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Abstract Nonsmooth nonconvex optimization problems involving the `p quasi-norm, p ∈ (0, 1],
of a linear map are considered. A monotonically convergent scheme for a regularized version of
the original problem is developped and necessary optimality conditions for the original problem
in the form of a complementary system amenable for computation are given. Then an algorithm
for solving the above mentioned necessary optimality conditions is proposed. It is based on a
combination of the monotone scheme and a primal-dual active set strategy. The performance of
the two algorithms is studied by means of a series of numerical tests in different cases, including
optimal control problems, fracture mechanics and microscopy image reconstruction.
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1 Introduction

We consider the following nonconvex nonsmooth optimization problem

min
x∈Rn

J(x) =
1

2
|Ax− b|22 + β|Λx|pp, (1.1)

where A ∈Mm×n, Λ ∈Mr×n, b ∈ Rm, p ∈ (0, 1] and β ∈ R+. Here

|x|p =

(
n∑
k=1

|xk|p
) 1
p

,

which is a norm for p = 1 and a quasi-norm for 0 < p < 1.
Optimization of problems as (1.1) arises frenquently in many applications as an efficient way
to extract the essential features of generalized solutions. In particular, many problems in sparse
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learning and compressed sensing can be written as (1.1) with Λ = I, I being the identity (see
e.g. [12,42] and the references therein). In image analysis, `p-regularisers as in (1.1) have recently
been proposed as nonconvex extensions of the total generalized variation (TGV) regularizer used
to reconstruct piecewise smooth functions (e.g. in [24, 43]). Also, the use of `p-functionals with
p ∈ (0, 1) is of particular importance in fracture mechanics (see [44]). Recently, sparsity tech-
niques have been investigated also by the optimal control community, see e.g. [10, 22, 27, 34, 49].
The literature on sparsity optimization problems as (1.1) is rapidly increasing, here we mention
also [1, 7, 18,45].
The nonsmoothness and nonconvexity make the study of problems as (1.1) both an analytical
and a numerical challenge. Many numerical techniques have been developped when Λ = I (e.g.
in [20, 27, 31, 32]) and attention has recently been given to the case of more general operators,
here we mention e.g. [24, 36, 43] and we refer to the end of the introduction for further details.
However, the presence of the matrix inside the `p-term combined with the nonconvexity and
nonsmoothness remains one main issue in the developments of numerical schemes for (1.1).
In the present work, we first propose a monotone algorithm to solve a regularized version of (1.1).
The scheme is based on an iterative procedure solving a modified problem where the singularity
at the origin is regularized. The convergence of this algorithm and the monotone decay of the
cost during the iterations are proved. Then its performance is successfully tested in four different
situations, a time-dependent control problem, a fracture mechanic example for cohesive fracture
models, an M-matrix example, and an elliptic control problem.
We also focus on the investigation of suitable necessary optimality conditions for solving the
original problem. Relying on an augmented Lagrangian formulation, optimality conditions of
complementary type are derived. For this purpose we consider the case where Λ is a regular
matrix, since in the general case the optimality conditions of complementary type are not readily
obtainable. An active set primal-dual strategy which exploits the particular form of these opti-
mality conditions is developped. A new particular feature of our method is that at each iteration
level the monotone scheme is used in order to solve the nonlinear equation satisfied by the non
zero components. The convergence of the active set primal-dual strategy is proved in the case
Λ = I under a diagonal dominance condition. Finally the algorithm was tested on the same
time-dependent control problem as the one analysed for the monotone scheme as well as for a
miscroscopy image recontruction example. In all the above mentioned examples the matrix inside
the `p-term appears as a discretized gradient with very different purposes, e.g. as a regularization
term in imaging and with modelling purposes in fracture mechanics.
Similar type of algorithms were proposed in [27] and [20] for problems as (1.1) in case of no
matrix inside the `p-term and in the infinite dimensional sequence spaces `p, with p ∈ [0, 1]. Our
monotone and primal-dual active set monotone algorithm are inspired by the schemes studied
respectively in [27] and [20], but with the main novelties that now we treat the case of a regular
matrix in the `p-term and we provide diverse numerical tests for both the schemes. Moreover,
we prove the convergence of the primal-dual active set strategy. Note also that the monotone
scheme has not been tested in the earlier papers.
Let us recall some further literature concerning `p, p ∈ (0, 1] sparse regularizers. Iteratively
reweighted least-squares algorithms with suitable smoothing of the singularity at the origin were
analysed in [14, 29, 30]. In [37] a unified convergence analysis was given and new variants were
also proposed. An iteratively reweighted `1 algorithm ( [9]) was developped in [15] for a class of
nonconvex `2-`p problems, with p ∈ (0, 1). A generalized gradient projection method for a general
class of nonsmooth non-convex functionals and a generalized iterated shrinkage algorithm are
analysed respectively in [7] and in [55]. Also, in [45] a surrogate functional approach combined
with a gradient technique is proposed. However, all the previous works do not investigate the
case of a linear operator inside the `p-term.
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Then in [43] an iteratively reweighted convex majorization algorithm is proposed for a class of
nonconvex problems including the `p, p ∈ (0, 1] regularizer acting on a linear map. However, an
additional assumption of Lipschitz continuity of the objective functional is required to establish
convergence of the whole sequence generated by the algorithm. Nonconvex TV p-models with
p ∈ (0, 1) for image restoration are studied in [24] by a Newton-type solution algorithm for a
regularized version of the original problem.
We mention also [32], where a primal-dual active set method is studied for problems as in (1.1)
with Λ = I for a large class of penalties including also the `p, with p ∈ [0, 1). A continuation
strategy with the respect to the regularization parameter β is proposed and the convergence of
the primal-dual active set strategy coupled with the continuation strategy is proved. However,
in [32], differently from the present work, the nonlinear problem arising at each iteration level of
the active set scheme is not investigated. Moreover, in [32] the matrix A has normalized column
vectors, whereas in the present work A is a general matrix.
Finally, in [36] an alternating direction method of multipliers (ADMM) is studied in the case
of a regular matrix inside the `p-term, optimality conditions were derived and convergence was
proved. Although the ADMM in [36] is also deduced from an augmented Lagrangian formulation,
we remark that the optimality conditions of that paper are of a different nature than ours and
hence the two approaches cannot readily be compared. We refer to Remark 4 for a more detailed
explanation.
Concerning the general importance of `p-functionals with p ∈ (0, 1), numerical experience has
shown that their use can promote sparsity better than the `1-norm (see [11, 19, 50]), e.g. allow-
ing possibly a smaller number of measurements in feature selection and compressed sensing (see
also [12, 13, 41]). Moreover, many works demonstrated empirically that nonconvex regulariza-
tion terms in total variation-based image restoration provide better edge preservation than the
`1-regularization (see [6, 40, 41, 46]). Also, the use of nonconvex optimization can be considered
from natural image statistics [26] and it appears to be more robust with respect to heavy-tailed
distributed noise (see e.g. [54]).
The paper is organized as follows. In Section 2 we present our proposed monotone algorithm
and we prove its convergence. In Section 3 we report our numerical results for the four test
cases mentioned above. In Section 4 we derive the necessary optimality conditions for (1.1), we
describe our primal-dual active set strategy and prove convergence in the case Λ = I. Finally in
Section 5 we report the numerical results obtained by testing the active set monotone algorithm
in the two situations mentioned above.

2 Existence and monotone algorithm for a regularized problem

For convenience of exposition, we recall the problem under consideration

min
x∈Rn

J(x) =
1

2
|Ax− b|22 + β|Λx|pp, (2.1)

where A ∈Mm×n, Λ ∈Mr×n, b ∈ Rm, p ∈ (0, 1] and β ∈ R+.
Throughout this section we assume

Ker(A) ∩Ker(Λ) = {0}. (2.2)

The first result is existence for (2.1).

Theorem 1 For any β > 0, there exists a solution to (2.1).
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Proof Since J is bounded from below, existence will follow from the continuity and coercivity of
J . Thus we prove that J is coercive, that is, |J(xk)|2 → +∞ whenever |xk|2 → +∞ for some
sequence {xk} ⊂ Rn. By contradiction, suppose that |xk|2 → +∞ and J(xk) is bounded. For
each k, let xk = tkzk be such that tk ≥ 0, xk ∈ Rn and |zk|2 = 1. Since tk → +∞, p < 2, we
have for k sufficiently large

0 ≤ 1

2t2k
|Axk|22 + β

1

tpk
|Λxk|pp ≤ (

1

2
+ β)

1

tpk

(
|Axk|22 + |Λxk|pp

)
→ 0

and hence

lim
k→+∞

1

2
|Azk|22 + β|Λzk|pp = 0.

By compactness, the sequence {zk} has an accumulation point z̄ such that |z̄| = 1 and z̄ ∈
Ker(A) ∩Ker(Λ), which contradicts (2.2).

Following [27], in order to overcome the singularity of (|s|p)′ = ps
|s|2−p near s = 0, we consider for

ε > 0 the following regularized version of (2.1)

min
x∈Rn

Jε(x) =
1

2
|Ax− b|22 + βΨε(|Λx|2), (2.3)

where for t ≥ 0

Ψε(t) =

{
p
2

t
ε2−p + (1− p

2 )εp for 0 ≤ t ≤ ε2

t
p
2 for t ≥ ε2,

(2.4)

and Ψε(|Λx|2) is short for
∑∞
i=1 Ψε(|(Λx)i|2).

Remark 1 Notice that by the coercivity of the functional J in (2.1), the coercivity of Jε and
hence existence for (2.3) follow as well.

The necessary optimality condition for (2.3) is given by

A∗Ax+ Λ∗
βp

max(ε2−p, |Λx|2−p)
Λx = A∗b,

where the max-operation is interpreted coordinate-wise.
We set y = Λx. Then

A∗Ax+ Λ∗
βp

max(ε2−p, |y|2−p)
y = A∗b. (2.5)

In order to solve (2.5), the following iterative procedure is considered:

A∗Axk+1 + Λ∗
βp

max(ε2−p, |yk|2−p)
yk+1 = A∗b, (2.6)

where we denote yk = Λxk, and the second addends are short for the vectors with components
(Λ∗)li

βp
max(ε2−p,|yki |2−p)

yk+1
i .

We have the following convergence result.

Theorem 2 For ε > 0, let {xk} be generated by (2.6). Then, Jε(xk) is strictly monotonically
decreasing, unless there exists some k such that xk = xk+1 and xk satisfies the necessary opti-
mality condition (2.5). Moreover every cluster point of xk, of which there exists at least one, is
a solution of (2.5).
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Proof The proof follows similar arguments to that of Theorem 4.1, [27]. Multiplying (2.6) by
xk+1 − xk, we get

1

2
|Axk+1|2 − 1

2
|Axk|2 +

1

2
|A(xk+1 − xk)|2 + βp

(
1

max(ε2−p, |yk|2−p)
yk+1, yk+1 − yk

)
= (A∗b, xk+1 − xk).

Note that(
1

max(ε2−p, |yk|2−p)
yk+1, yk+1 − yk

)
=

1

2

n∑
i=1

(
|yk+1
i |2 − |yki |2 + |yk+1

i − yki |2
)

max(ε2−p, |yki |2−p)
(2.7)

and
1

max(ε2−p, |yki |2−p)
p

2
(|yk+1

i |2 − |yki |2) = Ψ ′ε(|yki |2)(|yk+1
i |2 − |yki |2). (2.8)

Since t→ Ψε(t) is concave, we have

Ψε(|yk+1
i |2)− Ψε(|yki |2)− 1

max(ε2−p, |yki |2−p)
p

2
(|yk+1

i |2 − |yki |2) ≤ 0. (2.9)

Then, using (2.7), (2.8), (2.9), we get

Jε(x
k+1) +

1

2
|A(xk+1 − xk)|22 +

1

2

n∑
i=1

βp

max(ε2−p, |yki |2−p)
|yk+1
i − yki |2 ≤ Jε(xk). (2.10)

From (2.10) it follows that {xk}∞k=1 and thus {yk}∞k=1 are bounded. Then, from (2.10), there
exists a constant κ > 0 such that

Jε(x
k+1) +

1

2
|A(xk+1 − xk)|22 + κ|yk+1 − yk|22 ≤ Jε(xk), (2.11)

from which we conclude the first part of the theorem. From (2.11), we conclude that

∞∑
k=0

|A(xk+1 − xk)|22 + |yk+1 − yk|22 <∞. (2.12)

Since {xk}∞k=1 is bounded, there exists a subsequence and x̄ ∈ Rn such that xkl → x̄. By (2.12)
and (2.2) we have that xkl+1 → x̄. Then, passing to the limit with respect to k in (2.6), we get
that x̄ is a solution to (2.6).

In the following proposition we establish the convergence of (2.3) to (2.1) as ε goes to zero.

Proposition 1 Let {xε}ε>0 be solution to (2.3). Then any cluster point of {xε}ε>0, of which
there exists al least one, is a solution of (2.1).

Proof From the coercivity of Jε, we have that {xε}ε is bounded for ε small and then there exist
a subsequence and x̄ ∈ Rn such that xεl → x̄. Since {xε}ε solves (2.3), by letting ε → 0 and
using the definition of Ψε, we easily get that x̄ is a solution of (2.1).
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3 Monotone algorithm: numerical results

The focus of this section is to investigate the performance of the monotone algorithm in prac-
tice. For this purpose we choose four problems with matrices A of very different structure: a
time-dependent optimal control problem, a fracture mechanics example, the M matrix and a
stationary optimal control problem. The latter two problems are studied for the two matrix case.

3.1 The numerical scheme

For further references it is convenient to recall the algorithm in the following form (see Algo-
rithm 1). Note that a continuation strategy with respect to the parameter ε is performed. The
initialization and range of ε-values is described for each class of problems below.
The algorithm stops when the `∞-norm of the residue of (2.5) is O(10−3) in all the examples,
except the fracture problem, where it is O(10−15). At this instance, the `2-residue is typically
much smaller. Thus, we find an approximate solution of the ε-reguralized optimality condition
(2.5). The initialization x0 is chosen in the following way

x0 = (A∗A+ 2βΛ∗Λ)−1A∗b, (3.1)

that is, x0 is chosen as the solution of the problem (2.1) where the `p-term is replaced by the `2-
norm. Our numerical experience shows that for some values of β the previous initialization is not
suitable, that is, the residue obtained is too big. In order to get a lower residue, we successfully
tested a continuation strategy with respect to increasing β-values.

Algorithm 1 Monotone algorithm + ε-continuation strategy

1: Initialize ε0, x0 and set y0 = Λx0. Set k = 0;
2: repeat
3: Solve for xk+1

A∗Axk+1 + Λ∗
βp

max(ε2−p, |yk|2−p)
Λxk+1 = A∗b.

4: Set yk+1 = Λxk+1.
5: Set k = k + 1.
6: until the stopping criterion is fulfilled.
7: Reduce ε and repeat 2.

In the presentation of our numerical results, the total number of iterations shown in the tables
takes into account the continuation strategy with respect to ε. However, it does not take into
account the continuation with respect to β. We remark that in all the experiments presented in the
following sections, the value of the functional for each iterations was checked to be monotonically
decreasing accordingly to Theorem 2.
The following notation will hold for the rest of the paper. For x ∈ Rn we will denote |x|0 = #{i :
|xi| > 10−10}, |x|c0 = #{i : |xi| ≤ 10−10}, and by |x|2 the euclidean norm of x.

3.2 Time-dependent control problem

We consider the linear control system

d

dt
y(t) = Ay(t) +Bu(t), y(0) = 0,
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that is,

y(T ) =

∫ T

0

eA(T−s)Bu(s)ds, (3.2)

where the linear closed operator A generates a C0-semigroup eAt, t ≥ 0 on the state space X.
More specifically, we consider the one dimensional controlled heat equation for y = y(t, x):

yt = yxx + b1(x)u1(t) + b2(x)u2(t), x ∈ (0, 1), (3.3)

with homogeneous boundary conditions y(t, 0) = y(t, 1) = 0 and thus X = L2(0, 1). The differen-
tial operator Ay = yxx is discretized in space by the second order finite difference approximation
with n = 49 interior spatial nodes (∆x = 1

50 ). We use two time dependent controls −→u = (u1, u2)
with corresponding spatial control distributions bi chosen as step functions:

b1(x) = χ(.2,.3), b2(x) = χ(.6,.7).

The control problem consists in finding the control function −→u that steers the state y(0) = 0 to
a neighborhood of the desired state yd at the terminal time T = 1. We discretize the problem in
time by the mid-point rule, i.e.

A−→u =
m∑
k=1

eA(T−tk−∆t2 )(B−→u )k∆t, (3.4)

where −→u = (u1
1, · · · , um1 , u1

2, · · ·um2 ) is a discretized control vector whose coordinates represent
the values at the mid-point of the intervals (tk, tk+1). Note that in (3.4) we denote by B a suitable
rearrangement of the matrix B in (3.2) with some abuse of notation. A uniform step-size ∆t = 1

50
(m = 50) is utilized. The solution of the control problem is based on the sparsity formulation
(2.1), where Λ is the backward difference operator acting independently on each component of
the control, that is, Λ = m(I2 ⊗D) where I2 is the 2× 2 identity matrix and D : Rm → Rm is
as follows

D =


1 0 0 · · · 0
−1 1 0 · · · 0

0 · · · 0 −1 1

 . (3.5)

Also, b in (2.1) is the discretized target function chosen as the Gaussian distribution yd(x) =
0.4 exp(−70(x − .7)2)) centered at x = .7. That is, we apply our algorithm for the discretized
optimal control problem in time and space where x from (2.1) is the discretized control vector
u ∈ R2m which is mapped by A to the discretized output y at time 1 by means of (3.4). Moreover
b from (2.1) is the discretized state yd with respect to the spatial grid ∆x. The parameter ε was
initialized with 10−3 and decreased down to 10−8. Note that, since the second control distribu-
tion is well within the support of the desired state yd we expect the authority of this control to
be stronger than that of the first one, which is away from the target.
In Table 1 we report the results of our tests for p = .5 for β incrementally increasing by factor
of 10 from 10−3 to 1. We report only the values for the second control u2 since the first control
u1 is always zero. In the third row we see that (|Du2|0)c increases with β, consistent with our
expectation. Note also that the quantity |Du2|pp decreases for β increasing.
For any i = 1, · · · ,m, we say that i is a singular component of the vector Du2 if i ∈ {i :
|(Du2)i| < ε}. In particular, note that the singular components are the ones where the ε-
regularization is most influential. In the sixth row of Table 1 we show their number at the
end of the ε-path following scheme (denoted by Sp) and we observe that it concides with the
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quantity |Du2|c0, which is reassuring the validity of our ε-strategy.
The algorithm was also tested for values of p near to 1, e.g. for p = .9. The results obtained
shows a less piecewise constant behaviour of the solution with respect to the ones for p = .5.
Finally, we remark that if we change the initialization (3.1), the method converges to the same
solution with no remarkable modifications in the number of iterations.

Table 1: Sparsity in a time-dependent control problem, p = .5, mesh size h = 1
50 . Results obtained

by Algorithm 1.

β 10−3 10−2 10−1 1

no. of iterates 630 635 29 19
|Du2|c0 97 99 100 100
|Du2|pp 158 16.7 6 ∗ 10−5 10−4

Residue 3 ∗ 10−3 2 ∗ 10−3 1.2 ∗ 10−3 2.5 ∗ 10−10

Sp 97 99 100 100

3.3 Quasi-static evolution of cohesive fracture models

In this section we focus on a modelling problem for quasi-static evolutions of cohesive fractures.
This kind of problems require the minimization of an energy functional, which has two com-
ponents: the elastic energy and the cohesive fracture energy. The underlying idea is that the
fracture energy is released gradually with the growth of the crack opening. The cohesive energy,
denoted by θ, is assumed to be a monotonic non-decreasing function of the jump amplitude of the
displacement, denoted by JuK. Cohesive energies were introduced independently by Dugdale [16]
and Barenblatt [3], we refer to [44] for more details on the models. Let us just remark that the
two models differ mainly in the evolution of the derivative θ′(JuK), that is, the bridging force,
across a crack amplitude JuK. In Dugdale’s model this force keeps a constant value up to a critical
value of the crack opening and then drops to zero. In Barenblatt’s model, the dependence of the
force on JuK is continuous and decreasing.
In this section we test the `p-term 0 < p < 1 as a model for the cohesive energy. In particular, the
cohesive energy is not differentiable in zero and the bridging force goes to infinity when the jump
amplitude goes to zero. Note also that the bridging force goes to zero when the jump amplitude
goes to infinity.
Let us introduce all the elements that we need for the rest of the section. We consider the one-
dimensional domain Ω = [0, 2l] with l > 0 and we denote by u : Ω → R the displacement
function. The deformation of the domain is given by an external force which we express in terms
of an external displacement function g : Ω × [0, T ] → R. We require that the displacement u
coincides with the external deformation, that is

u|∂Ω = g|∂Ω .

We denote by Γ the point of the (potential) crack, which we chose as the midpoint Γ = l and by
θ(JuK)Γ the value of the cohesive energy θ on the crack amplitude of the displacement JuK on Γ .
Since we are in a quasi-static setting, we introduce the time discretization 0 = t0 < t1 < · · · <
tT = T and look for the equilibrium configurations which are minimizers of the energy of the
system. This means that for each i ∈ {0, · · · , T} we need to minimize the energy of the system

J(u) =
1

2

∫
Ω\Γ
|∇u|2dx+ βθ(JuK)Γ
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with respect to a given boundary datum g:

u∗ ∈ argmin
u=g(ti) on ∂Ω

J(u),

where β > 0 in J(u) is a material parameter. In particular, we consider the following type of
cohesive energy

θ(JuK) = |JuK|p,
for p ∈ (0, 1). We divide Ω into 2N intervals and approximate the displacement function with a
function uh that is piecewise linear on Ω\Γ and has two degrees of freedom on Γ to represent
correctly the two lips of the fracture, denoting with u−N the degree on [0, l] and u+

N the one on
[l, 1]. We discretize the problem in the following way

Jh(uh) =
1

2

2N∑
i=1

N

l
|ui − ui−1|2 + β|JuN K|p, (3.6)

where if i ≤ N we identify uN = u−N while for i > N, uN = u+
N . We remark that the jump of

the displacement is not taken into account in the sum, and the gradient of u is approximated
with finite difference of first order. The Dirichlet condition is applied on ∂Ω = {0, 2l} and the
external displacememt is chosen as

u(0, t) = 0, u(2l, t) = 2lt.

To enforce the boundary condition in the minimization process, we add it to the energy functional
as a penalization term. Hence, we solve the following unconstrained minimization problem

min
N

2l
|Auh − g|22 + β|JuN K|p, (3.7)

where the operator A ∈ R(2N+1)×(2N+1) is given by

A =

[
D̄

0 · · · 0 γ

]
.

Here D̄ ∈ R2N×(2N+1) denotes the backward finite difference operator D : R2N+1 → R2N+1

without the N + 1 row, where D is defined in (3.5). Moreover g ∈ R2N+1 in (3.7) is given by g =
(0, · · · , γ2lti)

′ and γ is the penalization parameter. To compute the jump between the two lips of
the fracture, we introduce the operator Df : R2N+1 → R defined as Df = (0, · · · ,−1, 1, 0, · · · , 0)
where −1 and 1 are respectively in the N and N + 1 positions. Then we write the functional
(3.7) as follows

min
N

2l
|Auh − g|22 + β|Dfu|p, (3.8)

Note that KerA = 0, hence assumption (2.2) is satisfied and existence of a minimizer for (3.8)
is guaranteed.
Our numerical experiments were conducted with a discretization in 2N intervals with N = 100
and a prescribed potential crack Γ = 0.5. The time step in the time discretization of [0, T ] with
T = 3 is set to dt = 0.01. The parameters of the energy functional Jh(uh) are set to β = 1, γ = 50.
The parameter ε is decreased from 10−1 to 10−12.
In Figures 1 we report three time frames to represent the evolutions of the crack obtained with
Algorithm 1 for two different values of p, that is, p = .01, .1 respectively. Each time frame
consists of three different time steps (t1, t2, t3), where t2, t3 are chosen as the first instant where
the prefacture and the fracture appear. The evolution presents the three phases that we expect
from a cohesive fracture model:
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– Pure elastic deformation: in this case the jump amplitude is zero and the gradient of the
displacement is constant in Ω\Γ ;

– Prefracture: the two lips of the fracture do not touch each other, but they are not free to
move. The elastic energy is still present.

– Fracture: the two parts are free to move. In this final phase the gradient of the displacement
(and then the elastic energy) is zero.

Moreover we remark that the formation of the crack is anticipated for smaller values of p. As we
see in Figure 1, for p = .01 prefracture and fracture are reached at t = .3 and t = 1.5 respectively.
As p is increased to p = .1, prefracture and fracture occur at t = 1 and t = 3 respectively. Finally
we remark that in our experiments the residue is O(10−16) and the number of iterations is small,
e.g. 12, 15 for p = .01, .1 respectively.

(a) t = 0.2 (b) t = 0.3 (c) t = 1.5 (d) t = 0.9 (e) t = 1 (f) t = 3

Fig. 1: Three time-step evolution of the displacement for p = .01, t = .2, .3, 1.5 (left), p = .1,
t = .9, 1, 3 (right). Results obtained by Algorithm 1.

3.4 M-matrix

We consider

min
x∈Rn2

1

2
|Ax− b|22 + β|Λx|pp, (3.9)

where A is the backward finite difference gradient

A = (n+ 1)

(
G1

G2

)
, (3.10)

with G1 ∈ Rn(n+1)×n2

, G2 ∈ Rn(n+1)×n2

given by

G1 = I ⊗D, G2 = D ⊗ I.

Here I is the n×n identity matrix, ⊗ denotes the tensor product, and D ∈ R(n+1)×n is given by

D =


1 0 0 · · · 0
−1 1 0 · · · 0

0 · · · 0 −1 1
0 · · · 0 0 −1

 . (3.11)
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Then A∗A is an M matrix coinciding with the 5-point star discretization on a uniform mesh on a
square of the Laplacian with Dirichlet boundary conditions. Note that (3.9) can be equivalently
expressed as

min
x∈Rn×n

1

2
|Ax|22 − (x, f) + β|Λx|pp, (3.12)

where f = A∗b. If β = 0 this is the discretized variational form of the elliptic equation

−∆y = f in Ω, y = 0 on ∂Ω. (3.13)

For β > 0 the variational problem (3.12) gives a solution piecewise constant enhancing behaviour.
Our tests were conducted with f chosen as discretization of f = 10x1sin(5x2)cos(7x1) and

Λ = (n+ 1)

(
D1

D2

)
,

where D1 ∈ Rn2×n2

, D2 ∈ Rn2×n2

are defined as follows

D1 = I ⊗D, D2 = D ⊗ I, (3.14)

and D ∈ Rn×n is the backward difference operator defined in (3.11) without the n+ 1-row. The
parameter ε was initialized with 10−1 and decreased to 10−6.
In Tables 2 we show the performance of Algorithm 1 for p = .1, h = 1/64 as mesh size and
β incrementally increasing by factor of 10 from 10−4 to 10. In Figure 2 we report the graphics
of the solutions for different values of β between .01 and .3 where most changes occur in the
graphics.
We observe significant differences in the results with respect to different values of β. Consistently
with our expectations, |Λx|c0 increases with β (see the third row of Table 2). For example, for
β = 1, 10, we have |Λx|c0 = 7938, or equivalently, |Λx|0 = 0, that is, the solution to (3.12) is
constant. Moreover the fourth row shows that |Λx|pp decreases when β increases.
The fifth row exhibits the `∞ norm of the residue, which is O(10−4) for all the considered β.
We remark that the number of iterations is sensitive with respect to β, in particular it increases
when β is increasing from 10−4 to 10−1 and then it decreases significantly for β = 1, 10.
The algorithm was also tested for different values of p. The results obtained show dependence
on p, in particular |Λx|c0 decreases as p is increasing. For example, for p = .5 and β = .1 we have
|Λx|c0 = 188, |Λx|pp = 528.
In the sixth row of Table 2 we show the number of singular components of the vector Λx at the
end of the ε-path following scheme, that is, Sp := #{i | |(Λx)i| < ε}. For most values of β, we
note that Sp is comparable to |Λx|c0. This again confirms that the ε-strategy is effective.
Finally, we remark that if we modify the initialization (3.1), the method converges to the same
solution with no remarkable modifications in the number of iterations, which is a sign for the
global nature of the algorithm.

Remark 2 The algorithm was also tested in the following two particular cases: Λ = I, where I is
the identity matrix of size n2, and Λ = (n+ 1)D1, where D1 is as in (3.14).
In the case Λ = I the variational problem (3.12) for β > 0 gives a sparsity enhancing solution
for the elliptic equation (3.13), that is, the displacement y will be 0 when the forcing f is small.
Indeed, in this case we have sparsity of the solution increasing with β. Also, the residue is O(10−8)
and the number of iterations is considerably smaller than in the two matrix case.
For the case Λ = (n+ 1)D1 we show the graphics in Figure 3. Comparing the graphs for β = .3
in Figure 2 and Figure 3 we can find subdomains where the solution is only unidirectionally
piecewise constant in Figure 3 and piecewise constant in Figure 2. The number of iterations,
|Λx|c0, |Λx|pp and the residue are comparable to the ones of Table 2.
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Table 2: M -matrix example, Λ = (n+ 1)[D1;D2], p = .1, mesh size h = 1
64 . Results obtained by

Algorithm 1.

β 10−4 10−3 10−2 10−1 1 10

no. of iterates 1701 2469 3929 4254 14 7
|Λx|c0 16 103 791 5384 7938 7938
|Λx|pp 6 ∗ 103 5.8 ∗ 103 5 ∗ 103 2.4 ∗ 103 584 464
Residue 2.7 ∗ 10−7 5.5 ∗ 10−6 9 ∗ 10−5 9 ∗ 10−4 3 ∗ 10−12 2.7 ∗ 10−12

Sp 247 696 2097 5599 7938 7938

(a) β = 0.01 (b) β = 0.05 (c) β = 0.08

(d) β = 0.12 (e) β = 0.15 (f) β = 0.3

Fig. 2: Solution of the M-matrix problem, p = .1, Λ = (n+ 1)[D1;D2], mesh size h = 1
64 . Results

obtained by Algorithm 1.

(a) β = 0.01 (b) β = 0.1 (c) β = 0.3

Fig. 3: Solution of the M-matrix problem, p = .1, Λ = (n + 1)D1, mesh size h = 1
64 . Results

obtained by Algorithm 1.
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3.5 Elliptic control problem

We consider the following two dimensional control problem

inf
1

2
|y − yd|22 + β|∇u|pp, p ∈ (0, 1], (3.15)

where we minimize over u ∈ Lp(Ω) such that ∇u ∈ Lp(Ω), Ω is the unit square, yd ∈ L2(Ω) is
a given target function, and y ∈ L2(Ω) satisfies{

−∆y = u in Ω
y = 0 in ∂Ω.

(3.16)

We discretize (3.15) by the following 1
n -mesh size discretized minimization problem

min
u∈Rn2

1

2
|Eu− b|22 + β|Λu|pp, (3.17)

where E = (A∗A)−1, A is as in (3.10) (that is, A∗A is the 5-point star discretization on a uniform

mesh on a square of the Laplacian with Dirichlet boundary condition), Λ = (n+ 1)

(
D1

D2

)
is as

in subsection 3.4 and b is the discretized target function.
For numerical reasons, in order to avoid the inversion of the matrix A∗A we multiply the necessary
optimality condition (2.5) by (E−1)∗ and we get

Eu+ (E−1)∗Λ∗
βp

max(ε2−p, |y|2−p)
y1 = b, (3.18)

where y = Λu. We introduce
z = Eu, p = (Λ∗NΛ)u,

where we denote by N the diagonal matrix with i-entry (N)ii = βp
max(ε2−p,|yi|2−p) , i = 1, · · ·n2.

Since E−1 = A∗A, we can express (3.18) in the formA∗Az = u
A∗Ap = b− z
(Λ∗NΛ)u = p.

(3.19)

To solve (3.19) the following iteration procedure is used I 0 A∗A
0 Λ∗NkΛ −I

A∗A −I 0

 zk+1

uk+1

pk+1

 =

 b
0
0

 (3.20)

where we denote by Nk the diagonal matrix with i-entry (Nk)ii = βp
max(ε2−p,|yki |2−p)

for i =

1, · · · , n2 and yk = Λuk. Note that the system matrix (3.20) is symmetric.
In our tests the target b is chosen as the image through E of the linear interpolation inside
[.2, .8] × [.2, .8] \ [.3, .7] × [.3, .7] of the step function 1000χ[.3,.7]×[.3,.7]. The parameter ε was
initialized with 10−1 and decreased to 10−6.
In Table 3 we report the results of our test for h = 1

64 , p = .1 and β incrementally increasing by
factor of 10 from 10−3 to 1. As expected, when β increases, |Λu|c0 increases and |Λu|pp decreases.
In Figure 4 we show the graphics of the solution for different values of β, thus showing the
enhancing piecewise constant behaviour of the solution.
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Table 3: Sparsity in an elliptic control problem, p = .1, mesh size h = 1
64 . Results obtained by

Algorithm 1.

β 10−3 10−2 10−1 1

no. of iterates 102 119 5204 10440
|Λu|c0 799 1486 1673 2376
|Λu|pp 3.2 ∗ 104 2.6 ∗ 104 2.6 ∗ 104 1.2 ∗ 104

Residue 1.6 ∗ 10−5 2.4 ∗ 10−4 2 ∗ 10−3 7 ∗ 10−3

(a) β = 0.01 (b) β = 0.1 (c) β = 1

Fig. 4: Solution of the elliptic control problem, p = .1, mesh size h = 1
64 . Results obtained by

Algorithm 1.

From our tests we conclude that the monotone algorithm is reliable to find a solution of the
ε-regularized optimality condition (2.5) for a diverse spectrum of problems. It is also stable with
respect to the choice of initial conditions. According to the last rows of Tables 1, 2, 3 we have
that #{i | |(Λx)i| ≤ 10−10} is typically very close to the number of singular components at the
end of the ε-path following scheme. Depending on the choice of β the algorithm requires on the
order of O(102) to O(103) iterations to reach convergence. In the following sections we aim at
analysing an alternative algorithm for which the iteration number is smaller, despite the fact
that the convergence can be proved only in special cases.

4 The active set monotone algorithm for the optimality conditions

In the following we discuss an algorithm which aims at finding a solution of the original unreg-
ularized problem

min
x∈Rn

J(x) =
1

2
|Ax− b|22 + β|Λx|pp, (4.1)

where A ∈ Mm×n, b ∈ Rm, p ∈ (0, 1] and β ∈ R+ are as in Section 2 and Λ ∈ Mn×n is a regular
matrix. Existence for the problem (4.1) follows from Theorem 1.
First the necessary optimality conditions for problem (4.1) in the form of a complementary
systems are derived. Then an active-set strategy is proposed relying on the form of the optimality
condition. Convergence of the primal-dual active set strategy is proven in the case Λ = I. Finally,
the results of our numerical tests in two different situations are reported in Section 5.
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4.1 Necessary optimality conditions

For any matrix A ∈ Mm×n, we denote by Ai the i-th column of A. We have the following
necessary optimality conditions.

Theorem 3 Let x̄ be a global minimizer of (4.1) and denote ȳ = Λx̄. Then
A∗(Ax− b) + Λ∗λ = 0

(Λx̄)i = 0 if
∣∣∣|Ãi|2ȳi + λi

∣∣∣ < µi

|(Λx)i| > 0 and λi = βp(Λx̄)i
|(Λx̄)i|2−p if

∣∣∣|Ãi|2ȳi + λi

∣∣∣ > µi,

(4.2)

where Ã = AΛ−1, µi = β
1

2−p (2−p)(2(1−p))−
1−p
2−p |Ãi|

1− p
2−p

2 . If
∣∣∣|Ãi|2ȳi + λi

∣∣∣ = µi, then (Λx̄)i = 0

or (Λx̄)i =
(

2β(1−p)
|Ãi|22

) 1
2−p

sgn (|Ãi|2ȳi + λi).

Proof Note that if x̄ is a global minimizer of (4.1), then ȳ = Λx̄ is a global minimizer of

min
y∈Rn

1

2
|Ãy − b|22 + β|y|pp, (4.3)

where Ã = AΛ−1. Then, by the same arguments as in [27], Theorem 2.2 applied to the functional
(4.3), we get the following property of global minimizers{

ȳi = 0 if |(Ãi, fi)| < µi
|yi| > 0 and (Ãi, Ãȳ − b) + βpȳi

|ȳi|2−p = 0 if |(Ãi, fi)| > µi,
(4.4)

where fi = b−Ãy+Ãiȳi and µi = β
1

2−p (2−p)(2(1−p))−
1−p
2−p |Ãi|

1− p
2−p

2 . Moreover, if |(Ãi, fi)| = µi,

then ȳi = 0 or ȳi =
(

2β(1−p)
|Ãi|22

) 1
2−p

sgn ((Ãi, fi)). We introduce the multiplier λ and we write

(4.4) in the following way


Ã∗(Ãy − b) + λ = 0

ȳi = 0 if
∣∣∣|Ãi|2ȳi + λi

∣∣∣ < µi

|yi| > 0 and λi = βpȳi
|ȳi|2−p if

∣∣∣|Ãi|2ȳi + λi

∣∣∣ > µi.

(4.5)

Then the optimality conditions (4.2) follows from (4.5) with ȳ = Λx̄. The equality conditions
follow similarly by ȳ = Λx̄ and the first equation in (4.5).

Remark 3 We remark that Theorem 3 still hold when considering (4.1) in the infinite dimensional
sequence spaces `p in the case Λ = I.

Moreover, we have the following corollary, which can be proved as in [27], Corollary 2.1.

Corollary 1 If (Λx̄)i 6= 0, then |(Λx̄)i| ≥
(

2β(1−p)
|(AΛ−1)i|22

) 1
2−p

.
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4.2 The augmented Lagrangian formulation and the primal-dual active set strategy

The active set strategy can be motivated by the following augmented Lagrangian formulation
for problem (4.1). Let P be a nonnegative self-adjoint matrix P , satisfying

((ATA+ ηP )x, x) ≥ ξ|x|22 (4.6)

for some η, ξ > 0, independent of x ∈ Rn. We set

Bi = |(ĀΛ−1)i|22, where Ā =

(
A

(ηP )
1
2

)
, (4.7)

and let B denote the diagonal invertible operator with entries Bi. Thus, if A is nearly singular,
we use η > 0 and the functional η2 (x, Px) to regularize (4.1). Consider the associated augmented
Lagrangian functional

L(x, y, λ) =
1

2
|Ax− b|22 +

η

2
(Px, x) + β

n∑
i=1

|yi|p +

n∑
i=1

Bi
2
|yi − (Λx)i|2 + (λi, (Λx)i − yi).

Given x, λ, we first minimize the Lagrangian L coordinate-wise with respect to y. For this purpose
we consider

β|yi|p +
Bi
2
|yi − (Λx)i|2 − (λi, (Λx)i − yi)

= β|yi|p +
Bi
2

(
y2
i − 2yi

(
(Λx)i +

λi
Bi

))
+
Bi(Λx)2

i

2
+ λi(Λx)i

= β|yi|p +
Bi
2

[
yi −

(
(Λx)i +

λi
Bi

)]2

− Bi
2

[
(Λx)i +

λi
Bi

]2

+
Bi(Λx)2

i

2
+ λi(Λx)i

= β|yi|p +
1

2

[
B

1
2
i yi −

(
B

1
2
i (Λx)i +

λi

B
1
2
i

)]2

− λ2
i

2Bi
. (4.8)

Then, by Theorem 3, the Lagrangian L can be minimized coordinate-wise with respect to y by

considering the expressions β|yi|p + 1
2

[
B

1
2
i yi −

(
B

1
2
i (Λx)i + λi

B
1
2
i

)]2

to obtain

yi = Φ(x, λ)i =

{
|yi| > 0 and Biyi + βpyi

|yi|2−p = Bi(Λx)i + λi if |Bi(Λx)i + λi| > µi
0 otherwise,

(4.9)

where µi = β
1

2−p (2− p)(2(1− p))−
1−p
2−pB

1−p
2−p
i .

Given y, λ, we minimize L at x to obtain

A∗(Ax− b) + ηPx+ Λ∗B(Λx− y) + Λ∗λ = 0,

where B is the diagonal operator with entries Bi. Thus, the augmented Lagrangian method [28]
uses the updates:

A∗(Axn+1 − b) + ηPxn+1 + Λ∗B(Λxn+1 − yn) + Λ∗λn = 0,

yn+1 = Φ(xn+1, λn),

λn+1 = λn +B(Λxn+1 − yn+1).

(4.10)
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If it converges, i.e. xn → x, yn → Λxn and λn → λ, then
A∗(Ax− b) + ηPx+ Λ∗λ = 0,
(Λx)i = 0 if |Biyi + λi| ≤ µi,
|(Λx)i| > 0 and λi = βp(Λx)i

|(Λx)i|2−p , if |Biyi + λi| > µi,
(4.11)

which is the optimality condition for JP (x) = minx∈Rn
1
2 |Ax− b|

2
2 + β|Λx|pp + η

2 (x, Px).

Motivated by the form of the optimality conditions (4.11) obtained by the augmented La-
grangian formulation, we formulate a primal-dual active set strategy for the following system

A∗(Ax− b) + ηPx+ Λ∗λ = 0,
(Λx)i = 0 if |Biyi + λi| ≤ µi,
λi = βp(Λx)i

max(ε2−p,|(Λx)i|2−p|) , if |Biyi + λi| > µi,
(4.12)

where ε > 0 in the third equation is a fixed parameter enough small. Note that (4.12) coincides

with (4.11) for ε = 0. The scope of the parameter ε is to avoid the computation of βp(Λxn+1)i
|(Λxn+1)i|2−p)|

when (Λxn+1)i = 0, which could happen if xn+1 is far enough from a solution of the optimality
conditions.

Algorithm 2 Primal-dual active set strategy

1: Initialize λ0, x0. Set y0 = Λx0. Set n = 0.
2: repeat
3: Solve for (xn+1, λn+1)

A∗(Axn+1 − b) + ηPxn+1 + Λ∗λn+1 = 0, (4.13)

where

(Λxn+1)i = 0 if i ∈ {i : |Biyni + λni | ≤ µi} (4.14)

λn+1
i =

βp(Λxn+1)i

max(ε2−p, |(Λxn+1)i|2−p)
if i ∈ {i : |Biyni + λni | > µi}. (4.15)

4: Set yn+1 = Λxn+1, n = n+ 1.
5: until the stopping criterion is fulfilled.

Remark 4 Note that Bi has to be chosen exactly as in (4.7) in order to have the convergence of
the method to the optimality condition (4.2). In [36] an alternate direction method of multipliers
is proposed for problems as in (4.1) and the augmented Lagrangian formulation is considered with
a penalization term chosen ”large enough”. The convergence of the proposed alternate direction
method of multiplier is proved to a stationary point as defined in [36], equation 4. We deduce
that, due to the different choice in the penalization term, the stationary points considered in [36]
(to which the ADMM proposed in [36] is proved to converge) do not coincide with the stationary
points identified by our optimality condition (4.2). To make it evident, we propose to look at the
following 1-dimensional example. Suppose we want to minimize

1

2
|x− b|22 + β|x|pp (4.16)

for p ∈ (0, 1], β > 0. By Theorem 3, the optimality condition is{
x = 0 if b < µ
|x| > 0 and x− b+ βp x

|x|2−p = 0 if b > µ,
(4.17)
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where we denote µ := dβ,p and dβ,p = β
1

2−p (2− p)(2(1− p))−
1−p
2−p is given in (4.2). Consider for

c > 0 the augmented Lagrangian

L(x, y) =
1

2
|x− b|22 + β|y|p +

c

2
|x− y|22. (4.18)

Given y fixed, we minimize with respect to x to obtain

x− b+ c(x− y) = 0.

Then, given x fixed, we minimize with respect to y the expression β|y|p + c
2 |x− y|

2. By Theorem
3, we obtain {

y = 0 if cx < µc
c(y − x) + βp y

|y|2−p = 0 if cx > µc,
(4.19)

where µc = dβ,p
√
c

(2−2p)
2−p . Then we obtain the following optimality conditions

x− b+ c(x− y) = 0
y = 0 if cx < µc
c(y − x) + βp y

|y|2−p = 0 if cx > µc.
(4.20)

Note that if c > 1, then µ < µc. Then we consider µ < b < µc in the augmented Lagrangian
formulation (4.18) and we get that y = 0, x = b

1+c is a solution to (4.20) and we note that

(x, y)→ (0, 0) as c→ +∞.

On the contrary, since b > µ, we have that x = 0 is not a solution of (4.17). We remark that
considering a Lagrange multiplier in (4.18) leads to the same conclusion.

4.3 Convergence of the primal-dual active set strategy: case Λ = I

While the numerical performance of the primal-dual active set strategy proved to be very suc-
cessful, its convergence analysis is still a substantial challenge. Then we focus on the case Λ = I
for which we can give a sufficient condition for uniqueness of the solution to (4.12) and for con-
vergence. Moreover, the case Λ = I will be successfully tested in an image recontruction problem
in subsection 5.3.

Remark 5 We remark that the uniqueness and the convergence results, namely Theorem 4 and
Proposition 2, still hold when considering optimization of problems as (4.1) in the infinite di-
mensional sequence spaces `p.

Remark 6 Notice that the sequence {xn}n∈N is bounded uniformly in n. Indeed since (xn+1, λn+1) ≥
0 for all n, we have from the first equation in (4.12)

((A∗A+ ηP )xn+1, xn+1) ≤ (Axn+1, b),

which coupled with (4.6) gives
ξ|xn+1|2 ≤ ‖A‖2|b|2.

We denote M := ‖A‖2|b|2ξ−1, where ξ is defined in (4.6). Then

|xn+1|2 ≤M.
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4.3.1 Uniqueness

For any pair x, λ we define

I(x, λ) = {i : |Bixi + λi| > µi} and A(x, λ) = {i : |Bixi + λi| ≤ µi}

and we set
Q = A∗A+ ηP.

We denote for p ∈ (0, 1]

α :=
1− p
p− 2

≤ 0, γ =
1

p− 2
< 0, (4.21)

and we note that
α+ 1 = −γ. (4.22)

We will use the following diagonal dominance condition:

‖Bα(Q−B)Bγ |‖∞ ≤ ρ for some ρ ∈ (0, 1). (4.23)

Remark 7 In the case that Q is a diagonal matrix Q−B = 0 and (4.23) is trivially satisfied.

Remark 8 We observe that for p → 0, we have α = γ = − 1
2 . In particular (4.23) coincides with

the diagonal dominance condition considered in [27] to prove the convergence of the primal dual
active set strategy in the case p = 0.

We set the following notation which will be used for the rest of this section:

C = (2− p)(2(1− p))−
1−p
2−p , E = p‖Bα‖∞|x|∞, F = |x|∞‖B−γ‖∞. (4.24)

Under the diagonal dominance condition (4.23), we prove that, if x, λ is a solution to (4.12)
satisfying one of the following conditions

min
I(x,λ)

|Bα(λ+Bx)| ≥ (1 + δ)β−γC, (4.25)

max
A(x,λ)

|Bα(λ+Bx)| ≤ (1− δ)β−γC, (4.26)

for some δ > 0 large enough, then it is necessarely unique. Above minI(x,λ) |Bα(λ+Bx)| stands
for mini∈I(x,λ) |Bαi (λi + Bixi)|. Henceforth we refer to (4.25)-(4.26) as strictly complementary

condition. Note that µi = β−γCB−αi .
The precise statement of the uniqueness result is given in the following theorem. The proof is
inspired by [27], Theorem 5.1.

Theorem 4 (Uniqueness) Assume that (4.23) holds. Let C,E, F be defined as in (4.24) and α, γ
in (4.21). Then there exists at most one solution to (4.12) satisfying (4.25) for some δ > 0 large
enough and depedending on ε, ρ, β, α, γ, C,E, F (see Remark 9). An analogous statement holds
with (4.25) replaced by (4.26).

Remark 9 More precisely, it will be seen from the proof that δ in (4.25) has to satisfy

δ >
2ρ

1− ρ
(1 + β−αε

1
γEC−1) + β−αε

1
γEC−1 + βγFC−1 := δ̄, (4.27)

where we recall that −α ≥ 0 and γ < 0.
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Proof Assume that there exist two pairs x, λ and x̂, λ̂ satisfying (4.12) and (4.25). Then we have

Q(x− x̂) + λ− λ̂ = 0. (4.28)

Multiplying (4.28) by Bα and using (4.22), we have

B−γx+Bαλ− (B−γ x̂+Bαλ̂) = Bα(B −Q)BγB−γ(x− x̂). (4.29)

Case 1: First consider the case xi 6= 0 if and only if x̂i 6= 0. Then we find

λi =
βpxi

max(ε2−p, |xi|2−p)
, λ̂i =

βpx̂i
max(ε2−p, |x̂i|2−p)

. (4.30)

Equations (4.29) and (4.30) and the diagonal dominance condition (4.23) imply that

B−γi (xi − x̂i) +Bαi

(
βpxi

max(ε2−p, |xi|2−p)
− βpx̂i

max(ε2−p, |x̂i|2−p)

)
≤ ρ|B−γ(x− x̂)|∞

and hence we have

|B−γ(x− x̂)|∞ ≤
2βε

1
γE

1− ρ
, (4.31)

where E is defined in (4.24). Then by (4.22), (4.29), (4.23) and (4.31), we have for each i:

|Bαi (λi +Bixi)| − |Bαi (λ̂i +Bix̂i)| ≤ |Bαi (λi − λ̂i) +B−γi (xi − x̂i)|
≤ |Bα(λ− λ̂) +B−γ(x− x̂)|∞ = ‖Bα(B −Q)BγB−γ(x− x̂)‖∞

≤ ρ|B−γ(x− x̂)|∞ ≤
2ρβε

1
γE

1− ρ
. (4.32)

By (4.22) and the second equation in (4.30) we get

|Bαi (λ̂i +Bix̂i)| ≤ |Bαi λ̂i|+ |B
−γ
i x̂i| ≤ βε

1
γE + F, (4.33)

where E,F are defined in (4.24). From (4.32), (4.33) and (4.25) we deduce that

(1 + δ)β−γC − βε
1
γE − F ≤ 2ρβε

1
γE

1− ρ
,

hence

δ ≤ 2ρβ−αε
1
γEC−1

1− ρ
+ β−αε

1
γEC−1 + βγFC−1,

and for δ > 2ρβ−αε
1
γ EC−1

1−ρ + β−αε
1
γEC−1 + βγFC−1, we get a contradiction.

Case 2: Suppose there exists j such that sign|xj | 6= sign|x̂j |. Without loss of generality we can
assume that xj 6= 0 and x̂j = 0. Note that from the definition of the active set A and the last
equation in (4.12) we have

|Bαi λ̂i| ≤ β−γC if x̂i = 0, |Bαi λ̂i| ≤ βε
1
γE if x̂i 6= 0 (4.34)

and similarly

|Bαi λi| ≤ β−γC if xi = 0, |Bαi λi| ≤ βε
1
γE if xi 6= 0. (4.35)

Then by (4.29) and (4.23) we have

B−γi (xi − x̂i) ≤ Bαi (λ̂i − λi) + ρ|B−γ(x− x̂)|∞
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and by (4.34) and (4.35), we have

|B−γ(x− x̂)|∞ ≤
2(β−γC + βε

1
γE)

1− ρ
.

Then using again (4.29) for j chosen as above and proceeding as in (4.32), we get

|Bαj (λj −Bjxj)| − |Bαj (λ̂j −Bj x̂j)| ≤
2ρ(β−γC + βε

1
γE)

1− ρ
. (4.36)

By (4.36), (4.25) and the first equation in (4.34) we get

(1 + δ)β−γC − β−γC ≤ 2ρ(β−γC + βε
1
γE)

1− ρ

and hence we get a contradiction by taking δ > 2ρ
1−ρ (1+β−αε

1
γEC−1). The case maxA(x,λ) |Bα(λ+

Bx)| ≤ (1− δ)β−γC can be treated analogously.

4.3.2 Convergence: Diagonal dominant case

Here we give a sufficient condition for the convergence of the primal-dual active set method.
Following the ideas of [27] (in particular Proposition 5.1), we utilize the diagonal dominance
condition (4.23) and consider a solution x, λ to (4.12) which satisfies the strict complementary
condition. As such it is unique according to Theorem 4. We use the same notation as in subsection
4.3.1.

Proposition 2 Let C,E, F be defined as in (4.24) and α, γ as in (4.21). Suppose that (4.23)
holds. Let x̄, λ̄ be a solution to (4.12) satisfying the strict complementary condition (4.25)-(4.26),
for some δ large enough depending on ε, ρ, β, α, γ, C,E, F (see Remark 10). Then the sets

Sn =

{
i ∈ I(x̄, λ̄) : λni =

βpxni
max(ε2−p, |xni |2−p)

}
, T n = {i ∈ A(x̄, λ̄) : xni = 0}

are monotonically nondecreasing. As soon as Sn = Sn+1 and T n = T n+1, then for some n, we
have (xn, λn) = (x̄, λ̄).

Remark 10 More specifically, it will be seen from the proof that δ has to satisfy

δ >
ρ(2ρβγFC−1 + 2β−αEε

1
γC−1 + 1)

1− ρ
+ 3β−αEε

1
γC−1 + δ̄ := δ̃,

where δ̄ is defined in Remark 9.

Proof We divide the proof into three steps. In Step (i) we prove an estimate which will be used
throughout the rest of the proof, in Step (ii) we prove the monotonicity of Sn and T n and finally
in Step (iii) we conclude the proof of convergence.

Step (i) We have
Q(xn − x̄) + λn − λ̄ = 0. (4.37)

Multiplying (4.37) by Bα and using (4.22) we get

B−γ(xn − x̄) +Bα(λn − λ̄) = Bα(B −Q)BγB−γ(xn − x̄). (4.38)
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We consider separately the cases xni = 0, x̄i 6= 0, and xni 6= 0, x̄i 6= 0, and xni 6= 0, x̄i = 0. First
consider xni = 0, x̄i 6= 0. For two consecutives iterated we have

Q(xn − xn−1) + λn − λn−1 = 0

and thus, multiplying the equation by Bα and using (4.22), we get

Bα(λn +Bxn)−Bα(λn−1 +Bxn−1) = Bα(B −Q)BγB−γ(xn − xn−1). (4.39)

Since xni = 0, then |Bixn−1
i + λn−1

i | ≤ µi = β−γCB−αi , and by (4.39) and (4.23) we get

|Bαi λni | ≤ |[Bα(B −Q)BγB−γ(xn − xn−1)]i| + |Bαi (λn−1
i +Bix

n−1
i )|

≤ ρ|B−γ(xn − xn−1)|∞ + β−γC

≤ 2ρF + β−γC. (4.40)

Since x̄i 6= 0, by (4.12) we have

|Bαi λ̄i| ≤ βε
1
γE. (4.41)

By (4.38), (4.40), (4.41) and (4.23) we get

|B−γi (xni − x̄i)| ≤ 2ρF + β−γC + βε
1
γE + ρ|B−γ(xn − x̄)|∞. (4.42)

If xni 6= 0 and x̄i 6= 0, the update rule of the algorithm and (4.12) imply

|B−γi (xni − x̄i)| ≤ 2βε
1
γE + ρ|B−γ(xn − x̄)|∞. (4.43)

Similarly if xni 6= 0 and x̄i = 0, we get

|B−γi (xni − x̄i)| ≤ β−γC + βε
1
γE + ρ|B−γ(xn − x̄)|∞. (4.44)

Then by (4.42), (4.43) and (4.44), we have

|B−γi (xni − x̄i)| ≤ 2ρF + β−γC + 2βε
1
γE + ρ|B−γ(xn − x̄)|∞

and then

|B−γ(xn − x̄)|∞ ≤
2ρF + β−γC + 2βEε

1
γ

1− ρ
=

Ã

1− ρ
, (4.45)

where we denote Ã = 2ρF + β−γC + 2βε
1
γE.

Step (ii) Considering (4.38) on Sn =
{
λni =

βpxni
max(ε2−p,|xni |2−p) , λ̄i = βpx̄i

max(ε2−p,|x̄i|2−p)

}
, by (4.25)-

(4.26), the definition of Sn and (4.45), we get

max
Sn
|B−γi (xni − x̄i)| ≤ 2βε

1
γE + ρ|B−γ(xn − x̄)|∞ ≤ 2βEε

1
γ +

ρÃ

1− ρ
.

For i ∈ Sn, by the complementary condition |Bαi (λ̄i + Bix̄i)| > (1 + δ)β−γC, (4.22) and the
definition of Sn, we have

|B−γi x̄i| > (1 + δ)β−γC − βε
1
γE. (4.46)
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Then by (4.22), (4.46) and (4.45) we get

|Bαi (λni +Bix
n
i )| = |Bαi λni +B−γi xni | ≥ |B

−γ
i x̄i| − |Bαi

βpxni
max(ε2−p, |xni |2−p)

+B−γi (xni − x̄i)|

> (1 + δ)β−γC − 3βε
1
γE − ρÃ

1− ρ
.

Notice that by taking δ > 3β−αε
1
γEC−1 + ρÃβγC−1

1−ρ , we get

|Bαi (λni +Bix
n
i )| > β−γC.

Then by (4.15) we have λn+1
i =

βpxn+1
i

max(ε2−p,|xn+1
i |2−p)

, and i ∈ Sn+1 and Sn ⊆ Sn+1 follow.

For i ∈ T n by (4.38), (4.23) and (4.45) we have

|Bαi (λni − λ̄i)| ≤ ρ|B−γ(xn − x̄)|∞ ≤
ρÃ

1− ρ
, (4.47)

and then by the definition of T n, (4.47) and the strict complementary condition |Bαi λ̄i| ≤ (1 −
δ)β−γC, we get

|Bαi (λni +Bix
n
i )| = |Bαλni | ≤ |Bαi (λni − λ̄i)|+ |Bαi λ̄i| ≤

ρÃ

1− ρ
+ (1− δ)β−γC < β−γC,

where the last inequality holds by taking δ > ρÃβγC−1

1−ρ . Then for such δ we have

|Bαi (λni +Bix
n
i )| < β−γC

and hence xn+1
i = 0 and i ∈ T n+1. Thus T n ⊆ T n+1.

Step (iii) Assume Sn = Sn+1 ⊂ I(x̄, λ̄) and T n = T n+1 ⊂ A(x̄, λ̄) and

Sn ∪ T n ( I(x̄, λ̄) ∪ A(x̄, λ̄).

Assume i ∈ A(x̄, λ̄)\T n. Then

xn+1
i 6= 0, xni 6= 0, x̄i = 0, λn+1

i =
βpxn+1

i

max(ε2−p, |xn+1
i |2−p)

, λni =
βpxni

max(ε2−p, |xni |2−p)
.

(4.48)
By (4.38), the last equation in (4.48), the strict complementary condition |Bαi λ̄i| ≤ (1−δ)β−γC,
(4.23) and (4.45), we get

|B−γi (xni −x̄i)| ≤ βε
1
γE+(1−δ)β−γC+ρ|B−γ(xn−x̄)|∞ ≤ βε

1
γE+(1−δ)β−γC+

ρÃ

1− ρ
. (4.49)

The first and last equations in (4.48), (4.22) and the update rule of the algorithm imply

|B−γi xni | ≥ β−γC − βε
1
γE, (4.50)

Thus by (4.50), (4.49) and the third equation in (4.48) we have

β−γC − βε
1
γE ≤ βε

1
γE + (1− δ)β−γC +

ρÃ

1− ρ
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and we get a contradiction by taking δ > ρÃβγC−1

1−ρ + 2β−αε
1
γEC−1.

If i ∈ I(x̄, λ̄)\Sn, we have

λn+1
i 6= βpxn+1

i

max(ε2−p, |xn+1
i |2−p)

, λni 6=
βpxni

max(ε2−p, |xni |2−p)
, λ̄i =

βpx̄i
max(ε2−p, |xi|2−p)

, (4.51)

xn+1
i = 0, xni = 0, x̄i 6= 0. (4.52)

By the first equation in (4.51), the second in (4.52) and the update rule of the algorithm, we
have

|Bαi λni | ≤ β−γC, (4.53)

and by the strict complementary condition Bαi (λ̄i +Bix̄i) > β−γC, (4.22) and the last equation
in (4.51), we get

|B−γi x̄i| > (1 + δ)β−γC − βε
1
γE. (4.54)

By proceeding as in (4.49) and using (4.53), we have

|B−γi (xni − x̄i)| ≤ β−γC + βε
1
γE +

ρÃ

1− ρ

and by (4.54) we get

(1 + δ)β−γC < β−γC + 2βε
1
γE +

ρÃ

1− ρ
,

and we have a contradiction by taking δ > ρÃβγC−1

1−ρ + 2β−αε
1
γEC−1. Then Sn = I(x̄, λ̄). Once

the active set structure is determined the unique solution is determined by (4.13).

5 Active set monotone algorithm: numerical results

Here we describe the active set monotone scheme (see Algorithm 3) and discuss the numerical
results for two different test cases. The first one is the time-dependent control problem from
subsection 3.2, the second one is an example in microscopy image reconstruction. Typically
the active set monotone scheme requires fewer iterations and achieves a lower residue than the
monotone scheme of Section 2.

5.1 The numerical scheme

The proposed active set monotone algorithm consists of an outer loop based on the primal-dual
active set strategy and an inner loop which uses the monotone algorithm to solve the nonlinear
part of the optimality condition.
In order to achieve a better numerical performance, we write the optimality condition as explained
in the following. At each iteration of the active-set strategy (Algorithm 2) we solve the following
system in xn+1, λn+1

A∗(Axn+1 − b) + ηPxn+1 + Λ∗λn+1 = 0
(Λxn+1)i = 0 if i ∈ An
λn+1
i = βp(Λxn+1)i

max(ε2−p,|(Λxn+1)i|2−p) if i ∈ In,
(5.1)
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where An = {i : |Biyni + λni | ≤ µi} are the active indexes and In = Acn are the inactive ones.
We write (5.1) in the following form{

(A∗A+ Λ∗InN
n+1
In ΛIn + ηP )xn+1 + Λ∗Anλ

n+1
An = A∗b

ΛAnx
n+1 = 0

(5.2)

where Nn+1
In is the diagonal operator with i-entries (Nn+1

In )ii,i∈In = βp
max(ε2−p,|(Λxn+1)i∈In |2−p) and

ΛAn , ΛIn are the rows of Λ corresponding to the active and inactive indexes respectively.
In order to solve (5.2) we apply the following iterative procedure which is solved for xk+1,n+1, λk+1,n+1{

(A∗A+ Λ∗InN
k,n+1
In ΛIn + ηP )xk+1,n+1 + Λ∗Anλ

k+1,n+1
An = A∗b

ΛAnx
k+1,n+1 = 0

(5.3)

whereNk,n+1
In is the diagonal operator with i-entries (Nk,n+1

In )ii,i∈In = βp
max(ε2−p,|(Λxk,n+1)i∈In |2−p)

.

Remark 11 Note that the system matrix associated to (5.3) is symmetric.

The algorithm stops when the residue of (5.2) and (4.2) (for the inner and the outer cycle
respectively) is O(10−12) in the control problem and O(10−8) in the microscopy image example.
We remark that in our numerical tests we always took η = 0. The initialization x0, λ0 in the
outer cycle is chosen in the following way

x0 = (A∗A+ 2βΛ∗Λ)−1A∗b, λ0 = Λ−1A∗(b−Ax0). (5.4)

In particular λ0 is the solution of the first equation in (4.2) for x = x0. As in Section 3, for
some values of β the previous initialization is not suitable. Following the idea already used for
the monotone scheme, we successfully tested an analogous continuation strategy with respect to
increasing β-values.
In Algorithm 3 we jump out of at the inner loop in case of presence of singular components. We
recall that the singular components are those i such that |(Λx)i| < ε}, that is, the components
where the ε-regularization is most influential.

Algorithm 3 Active set monotone scheme

1: Initialize ε > 0, x0, λ0, y0 = Λx0. Set n = 0.
2: repeat {outer loop}
3: Let An = {i : |Biyni + λni | ≤ µi}, In = Acn. Initialize x0,n+1 = xn, λ0,n+1 = λn and y0,n+1 = Λx0,n. Set
k = 0.

4: repeat {inner loop}
5: Solve for xk+1,n+1, λk+1,n+1

An{
(A∗A+ Λ∗InN

k,n+1
In ΛIn + ηP )xk+1,n+1 + Λ∗Anλ

k+1,n+1
An = A∗b

ΛAnx
k+1,n+1 = 0

(5.5)

Set yk+1,n+1 = Λxk+1,n+1, λk+1,n+1
In =

βpy
k+1,n+1
In

max(ε2−p,|yk+1,n+1
In

|2−p)
.

6: If yk+1,n+1
In is a singular point, go to 9.

7: Set k = k + 1.
8: until the stopping criteria for the inner loop is fulfilled.
9: Set n = n+ 1;

10: until the stopping criteria for the outer loop is fulfilled.
11: Reduce ε and go to 3.
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In the case Λ coincides with the identity the system (5.1) can be written as{
xn+1
i = 0 if i ∈ An

(Ai, Ax
n+1 − b) + ηPijx

n+1
j +

βpxn+1
i

max(ε2−p,|xn+1
i |2−p)

= 0 if i ∈ In.
(5.6)

Note that in (5.6) we coupled the first and the third equation in (5.1) and we eliminated the dual
variable. The advantage is that now we solve the second equation in (5.6) only for the inactive
components xIn , solving a system of |In| equations, whereas in (5.5) we solve n+ |An| equations.
Finally we remark that in the case Λ coincides with the identity ε > 0 is fixed. In particular

ε = mini

(
2β(1−p)
|Ai|22

) 1
2−p

accordingly to the lower bound on the inactive components given by

Corollary 1.

5.2 Sparsity in a time-dependent control problem

We test the active set monotone algorithm on the time-dependent control problem described
in subsection 3.2, with the same discretization in space and time (∆x = ∆t = 1

50 ) and target
function b. Also the initialization of x and the ε-range are the same. In Tables 4 we report the
results of our tests for p = .1 and β incrementally increasing by factor of 10 from 10−3 to 1.
We report only the values for the second control u2 since the first control u1 is always zero. As
expected, |Du2|c0 increases and |Du2|pp decreases when β is increasing. Note that the number of
iterations of the inner and outer cycle are both small.
The algorithm was also tested for the same p as in subsection 3.2, that is p = .5, for the same
range of β as in Table 4. Comparing to the results achieved by Algorithm 1, we obtained the
same values for the `0-term for corresponding values of β and a considerably smaller residue
within a significantly fewer number of inner iterations.
Finally we note that if Λ = I the number of inner iterations is even smaller, that is, 6 on the
average.

Table 4: Sparsity in a time-dependent control problem, p = .1, mesh size h = 1
50 . Results obtained

by Algorithm 3.

β 10−3 10−2 10−1 1

no. of outer iter. 1 1 4 1
no. of inner iter. 20 20 30 20
|Du2|c0 95 95 98 100
|Du2|pp 18 17 14 0
Residue 10−15 10−15 10−14 10−16

5.3 Compressive sensing approach for microscopy image reconstruction

In this subsection we present an application of the active set monotone scheme to compressive
sensing for microscopy image reconstruction. We focus on the STORM (stochastic optical re-
construction microscopy) method, which is based on stochastically switching and high-precision
detection of single molecules to achieve an image resolution beyond the diffraction limit. The
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literature on the STORM has been intensively increasing, see e.g. [47], [5] [23], [25]. The STORM
reconstruction process consists in a series of imaging cycles. In each cycle only a fraction of the
fluorophores in the field of view are switched on (stochastically), such that each of the active
fluorophores is optically resolvable from the rest, allowing the position of these fluorophores to
be determined with high accuracy. Despite the advantage of obtaining sub-diffraction-limit spa-
tial resolution, in these single molecule detection-based techniques such as STORM, the time to
acquire a super-resolution image is limited by the maximum density of fluorescent emitters that
can be accurately localized per imaging frame, see e.g. [48], [33], [39]. In order to get at the same
time better resolution and higher emitter density per imaging frame, compressive sensing meth-
ods based on l1 techniques have been recently applied, see e.g. [53], [2], [21] and the references
therein. In the following, we propose a similar approach based on our lp with p < 1 methods. We
mention that lp with 0 < p ≤ 1 techniques based on a concave-convex regularizing procedure,
and hence different from ours, are used in [35].

To be more specific, each single frame reconstruction can be achieved by solving the following
constrained-minimization problem:

min
x∈Rn

|x|pp such that |Ax− b|2 ≤ ε, (5.7)

where p ∈ (0, 1], x is the up-sampled, reconstructed image, b is the experimentally observed image,
and A is the impulse reponse (of size m× n, where m and n are the numbers of pixels in b and
x, respectively). A is usually called the point spread function (PSF) and describes the response
of an imaging system to a point source or point object. The inequality constraint on the `2-norm
allows some inaccuracy in the image reconstruction to accommodate the statistical corruption
of the image by noise [53]. Solving problems as (5.7) is referred to as compressed sensing in the
literature of miscroscopy imaging. Indeed, in the basic compressed sensing problem, an under-
determined, sparse signal vector is reconstructed from a noisy measurement in a basis in which
the signal is not sparse. In the compressed sensing approach to microscopy image reconstruction,
the sparse basis is a high resolution grid, in which fluorophore locations are presented, while the
noisy measurement basis is the lower resolution camera pixels, on which fluorescence signal are
detected experimentally. In this framework, the optimally reconstructed image is the one that
contains the fewest number of fluorophores but reproduces the measured image on the camera
to a given accuracy (when convolved with the optical impulse reponse).
We reformulate problem (5.7) as:

min
x∈Rn

1

2
|Ax− b|22 + β|x|pp (5.8)

and we solve (5.8) by applying Algorithm 3. Note that we may consider (5.8) arising from (5.7)
with β related to the reciprocal of the Lagrange multiplier associated to the inequality constraint
|Ax− b|2 ≤ ε.
First we tested the procedure for same resolution images, in particular the conventional and the
true images are both 128 × 128 pixel images. Then the algorithm was tested in the case of a
16× 16 pixel conventional image and a 128× 128 true image. The values for the impulse reponse
A and the measured data b were chosen according to the literature, in particular A was taken
as the Gaussian PSF matrix with variance σ = 8 and size 3 × σ = 24, and b was simulated
by convolving the impulse reponse A with a random 0-1 mask over the image adding a white
random noise so that the signal to noise ratio is .01.
We carried out several tests with the same data for different values of p, β. We report only
our results for p = .1 and β = 10−6, β = 10−9 for the same and the different resolution case
respectively, since for these values the best reconstructions were achieved. The number of single
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frame reconstructions carried out to get the full reconstruction was 5, 10 for the same, different
resolution case, respectively.
In order to measure the performance of our algorithm, we plot a graphic of the average over six
recoveries of the location recovery and the exact recovery (up to a certain tolerance) against the
noise. Note that in compressed sensing these quantities are typically used as a measure of the
efficacy of the reconstruction method, see for example [17] (where, under certain conditions, a
linear decay with respect to the noise is proven) and [8].
The first test is carried out for a sparse 0-1 cross-like image. The STORM reconstructions are
presented in Figures 5, 6 for the same and different resolution case, respectively. In Figures 8 the
plots of the location and exact recovery are shown. Note that our algorithm can recover quite
well the location of the emitters. Also, the location and intensity of the emitters decay linearly
with respect to the noise level, in line with the result of [17]. In particular, for small noise both
the recoveries are very near to n2 = 16384, that is, the exact recovery is 16240, 16243 and the
location is 16384, 16360 for the same and the different resolution case, respectively. We observe
also that the values of the location recovery are higher than the exact recovery for small values
of the noise, as expected.
A second test on a non sparse standard phantom image is carried out. In Figure 7 we show the
reconstruction in the case of same resolution images. Note that a high percentage of emitters
is correctly localized and the boundaries of the image are well-recovered. Also in this case the
location and exact recoveries show a linear decay with respect to the noise.
In Tables 5, 6 we report the number of iterations needed for each single frame reconstruction. For
the cross image in the different resolution case (Table 5), the number of iterations is averagely
100, 164 for the outer cycle and inner cycle, respectively. Note that for the phantom in the same
resolution case (Table 6) the number of iterations is lower, that is averagely 7.2, 9.8 for the outer
cycle and inner cycle, respectively. The numbers of iterations for the cross image in case of same
resolution are comparable to the ones of Table 5. As shown in the third line of each tables, the
residue is always less than or equal to 10−8.
We compared our results with the ones obtained by the FISTA in the same situations and same
values of the parameters as described above. Figure 9 shows a comparison between the number
of surplus and missed emitters recovered (Error+, Error- respectively) by Algorithm 3 and
the FISTA in the case of the cross image and different resolution. We remark that the levels of
the location and exact recoveries achieved by the FISTA are lower than the ones obtained by
Algorithm 3, at least for values of the noise near .01. In particular, by the FISTA the Error+
is always above 410, whereas by Algorithm 3 is zero for small value of the noise. On the other
hand, FISTA is faster than our algorithm (as expected, since our algorithm solves a nonlinear
equation for each minimization problem.)

(a) Real distribution (b) Simulated single frame
image

(c) Single frame sparse re-
construction

(d) Full STORM sparse re-
construction

Fig. 5: A STORM reconstruction procedure, same resolution, p = .1, β = 10−6. Results obtained
by Algorithm 3.
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(a) Real distribution (b) Simulated single frame
image

(c) Single frame sparse re-
construction

(d) Full STORM sparse re-
construction

Fig. 6: A STORM reconstruction from a 16x16 pixel image, different resolution, p = .1, β = 10−9.
Results obtained by Algorithm 3.

(a) Real distribution (b) Simulated single frame
image

(c) Single frame sparse re-
construction

(d) Full STORM sparse re-
construction

Fig. 7: A STORM reconstruction procedure, same resolution, p = .1, β = 10−6. Results obtained
by Algorithm 3.

Table 5: Number of iterations and residue for the cross image (different res.), p = .1, β = 10−9.
Results obtained by Algorithm 3.

Frame 1 2 3 4 5 6 7 8 9 10

iterations outer 100 98 100 100 100 100 100 85 100 100
iterations inner 147 190 144 184 145 186 146 187 145 165
Residue 10−8 10−8 10−8 10−8 10−9 10−8 10−8 10−8 10−8 10−8

Table 6: Number of iterations for the phantom (same res.), p = .1, β = 10−6. Results obtained
by Algorithm 3.

Frame 1 2 3 4 5

iterations outer 6 11 7 6 6
iterations inner 9 14 12 7 7
Residue 10−8 10−10 10−12 10−8 10−8
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Fig. 8: Left: location recovery. Right: exact recovery. Cross image, different resolution, p = .1, β =
10−9. Results obtained by Algorithm 3.

(a) p = .1, β = 10−6 by Algorithm 3 (b) p = .1, β = 10−4 by FISTA

Fig. 9: Graphics of Error+ (surplus of emitters), Error- (missed emitters) against noise.
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