf. [11, Theorem 2.12]) Let T : X → 2X
∗

be a bounded and
pseudomonotone operator, T1 : X → 2X

∗
be a maximal monotone operator

with v0 ∈ D(T1). If there exists a function c : R+ → R with c(r) → +∞ as
r → +∞, such that for all v ∈ X and v∗ ∈ T (v), 〈v∗, v − v0〉 ≥ c(‖v‖)‖v‖.
Then T + T1 is surjective.

Definition 2.5. Let X be a Banach space and let φ : X → R be a locally Lip-
schitz function. The Clarke generalized directional derivative of φ at x ∈ X
in the direction v ∈ X, denoted by φ0(x; v), is defined by

φ0(x; v) := lim sup
y→x, λ↓0

φ(y + λv)− φ(y)

λ

and the generalized gradient (subdifferential) of φ at x, denoted by ∂φ(x), is
a subset of a dual space X∗ given by

∂φ(x) := {x∗ ∈ X∗ | 〈x∗, v〉 ≤ φ0(x; v) for all v ∈ X }.
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It is known that for every x ∈ X, ∂φ(x) is a nonempty, convex and w∗-
compact subset in X∗; the mapping φ0 : X×X → R is upper semicontinuous;
the graph of ∂φ is sequentially closed in X ×X∗ with X∗ equipped with weak
star topology; see e.g., [12, Proposition 2.171]. In particular, if φ : X → R
is a convex and continuous functional, then the generalized subdifferential of
φ coincides with the subdifferential defined by (2.1).

3. Existence of solutions and optimal pairs

Let Ω be a bounded domain in RN with sufficient smooth boundary ∂Ω.
Suppose that U is a reflexive Banach space. Assume that V = H1

0 (Ω) and
H = L2(Ω). Identifying H with its dual, then V ⊂ H ⊂ V ∗ forms an evo-
lution triple with all the embeddings being dense and compact. Throughout
this paper, the symbol w-X is always used to indicate the space X equipped
with weak topology. The symbol 〈·, ·〉 stands for the duality pairing between
V and V ∗, and (·, ·) denotes the duality product between Lp(Ω) and its dual
with 1 ≤ p <∞.

We now present the definitions and assumptions on the data of system
(1.2). First of all, we suppose that the function j : Ω× R→ R is given by

j(x, s) =

∫ s

0

β(x, τ)dτ, (3.1)

and the following hypotheses on β are considered.
H(β) The function β : Ω× R→ R is supposed to satisfy

(i) the mapping x 7→ β(x, s) is continuous for a.e. s ∈ R and the mapping
(x, s) 7→ β(x, s) is measurable in Ω× R,

(ii) there exist a function γ1 ∈ L∞(Ω) and a positive constant b̄1 such that

|β(x, τ)| ≤ γ1(x) + b̄1|τ |, ∀ (x, τ) ∈ Ω× R,

(iii) there exist a function γ2 ∈ L1(Ω), and positive constants 1 ≤ σ < 2
and b̄2 such that

β(x, τ)τ ≥ −γ2(x)− b̄2|τ |σ, ∀ (x, τ) ∈ Ω× R,
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(iv) there exists a positive constant m such that

ess inf
s1 6=s2

β(x, s1)− β(x, s2)

s1 − s2

≥ −m, ∀x ∈ Ω, s1, s2 ∈ R.

Under H(β)(i)-(ii) the function j is well defined, j(·, s) is measurable for all
s ∈ R and j(x, ·) is locally Lipschitz continuous for a.e. x ∈ Ω. Moreover, if
lim
τ→s±

β(x, τ) exists, then ∂j(x, s) = [β(x, s), β(x, s)] where

β(x, s) = min
{
β(x, s−), β(x, s+)

}
, β(x, s) = max

{
β(x, s−), β(x, s+)

}
.

Otherwise, ∂j(x, s) ⊆ [β1(x, s), β2(x, s)] where

β1(x, s) = lim
δ→0+

ess inf
|τ−s|≤δ

β(x, τ), β2(x, s) = lim
δ→0+

ess sup
|τ−s|≤δ

β(x, τ).

In particular, if s 7→ β(x, s) is continuous, then ∂j(x, s) = β(x, s) is single-
valued but in general nonlinear and nonmonotone. By means of j, we define
a function J : H → R given by

J(v) =

∫
Ω

j(x, v(x))dx =

∫
Ω

∫ v(x)

0

β(x, s)dsdx, ∀ v ∈ H. (3.2)

Due to the hypotheses H(β)(i)-(iii) and Lebourg’s mean value theorem, J is
well defined and Lipschitz continuous on each bounded subset of H. There-
fore, the Clarkes generalized gradient ∂J : H → 2H is well defined. Moreover,
the Aubin-Clarke theorem (cf. [12, Theorem 2.181]) ensures that for each
v ∈ H, we have

ξ ∈ ∂J(v) implies ξ(x) ∈ ∂j(x, v(x)) for a.e. x ∈ Ω, (3.3)

and therefore

(ξ, w) ≤
∫

Ω

j0(x, v(x);w(x)) ∀ v, w ∈ H and ξ ∈ ∂J(v). (3.4)

Using H(β)(ii)-(iv), we conclude the following properties.
From H(β)(ii) it follows that for some positive constant b1

‖ξ‖H ≤ b1(1 + ‖v‖H), ∀ v ∈ H, ξ ∈ ∂J(v). (3.5)
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From H(β)(iii) there exists a positive constant b2 such that

J0(v;−v) ≤ b2(1 + ‖v‖σH), ∀ v ∈ H. (3.6)

From H(β)(iv), for all ξi ∈ ∂J(vi) with vi ∈ H, i = 1, 2, it follows

(ξ1 − ξ2, v1 − v2) ≥ −m‖v1 − v2‖2
H . (3.7)

We remark that (3.7) or H(β)(iv) have been considered in numerous pub-
lications for the existence and uniqueness of solutions to hemivariational
inequalities, see [20, (G) p. 69)], [12, (B1)(ii) p. 182], for example.

Next, let the nonlinear operator A be given by (1.3). We assume that A
satisfies the following standard conditions H(A):

(A1) A is monotone, hemicontinuous and there exists a positive constant c1

such that
‖Av‖V ∗ ≤ c1(1 + ‖v‖V ), ∀ v ∈ V.

(A2) A is coercive, i.e., there exist positive constants c2 and c3 > 0 such that

〈Av, v〉 ≥ c2‖v‖2
V − c3, ∀ v ∈ V.

Finally, let f ∈ V ∗, and ϕ and B be given as follows.
H(ϕ) the function ϕ : V → R ∪ {+∞} is a proper, convex and lower semi-
continuous functional with some element y0 ∈ D(∂ϕ).

H(B) B is a linear and compact operator from U to V ∗.

To solve the state system (1.2) we consider the following multivalued
operator

∂(J |V )(u) = (i∗ ◦ ∂J ◦ i)(u), ∀u ∈ V, (3.8)

where i is the embedding operator from V to H and i∗ : H → V ∗ denotes its
adjoint, i.e.,

〈i∗z, u〉 = (z, iu) =

∫
Ω

z(x)u(x)dx, ∀u ∈ V, z ∈ H.

It is well known that i and i∗ are both linear, continuous and compact. In
what follows, for simplicity we always omit the symbols i and i∗ when no
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confusion arises. This means that the operator ∂J : H → H stands for
∂(J |V ) : V → V ∗ in the sense of (3.8) as well.

Then we consider the following nonlinear elliptic inclusion:

Ay + ∂J(y) + ∂ϕ(y) 3 f +Bu in V ∗. (3.9)

By means of (3.3)-(3.4), each solution of (3.9) is a solution a solution to (1.2)
and the hemivariational inequality (1.4). Moreover, if j is regular in the sense
of Clarke (cf. [29]), then they are equivalent.

Lemma 3.1. Under the hypotheses H(A) and H(β)(i)–(iii), the sum A+∂J :
V → 2V

∗
is a bounded and pseudomonotone operator. Moreover, it is coercive

in the sense that

lim inf
‖v‖→+∞, η∈A(v)+∂J(v)

〈η, v − y0〉
‖v‖

= +∞. (3.10)

Proof. From (A1) and (3.5) we see that A + ∂J is bounded, i.e., it maps
each bounded subset of V into a bounded subset of V ∗. Next, we first of all
claim that ∂J : V → 2V

∗
is pseudomonotone. In fact, from the properties

of Clarke generalized gradient, ∂J(u) is a nonempty, convex and a bounded
subset of H for every u ∈ H and the graph of ∂J is sequentially closed in
H×w-H. Due to H ⊂ V ∗ compactly, the conditions in Definition 2.3 can be
easily verified with T and X replaced by ∂J and V , respectively. Therefore,
∂J is pseudomonotone, as claimed. On the other hand, A is pseudomonotone
because it is monotone and hemicontinuous. As the pseudomonotonicity is
invariant under addition we thereby have that A + ∂J is pseudomonotone.
Returning now to the coerciveness, we take v ∈ V , η = Av+ξ with ξ ∈ ∂J(v)
and find

〈η, v − y0〉 = 〈Av, v〉+ (ξ, v)− 〈Av + ξ, y0〉. (3.11)

Observe that (ξ,−v) ≤ J0(v;−v) by definition. It follows (ξ, v) ≥ −J0(v;−v).
As y0 is fixed, we deduce (3.10) from (A1), (A2), (3.5) and (3.6). �

Theorem 3.2. Assume u ∈ U and the hypotheses H(A), H(β)(i)–(iii) and
H(ϕ) hold. Then the inclusion (3.9) admits at least one solution.

Proof. As ∂ϕ is a maximal monotone operator, this theorem follows directly
from Lemmas 3.1 and 2.4. �
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Remark 3.3. The solution to (3.9) is in general not unique due to the non-
monotonicity of ∂J .

Following Theorem 3.2 we denote by S(u) the solution set of (3.9) for u ∈ U .

Lemma 3.4. Under the assumptions of Theorem 3.2, we have

‖y‖V ≤ C(1 + ‖u‖U), ∀ y ∈ S(u), (3.12)

where C is a constant depending on c1, c2, c3, b1, b2, f and y0.

Proof. Let y ∈ S(u). Then there exist ξ ∈ ∂J(u) and η ∈ ∂ϕ(u) such that

Ay + ξ + η = f +Bu in V ∗. (3.13)

Multiplying by y in the above equation, we find

〈Ay + ξ + η, y〉 = 〈f +Bu, y〉. (3.14)

Then taking any η0 ∈ ∂ϕ(y0) we can compute

〈η, y〉 = 〈η − η0, y − y0〉+ 〈η0, y − y0〉+ 〈η, y0〉
≥ 〈η0, y − y0〉+ 〈f +Bu− Ay − ξ, y0〉

(3.15)

since ∂ϕ is monotone. We finally combine H(A), (3.5), (3.6), (3.14) and
(3.15) to discover

c2‖y‖2 − b2k
σ‖y‖σ ≤ ‖y‖

(
‖f‖+ ‖Bu‖+ ‖η0‖+ b1k‖y0‖+ c1‖y0‖

)
+ c3 + b2 + ‖y0‖

(
‖η0‖+ ‖f‖+ ‖Bu‖+ b1k + c1

)
where k is the operator norm of i : V → H. This implies (3.12) since B is
bounded and 1 ≤ σ < 2. �

In what follows, for simplicity, C always denotes a constant but may
change from line to line.

Theorem 3.5. Under H(B) and the assumptions of Theorem 3.2, the map-
ping u 7→ S(u) is weakly upper semicontinuous from U to V .
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Proof. Let D be arbitrary weakly closed set of V . We aim to show that

S−1(D) := {u ∈ U : S(u) ∩D 6= ∅}

is weakly closed in U . To this end, we take any sequence un ∈ S−1(D) such
that un → u weakly in U and aim at proving that u ∈ S−1(D). First of all,
as un ∈ S−1(D) we can select yn ∈ V with yn ∈ S(un). Then there exist
ξn ∈ ∂J(yn) and ηn ∈ ∂ϕ(yn) such that

Ayn + ξn + ηn = f +Bun, n = 1, 2, · · · . (3.16)

Using (A1), (3.5) and Lemma 3.4 we conclude that yn, Ayn and ξn are bound-
ed in V , V ∗ and H, respectively. Then we further see from (3.16) that ηn is
bounded in V ∗ since B is continuous. Therefore, by passing to a subsequence
again denoted by n, there exist y ∈ V , ζ ∈ V ∗, ξ ∈ H and η ∈ V ∗ such that

yn → y weakly in V (3.17)

Ayn → ζ weakly in V ∗ (3.18)

ξn → ξ weakly in H (3.19)

ηn → η weakly in V ∗. (3.20)

From (3.17) we further have yn → y in H. Since the graph of ∂J is sequen-
tially closed in H × w-H, we obtain ξ ∈ ∂J(y). Multiplying Eq. (3.16) by
yn − y yields

〈Ayn + ξn + ηn, yn − y〉 = 〈f +Bun, yn − y〉. (3.21)

Note that the term on the right-hand side tends to zero because B is compact
and yn → y weakly in V . From (3.19) and yn → y in H, it follows that

lim
n→∞
〈ξn, yn − y〉 = lim(ξn, yn − y) = 0.

Moreover, as A is monotone, we have

lim sup
n→∞

〈Ayn, yn − y〉 = lim sup
n→∞

〈Ayn − Ay, yn − y〉+ lim
n→∞
〈Ay, yn − y〉 ≥ 0.

Thus we obtain lim sup〈ηn, yn − y〉 ≤ 0 from (3.21). Recalling (3.17) and
(3.20) we therefore have y ∈ D(∂ϕ) and η ∈ ∂ϕ(y) because ∂ϕ is maximal
monotone. Consequently, we now see

lim sup
n→∞

〈ηn, yn − y〉 = lim sup
n→∞

〈ηn − η, yn − y〉+ lim
n→∞
〈η, yn − y〉 ≥ 0.
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Then we conclude from (3.21) that

lim sup
n→∞

〈Ayn, yn − y〉 ≤ 0.

In view of (3.17), (3.18) and Remark 2.1, we therefore get ζ = Ay. Passing
to the limit in (3.16) we finally obtain

Ay + ξ + η = f +Bu,

with ξ ∈ ∂J(y) and η ∈ ∂ϕ(y). This gives y ∈ S(u), i.e., u ∈ S−1(D). �

Next, we turn to the existence of optimal pairs of (OP). We begin with
the assumptions on the cost function.

H(h) h : U → R ∪ {+∞} is a proper convex and lower semicontinuous
functional satisfying

lim
‖u‖U→+∞

h(u)/‖u‖U = +∞. (3.22)

H(g) g : H → R is a locally Lipschitz continuous functional (Lipschitz
continuous on each bounded subset of H) and bounded from below by an
affine function, i.e.,

g(y) ≥ 〈w, y〉+ C, ∀ y ∈ H, (3.23)

where w ∈ H and C is a constant.

Theorem 3.6. Suppose assumptions H(A), H(β)(i)–(iii), H(ϕ), H(B), H(h)
and H(g) hold. Then there exists an optimal pair to problem (1.1)–(1.2).

Proof. We see from H(h), H(g) and (3.12) that the cost function G(y, u) is
bounded from below. Then we set

d = inf
{
g(yu) + h(u) : u ∈ U, yu ∈ S(u)

}
> −∞. (3.24)

Let (un, yn) ∈ U × V be a minimization sequence of (3.24) such that

d ≤ g(yn) + h(un) ≤ d+ 1/n, (3.25)

where yn := yun ∈ S(un). Using H(h), H(g) and (3.12) once more, we deduce
un and yn are bounded in U and V , respectively. By passing to a subsequence,
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we may assume un → u, yn → yu weakly in U and V , respectively. From
Theorem 3.5, it is readily seen that the mapping u 7→ S(u) has a sequentially
closed graph in w-U × w-V . We therefore obtain yu ∈ S(u). Returning now
to (3.25), we find

d ≥ lim inf
n→∞

{g(yn) + h(un)} ≥ lim
n→∞

g(yn) + lim inf
n→∞

h(un) ≥ g(yu) + h(u),

where H(h), H(g), yn → yu in H and un → u weakly in U are used. This
shows that (yu, u) is an optimal pair of (1.1)–(1.2). �

4. Approximation results and necessary optimality conditions

In this section, we study the optimality system of optimal control problem
(1.1)–(1.2). This will be achieved by smooth approximations. It is then
crucial to analyze the relations between approximate systems and the original
ones. Note that in contrast to the existence of optimal pairs, the derivation
of the necessary optimality conditions is in general much more complicated.
Only a few studies have addressed this topic for hemivariational inequalities.

Lemma 4.1. Assume X = Lp(Ω) with 1 < p < +∞, and q(x, s) : Ω× R→
R is a measurable function such that for all s, t ∈ R and a.e. x ∈ Ω

|q(x, s)− q(x, t)| ≤ cq(x)(1 + |t|p−1 + |s|p−1)|t− s| with cq ∈ L∞+ (Ω). (4.1)

Let ρε(τ) = ε−1ρ(τ/ε), where ρ ∈ C∞0 (R) is the standard mollifier in R.
Define functionals Q and Qε by

Q(v) =

∫
Ω

q(x, v(x))dx and Qε(v) =

∫
Ω

qε(x, v(x))dx ∀ v ∈ X, (4.2)

respectively, where qε(x, s) is given by

qε(x, s) =

∫ ∞
−∞

q(x, s− τ)ρε(τ)dτ. (4.3)

Then Qε is Fréchet differentiable and

lim
ε→0

Qε(v) = Q(v) ∀ v ∈ X. (4.4)

Moreover, if vε → v in X and

∇Qε(vε)→ ξ weakly in X∗, (4.5)

then we have ξ ∈ ∂Q(v).
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Proof. We rewrite Qε as

Qε(v) =

∫
Ω

∫ ∞
−∞

q(x, τ)ρε(v(x)− τ)dτdx, (4.6)

from which it follows that Qε is Fréchet differentiable and ∇Qε is continuous.
In view of (4.1), it follows that (4.4 ) holds and Q is Lipschitz continuous on
each bounded subset of X. Therefore, the Clarke generalized derivative and
gradient of Q are well defined. On the other hand, using Fubini’s theorem
we see that

(Qε(vε + λz)−Qε(vε))

λ
=

∫ ∞
−∞

(Q(vε − ετ + λz)−Q(vε − ετ))ρ(τ)dτ

λ
,

where ετ is seen as a constant-valued function in X. Hence letting λ tend to
zero in the last equation and using Fatou’s lemma we have

〈∇Qε(vε), z〉 ≤
∫ ∞
−∞

Q0(vε − ετ ; z)ρ(τ)dτ . (4.7)

Since the Clarke generalized gradient Q0 : X ×X → R is upper semicontin-
uous and vε − ετ converges to v in X, we conclude from (4.5) that

〈ξ, z〉 ≤ Q0(v; z), (4.8)

which implies ξ ∈ ∂Q(v), as claimed. �

We now define function Jε : H → R by

Jε(v) =

∫
Ω

∫ v(x)

0

βε(x, s)dsdx, ∀ v ∈ H, (4.9)

where βε(x, s) is defined in the same way as in (4.3). Then a straightforward
calculation gives

Jε(v) = J1ε(v) +M1(ε, β) (4.10)

where J1ε(v) =
∫

Ω
jε(x, v(x))dx and M1(ε, β) is a constant defined by

M1(ε, β) =

∫
Ω

∫ ε

−ε

∫ τ

0

β(x, s− τ)ρε(τ)dsdτdx. (4.11)

Clearly, M1(ε, β) → 0 as ε → 0. According to H(β)(i)-(ii), Lemma 4.1 is
applicable to J1ε, and thus from (4.10) we have the following result.
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Lemma 4.2. Let the assumptions H(β)(i)-(ii) be satisfied and Jε : H → R
be defined as above. Then Jε is Fréchet differentiable and

lim
ε→0

Jε(v) = J(v) ∀ v ∈ H. (4.12)

Moreover, if vε → v in H and

∇Jε(vε)→ ξ weakly in H, (4.13)

then we have ξ ∈ ∂J(v).

Lemma 4.3. Suppose the hypotheses H(β)(i)-(iii) hold. Assume further-
more there exist a sufficiently small ε0 and a sufficient large c0 such that

|β(x, s)− β(x, τ)| ≤ c0 a.e. x ∈ Ω,∀ s, τ ∈ R with |s− τ | ≤ ε0. (4.14)

Then Jε has the same properties as J in (3.5) and (3.6) for 0 < ε ≤ ε0.
Besides, from H(β)(iv) it follows β̇ε(x, s) ≥ −m where the dot above βε
means the derivative with respect to s, and we have

(∇Jε(v1)−∇Jε(v2), v1 − v2) ≥ −m‖v1 − v2‖2
H , ∀ v1, v2 ∈ H. (4.15)

Proof. Since Jε is smooth we have ∂Jε(v) = ∇Jε(v). Then a straightforward
calculation gives

|βε(x, s)− β(x, s)| ≤ sup
|τ−s|≤ε

|β(x, τ)− β(x, s)|, (4.16)

and thus the property (3.5) with J replaced by Jε follows from H(β)(ii), and
(3.6) follows from (4.14) and H(β)(ii) (the constants may be changed but
independent of ε with ε ≤ ε0). On the other hand, we see from H(β)(iv) that
for every h ∈ R

βε(x, s+ h)− βε(x, s)
h

=

∫ ε

−ε

β(x, s+ h− τ)− β(x, s− τ)

h
ρε(τ)dτ ≥ −m.

This implies β̇ε(x, s) ≥ −m as h goes to zero. Moreover, from the above
inequality, we also have

(∇Jε(v1)−∇Jε(v2), v1 − v2) =

∫
Ω

(βε(x, v1)− βε(x, v2))(v1(x)− v2(x))dx

≥ −m
∫

Ω

(v1(x)− v2(x))2dx

= −m‖v1 − v2‖2
H .
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This completes the proof. �

In what follows, we always assume 0 < ε ≤ ε0. We are now introduce
the smooth approximation of g, see, e.g., [3]. Suppose that {en}∞n=1 is an
orthonormal basis of H and Hn = Span{e1, e2, · · · , en}. Let Pn : H → Hn

and Λn : Rn → Hn be given by

Pnv =
n∑
i=1

(v, ei)ei, ∀ v ∈ H, and Λn(τ) =
n∑
i=1

τiei, τ = (τ1, · · · , τn), (4.17)

respectively. Then we define the smooth functional gε : H → R by

gε(v) =

∫
Rn

g(Pnv − εΛnτ)ρn(τ)dτ, (4.18)

where n = [1/ε] and ρn ∈ C∞0 (Rn) is the standard mollifier in Rn. From
H(g), it follows that for all y ∈ H

gε(y) ≥
∫
|τ |≤1

〈w,Pny − εΛnτ〉ρn(τ)dτ + C ≥ −‖w‖‖y‖+ C, (4.19)

where w is given in (3.23). On the other hand, as g is locally Lipschitz
continuous, it is readily seen from (4.18) that gε is still locally Lipschitz
continuous with the same Lipschitz bound as g, uniformly for ε. Moreover,
gε has the same properties as Jε in Lemma 4.2.

Next, using H(ϕ) we can choose a family of convex functions ϕε : V → R
of class C2 such that

ϕε(v) ≥ −C(1 + ‖v‖V ), lim
ε→0

ϕε(v) = ϕ(v), (4.20)

and for any sequence vε → v weakly in V , one has

lim inf
ε→0

ϕε(vε) ≥ ϕ(v). (4.21)

Suppose that hε : U → R approximates h and satisfies the same properties
as ϕε above.

We are now in a position to consider the approximate system (OP)ε:
Minimize the functional

Gε(y, u) = gε(y) + hε(u) +
1

2
‖u− u∗‖2

U (4.22)
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on all (y, u) ∈ V × U , subject to

Ay +∇Jε(y) +∇ϕε(y) = f +Bu, (4.23)

where u∗ is chosen from an optimal pair (y∗, u∗) of (1.1)–(1.2). In order to
obtain the necessary optimality we substitute (A2)′ for (A2).

(A2)′ A is linear and there exists a constant c2 > mk2 such that

〈Av, v〉 ≥ c2‖v‖2
V , ∀ v ∈ V. (4.24)

Note that H(β)(iv) and (A2)′ are necessary to obtain the existence and
boundedness of the solutions to the adjoint equation in the sequel.

Theorem 4.4. Suppose H(β)(i)-(iv), H(ϕ), H(B), (A1) and (A2)′ are satis-
fied. Then problem (3.9) admits a unique solution and the mapping u 7→ S(u)
is weakly-strongly continuous. On the other hand, assume that Jε, ϕε are de-
fined as above and (4.14) holds, then the previous assertion holds for problem
(4.23). Moreover, the solution yuε of (4.23) has the bound

‖yuε ‖V ≤ C(1 + ‖u‖U), (4.25)

where C depends on b̂1, b̂2, c1, c2, c3, f, y0 but is independent of ε.

Proof. From Theorem 3.2, we see that S(u) is nonempty for every u ∈ U .
Assume yu1 , y

u
2 ∈ S(u). Then there exist ξi ∈ ∂J(yui ) and ηi ∈ ∂ϕ(yui ) such

that
Ayui + ξi + ηi = f +Bu, i = 1, 2. (4.26)

Multiplying this equation by yu1 − yu2 for i = 1, 2, we deduce that

〈Ayu1 − Ayu2 , yu1 − yu2 〉+ (ξ1 − ξ2, y
u
1 − yu2 ) + 〈η1 − η2, y

u
1 − yu2 〉 = 0. (4.27)

Using (A2)′, (3.7) and the monotonicity of ∂ϕ, we have

(c2 −mk2)‖yu1 − yu2‖2
V ≤ 0.

This implies the uniqueness of the solution to (3.9). Next, assume that
un → u weakly in U and yn = S(un). We aim to prove yn → y and y = S(u).
In fact, we can use the same procedures as in Theorem 3.5 to obtain (3.18)–
(3.20) and y = S(u). Then, for yn = S(un) and ym = S(um) we have

〈Ayn − Aym + ξn − ξm + ηn − ηm, un − um〉 = 〈Bun −Bum, un − um〉.

17



Using (A2)′ and (3.7) again, we therefore see that yn is a Cauchy sequence
in V as B is compact and ∂ϕ is monotone. It follows that yn converges to
some y in V and y = S(u) from Theorem 3.5. The conclusions for (4.23) can
now be proved in the same way as above due to Lemma 4.3. Moreover, the
bound (4.25) can be obtained as in the proof of Lemma 3.12. �

Theorem 4.5. Let Jε, gε and ϕε be defined as above. Assume that H(h),
H(g), H(β)(i)-(iv), H(ϕ), H(B), (4.14), (A1) and (A2)′ hold. Then, (OP)ε
admits at least one optimal pair (yε, uε). Moreover, uε → u∗ in U and yε → y∗

weakly in V , where (y∗, u∗) is some optimal pair of (OP).

Proof. Due to (4.19) and Theorem 4.4, the existence of (yε, uε) can be proved
in the same way as in the proof of Theorem 3.6. Now we aim to show that
uε → u∗ in U and yε → y∗ weakly in V . Let yu

∗
ε be the solution to (4.23)

with u replaced by u∗. From (4.25), up to a subsequence, we have yu
∗
ε → yu

∗

weakly in V and strongly in H. Since (yε, uε) is an optimal pair, it follows
that

gε(yε) + h(uε) +
1

2
‖uε − u∗‖2

U ≤ gε(y
u∗

ε ) + h(u∗). (4.28)

Observe that

|gε(yu
∗

ε )− g(yu
∗
)| ≤ |gε(yu

∗

ε )− gε(yu
∗
)|+ |gε(yu

∗
)− g(yu

∗
)|

≤ L‖yu∗ε − yu
∗‖H + |gε(yu

∗
)− g(yu

∗
)|

for ε small enough, where L is the Lipschitz constant of g on the bounded
subset yu

∗
ε . It follows that

lim
ε→0

gε(y
u∗

ε ) = g(yu
∗
). (4.29)

Taking H(h), (4.19), (4.25), (4.28) and (4.29) into account, we have that uε
and yε are bounded independently of ε in U and V , respectively. Recall that

Ayε +∇Jε(yε) +∇ϕε(yε) = f +Buε. (4.30)

Using hypothesis (A1), H(B) and Lemma 4.3, we have that Ayε, ∇Jε(yε),
and thus ∇ϕε(yε) are bounded in V ∗, H, and V ∗, respectively. Consequently,
up to another subsequence, there exist ū, ȳ, ξ and η such that

yε → y weakly in V (4.31)
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uε → u weakly in U (4.32)

Ayε → Ay weakly in V ∗ (4.33)

∇Jε(yε)→ ξ weakly in H (4.34)

∇ϕε(yε)→ η weakly in V ∗. (4.35)

Passing to the limit in Eq. (4.30) we have

Ay + ξ + η = f +Bu in V ∗. (4.36)

From (4.31), yε → y in H. We thus get ξ ∈ ∂J(y) by using (4.34) and Lemma
4.2. Note that

lim sup
ε→0

〈∇ϕε(yε), yε − ȳ〉

= lim sup
ε→0

〈f +Buε − Ayε −∇Jε(yε), yε − ȳ〉

= lim sup
ε→0

〈A(y − yε)− Ay, yε − ȳ〉

≤0.

(4.37)

Here (4.31), (4.32), (4.34), (A2)′ and H(B) are used. From (4.35), it follows
that

lim inf
ε→0

〈∇ϕε(yε),−yε〉 ≥ −〈η, ȳ〉, (4.38)

and therefore we have

lim inf
ε→0

〈∇ϕε(yε), w − yε〉 ≥ 〈η, w − ȳ〉, ∀w ∈ V. (4.39)

On the other hand,

ϕε(w)− ϕε(yε) ≥ 〈∇ϕε(yε), w − yε〉, ∀w ∈ V. (4.40)

Taking the upper and lower limits on the left and right hand sides of this
inequality, respectively, and using (4.20), (4.21), (4.31), and (4.39), we have

ϕ(w)− ϕ(ȳ) ≥ 〈η, w − ȳ〉, ∀w ∈ V. (4.41)

This implies that η ∈ ∂ϕ(ȳ), and thus we now have ȳ = S(ū). To finish the
proof, it suffice to prove that y∗ = ȳ, u∗ = ū. To this end, passing to the
lower limit and limit on the left and right hand sides of (4.28), respectively,
we have

g(ȳ) + h(ū) +
1

2
‖ū− u∗‖2

U ≤ g(yu
∗
) + h(u∗). (4.42)
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We claim that yu
∗
=y∗. In fact, this can be proved in the same way as that we

used just to show ȳ = S(ū), and the proof is much simpler since u∗, instead
of uε, is fixed. Therefore, we further have y∗ = ȳ and u∗ = ū since (y∗, u∗) is
an optimal pair. Returning now to (4.28), we see that

h(u∗) ≤ lim inf
ε→0

(
h(uε) +

1

2
‖uε − u∗‖2

U

)
≤ h(u∗). (4.43)

This gives
lim
ε→0
‖uε − u∗‖2

U = 0,

i.e., uε → u∗ in U . Finally, by a standard argument, we conclude that yε → y∗

weakly in V and uε → u∗ in U hold for the whole sequence. This completes
the proof. �

Let A∗ and B∗ be the adjoint linear operators of A and B, respectively.

Theorem 4.6. Assume that the hypotheses of Theorem 4.5 hold, and (yε, uε),
(y∗, u∗) are given as in that Theorem. Then there exists pε ∈ V such that

A∗pε +∇2Jε(yε)pε +∇2ϕε(yε)pε = ∇gε(yε)
B∗pε +∇hε(uε) +R(uε − u∗) = 0

Ayε +∇Jε(yε) +∇ϕε(yε) = f +Buε

(4.44)

where R is the duality mapping in U . Moreover, pε weakly converges to some
p∗ in V and we have

A∗p∗ + ζ ∈ ∂g(y∗)

B∗p∗ + ∂h(u∗) 3 0

Ay∗ + ∂J(y∗) + ∂ϕ(y∗) 3 f +Bu∗
(4.45)

where ζ is the weak limit of ∇2Jε(yε)pε +∇2ϕε(yε)pε in V ∗.

Note that (4.44) and (4.45) are referred to as the optimality systems of
(OP)ε and (OP), respectively. The first and third equations and inclusions
are understood to be satisfied in V ∗, and the middle ones in U∗.

Proof. From Theorem 4.5 we know the existence of an optimal pair (yε, uε)
for every ε > 0. To verify (4.44) we use a Lagrangian approach. For this
purpose we define the function Fε : V × U → V ∗,

Fε(y, u) := Ay +∇Jε(y) +∇ϕε(y)− f −Bu,
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and the Lagrange functional Lε : V × U × V → R,

Lε(y, u, p) := gε(y) + hε(u) +
1

2
‖u− u∗‖2

U − 〈Fε(y, u), p〉.

Let us now argue that F ′ε(yε, uε) is a bounded and linear operator from V ×U
onto V ∗. This will follow from the surjectivity of ∂Fε(yε, uε)/∂y. Clearly,

∂Fε(yε, uε)/∂y = A∗ +∇2Jε(yε) +∇2ϕε(yε).

We now deduce that

〈A∗p+∇2Jε(yε)p+∇2ϕε(yε)p, p〉 ≥ (c2 − k2m)‖p‖2
V ∀ p ∈ V, (4.46)

where (A2)′, Lemma 4.3 as well as the positivity of ∇2ϕε(yε) are used. Then
we conclude that, for arbitrary v ∈ V ∗, the equation

A∗p+∇2Jε(yε)p+∇2ϕε(yε)p = v

admits a unique solution by Lax-Milgram theorem. Therefore, there exists a
pε ∈ V and the necessary optimality conditions of (OP)ε are given by

∂Lε(yε, uε, pε)/∂y = 0, ∂Lε(yε, uε, pε)/∂u = 0, ∂Lε(yε, uε, pε)/∂p = 0,

from which it follows that (yε, uε, pε) satisfies (4.44). Next, taking the duality
product in V × V ∗ with pε in the first equation of (4.44) we find〈

Apε +∇2Jε(yε)pε +∇2ϕε(yε)pε, pε
〉

=
(
∇gε(yε), pε

)
. (4.47)

Then replacing p by pε in (4.46) we further deduce that

(c2 − k2m)‖pε‖V ≤ ‖∇gε(yε)‖H . (4.48)

Because yε → y∗ in H, and gε is Lipschitz continuous on each bounded subset
of H uniformly for ε, we have that ‖∇gε(yε)‖H is bounded. Therefore pε is
bounded independently of ε in V . By taking subsequences, we have

pε → p∗ weakly in V

A∗pε → A∗p∗ weakly in V ∗

∇gε(yε)→ w weakly in H

∇hε(yε)→ η weakly in V ∗.

(4.49)
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From Theorem 4.5, we see that yε → y∗ weakly in V and uε → u∗ in U . Thus
w ∈ ∂g(y∗). On the other hand,

hε(v)− hε(uε) ≥ 〈∇hε(uε), v − uε〉 = −〈B∗pε + F (uε − u∗), v − uε〉. (4.50)

As limε→0 hε(v) = h(v) and lim infε→0 hε(uε) ≥ h(u), taking upper limit in
(4.50) we have

h(v)− h(u∗) ≥ 〈−B∗p∗, v − u∗〉, ∀ v ∈ V, (4.51)

where uε → u∗ in U and pε → p weakly in V are used. Therefore, we get
−B∗p∗ ∈ ∂h(u∗). Since ∇gε(yε) and A∗pε are bounded in V ∗, from (4.44)
and up to another subsequence, we have

∇2Jε(yε)pε +∇2ϕε(yε)pε → ζ weakly in V ∗. (4.52)

Thus we finally obtain (4.45). This completes the proof. �

Remark 4.7. An important open question is whether one can further im-
prove the weak limit ζ in the abstract necessary optimality system (4.45)
under some appropriate conditions.

5. Optimal control of obstacle problem with nonmonotone pertur-
bation

In this section, we take the obstacle problem as an example to further
explain the study of the abstract results in the last section. We still consider
the optimal control problem (OP) but the state system is specifically given
by

(VI-HVI-1)

{
Ay + α(y − ψ) + β(·, y) 3 f +Bu in Ω

y = 0 on ∂Ω.
(5.1)

Here α : R→ 2R is a maximal monotone operator defined by

α(s) =


0, s > 0

R−, s = 0

∅, s < 0.

(5.2)

The function β, as before, is nonlinear and nonmonotone with respect to
the second variable, but in this section we further assume that it is locally
Lipschitz continuous. The operator A is given by

Ay = −div(M(x)∇y) + a0y (5.3)
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where a0 is a positive constant and M(x) ∈ Rn×n is a positive definite C1-
valued matrix and

ξTM(x)ξ ≥ c2, for all ξ ∈ Rn and a.e. x ∈ Ω. (5.4)

Clearly, α is the convex subdifferential of the function ` given by

`(s) =

{
0, s ≥ 0

+∞, s < 0.

We define ϕ as in (1.5) with the convex set K given by (1.7) and then see
that (5.1) is a special case of (1.2).

The following new assumptions are considered in this section.

(h1) The mapping x 7→ β(x, s) is continuous for a.e. s ∈ R and the mapping
s 7→ β(x, s) is locally Lipschitz continuous for all x ∈ Ω.

(h2) There exists a positive constant c5 such that

−m ≤ ξ ≤ c5(1 + |s|) for all ξ ∈ ∂β(x, s), s ∈ R and a.e. x ∈ Ω.

(h3) The operator B is a linear and continuous operator from U to H; f ∈ H
and ψ ∈ H2(Ω) with ψ(x) ≤ 0 on ∂Ω.

Using the function −ε−1s−, which is the Yosida approximation of α(s),
we consider the smooth function αε defined by

αε(s) = −1

ε

∫ +∞

−∞

(
(s− ε2θ)− − ε2θ−

)
ρ(θ)dθ. (5.5)

Then ϕε in the last section can be chosen as ϕε(v) =
∫

Ω
αε(v(x)− ψ(x))dx.

Corollary 5.1. Suppose the hypotheses H(β)(ii)-(iii), (4.14), (h1)-(h3) are
satisfied. Assume that α and A are given by (5.2) and (5.3), respectively.
Then the results in Theorems 4.4–4.6 hold for the optimal control problem
(1.1) subject to (5.1).

Proof. In fact, the operator A given by (5.3) satisfies (A1) and (A2)′, and
(h3) implies H(B) since H embeds into V ∗ compactly. Therefore, it is readily
seen that all the hypotheses of Theorems 4.4–4.6 are satisfied for the optimal
control problem (1.1) subject to (5.1). �
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Lemma 5.2. Let αε be defined as above. Then α̇ε(s) and αε(s) are decreas-
ing and increasing functions, respectively. Moreover, we have

α̇ε(s) =


0, s ≥ ε2

1/2ε, s = 0

1/ε, s ≤ −ε2

and αε(s) =


ερ0, s ≥ ε2

0, s = 0

s/ε+ ερ0, s ≤ −ε2

(5.6)

where ρ0 =
∫ 1

0
τρ(τ)dτ < 1.

The proof is straightforward and we omit it for simplicity.

Lemma 5.3. Let (yε, uε) be given as in Theorem 4.5. Then if (h3) holds,
we have α2

ε(yε − ψ) and yε are bounded in L2(Ω) and H2(Ω), respectively.

Proof. As is seen ∇Jε(yε)(x) = βε(x, yε(x)) for a.e. x ∈ Ω and ∇ϕε(yε)(x) =
αε(yε(x) − ψ(x)) for a.e. x ∈ Ω. Multiplying (4.30) by αε(yε − ψ) ∈ V we
find ∫

Ω

∇yTεM(x)∇(yε − ψ)α̇ε(yε − ψ)dx+

∫
Ω

α2
ε(yε − ψ)dx

=

∫
Ω

(f +Buε)αε(yε − ψ)dx−
∫

Ω

βε(x, yε)αε(yε − ψ)dx.

Since M(x) is a positive definite matrix and α̇ε(yε − ψ) ≥ 0, it follows that

∇(yε − ψ)TM(x)∇(yε − ψ)α̇ε(yε − ψ) ≥ 0.

As ψ ∈ H2(Ω), adding −
∫

Ω
Aψαε(yε−ψ)dx on each side of the last equation

and integrating by parts we have∫
Ω

α2
ε(yε − ψ)dx ≤

∫
Ω

(f +Buε − βε(x, yε)− Aψ)αε(yε − ψ)dx.

Then Cauchy’s inequality yields the bound∫
Ω

α2
ε(yε − ψ)dx ≤ ‖f +Buε + βε(x, yε)− Aψ)‖2

H ≤ C. (5.7)

Here the hypotheses H(β)(ii), (h3) and the properties of uε and yε from
Theorem 4.5 are used. Consequently, α2

ε(yε−ψ) belongs toH and is uniformly
bounded with respect to ε. It also follows that

Ayε + αε(yε − ψ) + βε(x, yε) = f +Buε in H. (5.8)

This equation and (5.7) imply that yε is uniformly bounded in H2(Ω) by
standard regularity theory of elliptic partial differential equations. �
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Theorem 5.4. Suppose the hypotheses of Corollary 5.1 hold, and (yε, uε, pε)
and (y∗, u∗, p∗) are given as in Theorem 4.5. Then there exist ξ ∈ H, z ∈
(L∞(Ω))∗, and w ∈ ∂g(y∗) such that the triple (y∗, u∗, p∗) satisfies

Ap∗ + ξp∗ + z = w in V ∗ ∩ (L∞(Ω))∗

p∗(Ay∗ + β(x, y∗)− f −Bu∗) = 0 a.e. in Ω

B∗p∗ + ∂h(u∗) 3 0 in U∗

Ay∗ + β(x, y∗) = f +Bu∗ a.e. in Ω(y∗)

(y∗ − ψ)(Ay∗ + β(x, y∗)− f −Bu∗) = 0 a.e. in Ω

ξ(x) ∈ ∂β(x, y∗(x)) a.e. in Ω,

(5.9)

where Ω(y∗) = {x ∈ Ω : y∗(x) > ψ(x)} and z is the weak star limit of
α̇ε(yε−ψ)pε in (L∞(Ω))∗. If, in addition, 1 ≤ N ≤ 3, then the first equation
in (5.9) reads

(Ap∗ + ξp∗ − w)(y∗ − ψ) = 0 a.e. in Ω. (5.10)

Moreover, we have

〈Ap∗, p∗〉+ (ξp∗, p∗)− (w, p∗) ≤ 0, (5.11)

and for all φ ∈ C1(Ω)

〈Ap∗, (y∗ − ψ)φ〉+ (ξp∗, (y∗ − ψ)φ)− (w, (y∗ − ψ)φ) = 0. (5.12)

Proof. From (5.3) it follows that A∗ = A. As ∇2Jε(yε)(x) = β̇ε(x, yε(x)),
∇2ϕε(yε)(x) = α̇ε(yε(x)− ψ(x)) for a.e. x ∈ Ω, we see from (4.44) that

Apε + α̇ε(yε − ψ)pε + β̇ε(·, yε)pε = ∇gε(yε)
B∗pε +∇hε(uε) +R(uε − u∗) = 0

Ayε + αε(yε − ψ) + βε(·, yε) = f +Buε.

(5.13)

This theorem will be proved by first verifying three claims.

Claim 1: The sequence α̇ε(yε − ψ)pε converges weakly star to z in the Ba-
nach space (L∞(Ω))∗, by passing to a subsequence, if necessary.

To see this, for each λ > 0 we define the function δλ ∈ W 1,∞(R) by
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δλ(s) =


1, s > λ

s/λ, |s| ≤ λ

−1, s < −λ.
(5.14)

As is seen δλ is an approximation of the signum function with |δλ(s)| ≤ 1,
and |δ̇λ(s)| ≥ 0 a.e. s ∈ R. Multiplying by δλ(pε) ∈ V in the first equation
of (5.13) and integrating by parts we have∫

Ω

∇pTεM(x)∇pεδ̇λ(pε)dx+

∫
Ω

α̇ε(yε − ψ)pεδλ(pε)dx (5.15)

=

∫
Ω

∇gε(yε)δλ(pε)dx−
∫

Ω

β̇ε(yε)pεδλ(pε)dx. (5.16)

From (h2), it follows that∫
Ω

α̇ε(yε − ψ)pεδλ(pε)dx ≤ C
(
‖∇gε(yε)‖H + ‖yε‖V ‖pε‖V + ‖pε‖V

)
. (5.17)

Letting λ tend to zero and using the Lebesgue dominated convergence theo-
rem, we have∫

Ω

|α̇ε(yε − ψ)pε|dx ≤ lim
λ→0

∫
Ω

α̇ε(yε − ψ)pεδλ(pε)dx ≤ C, (5.18)

where α̇ε(yε − ψ) ≥ 0 and limλ→0 δλ(pε)pε = |pε| are used. This estimate
yields Claim 1.

Claim 2: The following two convergence results hold in L1(Ω):

pεαε(yε − ψ)→ 0 in L1(Ω), (5.19)

and
(yε − ψ)α̇ε(yε − ψ)pε → 0 in L1(Ω). (5.20)

In order to prove this assertion, for each ε > 0 we define

Ω1ε = {x ∈ Ω : yε − ψ ≤ −ε2} and Ω2ε = {x ∈ Ω : yε − ψ ≥ −ε2}.

Then using Lemma 5.2 we see that∫
Ω1ε

|pεαε(yε − ψ)|dx =

∫
Ω1ε

ε1/2|α̇1/2
ε (yε − ψ)pεαε(yε − ψ)|dx

≤ ε1/2

(∫
Ω

α̇ε(yε − ψ)p2
εdx

)1/2(∫
Ω

α2
ε(yε − ψ)dx

)1/2

.

(5.21)
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Note that from (4.47), (A2)′, (h2), and using that α̇ε(yε−ψ) = ∇2ϕε(yε) we
find ∫

Ω

α̇ε(yε − ψ)p2
εdx ≤ ‖∇gε(yε)‖H‖pε‖H ≤ C.

We combine the last two estimates and (5.7) to discover∫
Ω1ε

|pεαε(yε − ψ)|dx→ 0 for ε→ 0.

On the other hand, we see from Lemma 5.2 that |pεαε(yε − ψ)| ≤ ε|pε| on
Ω2ε. Therefore, from the boundedness of pε in H it follows that∫

Ω

|pεαε(yε − ψ)|dx =

∫
Ω1ε

|pεαε(yε − ψ)|dx+

∫
Ω2ε

|pεαε(yε − ψ)|dx→ 0.

Moreover, from Lemma 5.2, we also have |α(s)− sα̇(s)| ≤ ε, and therefore,

|pεαε(yε − ψ)− (yε − ψ)pεα̇ε(yε − ψ)| ≤ ε|pε| a.e. x ∈ Ω.

This gives (5.19), as claimed.

Claim 3: There exists ξ ∈ H such that ξ(x) ∈ ∂β(x, y∗(x)) a.e. x ∈ Ω and

β̇ε(·, yε)pε → ξp∗ weakly in L1(Ω). (5.22)

To prove it, for each v ∈ H we now define

Φ(v) =

∫
Ω

β(x, v(x))dx and Φε(v) =

∫
Ω

βε(x, v(x))dx.

As is seen ∇Φε(yε) = β̇ε(·, yε). From (h2) we have

‖β̇ε(·, yε)‖H ≤ C(1 + ‖yε‖H) ≤ C.

Then taking a subsequence, if necessary, we find

β̇ε(·, yε)→ ξ weakly in H. (5.23)

We conclude from Lemma 4.1 with Q = Φ and Qε = Φε that ξ ∈ ∂Φ(y∗), i.e.,
ξ(x) ∈ ∂β(x, y∗(x)) a.e. x ∈ Ω. On the other hand, recalling from (4.49) that
pε → p∗ in H, it follows that β̇ε(·, yε)pε → ξp∗ weakly in L1(Ω), as claimed.
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We proceed now with the proof. In view of (4.49), Claims 1, and 3,
by passing to the limit in the first equation of (5.13), we see that the first
equation in (5.9) holds. Returning now to Lemma 5.3, we find yε → y∗

weakly in H2(Ω) and

αε(yε − ψ)→ f +Bu∗ − β(·, y∗)− Ay∗ weakly in H. (5.24)

Recalling from (4.49) that pε → p∗ in H, we further have

pεαε(yε − ψ)→ p∗(f +Bu∗ − β(·, y∗)− Ay∗) weakly in L1(Ω). (5.25)

Thus the second equation in (5.9) follows from this and Claim 2. The re-
maining equations and inclusions in (5.9) can be proved by (4.45) and the
properties of the functions α and β.

Now in case of 1 ≤ N ≤ 3, it follows that H2(Ω) and V are continuous
and compactly embedded into C(Ω) and L4(Ω), respectively. Then we have
yε − ψ → y∗ − ψ in C(Ω). We combine this fact, Claim 1, and (5.20) to find
z(y∗ − ψ) = 0. This implies (5.10) using the first equation in (5.9). Next,
for each φ ∈ C1(Ω), taking the inner product in L2(Ω) with (yε−ψ)φ in the
first equation of (5.13) and passing to the limit, we obtain (5.12) because of
Claims 1 and 2. Finally, as pε → p∗ weakly in V , we see that p2

ε → p∗2 in H.
Therefore, multiplying by pε in the same equation and passing to the lower
limit we have (5.11). �
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