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Abstract This paper is concerned with optimal control problems for parabolic partial dif-

ferential equations with pointwise in time switching constraints on the control. A standard

approach to treat constraints in nonlinear optimization is penalization, in particular using

L1
-type norms. Applying this approach to the switching constraint leads to a nonsmooth

and nonconvex in�nite-dimensional minimization problem which is challenging both ana-

lytically and numerically. Adding H 1
regularization or restricting to a �nite-dimensional

control space allows showing existence of optimal controls. First-order necessary optimal-

ity conditions are then derived using tools of nonsmooth analysis. Their solution can be

computed using a combination of Moreau–Yosida regularization and a semismooth Newton

method. Numerical examples illustrate the properties of this approach.

1 introduction

Switching control refers to time-dependent optimal control problems with a vector-valued

control of which at most one component should be active at any point in time. To partially

set the stage, we consider for example optimal tracking control for a linear evolution equation

yt +Au = Bu on ΩT := (0,T ] × Ω together with initial conditions y(0) = y0 on Ω, where A is a

linear second order elliptic operator de�ned on Ω ⊂ Rn
with homogeneous Neumann boundary

conditions and the linear control operator B : L2(0,T ;RN ) → L2(ΩT ) is given by

(1.1) (Bu)(t ,x) =
N∑
i=1

χωi (x)ui (t),

where χωi are the characteristic functions of given control domains ωi ⊂ Ω of positive measure.

Furthermore, let ωobs ⊂ Ω denote the observation domain and let yd ∈ L2(0,T ;L2(ωobs)) denote

the target. Consider now the standard optimal control problem

(1.2)


min

u ∈L2(0,T ;RN )

1

2

‖y − yd ‖2L2(0,T ;L2(ω
obs
))
+
α

2

∫ T

0

|u(t)|2
2
dt ,

s. t. yt +Ay = Bu, y(0) = y0,
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where |v |2
2
=

∑N
j=1
v2

j denotes the squared `2-norm on RN
. To promote the switching structure

of optimal controls, we suggest adding the penalty term

(1.3) β

∫ T

0

N∑
i, j=1

i<j

|ui (t)uj (t)| dt

with β > 0 to the objective, which can be interpreted as an L1
-penalization of the switching

constraint ui (t)uj (t) = 0 for i , j and t ∈ [0,T ]. The combination of control cost and switching

penalty is convex if and only if β ≤ α . The case β = α was investigated in [7]; the aim of

this work is to treat the case β > α , which allows choosing the switching penalty parameter

independently of the control cost parameter. As can be veri�ed for a simple scalar example,

there exist sets of data for which the minimizer of the convex problem is not switching, while

the nonconvex problem does admit (possibly multiple) minimizers that are switching.

In the nonconvex case, the approach followed in [7] is not applicable. The main di�culty

stems from the fact that the integrand д : R2 → R, (u1,u2) 7→ |u1u2 |, is not convex, and

hence the integral functional G : L2(0,T ;R2) → R, u 7→
∫ T

0
|u1(t)u2(t)| dt , is not weakly

lower semicontinuous, which is an obstacle for proving existence. It is therefore necessary to

enforce strong convergence of minimizing sequences, which is possible by either considering

piecewise constant and hence �nite-dimensional controls or by introducing an additional (small)

H 1(0,T ;R2) penalty. Our analysis will cover both approaches. Besides the question of existence

of optimal controls, their numerical computation is also challenging due to the nonconvexity of

the problem. Here we proceed as follows: Using the calculus of Clarke’s generalized derivative [2,

3], we can derive �rst-order necessary optimality conditions. It then su�ces to apply a Moreau–

Yosida regularization only to the nonsmooth but convex term in the optimality conditions in

order to apply a semismooth Newton method.

This is a natural continuation of our previous works [4, 7] on convex relaxation of the

switching constraint. Let us brie�y remark on further related literature. On switching control

of ordinary and partial di�erential equations, there exists a large body of work; here we only

mention [1, 16, 19] in the former context and [9, 11, 17, 18, 24, 26] in the latter. A related topic is

the control of switched systems, where we refer to, e.g., [10, 20, 21].

This paper is organized as follows. Section 2 is concerned with existence of optimal controls

and their convergence as β → ∞ to a “hard switching constrained” problem. Optimality

conditions are then derived in Section 3, where the question of exact penalization is addressed as

well. Section 4 discusses the numerical solution of the optimality conditions using a semismooth

Newton method. Finally, Section 5 presents numerical examples illustrating the properties of

the nonconvex penalty approach.

2 existence

Here we describe the general framework that will be utilized and which will contain the example

in the Introduction as a special case. LetW denote a Hilbert space of measurable functions on

the space-time cylinder ΩT = (0,T ] × Ω, where Ω ⊂ Rn
is a bounded domain with Lipschitz

continuous boundary. This space will serve as the state space of the solutions of the control
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system which appears as a constraint in (1.2). It is assumed thatW ↪→ L2(0,T ;L2(Ω)), and that

the embedding is continuous. Further letU ⊂ L2(0,T ;RN ) denote the Hilbert space of controls.

We assume that there exists an a�ne control-to-state mapping u 7→ S(u). Here, we suppress the

dependence of S on y0; for y0 = 0, we denote the corresponding linear solution operator by S0.

Throughout it is assumed that S satis�es

(a1) S : L2(0,T ;RN ) →W is a continuous mapping satisfying

‖S(u)‖W ≤ C(‖u‖L2(0,T ;RN ) + ‖y0‖L2(Ω))

for a constant C independent of u and y0.

As mentioned in the Introduction, we need to restrict the set of feasible controls in order to obtain

existence of an optimal control. We thus consider the following two cases forU ⊂ L2(0,T ;RN ):

(i) U = H 1(0,T ;RN );

(ii) U is �nite-dimensional (e.g., consisting of piecewise constant controls).

For the sake of presentation, we further restrict ourselves in the following to the case of two

control components; the results remain valid for N > 2 components (although it should be

pointed out that, in contrast to the convex approach in [7], the number of terms in (1.3) grows

as

(N
2

)
). We hence consider for β > α > 0 the problem

(2.1) min

u ∈U

1

2

‖Su − yd ‖2L2(0,T ;L2(ω
obs
))
+
α

2

‖u‖2L2(0,T ;R2)
+
ε

2

‖ut ‖
2

L2(0,T ;R2)
+ β

∫ T

0

|u1(t)u2(t)| dt

with ωobs ⊂ Ω and yd ∈ L2(0,T ;L2(ωobs)) as before. IfU is �nite-dimensional, it is understood

that ε = 0; otherwise we require ε > 0. Keeping ε ≥ 0 �xed, we will denote the cost functional

in (2.1) by Jβ .

Before we turn to address existence for (2.1), we describe three typical cases of interest for

which assumption (a1) is satis�ed. Throughout the following,Awill denote a linear second-order

uniformly elliptic operator with smooth coe�cients.

Distributed control We return to the case considered in the Introduction, i.e., we consider the

equation in (1.2) with A together with homogenous Dirichlet, Neumann, or Robin boundary

conditions and the control operatorB ∈ L(L2(0,T ;RN ),L2(ΩT )) as in (1.1). It is then well-known,

see, e.g., [25, Chap. 4], that (a1) is satis�ed withW =W (0,T ) := H 1(0,T ;V ∗)∩L2(0,T ;V ), where

V = H 1

0
(Ω) in the case of homogenous Dirichlet boundary conditions and V = H 1(Ω) for

homogenous Neumann or Robin conditions.

Neumann boundary control Here we consider the case of Neumann boundary control. Thus

the control system is given by 
yt +Ay = 0 in QT ,

∂y

∂n
= Bu on ΣT ,

y(0) = y0 in Ω,
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where ΣT := (0,T ] × ∂Ω, and analogous to (1.1) we now take B to be of the form

(Bu)(t , s) =
2∑
i=1

χωi (s)ui (t),

with χωi the characteristic functions of given control domains ωi ⊂ ∂Ω of positive measure

relative to ∂Ω. Again, (a1) is satis�ed, this time with W = W (0,T ) and V = H 1(Ω). For a

reference, see, e.g., [22, Chap. 3.3] and the references given there.

Dirichlet boundary control Finally we consider the case of Dirichlet boundary control given

by 
yt +Ay = 0 in QT ,

y = Bu on ΣT ,

y(0) = y0 in Ω,

where B is de�ned as in the case of Neumann control just above. In this case, (a1) can be veri�ed

by the method of transposition, and one arrives at the state space

W = L2(0,T ;L2(Ω)) ∩ H 1(0,T ; (H 1

0
(Ω) ∩ H 2(Ω))∗) ∩C([0,T ];H−1(Ω)).

This was carried out in, e.g., [14, Thm. 2.1] with leading term in A taken as the Laplacian for

simplicity.

Theorem 2.1. There exists a minimizer ū ∈ U to (2.1).

Proof. We �rst consider the case ofU = H 1(0,T ;R2). Since Jβ is bounded from below, there

exists a minimizing sequence {un}n∈N that is bounded in H 1(0,T ;R2). Hence, by coercivity

of Jβ , there exists a subsequence, still denoted by {un}n∈N, with un ⇀ ū in H 1(0,T ;R2) and

un → ū pointwise in (0,T ). This implies pointwise convergence of |un,1(t)un,2(t)| → |ū1(t)ū2(t)|.
Together with the continuity of S and the weak lower semicontinuity of norms, this implies

Jβ (ū) ≤ lim inf

n→∞
Jβ (un) = inf

u ∈U
Jβ (u),

i.e., ū is a minimizer.

The case ofU �nite dimensional follows similarly, since boundedness in L2(0,T ;RN ) then

directly implies strong and hence pointwise convergence. �

We now address the convergence of solutions to (2.1) as β → ∞ to a solution to the “hard

switching” control problem

(2.2)


min

u ∈U

1

2

‖Su − yd ‖2L2(0,T ;L2(ω
obs
))
+
α

2

‖u‖2L2(0,T ;R2)
+
ε

2

‖ut ‖
2

L2(0,T ;R2)

s.t. u1(t)u2(t) = 0, t ∈ [0,T ].

Proposition 2.2. The family {uβ }β ≥0 ofminimizers to (2.1) contains at least one convergent sequence
{uβn }n∈N with βn →∞. The limit ū ∈ U of every such sequence is a solution to (2.2).
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Proof. Again, we only consider the case ofU = H 1(0,T ;R2), the other case being analogous. First,

let {uβn }n∈N with βn →∞ be a sequence of minimizers to (2.1). Since Jβ (uβ ) < Jβ (0) = J0(0) for

any β > 0, this sequence is bounded in H 1(0,T ;R2) and hence contains a subsequence {un}n∈N,

with un ⇀ ū in H 1(0,T ;R2) and un → ū pointwise in (0,T ). Furthermore, Jβ (uβ ) < J0(0) also

implies ∫ T

0

|un,1(t)un,2(t)| dt ≤ β
−1

n J0(0) → 0.

Hence,

ū1(t)ū2(t) = lim

n→∞
un,1(t)un,2(t) = 0 for all t ∈ [0,T ].

Now, let {un}n∈N be any such sequence. Together with optimality of un , the above implies

that for any ũ ∈ U with ũ1(t)ũ2(t) = 0 in [0,T ], we have

1

2

‖Sũ − yd ‖2L2(0,T ;L2(ω
obs
))
+
α

2

‖ũ‖2L2(0,T ;R2)
+
ε

2

‖ũt ‖
2

L2(0,T ;R2)

= Jβn (ũ) ≥ Jβn (un) ≥ J0(un)

=
1

2

‖Sun − y
d ‖2L2(0,T ;L2(ω

obs
))
+
α

2

‖un ‖
2

L2(0,T ;R2)
+
ε

2

‖un,t ‖
2

L2(0,T ;R2)
.

Taking the limes inferior as n →∞ and using continuity of S and weak lower semicontinuity

of the norms now yields J (ũ) ≥ J (ū), i.e., ū is a global minimizer. �

3 optimality conditions

To derive optimality conditions, we can make use of the calculus of Clarke’s generalized deriva-

tive [2, 3].

Theorem 3.1. Any local minimizer ū ∈ U to (2.1) satis�es

(3.1) 0 ∈ S∗
0
(Sū − z) + αū − εūt t + β sign(ū1ū2)

(
ū2

ū1

)
.

Proof. First, we consider the functional

G : L2(0,T ;R2) → R, u 7→

∫ T

0

|u1(t)u2(t)| dt .

SinceH : L1(0,T ) → R,v 7→
∫ T

0
|v | dt , is �nite-valued, locally Lipschitz and convex,H is regular

at anyv ∈ L1(0,T ), and the generalized derivative coincides with the subdi�erential in the sense

of convex analysis; see [3, Prop. 2.2.7]. Furthermore, T : L2(0,T ;R2) → L1(0,T ), u 7→ u1u2, is

strictly di�erentiable. Hence, by [3, Theorem 2.3.10],G = H ◦T is regular at any u ∈ L2(0,T ;R2),

and

∂CG(u) = T
′(u)∗∂H (T (u)) =

(
u2

u1

)
sign(u1u2).

Since G is regular and the remaining terms in (2.1) are continuously Fréchet-di�erentiable, we

can apply the sum rule for generalized gradients, e.g., from [3, Prop. 2.3.3 with Cor. 1], from

which the desired result follows. �

5



Note that forU = H 1(0,T ;R2), the right-hand side of (3.1) is to be understood as a subset of

H 1(0,T ;R2)∗.

Using directional derivatives, we can show that non-switching arcs can have a length of at

most

√
ε . In the following, we set ‖S0‖ := ‖S0‖L(L2(0,T ;R2),L2(0,T ;L2(ω

obs
)) for brevity.

Theorem 3.2. If β > (‖S0‖
2 + α + π 2), then ū1(t)ū2(t) = 0 for all t ∈ [0,T ] apart from intervals of

length at most
√
ε .

Proof. Let u ∈ L2(0,T ;R2) be given and assume that there exists t0 ∈ (0,T ) and δ >
√
ε such

that u1(t)u2(t) , 0 for all t ∈ (t0, t0 + δ ) and u1(t0)u2(t0) = u1(t0 + δ )u2(t0 + δ ) = 0. Without loss

of generality, we can assume that both u1(t) > 0 and u2(t) > 0 for all t ∈ (t0,δ ). Furthermore,

since β > (‖S0‖
2 + α + π 2), there exists a ρ ∈ (0,δ/2) such that

β >

(
‖S0‖

2 + α +
δ 2

(δ − 2ρ)2
π 2

)
> (‖S0‖

2 + α + π 2).

Set

h1(t) =

√

2

δ−2ρ sin

(
π

δ−2ρ (t − t0 − ρ)
)

t ∈ I := [t0 + ρ, t0 + δ − ρ],

0 else.

Then, h1 ∈ H
1(0,T ) with

‖h1‖
2

L2(0,T ) = 1 and ‖(h1)t ‖
2

L2(0,T ) =
π 2

(δ − 2ρ)2
.

We now consider directional derivatives in the speci�c direction h = (h1,−h1). For this

purpose, we �rst introduce

д : R→ R, s 7→ G(u + sh),

and show that д is di�erentiable in 0. First, we have by de�nition of h that

д(s) − д(0) =

∫ T

0

[|(u1 + sh1)(u2 − sh1)| − |u1u2 |] dt

=

∫
I
[|(u1 + sh1)(u2 − sh1)| − |u1u2 |] dt .

By the continuity of u and h, there exists s̃ > 0 such that

(3.2) u1(t) ± sh1(t) ≥ 0 and u2(t) ± sh1(t) ≥ 0 for all t ∈ I and s ∈ [−s̃, s̃].

Furthermore, u1(t)u2(t) > 0 for all t ∈ I by assumption. Hence,

(3.3) д(s) − д(0) =

∫
I
[(u1 + sh1)(u2 − sh1) − u1u2] dt =

∫
I

[
sh1(u2 − u1) − s

2h2

1

]
dt

and therefore

(3.4) д′(0) = lim

s→0

д(s) − д(0)

s
=

∫
I
h1(u2 − u1)dt .
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For the second derivative д′′(0), we can proceed in the same way using (3.2) to obtain

(3.5) д′′(0) = lim

s→0

д(s) − 2д(0) + д(−s)

s2

= lim

s→0

1

s2

∫
I
[(u1 + sh1)(u2 − sh1) − 2u1u2 + (u1 − sh1)(u2 + sh1)] dt

= lim

s→0

∫
I
−2h2

1
dt = −‖h‖2L2(0,T ;R2)

.

Comparing (3.3), (3.4), and (3.5), we obtain that

(3.6) д(s) = д(0) + sд′(0) +
s2

2

д′′(0).

Since the remaining terms in the cost functional are di�erentiable, we have for

j : R→ R, s 7→ J (u + sh),

that

j ′′(0) = ‖S0h‖
2

L2(0,T ;L2(ω
obs
))
+ α ‖h‖2L2(0,T ;R2)

+ ε ‖ht ‖
2

L2(0,T ;R2)
− β ‖h‖2L2(0,T ;R2)

≤ (‖S0‖
2 + α − β)‖h‖2L2(0,T ;R2)

+ ε ‖ht ‖
2

L2(0,T ;R2)

= 2(‖S0‖
2 + α − β) + 2

π 2

(δ − 2ρ)2
ε

≤ 2

(
‖S0‖

2 + α − β +
δ 2

(δ − 2ρ)2
π 2

)
< 0

by the choice of δ , ρ, and β .

Now, from (3.6) and the fact that the remaining terms in J are quadratic and hence that the

second-order Taylor expansion of j is exact, it follows that for all s with sj ′(0) ≤ 0, we have

J (u + sh) = j(s) = j(0) + sj ′(0) +
s2

2

j ′′(0) < j(0) = J (u).

Hence, u cannot be a local minimizer. �

The above proof relies on balancing the L2
and H 1

norm for the perturbation h to get an

upper bound on the length of possible non-switching intervals. Since the function h1 used in this

proof is the shifted and scaled �rst Dirichlet eigenfunction of the Laplacian on the interval (0, 1),

which is the only function for which equality holds in the Poincaré inequality, the above result

is likely to be sharp in this respect. Thus, perfect switching for ε > 0 cannot be guaranteed in

general. However, it follows from Proposition 2.2 that non-switching arcs have to vanish for

β →∞. We also point out that the condition on β in Theorem 3.2 is independent of the initial

condition and possible further source terms.

We now turn to the �nite-dimensional case, whereU consists of piecewise constant functions

on a given grid

0 = t1 < · · · < tM = T ,

and we can (and must) take ε = 0.
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Theorem 3.3. If U consists of piecewise constant functions and β > ‖S0‖
2 + α , then ū1(t)ū2(t) = 0

for all t ∈ [0,T ].

Proof. We proceed as above. Let u ∈ U with u1(t)u2(t) , 0 be given. Then there exists an

interval Ij := (tj , tj+1] such that u1(t)u2(t) , 0 for all t ∈ Ij . As before, we can assume u1 > 0 and

u2 > 0 on Ij . We now choose

h1(t) =

{
1 t ∈ Ij ,

0 else,

with ‖h1‖
2

L2(0,T ) = τj := tj+1 − tj and consider again for h = (h1,−h1)
T

the function д(s) :=

G(u + sh). We then obtain (using the fact that u is constant on Ij ) that

д(s) − д(0) = τj [|(u1 + s)(u2 − s)| − |u1u2 |] .

Since u1 and u2 here are strictly positive constants, there again exists an s̃ such that u1 ± s > 0

and u2 ± s > 0 on for all s ∈ [−s̃, s̃]. Hence,

д′(0) = τj (u2 − u1) and д′′(0) = −2τj = −‖h‖
2

L2(0,T ;R2)
.

As above, the latter implies that

j ′′(0) ≤ 2(‖S0‖
2 + α − β)τj < 0

and hence that J (u + sh) < J (u) for all s with sj ′(0) ≤ 0. �

Remark 3.4. The proof of Theorem 3.3 relies on the fact that for piecewise constant u, i.e., ui =∑M
j=1

ξ ji χIj for i ∈ {1, 2}, there holds

(3.7) G(u) =
M∑
j=1

τj |ξ
j
1
ξ j

2
|.

IfU is an arbitrary �nite-dimensional subspace of L2(0,T ;R2), i.e., ui =
∑M

j=1
ξ ji ej for i ∈ {1, 2}

and some basis functions ej , and the switching penaltyG is replaced by the right-hand side of (3.7),
the above proof can be modi�ed to show that β > C−1(‖S0‖

2 + α) implies that ξ j
1
ξ j

2
= 0 for all j,

where C is the constant of equivalence for the discrete and continuous norm onU ⊂ L2(0,T ;R2).
The relation between pointwise switching and switching of the coe�cients depends on the speci�c

choice of ej .

4 numerical solution

The numerical solution is based on a primal-dual reformulation of the optimality condition (3.1),

which states that there exists a

(4.1) q̄ ∈ β sign(ū1ū2) = ∂(β ‖ · ‖L1)(ū1ū2) ⊂ L∞(0, 1)
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such that

S∗
0
(Sū − z) + αū − εūt t + q̄

(
ū2

ū1

)
= 0,

where ∂(‖ · ‖L1) denotes the convex subdi�erential of the L1(0,T ) norm. Since we wish to

formulate the algorithm in function space, we assume in this section that ε > 0 and hence

U = H 1(0,T ;R2).

We now proceed as in the case of sparse control, e.g., [5, 6, 8]: By Fenchel duality applied to

the convex functional ‖ · ‖L1 , (4.1) is equivalent to

(4.2) ū1ū2 ∈ ∂(IB∞(0,β ))(q̄),

where IB∞(0,β ) denotes the indicator function (in the sense of convex analysis) of the closed ball

in L∞(0,T ) around 0 with radius β . The subdi�erential on the right-hand side of (4.2) is now

replaced by its Moreau–Yosida regularization in L2(0,T ), which for any γ > 0 is given by

∂(IB∞(0,β ))γ (q) =
1

γ

(
q − proxγ IB∞(0,β )

(q)
)
=

1

γ

(
q − projB∞(0,β )(q)

)
.

Here, proxf denotes the proximal mapping of a convex function f , which for the indicator

function of a convex setC coincides with the metric projection projC ontoC . The Moreau–Yosida

regularization of (3.1) can thus be written as

(4.3)


S∗

0
(Suγ − z) + αuγ − ε(uγ )t t + qγ

(
uγ ,2
uγ ,1

)
= 0

γuγ ,1uγ ,2 −max(0,qγ − β) −min(0,qγ + β) = 0,

where the second equation is to be understood pointwise almost everywhere in (0,T ).
It is known that the Moreau–Yosida regularization of the subdi�erential of the indicator

function is equivalent to adding an L2
norm to the primal functional; see, e.g., [5, Remark 3.2].

In our case, this leads to the problem

(4.4) min

u ∈U

1

2

‖Su − yd ‖2L2(0,T ;L2(ω
obs
))
+
α

2

‖u‖2L2(0,T ;R2)
+
ε

2

‖ut ‖
2

L2(0,T ;R2)

+ β

∫ T

0

|u1(t)u2(t)| dt +
γ

2

∫ T

0

|u1(t)u2(t)|
2 dt .

A similar proof as for Theorem 2.1 yields existence of a solution uγ . Proceeding as in the

derivation of Theorem 3.1, we deduce the existence of

(4.5) qγ ∈ β sign(uγ ,1uγ ,2) + γuγ ,1uγ ,2 = ∂
(
β ‖ · ‖L1 +

γ

2

‖ · ‖2L2

)
(uγ ,1uγ ,2)

such that the �rst relation of (4.3) holds. As shown in [5, Remark 3.2], the subdi�erential inclusion

(4.5) is equivalent to

uγ ,1uγ ,2 =
1

γ
max(0,qγ − β) +

1

γ
min(0,qγ + β),

9



which is a reformulation of the second relation of (4.3). Hence, we obtain existence of a solution

(uγ ,qγ ) to (4.3). A standard argument shows weak subsequential convergence of uγ as γ → 0

to a minimizer ū ∈ U to (2.1).

Since uγ ∈ H
1(0,T ;R2), it follows from (4.5) that qγ ∈ L

∞(0,T ). It is well-known (e.g., from

[13, 23]) that the pointwise max and min are Newton di�erentiable from Lp (0,T ) to L1(0,T ) for

any p > 1, with Newton derivative in direction h ∈ Lp (0,T ) given pointwise almost everywhere

by

DN max(0,q − β)h =

{
h if q ≤ β ,

0 else,

DN min(0,q + β)h =

{
h if q ≥ −β,

0 else.

Thus, (4.3) considered as an operator equation from H 1(0,T ;R2) × L2(0,T ) to H 1(0,T ;R2)∗ ×

L2(0,T ) is Newton di�erentiable. We therefore apply a semismooth Newton method for its

solution.

In the numerical realization, we follow a homotopy approach. Since the problem is genuinely

nonconvex, which is detrimental to the convergence behavior of Newton methods, this is more

involved than in the convex case. In particular, note that the Moreau–Yosida regularization acts

as a smoothing of the indicator function; at the same time, it exacerbates the nonconvexity of the

problem; cf. (4.4). We therefore proceed as follows: Starting from an initial guess (u0,q0) = (0, 0)

and γ = 0, we solve a sequence of problems for increasing γ ≥ 0 and �xed β = βmin until a

given �nal value γmax > 0 is reached, taking the previous solution as an initial guess. Keeping

this value of γ = γmax �xed, we then similarly increase β from some βmin to a value βmax

which is chosen adaptively as the �rst β such that the maximal pointwise violation σsw :=

‖u1u2‖∞ = maxt ∈I |u1(t)u2(t)| of the switching property drops below a given tolerance. This

adaptive choice is advantageous since it ensures large enough β to obtain switching while

avoiding too large β that would complicate the numerical solution at no additional bene�t.

Finally, keeping β = βmax > 0 �xed, γ is reduced again until some speci�ed γmin is reached.

In our experience, the homotopy parameters βmin andγmin can be chosen very small in general,

while γmax has to be chosen above a critical value that depends on the problem. For any such

choice, the obtained controls are then robust with respect to the value of γmax.

5 numerical examples

We illustrate the properties of solutions to (2.1) for distributed control of the heat equation (i.e.,

A = −∆) on the unit square Ω = (−1, 1)2 with homogeneous Neumann and initial conditions and

di�erent choices of control and observation con�gurations. The �nal time is always set toT = 10.

The spatial discretization uses standard piecewise linear �nite elements, while the temporal

discretization is also chosen as continuous and piecewise linear to obtain a conforming �nite

element approximation of the H 1
seminorm in (2.1) as well as the weak (temporal) Laplacian in

(3.1). Following Remark 3.4, the switching penalty is replaced by its discrete version (i.e., the

right-hand side of (3.7)), which allows a componentwise formulation of the second relation in

(4.5). We similarly replace the L2
norm by its discrete version, which can be interpreted as a

mass lumping.

10



The �rst example, based on the example from [7], illustrates the e�ect of the control cost

parameter α . In the second example, we investigate the in�uence of the H 1
-regularization on

the solution. The MATLAB implementation of the proposed approach used to generate these

results can be downloaded from h�ps://github.com/clason/nonconvexswitching.

5.1 example 1

To compare the proposed method with earlier work, we take up the example from [7] with

N = 2 control components and 101 equidistant time points. For any α ≥ 4 · 10−4
, the convex

solution method from [7] yields switching controls, which are unique global mininimizers to the

respective problems. However, smaller values of α lead to non-switching solutions. In particular,

we �nd for α = 10
−4

resp. 10
−5

a total of 7 resp. 40 time points where both control components

are essentially active.

In the following, we apply the proposed nonconvex approach for di�erent values of the

control cost parameter α with a �xed ε = 10
−7

. The homotopy parameters are set to βmin = 10
−5

,

γmin = 10
−9

, and γmax = 10
2
, and incremented or decremented by a factor of 10. In this and

the following examples, the �nal value βmax is chosen according to the relative tolerance

σsw ≤ 10
−10

max{‖u1‖∞, ‖u2‖∞}. For each pair (β,γ ), the maximum number of semismooth

Newton iterations is set to 5. While this leads to early termination of the semismooth Newton

method in the �rst homotopy steps (to save numerical e�ort), we always observe convergence

with relative tolerance 10
−6

or absolute tolerance 10
−7

in the residual norm of the optimality

system (4.3) during the later steps of the homotopy.

The solutions for di�erent values of α are shown in Figure 1, where the solution for α = 4 ·10−4

is very similar to the solution to the convex problem (di�ering only in the points tj with

u1(tj ) = u2(tj ) = 0, where in the convex case one of the control components is active). Since the

convex solution is computed with ε = 0, this indicates that the in�uence of ε on the solution is

negligible for this choice of α and ε . For smaller values of α , the solutions to the nonconvex

problem maintain the switching property while increasing in amplitude until α ≤ 10
−8

, after

which any choice of α yields the same numerical solution. This is illustrated in more detail in

Table 1, which shows in particular that the tracking error (and therefore the optimal functional

value J̄ ) can be reduced signi�cantly by decreasing α . At the same time, the number Nsw of

“switching points” (i.e., points tj such that |u1(tj )| ≥ |u2(tj )| but |u1(tj+1)| < |u2(tj+1)| or vice

versa) increases only slightly due to the presence of the H 1
-regularization. (This relation will be

investigated more closely in the next example.) The fourth column gives the switching error

σsw = maxt ∈I |u1(t)u2(t)|, con�rming quantitatively that the switching property is satis�ed up

to a high accuracy for all cases. The last two columns address the convergence of the combined

homotopy and semismooth Newton method by giving the residual norm of the optimality

system (4.3) for the �nal switching penalty β = βmax and γ = 10
−9

. Note that in all cases, we

have βmax > α and hence a genuinely nonconvex problem.

Finally, the convergence history for a run of the semismooth Newton method for α = 10
−8

and two representative pairs (β,γ ) (corresponding to low and high penalization, respectively) is

shown in Table 2. The superlinear decay of the norm ‖F (uk ,qk )‖ of the residual in (4.3) in each

iteration k can be observed clearly.

11
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Figure 1: Optimal switching controls for di�erent values of α

Table 1: Results for di�erent values of α (Example 1): optimal value J̄ , number of switching points

Nsw, switching error σsw, residual norm of the optimality system (4.3), �nal switching

penalty βmax

α J̄ Nsw σsw optimality βmax

4 · 10−4
0.762 11 5 · 10−11

7 · 10−15
10

3

10
−4

0.581 7 3 · 10−11
8 · 10−14

10
2

10
−5

0.209 9 4 · 10−11
4 · 10−14

10
2

10
−6

0.069 9 3 · 10−16
1 · 10−14

10
−4

10
−7

0.050 10 2 · 10−10
2 · 10−13

10
1

10
−8

0.048 10 7 · 10−17
2 · 10−14

10
−4

10
−9

0.048 10 7 · 10−17
2 · 10−14

10
−4
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Table 2: Convergence history of the semismooth Newton method (Example 1) for α = 10
−8

:

residual norm ‖F (uk ,qk )‖ over iteration k

(a) β = 10
−5

, γ = 10
−5

k 0 1 2 3 4 5

‖F (uk ,qk )‖ 2.7 · 10−5
9.8 · 10−6

3.6 · 10−6
1.1 · 10−7

8.0 · 10−10

(b) β = 10
−1

, γ = 10
2

k 0 1 2 3 4 5

‖F (uk ,qk )‖ 1.5 · 10−3
3.7 · 10−4

9.2 · 10−5
4.8 · 10−5

4.8 · 10−6
4.4 · 10−10

5.2 example 2

The second example addresses the in�uence of theH 1
-regularization parameter ε on the solution.

Here, we set

ω1 = {(x1,x2) ∈ Ω : x1 ≤ 0}, ω2 = {(x1,x2) ∈ Ω : x1 > 0},

and Bu = (χω1
(x)u1(t) + χω2

(x)u2(t))/10. The desired state yd is the solution corresponding to

the control

ud =
(
20 sin

4(2πt/T ), 10 cos
4(1.4πt/T )

)
,

see Figure 2. By construction, this desired state is expected to be di�cult to attain by a pure

switching control since both controls contribute signi�cantly during the second half of the time

interval. To investigate the in�uence of ε on the solution, we �x α = 10
−6

, which corresponds to

comparatively small control costs. The homotopy parameters are set to βmin = 10
−5

, γmin = 10
−9

,

and γmax = 10
4
, and are incremented or decremented by a factor of 10. The maximal number of

semismooth Newton iterations is again set to 5; we observe the same convergence behavior as

in the �rst example.

The solutions for di�erent values of ε are shown in Figure 3. We see that all solutions exhibit

switching, which is consistent with Theorem 3.2. During the �rst half of the time interval, we

observe for all ε > 0 the switching behavior expected from the generating control ud . During

the second half, the number of switching points increases for ε → 0.

A quantitative illustration of the dependence on ε is given in Table 4, which shows that the

number Nsw decreases monotonically to zero as ε increases. At the same time, the tracking is

obviously increased, resulting in a larger optimal functional value J̄ . The fourth column con�rms

the switching property of the optimal control for all ε . In particular, the last row demonstrates

that the proposed approach is feasible for computing switching controls for very small control

cost and regularization parameters (α = 10
−6

, ε = 10
−7

, γ = 10
−9

) compared to the switching

penalty (β = 10
3
). Again, in all cases βmax > α , and hence the problem is genuinely nonconvex.
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Figure 3: Optimal switching controls for di�erent values of ε
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Table 4: Results for di�erent values of ε (Example 2): optimal functional value J̄ , number of

switching points Nsw, switching error σsw, residual norm of the optimality system (4.3),

�nal switching penalty βmax

ε J̄ Nsw σsw optimality βmax

10
−2

2.088 0 5 · 10−17
2 · 10−11

10
−2

10
−3

1.202 1 4 · 10−22
1 · 10−11

10
0

10
−4

0.542 4 6 · 10−8
6 · 10−11

10
3

10
−5

0.318 9 2 · 10−10
2 · 10−11

10
3

10
−6

0.274 14 3 · 10−10
2 · 10−12

10
3

10
−7

0.124 22 2 · 10−11
1 · 10−12

10
3

6 conclusion

Penalization of switching constraints leads to a nonconvex optimal control problem if the switch-

ing penalty is larger than the control costs. Under additional H 1
regularization or restriction to

�nite-dimensional controls, existence of solutions can be shown. Using tools from nonsmooth

analysis allows deriving optimality conditions and showing (for �nite-dimensional controls)

exact penalization properties. These optimality conditions are amenable to numerical solution

via a (still nonconvex) Moreau–Yosida regularization and a semismooth Newton method.

By virtue of the embedding of H 1(0,T ) into C([0,T ]), switching of optimal controls can only

occur in points where ū1(t) = ū2(t) = 0. This is not the case if H 1
regularization is replaced with

regularization in the space of functions of bounded variation; however, this would introduce new

di�culties due to the additional nonsmoothness and the more complicated functional-analytic

setting and is therefore the subject of further work.

It is possible to extend the presented approach to consider additional control constraints.

Necessary optimality conditions similar to (3.1) involving the classical normal cone of the

(convex) constraint set can be obtained from [2, Proposition 10.36]. For the case of simple

coordinate-wise box constraints, one can then apply the now classical semismooth Newton

method as in, e.g., [12]. For the corresponding treatment of polygonal constraints on vector-

valued controls, one can partially rely on results from [15] to develop semismooth Netwon

methods. Finally, another interesting aspect for future consideration would be to allow for more

general switching constraints of the form u(t) ∈ U , where U is a cone generated by a �nite set

in L2(0,T ;RN ).
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