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Abstract: Nonsmooth nonconvex optimization problems are considered in infinite dimensional
sequence spaces `p with p ∈ (0, 1]. Our starting points are necessary optimality conditions in the
form of a complementary system and a monotonically convergent algorithm for a regularized
version of the original problem. We propose an algorithm for solving the necessary optimality
condition based on a combination of the monotone scheme and an active-set strategy. Numerical
results for different test cases are provided, e.g. for optimal control problems and microscopy
image reconstruction.
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1. INTRODUCTION

We consider the following nonconvex nonsmooth optimiza-
tion problem

min
x∈`p

J(x) =
1

2
|Ax− b|22 + β|x|pp, (1)

`p = {x ∈ `2 :
∑∞
k=1 |xk|p <∞}, p ∈ (0, 1] ,

|x|p =

( ∞∑
k=1

|xk|p
) 1

p

,

which is a norm if p = 1 and a quasi-norm for 0 < p < 1.
Optimization of `p-functionals as in (1) arises frequently in
sparse recovery as an efficient way to extract the essential
features of generalized solutions. In signal processing, espe-
cially compressed sensing (see Chartrand (2009), Nikolova
et al. (2008)), sparsity can be effectively utilized for data
acquisition, signal trasmission, storage and processing (see
e.g. Candes and Tao (2005)). Sparse recovery has attracted
increasing attention also in statistics as an efficient variable
selection tool (see Tibshirani (1996)). In image analysis `p-
functionals with p ∈ (0, 1) have recently been proposed as
nonconvex and nonsmooth extensions of the total general-
ized variation regularizer (see Hintermüller and Wu (2013),
Ochs et al. (2015) and the references therein). Also, the use
of `p-functionals with p ∈ (0, 1) is of particular importance
in fracture mechanics (see Pietro (2013)). The literature on
sparsity optimization problems as (1) is rapidly increasing,
here we mention also Bredies and Lorentz (2015), For-
nasier and Ward (2010), Li and Pong (2014), Jiao et al.
(Preprint 2013), Ramlau and Zarzer (2012).
In Ito and Kunisch (2014) existence for (1) is proven
and convenient necessary optimality conditions are given
(see Section 2). These conditions are of complementary
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type, such that they do not require the a-priori know-
ledge whether a specific coordinate of an optimal solution
is different from zero or not. Rather this distinction is
built into the optimality condition itself. Here we focus
on the development of a numerical scheme for solving the
above mentioned necessary optimality conditions. This is
an important issue in the study of problems as (1), since,
due to the behaviour of s ∈ R → |s|p ∈ R+ at s = 0,
problems (1) are nonsmooth and nonconvex, and hence
standard algorithms are not readily available. Our scheme
relies deeply on the particular form of the optimality con-
ditions, which allows us to develop an active-set strategy.
Then, the nonlinear equation satisfied by the non zero
components is solved through a monotonically convergent
iteration procedure. The monotone scheme and the active-
set monotone algorithm are presented in Section 3 and 4,
respectively.
The performance of the monotone active-set algorithm is
successfully tested in three different cases, the M -matrix
problem, a time-dependent optimal control example and
an application to microscopy image reconstruction (see
Section 5). The interest in the M -matrix problem is mainly
academical, since in this case convergence of the proposed
algorithm can readily be analyzed.
In the recent work Jiao et al. (Preprint 2013) a primal
dual active set strategy is proposed for problems similar
to (1), but, differently from our approach, no iteration
procedure is used to solve the nonlinear problem arising
at each iteration level of the active set scheme and no
monotonicity is investigated.
Concerning the general importance of `p-functionals with
p ∈ (0, 1), numerical experiments have shown that their
use can promote sparsity better than the `1-norm, allowing
possibly a smaller number of measurements in feature se-
lection and compressed sensing (see e.g. Chartrand (2009),
Nikolova et al. (2010)) and providing better edge preserva-
tion in total variation-based image (see e.g. Nikolova et al.



(2010), Roth and Black (2009)). Also, the use of noncon-
vex optimization can be considered from natural image
statistics (Huang and Mumford (1999)) and it appears to
be more robust with respect to heavy-tailed distributed
noise.
Finally, we remark that problems as (1) with an operator
inside the `p-term will be subject of future work.

2. NECESSARY OPTIMALITY CONDITIONS

We denote Ai = (A, ei), where ei is the sequence with 1
in the i-th coordinate and 0 otherwise. In Ito and Kunisch
(2014), Theorem 2.2, the following necessary optimality
conditions are proven.

Theorem 1. (Necessary optimality conditions). If x̄ is a
global minimizer of (1), then we have x̄i = 0 if |(Ai, fi)| < µi

(Ai, Ax̄− b) +
βpx̄i
|x̄i|2−p

= 0 if |(Ai, fi)| > µi,
(2)

where fi = b − Ax̄ + Aix̄i, µi = β
1

2−p (2 − p)(2(1 −
p))−

1−p
2−p |Ai|

1− p
2−p

2 .

If |(Ai, fi)| = µi, x̄i = 0 or x̄i =
(

2β(1−p)
|Ai|22

) 1
2−p

sgn((Ai, fi)).

Remark 2. (i) From Theorem 1 it follows that a mini-
mizer is not necessarily unique;

(ii) Condition (2) is of complementary type, separating
the active components of x̄ from the inactive by the
sign of |(Ai, fi)| − µi. In order to obtain (2) the
quadratic nature of the smooth term of the cost is
used.

Corollary 3. Let x̄ be a global minimizer of (1). Then

(i) lower bound on the inactive components:

If x̄i 6= 0, then |x̄i| ≥
(

2β(1−p)
|Ai|22

) 1
2−p

;

(ii) sparsity of the solution:

|{i : x̄i 6= 0}| ≤ |b|22

(
(2β)

2
p

supi∈N |Ai|22
(1− p)

) p
p−2

.

3. MONOTONE CONVERGENT SCHEME FOR A
REGULARIZED PROBLEM

Following Ito and Kunisch (2014), in order to overcome
the singularity of (|s|p)′ = ps

|s|2−p near s = 0, we consider

for ε > 0 the following regularized version of (1)

Jε(x) =
1

2
|Ax− b|22 + βΨε(|x|2), (3)

where ε > 0 and for t ≥ 0

Ψε(t) =

{ p

2

t

ε2−p
+ (1− p

2
)εp for 0 ≤ t ≤ ε2

t
p
2 for t ≥ ε2,

and Ψε(|x|2) is short for
∑∞
i=1 Ψε(|xi|2). Note that

Ψ′ε(t) =
p

2 max(ε2−p, t
2−p

2 )
, for t ≥ 0,

hence Ψ ∈ C1([0,∞),R).

The necessary optimality condition for Jε is given by

A∗Ax+
βp

max(ε2−p, |x|2−p)
x = A∗b, (4)

where the max-operation is interpreted coordinate wise. In
order to solve (4) we use the following iteration procedure:

A∗Axk+1 +
βp

max(ε2−p, |xk|2−p)
xk+1 = A∗b. (5)

In Ito and Kunisch (2014), Theorem 4.1, the following
convergence result is proven:

Theorem 4. For ε > 0 let {xk} be generated by (5). Then,
Jε(x

k) is strictly monotonically decreasing unless there
exists some k such that xk = xk+1 and xk satisfies the
necessary optimality condition (4). Moreover every weakly
convergent subsequence of xk, of which there exists at least
one, converges in `2 to a solution of (4).

Remark 5. We successfully tested the monotone conver-
gent algorithm in two different examples. The numeri-
cal strategy combines the iteration procedure (5) with
a continuation strategy with respect to ε, that is, ε is
incrementally decreased until the stopping critera to find
a solution of (4) are satisfied. The stopping critera depend
on the problem considered, in particular, in the M -matrix
example the algorithm stops when two consecutive iterates
coincide, in the control problem when the `∞ norm of the
residue of (4) is less than 10−8.
Our results show that the monotone algorithm is efficient
in computing a solution of the ε-reguralized optimality
condition (4). We remark that the value of the functional
for each iteration was checked to be monotonically decrea-
sing accordingly to Theorem 4.

4. THE ACTIVE-SET MONOTONE ALGORITHM

Note that the mononote algorithm presented in Section 3
depends on the regularization parameter ε. We developed
a second algorithm with the aim of taking into account
the ε-dependence and finding a solution of the original
necessary optimality condition (2). We remark that our
proposed algorithm, which we present in the following,
uses the monotone scheme inside.
For x ∈ Rn, A, f, µ defined as in Section 2, we denote by

A = {i s. t. |(Ai, fi)| < µi},

the active indexes and by I = Ac the inactive ones. For
ε > 0, x ∈ Rn, set S = {i : |xi| < ε}. We say that x is a
singular point if S 6= ∅.
The algorithm has an outer main cycle where the necessary
optimality condition (2) is solved by combining an active-
set strategy and the monotone algorithm. In particular,
the monotone scheme is used to solve in an inner cycle
the ε-approximate necessary optimality condition (4). The
stopping criteria depend on the specific problem conside-
red, for more details we refer to Section 5.



Algorithm 1 Active set monotone scheme

1: Set jmax, kmax, ε > 0, j = 0. Initialize x;
2: while j ≤ jmax do
3: xi = 0 for i ∈ Aj ; k = 0, x0 = xIj ;
4: while k ≤ kmax do
5: solve for xk+1

Ij

A∗IjAIjx
k+1
Ij +

βp

max(ε2−p, |xkIj |2−p)
xk+1
Ij = A∗Ij b;

6: if xk+1
Ij is a singular point, break;

7: if stopping criteria is satisfied, break;
8: otherwise k = k + 1;
9: end while

10: xIj = xk+1
Ij . If stopping criteria is satisfied, break;

11: otherwise j = j + 1.
12: end while

Remark 6. ε > 0 in Algorithm 1 is fixed and chosen as

ε = mini

(
2β(1−p)
|Ai|22

) 1
2−p

. This choice is made accordingly to

the lower bound on the inactive components established in
Corollary 3 (i).

Remark 7. Roughly speaking, singular points are those
points x where max{ε, |xi|} = ε for some i. The imple-
mentation of Algorithm 1 without step 6 shows that,
even though the number of these points is always low, the
existence of only a few of them could considerably increase
the residue of the necessary optimality condition (2).

5. NUMERICAL RESULTS

In this section we report the numerical results obtained
by testing Algorithm 1 in two different situations, the
M -matrix example and a control problem (subsections 5.1
and 5.2, respectively).
For both examples we tested the algorithm for different
values of p and by incrementally increasing β for each value
of p. Consistent with our expectation, in both examples we
find more sparsity for bigger values of β.
In subsection 5.3, we present an application of the algo-
rithm to an image reconstrunction problem in microscopy
imaging.
In the tables, outer it, inner it, |·|0, |·|2, Res are the number
of iterations in the outer and inner cycle, the number of
components bigger than 10−10, the euclidean norm and
the residue in the optimality condition (2), respectively.

5.1 M-matrix example

We consider

min
x∈Rn×n

1

2
|Ax− b|22 + β|x|p, (6)

A is the forward finite difference gradient

A =

(
G1

G2

)
,

with G1 ∈ Rn(n+1)×n2

, G2 ∈ Rn(n+1)×n2

as

G1 = I ⊗D, G2 = D ⊗ I,
I is the n × n identity matrix, ⊗ the tensor product,
D = (n+ 1)D̃, D̃ ∈ R(n+1)×n is


1 0 0 · · · 0
−1 1 0 · · · 0

0 · · · 0 −1 1
0 · · · 0 0 −1

 .

Then ATA is an M matrix coinciding with the 5-point
star discretization on a uniform mesh on a square of the
Laplacian with Dirichlet boundary conditions. Moreover
(6) can be equivalently expressed as

min
x∈Rn×n

1

2
|Ax|22 − (x, f) + β|x|p, (7)

where f = AT b. If β = 0 this is the discretized variational
form of the elliptic equation

−∆y = f in Ω, y = 0 on ∂Ω. (8)

For β > 0 the variational problem (7) gives a sparsity
enhancing solution for the elliptic equation (8), that is,
the displacement y will be 0 when the forcing f is small.
Our tests are conducted with f chosen as discretization
of f = 10x1sin(5x2)cos(7x1). The inizialization is chosen
as the solution of the corresponding non-sparse optimal
control problem.
We compute an approximate solution of the optimality
condition (2) of the original problem, and stop the algo-
rithm when two consecutive iterates coincide, i.e. a solu-
tion to the discrete optimality system is obtained.
Our tests were conducted for a n = 64 mesh for different
values of p, and β incrementally increasing from 10−4 to
10, see Table 1 and 2 for p = .5, p = .1 respectively. The
results show significant differences with respect to different
values of β for any fixed p, in particular, consistent with
our expectations, the sparsity of the solution increases with
β (see the third row of Tables 1, 2 and Figure 1). For
example, for β = 1 the solution to (7) is 0. Moreover, for
different p we find different levels of sparsity and values for
the `p-norm of the solution, thus showing sensitivity with
respect to p.
The second and third row show the number of iterations
of the outer and inner cycle, respectively. Note that the
number of iterations for the outer cycle is small. For the
inner cycle, we expect a bigger number of iterations, since
it requires to solve a nonlinear system by an iteration pro-
cedure. However, we see that the total number of iterations
decreases singificantly for smaller values of p and bigger
values of β and in these cases the total number of iterations
is small.
Finally, we remark that if we modify the inizialization, the
method converges to the same solution with no remarkable
modifications in the number of iterations.

Table 1. M -matrix example, p = .5, n = 64

β 0.0001 .01 .1 .5 1

outer it. 1 9 28 44 22
inner it. 51 107 218 136 1
|x|0 3969 3904 3264 761 0
|x|pp 464.17 457.96 379.53 92.69 0
Res. 10−13 10−13 10−13 10−13 0



Table 2. M -matrix example, p = .1, n = 64

β 0.0001 .01 .1 .5 1

outer it. 2 24 31 14 7
inner it. 51 51 51 1 1
|x|0 3948 3470 948 0 0
|x|pp 2500 2250 642.07 0 0
Res. 10−13 10−13 10−13 0 0

Fig. 1. M-matrix example, solution for p = .5, β = .1 (left),
p = .5, β = .5 (right)

5.2 Sparsity in a control problem

We consider the linear control system

d

dt
y(t) = Ay(t) +Bu(t), y(0) = 0,

that is,

y(T ) =

∫ T

0

eA(T−s)Bu(s)ds,

where the linear closed operator A generates a C0-
semigroup eAt, t ≥ 0 on the state space X. More spe-
cifically, we consider the one dimensional controlled heat
equation for y = y(t, x):

yt = yxx + b1(x)u1(t) + b2(x)u2(t), x ∈ (0, 1),

with homogeneous boundary conditions y(t, 0) = y(t, 1) =
0. The differential operator Ay = yxx is discretized in
space by the second order finite difference approximation
with n = 49 interior spatial nodes (∆x = 1

50 ). We use two
time dependent controls −→u = (u1, u2) with corresponding
spatial control distributions bi chosen as step functions:

b1(x) = χ(.2,.3), b2(x) = χ(.6,.7).

The control problem consists in finding the control func-
tion −→u that steers the state y(0) = 0 to a neighborhood
of the desired state yd at the terminal time T = 1. We
discretize the problem in time by the mid-point rule, i.e.,

Au =

m∑
k=1

eA(T−tk−∆t
2 )B−→uk∆t, (9)

where −→u ∈ R2m is a discretized control vector with coor-
dinates −→uk ∈ R2 representing the values at the mid-point
of the intervals (tk, tk+1). A uniform step-size ∆t = 1

50
(m = 50) is utilized. The solution of the control problem

is based on the sparsity formulation (1), where b is the
discretized target function chosen as the Gaussian distri-
bution yd(x) = 10exp(−314(x− .7)2)) centered at x = .7.
That is, we apply our algorithm for the discretized optimal
control problem in time and space where x from (1) is the
discretized control vector −→u ∈ R2m which is mapped by
A to the discretized output y at time 1 by means of (9).
Moreover b from (1) is the discretized state yd with respect
to the spatial grid ∆x.
Since the second control distribution is well within the
support of the desired state yd, we expect the authority of
this control to be stronger than that of the first one, which
is away from the target.
We compute an approximate solution of the optimality
condition (2) of the original problem, where by approxi-
mate we mean that the algorithm stops when the `∞ norm
of the residue in the optimality condition (2) is less than
10−9.
We refer to Table 3, 4, where we show the results for p = .1,
p = .01, respectively. Again the sparsity of the solution
increases with β, and as we expected, it increases much
faster on the first control u1 than the second. Note that
the number of iterations is small for each value of β and
considerably smaller than the number of iterations needed
in the M-matrix example.

Table 3. Sparsity in a control problem, p = .1

β 10−7 10−5 10−3 10−1 10

outer it. 7 7 8 3 2
inner it. 8 7 9 10 6
|x|0 17 17 7 4 1
|x|pp 153 133 30.1 8.5 1.87
Res. 10−9 10−10 10−12 10−9 10−10

Table 4. Sparsity in a control problem, p = .01

β 10−7 10−5 10−3 10−1 10

outer it. 4 6 6 5 2
inner it. 6 7 9 8 5
|x|0 35 23 9 7 2
|x|pp 42 28.2 10.6 8 2.1
Res. 10−9 10−10 10−11 10−11 10−10

5.3 Compressive sensing approach for microscopy image
reconstruction

Recently in microscopy imaging, single molecule detection-
based techniques have been more and more investigated in
order to go beyond the diffraction limit. We focus on the
STORM (stochastic optical reconstruction microscopy)
method, see Zhu et al. (2012), Babcock et al. (2013). In
STORM, the image reconstruction process consists in a
series of imaging cycles. In each of them only a fraction of
the fluorophores in the field of view are switched on, such
that each of the active fluorophores is optically resolvable
from the rest. Despite the advantage of obtaining sub-
diffraction-limit spatial resolution, the time to acquire a
super-resolution image is limited by the maximum density
of fluorescent emitters that can be accurately localized
per imaging frame. In order to get at the same time
better resolution and higher emitter density per imaging
frame, compressive sensing methods based on l1 techniques
have been recently applied, see for example in Zhu et al.



(2012), Babcock et al. (2013). In the following we test our
algorithm for lp, p < 1 functionals.
To be more specific, each single frame reconstruction
can be achieved by solving the following constrained-
minimization problem:

min
x∈Rn

|x|pp such that |Ax− b|2 ≤ ε, (10)

where p ∈ (0, 1), x is the up-sampled, reconstructed image,
b is the experimentally observed image, and A is the
impulse reponse (of size m × n, where m and n are the
numbers of pixels in b and x, respectively). A is usually
called the point spread function (PSF) and describes the
response of an imaging system to a point source or point
object.

Remark 8. Solving problems as (10) is denoted as com-
pressive sensing in the literature of miscroscopy imaging.
Indeed, in the compressive sensing approach to microscopy
image reconstruction, the sparse basis is a high resolu-
tion grid, in which fluorophore locations are presented-
effectively an up-sampled, reconstructed image-while the
noisy measurement basis is the lower resolution camera
pixels, on which fluorescence signal are detected experi-
mentally.

We reformulate problem (10) as:

min
x∈Rn

1

2
|Ax− b|22 + β|x|pp (11)

and we solve problem (11) by applying our algorithm.

Remark 9. We may consider (11) arising from (10) with β
the reciprocal of the Lagrange multiplier associated to the
inequality constraint |Ax− b|2 ≤ ε.

The algorithm was tested for different resolution images,
that is, with a 16 × 16 pixel conventional image and a
128× 128 true image. The values for the impulse reponse
A and the measured data b were chosen accordingly to the
literature, in particular A was taken as the Gaussian PSF
matrix with variance σ = 8 and size 3 × σ = 24, and b
was simulated by convolving the impulse reponse A with
a random 0-1 mask over the image adding a white random
noise so that the signal to noise ratio is .01.
In order to measure the performance of our algorithm, we
plot a graphic of the average over six recoveries of the
support recovery against the noise (see for example Duval
and Peyré (2015), Candes et al. (2006)). More specifically,
we show a plot of the location recovery, the exact recovery
(up to a certain tolerance) and the number of surplus and
missed emitters recovered (Error+, Error- respectively).
We show the graphics for a sparse 0-1 cross image of size
64 × 64 in Figure 2 (location and exact recovery) and
Figure 3 (Error+, Error-). Note that the values of the
Error+, Error- have to be compared to the total number
of emitters, which is 197. The algorithm also performed
well on non-sparse standard phantom images.
We remark that the locations and intensity of the emitters
decay linearly with respect to the noise level, in line with
the result of Duval and Peyré (2015). Note that for small
noise both the location recovery is near to n2 = 4096, e.g.
the (averaged) location recovery is 4087.3.
We compare our results with the one obtained by the
FISTA algorithm for the same problem (see Figure 4).
We remark that the levels of the location and exact
recoveries are lower than the ones recovered by the active-

set monotone scheme, at least for values of the noise
near .01. In particular, the Error+ (surplus emettitors) is
always above 190, whereas with the active-set monotone
scheme is zero for small value of the noise. On the other
hand, FISTA is faster than our algorithm (as expected,
since the active-set monotone scheme solves a nonlinear
equation for each minimization problem.)

Fig. 2. Location rec. (left), Exact rec. (right), active-set
monot., p = .1, β = 10−6

Fig. 3. Error+ (surplus of emettitors), Error- (missed
emettitors), active-set monot., p = .1, β = 10−6

Fig. 4. Error+ (surplus of emettitors), Error- (missed
emettitors), FISTA β = 10−6
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