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Abstract. Boundary feedback control for a coupled nonlinear PDE-ODE sys-
tem (in the two and three dimensional cases) is studied. Particular focus is put

on the monodomain equations arising in the context of cardiac electrophysiol-

ogy. Neumann as well as Dirichlet based boundary control laws are obtained
by an algebraic operator Riccati equation associated with the linearized sys-

tem. Local exponential stability of the nonlinear closed loop system is shown

by a fixed-point argument. Numerical examples are given for a finite element
discretization of the two dimensional monodomain equations.

1. Introduction. This paper is concerned with the problem of boundary feedback
stabilization for a coupled nonlinear reaction diffusion system. Both Neumann and
Dirichlet boundary control is studied. The dynamics of interest are described by
the so-called monodomain equations, a reasonably accurate simplification of the
bidomain equations (see, e.g., [23]) which are frequently used to model the electro-
physiological activity of the human heart. It is well-known that anomalous behavior
such as fibrillation processes can be recognized within the mathematical model in
the form of spiral or reentry waves. In this context, the clinical goal consists of a
successful termination of these waves by external stimuli, usually called defibrilla-
tion. In [9], we have shown that the monodomain equations can locally be stabilized
around a stationary solution by means of a state feedback law obtained from the
linearized system. In contrast to the setup considered therein, a more realistic sce-
nario assumes that the stimulating electrodes are situated at the boundary of the
domain. With this in mind, our goal is to extend the concepts from [9] to the case
of a boundary control. We further employ slightly different Lipschitz continuity
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estimates than the ones used in [9]. Proceeding this way, we are able to generalize
the local stabilization results for the nonlinear system to a broader class of initial
perturbations. Mathematically the monodomain equations are an evolution sys-
tem consisting of a diffusion equation with a polynomial, more specifically, cubic
nonlinearity coupled with an ordinary differential equation. Such systems play an
important role far beyond their use for the description of the electrical activity of
the heart. In fact, many models of this kind arise in cellular biology as described in
[19], for example. One such application area is the modeling of wave propagation in
excitable systems, as for instance nerve axons. They also arise in modeling chemical
reaction dynamics and are known there under the name of “Schlögl” model, see e.g.
[12, 28].

Thus, let us consider the following nonlinear reaction diffusion system

∂v

∂t
= ∆v − Iion(v, w) + fv in Ω× (0,∞),

∂w

∂t
= ιv − κw + fw in Ω× (0,∞),

θ
∂v

∂ν
= (θ − 1)v +mũ+ g on Γ× (0,∞),

v(x, 0) = v̄ + y0 and w(x, 0) = w̄ + z0 in Ω,

(1)

where Ω ⊂ Rn, n ∈ {2, 3} denotes a bounded open set with smooth boundary
Γ = ∂Ω and constants ι, κ > 0. The factor θ ∈ {0, 1} is used to model both the
Neumann and the Dirichlet boundary control setup, respectively. The nonlinearity
Iion(v, w) is assumed to be of FitzHugh-Nagumo type, i.e.

Iion(v, w) = av3 − bv2 + cv + dw, (2)

with a, b, c, d ∈ R+. Here, fv, fw and g are external forcing functions and (v̄, w̄) ∈
H3(Ω)× L∞(Ω), s > 0 denotes a stationary solution to

0 = ∆v̄ − Iion(v̄, w̄) + fv in Ω

0 = ιv̄ − κw̄ + fw in Ω

θ
∂v̄

∂ν
= (θ − 1)v̄ + g on Γ.

(3)

The function m is assumed to localize the control in a part of the boundary Γ. For
the precise assumptions on m, we follow the setup from [29]. In particular, if Γ is
of class C3, we assume that m ∈ C2(Γ),m ≥ 0 and m(x) = 1, x ∈ Γc, where Γc
denotes an open control subset in Γ.

Similar to [9], we want to find a control input function u ∈ L2(0,∞;L2(Γ)) such
that the solution (v, w) to (1) locally decays exponentially, i.e., provided the initial
perturbation y0 = (y0, z0) is small in an appropriate sense. For 0 ≤ σ < κ, let us
introduce y = (y, z) := (eσt(v − v̄), eσt(w − w̄)), u = eσtũ and focus on

∂y

∂t
= ∆y + α(x)y − dz − ae−2σty3 + (b− 3av̄)e−σty2 in Ω× (0,∞),

∂z

∂t
= ιy − (κ− σ)z in Ω× (0,∞),

θ
∂y

∂ν
= (θ − 1)y +mu on Γ× (0,∞),

y(x, 0) = y0 and z(x, 0) = z0 in Ω,

(4)
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where α(x) = −3av̄2 + 2bv̄ − c + σ. Instead of the stabilization of (1) around a
solution of (3), we rather consider the stabilization of (4) around zero. The strategy
discussed in the following is based on a linear quadratic infinite horizon optimal
control problem for the linearized system and has been successfully employed for
many different systems, see, e.g., [3, 4, 6, 25, 29]. In particular, for the linearized
system, we closely follow the abstract Riccati theory for boundary control systems
as presented in [2, 21].

The structure of the paper is as follows. In Section 2 we study the case of a
Neumann boundary control together with a partial Dirichlet boundary observation.
Based on the general results from [21, Chapter 2] and [2], we analyze the effect of
a Riccati-based feedback approach obtained for the linearized system when used in
the full nonlinear setting. In particular, we slightly extend the Lipschitz continuity
estimates from [9]. This will lead to a local stabilization result (in the two and
three dimensional cases) for initial perturbations y0 ∈ Hε(Ω) × L2(Ω), ε ∈

(
1
2 , 1
]
.

In Section 3 we investigate the possibility of using a Dirichlet boundary control.
Similar to [25, 29], for ε ∈

(
0, 1

2

)
we first have to show that the involved Riccati

operator Π satisfies Π ∈ L(Hε(Ω)× L2(Ω), Hε+2(Ω)× L2(Ω)). As a result, in the
two dimensional case, for ε ∈

(
0, 1

2

)
, we obtain a local stabilization result for the

nonlinear system provided the initial perturbation y0 ∈ Hε(Ω) × L2(Ω) is small
enough. In Section 4 we illustrate some of the theoretical results in a numerical
setup. We conclude with a short summary of our contributions in Section 5.

Notation. For p ≥ 1 and s ≥ 0, we denote by Lp(Ω) and Hs(Ω) the usual

Lebesgue and Sobolev spaces. We define Hs
ν(Ω) :=

{
y ∈ C∞(Ω)

∣∣∣ ∂y∂ν = 0 on Γ
}
,

where C∞(Ω) denotes the space of infinitely differentiable functions in Ω and where
the closure is taken with respect to the ‖y‖Hs(Ω), s ≥ 0, norm. For s > 3

2 , we have

Hs
ν(Ω) =

{
y ∈ Hs(Ω)

∣∣∣ ∂y∂ν = 0 on Γ
}

and for s ∈ [0, 3
2 ), we have Hs

ν(Ω) = Hs(Ω),

see, e.g., [8, Section II-1]. Furthermore, we set Hs
0(Ω) = {y ∈ C∞0 (Ω)}, where the

closure is taken with respect to the ‖y‖Hs(Ω), s ≥ 0, norm. For s > 1
2 , we have that

Hs
0(Ω) = {y ∈ Hs(Ω) |y = 0 on Γ} . Given p ≥ 1, an interval I ⊂ R and a Hilbert

space X, we denote with Lp(I;X) (Bochner) p-integrable functions on I with values
in X. We define the space

W (0, T ; X,Y) :=

{
y ∈ L2(0, T ; X)

∣∣∣∣dy

dt
∈ L2(0, T ; Y)

}
.

For Q∞ = Ω × (0,∞) and r ≥ 0, s ≥ 0 we define the anisotropic Sobolev spaces
Hr,s(Q∞) by

Hr,s(Q∞) = L2(0,∞;Hr(Ω)) ∩Hs(0,∞;L2(Ω)).

Similar, we use Σ∞. We further use L2(Ω) instead of L2(Ω)× L2(Ω) and define

Hr,s(Q∞) :=
(
L2(0,∞;Hr(Ω)) ∩Hs(0,∞;L2(Ω))

)2
.

In more general, boldface letters are always associated with the PDE-ODE system
while italic letters refer to either the PDE or the ODE part. Let X and Y denote
Hilbert spaces. For a closed densely defined linear operator A : D(A) ⊂ Y → Y,
the resolvent set of A is denoted by ρ(A). Given its infinitesimal generator A with
eAt we denote the associated semigroup. For the definition and calculus involving
interpolation spaces [X,Y]θ, we refer to e.g. [8, 22, 30]. By C,C1 and C2 we denote
generic constants that may vary throughout consecutive calculations.
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2. Neumann boundary control. We start with the linearization of (4) for θ = 1.
Hence, let us consider

∂y

∂t
= ∆y + α(x)y − dz in Ω× (0,∞),

∂z

∂t
= ιy − (κ− σ)z in Ω× (0,∞),

∂y

∂ν
= mu on Γ× (0,∞),

y(x, 0) = y0 and z(x, 0) = z0 in Ω,

(5)

as a boundary control system as described in, e.g., [8, 21, 31]. For this purpose, we
introduce the operators (A,D(A)) and (A∗,D(A∗)) with

Ay =

(
∆y + α(x)y − dz
ιy − (κ− σ)z

)
, D(A) = H2

ν (Ω)× L2(Ω),

A∗y =

(
∆y + α(x)y + ιz
−dy − (κ− σ)z

)
, D(A∗) = D(A).

(6)

For the rest of this section, let λ0 ∈ ρ(A) be such that Â := λ0I −A with D(Â) =
D(A) satisfies (

Ây,y
)

L2(Ω)
≥ ‖y‖2H1(Ω)×L2(Ω) for all y ∈ D(A),(

Â∗y,y
)

L2(Ω)
≥ ‖y‖2H1(Ω)×L2(Ω) for all y ∈ D(A∗).

As a consequence, −Â generates an analytic exponentially stable semigroup on

Y = L2(Ω) and, additionally, its fractional powers Âγ (see [24]) are well-defined.
Further, we introduce the Neumann map NÂ by NÂu = y iff

λ0y −∆y − α(x)y + dz = 0 in Ω,
∂y

∂ν
= u on Γ,

λ0z − ιy + (κ− σ)z = 0 in Ω.
(7)

By explicitly solving the second equation in (7) for z, we equivalently obtain

λ0y −∆y − α(x)y +
dι

λ0 + κ− σy = 0 in Ω,
∂y

∂ν
= u on Γ.

Recall that by assumption v̄ ∈ H3(Ω) which for n = 2, 3 implies that v̄2 ∈ H3(Ω),
see, e.g., [18, Proposition B.1]. Hence, α ∈ H3(Ω) and with [1, Theorem 4.12], we
obtain that α ∈ C1

b (Ω). From [17, Theorem 2.4.2.7/Remark 2.5.1.2], it thus follows
that

NÂ : continuous Hs(Γ)→ Hs+ 3
2 (Ω), 0 ≤ s ≤ 3

2
. (8)

In particular, for s = 0 let us emphasize that

NÂ : continuous L2(Γ)→ H
3
2 (Ω) ⊂ H 3

2−2ε(Ω)× L2(Ω) = D(Â
3
4−ε), ε > 0. (9)

We now may rewrite the linearized system as a boundary control system of the
form

d

dt
y(t) = Ay(t) + BMu(t), y0 =

(
y0

z0

)
, (10)

where B = ÂNÂ ∈ L(L2(Γ), [D(A∗)]′) and M is the multiplication operator asso-
ciated with m.
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Lemma 2.1. For all p = (p, q) ∈ D(A∗), it holds that

B∗p = N∗
Â

Â∗p = p|Γ. (11)

For p ∈ H 1
2 +s(Ω)× L2(Ω), s > 0, it further holds

‖B∗p‖Hs(Γ) ≤ C‖p‖H 1
2

+s(Ω)×L2(Ω)
.

Proof. Assume that p ∈ D(A∗) and u ∈ L2(Γ). With y = (y, z) let us denote
NÂu = y. We then have

(Bu,p)[D(A∗)]′,D(A∗) =
(
NÂu, Â

∗p
)

L2(Ω)
=
(
y, Â∗p

)
L2(Ω)

= (y, λ0p−∆p− α(x)p− ιq)L2(Ω) + (z, λ0q + (κ− σ)q + dp)L2(Ω)

= (λ0y −∆y − α(x)y + dz, p)L2(Ω) + (λ0z − ιy + (κ− σ)z, q)L2(Ω)

−
(
y,
∂p

∂ν

)
L2(Γ)

+

(
∂y

∂ν
, p

)
L2(Γ)

.

By (7) and the fact that p ∈ D(A∗), we thus obtain

(Bu,p)[D(A∗)]′,D(A∗) = (u, p)L2(Γ) = (u,B∗p)L2(Γ).

Finally, note that (9) implies that

Â−γB = Â1−γNÂ ∈ L(L2(Γ),Y), γ =
1

4
+ ε, ε > 0. (12)

2.1. Existing Riccati theory for the linearized system. With system (5), we
associate the following cost functional

J (u,y) =

∫ ∞
0

(∥∥∥M̃Cy(t)
∥∥∥2

L2(Γ)
+ ‖u(t)‖2L2(Γ)

)
dt

=

∫ ∞
0

(∥∥∥M̃Cy(t)
∥∥∥2

L2(Γ)
+ ‖u(t)‖2L2(Γ)

)
dt,

(13)

where the multiplication operator M̃ denotes the observable part of y on the bound-
ary Γ and Cy = Cy where C : H

1
2 +s(Ω) → L2(Γ), s > 0, is the Dirichlet trace

operator Cy = y|Γ. Based on the results in [2, 21], our goal now is to find u in
feedback form such that the cost functional (13) is minimized. We therefore make
the following hypotheses which we also comment on subsequently:

(H1) A is the infinitesimal generator of a strongly continuous analytic semigroup
on Y := L2(Ω).

(H2) Â−γBM ∈ L(U,Y), U := L2(Γ), for some fixed constant γ, 0 ≤ γ < 1.

(H3) M̃C ∈ L(D(Âδ), Z), Z := L2(Γ), for some fixed 0 < δ < min{1− γ, 1
2}.

(H4) For each y0 ∈ Y, there exists u ∈ L2(0,∞;U) such that the corresponding

solution y satisfies M̃Cy ∈ L2(0,∞;Z) so that J (u,y) <∞.
(H5) There exists an operator K ∈ L(Z,D(Âδ)), such that the strongly contin-

uous analytic semigroup e(A+KM̃C)t on D(Âδ), generated by A + KM̃C is
exponentially stable.
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As we have shown in [9, Lemma 3.1], A indeed is the infinitesimal generator of a
strongly continuous analytic semigroup on Y. Hence, (H1) is satisfied. From (12),
it follows that (H2) holds for U = L2(Γ) and

1

4
< γ < 1. (14)

Lemma 2.1 implies that C = B∗ and M̃C ∈ L(D(Âδ), Z) for

1

4
< δ < min

{
1− γ, 1

2

}
(15)

such that (H3) is satisfied. From now on, let us fix 1
4 < δ < 3

8 . It remains to show
the validity of (H4) and (H5). For this, we may follow the strategy used in [9] and
first consider the decoupled problem

∂ỹ

∂t
= ∆ỹ + α(x)ỹ + ωỹ in Ω× (0,∞),

∂ỹ

∂ν
= mu on Γ× (0,∞),

ỹ(x, 0) = y0,

(16)

where ω > 0, together with the cost functional

J(u, ỹ) =

∫ ∞
0

(
‖ỹ(t)‖2L2(Ω) + ‖u(t)‖2L2(Γ)

)
dt, (17)

which is finite for ỹ ∈ L2(Q∞) and u ∈ L2(Σ∞). Using available null controllabil-
ity results from [15, Theorem 2] and a well-known extension argument (see, e.g.,
[16, Theorem 2.3]) we particularly conclude that for each y0 ∈ L2(Ω) there ex-
ists u ∈ L2(Σ∞) such that the corresponding solution ỹ satisfies ỹ ∈ L2(Q∞) so
that J(u, ỹ) < ∞. In other words, the decoupled system (16) is stabilizable. As
a consequence, there exists a linear feedback operator K ∈ L(L2(Ω), L2(Γ)) such
that the decoupled closed-loop operator A := ∆ + α + ω + BK generates an ex-
ponentially stable semigroup on L2(Ω). According to [9, Lemma 3.2], if we choose
ω = ε + ιd

(κ−σ)−ε , 0 < ε < κ − σ, by means of a Schur-complement type argument,

one can show that all eigenvalues of the operator(
∆ + α+ ε+BK −d

ι −(κ− σ − ε)

)
=

(
∆ + α+BK −d

ι −(κ− σ)

)
+ εI

are located in the open left complex half plane. This implies that the coupled
system (5) is in fact ε-stabilizable and assumption (H4) is fulfilled. Finally, the

detectability condition (H5) of the pair (A, M̃C) is equivalent to the stabilizability

of the pair (A∗,C∗M̃). Since we already know that B = C∗, the arguments provided
for (H4) apply here as well and imply (H5). In summary, all of the assumptions
(H1)-(H5) are indeed fulfilled for the monodomain equations and we can use the
results from [21, Section 2.5] that guarantee the existence of a unique nonnegative
self-adjoint solution Π = Π∗ ∈ L(Y) to the algebraic Riccati equation for all

z1, z2 ∈ D(Âδ+s), s > 0 :

(A∗Πz1, z2)Y + (ΠAz1, z2)Y +
(
M̃Cz1, M̃Cz2

)
Z

= (MB∗Πz1,MB∗Πz2)U .

Additionally, by [21, Theorem 2.5.2], it holds that

(Â∗)γΠÂ−δ ∈ L(Y), B∗Π ∈ L(D(Âδ), U) (18)
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and (AΠ,D(AΠ)), where AΠ = A−BM2B∗Π, is the infinitesimal generator of a

strongly continuous semigroup exponentially stable on D(Âδ). In [21, Section 2.5],
these results are actually derived by a change of variables

B̄M ≡ ÂδBM : continuous U → (D(Â∗)1+δ)′,

Â−γ̄B̄M = Â−(γ̄−δ)BM = Â−γBM ∈ L(U,Y), γ̄ = γ + δ < 1,

M̃C̄ ≡ M̃CÂ−δ ∈ L(Y, Z)

(19)

for the transformed system

d

dt
ȳ = Aȳ + B̄Mu, ȳ(0) = ȳ0, (20)

where ȳ = Âδy and the modified cost functional

J̄(u, ȳ0) =

∫ ∞
0

(∥∥∥M̃C̄ȳ(t)
∥∥∥2

Z
+ ‖u(t)‖2U

)
dt.

In particular, for the corresponding Riccati operator Π̄ it is shown that

MB̄∗Π̄ ∈ L(Y, U), (Â∗)θΠ̄ ∈ L(Y), 0 ≤ θ < 1 (21)

and that the semigroup generated by AΠ̄ = A− B̄M2B̄∗Π̄ is exponentially stable
on Y, i.e., ∥∥eAΠ̄t

∥∥
L(Y)

≤ CAΠ̄
e−ωAΠ̄

t,

with constants CAΠ̄
≥ 1 and ωAΠ̄

> 0, see [21, Theorem 2.5.1/2.5.2]. Moreover, we
have the relation

AΠ = A−BM2B∗Π = Â−δAΠ̄Âδ. (22)

2.2. The nonhomogeneous linear system. Before we turn to the nonlinear set-
ting, we first consider the nonhomogeneous equation

d

dt
y = AΠy + f = (Â−δAΠ̄Âδ)y + f , y(0) = y0, (23)

with f =

(
f1

0

)
. For what follows, we cite a general result concerning the maximal

regularity of the nonhomogeneous system (23).

Theorem 2.2. ([8, Chapter 3, Theorem 2.2]) Let Y be a Hilbert space and suppose
that A is the infinitesimal generator of an analytic semigroup of negative type on
Y. Then, for all 0 ≤ α ≤ 1, the mapping

h : y 7→
(

d

dt
y −Ay,y(0)

)
W (0,∞; [D(A),Y]α, [D(A∗),Y]′1−α)

→ L2(0,∞; [D(A∗),Y]′1−α)× [[D(A),Y]α, [D(A∗),Y]′1−α] 1
2

is an isomorphism.

The idea now is to apply this isomorphism to the (transformed) system (23)
associated with AΠ̄. In particular, for AΠ̄, we have to characterize the interpolation

spaces [D(AΠ̄),Y]α and [D(A∗
Π̄

),Y]′1−α. As pointed out in [2], the fact that Â
has bounded imaginary powers together with the perturbation results from [14,
Proposition 2.7] allows us to conclude that AΠ̄ has bounded imaginary powers.
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According to [30, Theorem 1.15.3] we thus have that [D(AΠ̄),Y]α = D(A1−α
Π̄

).

Furthermore, since Π̄B̄M2B̄∗ is A∗-bounded, we obtain that D(A∗
Π̄

) = D(Â∗).

Hence, it follows that [D(A∗
Π̄

),Y]′1−α = [D((Â∗)α)]′. Following [2], let us then
introduce Hs

Π̄
:= D(As

Π̄
) and recall from [2] the characterization of Hs

Π̄
:

Hs
Π̄ =

{{
y ∈ L2(Ω) |y + Â−1B̄M2B̄∗Π̄y ∈ D(Âs)

}
if s ∈ [0, 1],

[D((Â∗)−s)]′ if s ∈ [−1, 0].
(24)

In summary, Theorem 2.2 implies that

h : W (0,∞;H
r+ 1

2

Π̄
, H

r− 1
2

Π̄
)→ L2(0,∞;H

r− 1
2

Π̄
)×Hr

Π̄ (25)

is an isomorphism. Note that for a result like (25), in [2, Corollary 2] the author

assumes that C̄ satisfies C̄∗C̄ ∈ L(D((Â∗)
1
2 ),D(Â

1
2 )) which does not hold in our

case. Before we proceed with system (23), we give a more precise characterization
of Hs

Π̄
, see also [2, Section 3/4] for the corresponding results in the context of the

Navier-Stokes equations.

Proposition 1. For s ∈ [0, 3
4 ) it holds that Hs

Π̄
= H2s(Ω)× L2(Ω). Moreover, for

ε ∈ ( 1
2 , 1] it holds that

Âδy ∈ H
1+ε

2 −δ
Π̄

⇔ y ∈ H1+ε(Ω)× L2(Ω),
∂y

∂ν
+M2B∗Πy = 0 on Γ.

Proof. Let us first show that y ∈ L2(Ω) already implies that Â−1B̄M2B̄∗Π̄y ∈
D(Âs), s ∈ [0, 3

4 ). Let us define θ := 2δ + 1
4 . Since δ < 3

8 we have that θ < 1 and,
by (21) it follows that

(Â∗)δΠ̄y ∈ D((Â∗)θ−δ) = H2(θ−δ)(Ω)× L2(Ω) = H2δ+ 1
2 (Ω)× L2(Ω).

Lemma 2.1 then yields B̄∗Π̄y = B∗(Â∗)δΠ̄y ∈ H2δ(Γ) and, from (8), we obtain

that NÂM
2B̄∗Π̄y ∈ H2δ+ 3

2 (Ω). Hence, we can conclude that

Â−1B̄M2B̄∗Π̄y = ÂδNÂB̄∗Π̄y ∈ H 3
2 (Ω)× L2(Ω) ⊂ D(Âs), s ∈ [0,

3

4
).

The first assertion now easily follows since

y ∈ H2s(Ω)× L2(Ω) = D(Âs) iff y + Â−1B̄B̄∗M2Π̄y ∈ D(Âs).

For the second assertion, let us assume that y ∈ H1+ε(Ω) × L2(Ω) with ∂y
∂ν +

M2(B∗Πy) = 0 on Γ. We then obtain that Âδy ∈ H1+ε−2δ(Ω)×L2(Ω), which, by

the first part, equals H
1+ε

2 −δ
Π̄

. On the other hand, if Âδy ∈ H
1+ε

2 −δ
Π̄

from (24) we

conclude that Âδy ∈ L2(Ω) as well as

Âδy + Â−1B̄M2B̄∗Π̄Âδy ∈ D(Â
1+ε

2 −δ).

By definition of B̄ this also implies that

Â
1+ε

2

(
y + Â−1BM2B∗(Â∗)δΠ̄Âδy

)
∈ L2(Ω).

Using the relation between Π and Π̄ we get

Â
1+ε

2

(
y + NÂM

2B∗Πy
)
∈ L2(Ω).

For γ = 1
2 , from (18) we obtain that ΠÂ−δÂδy ∈ H1(Ω) × L2(Ω) and, hence,

that B∗Πy ∈ H
1
2 (Γ). With (8) we thus have that NÂM

2B∗Πy ∈ H2(Ω). This
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particularly yields that y ∈ H1+ε(Ω)×L2(Ω). The boundary conditions of y follow
immediately from the definition of NÂ.

As a consequence of the previous results, for (23), we finally obtain.

Theorem 2.3. Let ε ∈ ( 1
2 , 1]. If f1 ∈ L2(0,∞;Hε−1(Ω)),y0 ∈ Hε(Ω)×L2(Ω), then

(23) has a unique solution

y ∈
(
H1+ε, 1+ε

2 (Q∞) ∩ Cb([0,∞);Hε(Ω))
)
×H 3+ε

2 (0,∞;L2(Ω))

satisfying

‖y‖
H

1+ε, 1+ε
2 (Q∞)×H

3+ε
2 (0,∞;L2(Ω))

≤ C1

(
‖y0‖Hε(Ω)×L2(Ω) + ‖f1‖L2(0,∞;Hε−1(Ω))

)
.

Proof. Due to the relation between Π and Π̄, it holds that

d

dt
y = AΠy + f = (Â−δAΠ̄Âδ)y + f , y(0) = y0.

Hence, instead of (23), let us consider the transformed system

d

dt
z = AΠ̄z + Âδf , z(0) = z0 = Âδy0,

where z = Âδy. Since y0 ∈ Hε(Ω) × L2(Ω) ⊂ D(Â
ε
2 ), for ε ≥ 2δ we obtain that

z0 ∈ D(Â
ε
2−δ). By Proposition 1 this is equivalent to z0 ∈ H

ε
2−δ
Π̄

. For ε < 2δ,

it follows that z0 ∈ [D((Â∗)δ−
ε
2 )]′ which, due to (24), again means that z0 ∈

H
ε
2−δ
Π̄

. Similarly, since Hε−1(Ω) = [D((Â∗)
1−ε

2 )]′ from f ∈ L2(0,∞;Hε−1(Ω)) we

obtain that Âδf ∈ L2(0,∞; [D((Â∗)
1−ε

2 +δ)]′) which is equivalent to Âδf ∈ H
ε−1

2 −δ
Π̄

.

Equation (25) then yields that z ∈ W (0,∞;H
ε+1

2 −δ
Π̄

, H
ε−1

2 −δ
Π̄

). Once more, with
Proposition 1, we find that

z ∈W (0,∞;H1+ε−2δ(Ω)× L2(Ω), [H1−ε−2δ(Ω)× L2(Ω)]′).

Since z = Âδy, from Proposition 1 we find that

y ∈W (0,∞;H1+ε(Ω)× L2(Ω), [H1−ε(Ω)× L2(Ω)]′).

By the intermediate derivatives theorem ([22, Theorem 4.1]) and [22, Theorem 4.2]
it follows that

y ∈ H 1+ε
2 (0,∞; [H1+ε(Ω)× L2(Ω), [H1−ε(Ω)× L2(Ω)]′] 1+ε

2
),

y ∈ Cb([0,∞); [H1+ε(Ω)× L2(Ω), [H1−ε(Ω)× L2(Ω)]′] 1
2
).

Using [22, Theorem 12.5], this yields y ∈ H 1+ε
2 (0,∞; L2(Ω)) as well as y ∈ Cb([0,∞);Hε(Ω)×

L2(Ω)). The assertion for the ODE variable immediately follows from

d

dt
z = ιy − (κ− σ)z ∈ H 1+ε

2 ([0,∞);L2(Ω)).
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2.3. Results for the nonlinear system. In [9] we have shown some Lipschitz
estimates for nonlinearities of the form (2). In what follows, we extend these results
to cover a broader range of parameters ε.

Proposition 2. Let Ω ⊂ Rn, n ∈ {2, 3}. Assume that f, g, h ∈ H1+ε(Ω), ε ∈
(0, 1] (ε ∈

[
1
2 , 1
]

for n = 3). Then

‖fg‖Hε−1(Ω) ≤ C‖f‖H 1
3

+ε(Ω)
‖g‖

H
1
3

+ε(Ω)
,

‖fgh‖Hε−1(Ω) ≤ C‖f‖H 1
3

+ε(Ω)
‖g‖

H
1
3

+ε(Ω)
‖h‖

H
1
3

+ε(Ω)
.

Proof. Let us first assume that ε ∈
(
0, 1

2

)
and n = 2. Choosing λ = ε − 1 and

µ = ω = 4
3 in [18, Proposition B.1] we have that µ + ω + λ = 5

3 + ε > 1 and

2λ + µ + ω = 2
3 + 2ε > 0. This shows the first inequality. For the second one, we

note that with λ = ε− 1, µ = 2
3 − ε and ω = 4

3 it holds that λ+ µ+ ω = 1 as well
as 2λ+ µ+ ω = ε > 0. This yields

‖fgh‖Hε−1(Ω) ≤ C‖fg‖H− 1
3 (Ω)
‖h‖

H
1
3

+ε(Ω)
.

Moreover, with λ = − 1
3 and µ = ω = 2

3 + ε in [18, Proposition B.1] we find that

‖fg‖
H−

1
3 (Ω)

≤ C‖f‖
H

1
3

+ε(Ω)
‖g‖

H
1
3

+ε(Ω)
.

Next assume that ε ∈
[

1
2 , 1
]

and n ∈ {2, 3}. The first inequality follows exactly

as before since it still holds that 5
3 + ε > n

2 . For the second one, we choose λ =

ε− 1, µ = 7
6 − ε and ω = 4

3 in [18, Proposition B.1]. This implies λ+µ+ω = 3
2 and

2λ+ µ+ ω > 0. Hence, we find that

‖fgh‖Hε−1(Ω) ≤ C‖fg‖H 1
6 (Ω)
‖h‖

H
1
3

+ε(Ω)
.

Moreover, with λ = 1
6 and µ = ω = 1

6 + ε in [18, Proposition B.1] this leads to

‖fg‖
H

1
6 (Ω)

≤ C‖f‖
H

1
3

+ε(Ω)
‖g‖

H
1
3

+ε(Ω)
.

This shows the second inequality.

Proposition 2 allows to show the following results.

Lemma 2.4. Let Ω ⊂ Rn, n ∈ {2, 3}. Assume that σ ≥ 0 and ε ∈ (0, 1] (ε ∈[
1
2 , 1
]

for n = 3). Then for y1, y2 ∈ H1+ε, 1+ε
2 (Q∞), it holds that∥∥e−σt(y2

1 − y2
2)
∥∥
L2(0,∞;Hε−1(Ω))

≤ C ‖y1 − y2‖1+ε, 1+ε
2

(
‖y1‖1+ε, 1+ε

2
+ ‖y2‖1+ε, 1+ε

2

)
,∥∥e−2σt(y3

1 − y3
2)
∥∥
L2(0,∞;Hε−1(Ω))

≤ C ‖y1 − y2‖1+ε, 1+ε
2

(
‖y1‖21+ε, 1+ε

2
+ ‖y2‖21+ε, 1+ε

2

)
.

Proof. Note first that by interpolation ([22, Chapter 1, Theorem 4.1]) we have that

y1, y2 ∈ H
1
3 (0,∞; [H1+ε(Ω), L2(Ω)] 1

3/
1+ε

2
) = H

1
3 (0,∞;H

1
3 +ε(Ω))

y1, y2 ∈ H
1
4 (0,∞; [H1+ε(Ω), L2(Ω)] 1

4/
1+ε

2
) = H

1
4 (0,∞;H

1
2 +ε(Ω)) ⊂ H 1

4 (0,∞;H
1
3 +ε(Ω)).

Moreover, by Sobolev embedding (see, e.g., [27, Theorem 7]), it follows that

y1, y2 ∈ L4(0,∞;H
1
3 +ε(Ω)) ∩ L6(0,∞;H

1
3 +ε(Ω)).

The result now follows from the generalized Hölder inequality and the facts that

y2
1 − y2

2 = (y1 − y2)(y1 + y2),

y3
1 − y3

2 = (y1 − y2)(y2
1 + 2y1y2 + y2

2)
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together with an application of Proposition 2.

For the nonlinearity in (4), i.e.,

F(y) :=

(
(b− 3av̄)e−σty2 − ae−2σty3

0

)
,

we obtain the following local Lipschitz continuity property.

Lemma 2.5. Let Ω ⊂ Rn, n ∈ {2, 3}. Assume that ε ∈ (0, 1] (ε ∈
[

1
2 , 1
]

for n = 3).
If

y1,y2 ∈ H1+ε, 1+ε
2 (Q∞)×H 3+ε

2 (0,∞;L2(Ω)),

then F is locally Lipschitz continuous from H1+ε, 1+ε
2 (Q∞)×H 3+ε

2 (0,∞;L2(Ω)) to
L2(0,∞;Hε−1(Ω))× L2(Q∞). In particular, we have that

‖F(y1)− F(y2)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

≤ C2

(
‖y1‖

H1+ε, 1+ε
2 (Q∞)

+ ‖y2‖
H1+ε, 1+ε

2 (Q∞)

+‖y1‖2
H1+ε, 1+ε

2 (Q∞)
+ ‖y2‖2

H1+ε, 1+ε
2 (Q∞)

)
‖y1 − y2‖

H1+ε, 1+ε
2 (Q∞)

.

Proof. By definition of F, we have

‖F(y1)− F(y2)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

=
∥∥(b− 3av̄)e−σt(y2

1 − y2
2)− ae−2σt(y3

1 − y3
2)
∥∥
L2(0,∞;Hε−1(Ω))

≤ C2

(∥∥(b− 3av̄)e−σt(y2
1 − y2

2)
∥∥
L2(0,∞;Hε−1(Ω))

+
∥∥ae−2σt(y3

1 − y3
2)
∥∥
L2(0,∞;Hε−1(Ω))

)
.

Since v̄ ∈ H3(Ω), [18, Proposition B.1], implies that

‖F(y1)− F(y2)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

≤ C2

(∥∥e−σt(y2
1 − y2

2)
∥∥
L2(0,∞;Hε−1(Ω))

+
∥∥e−2σt(y3

1 − y3
2)
∥∥
L2(0,∞;Hε−1(Ω))

)
.

The claim now follows with Lemma 2.4.

Our final results concerns the local stabilization of the full nonlinear system.

Theorem 2.6. Let Ω ⊂ Rn, n ∈ {2, 3} and ε ∈
(

1
2 , 1
]
. Then there exist µ0 > 0

and a nondecreasing function η from R+ into itself such that if µ ∈ (0, µ0) and
‖y0‖Hε(Ω)×L2(Ω) ≤ η(µ), then

d

dt
y = AΠy + F(y), y(0) = y0,

admits a unique solution in the set

Dµ =
{

y ∈
(
H1+ε, 1+ε

2 (Q∞) ∩ Cb([0,∞);Hε(Ω))
)
×H 3+ε

2 (0,∞;L2(Ω)),

‖y‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ µ

}
.

Proof. Following the arguments provided for similar results in [9, 26], let us show
that the mapping M : z 7→ yz defined by

d

dt
yz = AΠyz + F(z), yz(0) = y0, (26)
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is a contraction in Dµ. As in [9], define

µ0 =
1

2

(√
1 +

1

C1C2
− 1

)
and η(µ) =

3

4C1
µ,

with C1 and C2 as in Theorem 2.3 and Lemma 2.5, respectively.
Step 1: For z ∈ Dµ, from Lemma 2.5 we get

‖F(z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞) ≤ C2(µ+ µ2)µ.

Utilizing Theorem 2.3 we obtain that

‖yz‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))

≤ C1

(
‖y0‖Hε(Ω)×L2(Ω) + ‖F(z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

)
≤ 3

4
µ+ C1C2(µ+ µ2)µ.

Since µ ≤ µ0 = 1
2

(√
1 + 1

C1C2
− 1
)
, we conclude that µ+µ2 ≤ 1

4C1C2
. This implies

‖yz‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ µ.

Hence, M is mapping Dµ to itself.

Step 2: For z1 =
(
z

(1)
1 , z

(2)
1

)
, z2 =

(
z

(1)
2 , z

(2)
2

)
∈ Dµ we further have

d

dt
(yz1

− yz2
) = AΠ(yz1

− yz2
) + F(z1)− F(z2), yz1

(0)− yz2
(0) = 0.

As a consequence, from Theorem 2.3 we know that

‖yz1
− yz2

‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ C1‖F(z1)− F(z2)‖L2(0,∞;Hε−1(Ω))×L2(Q∞).

Using Lemma 2.5, this yields

‖yz1
− yz2

‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ 2C1C2(µ+ µ2)‖z(1)

1 − z(1)
2 ‖H1+ε, 1+ε

2 (Q∞)

≤ 1

2
‖z(1)

1 − z(1)
2 ‖H1+ε, 1+ε

2 (Q∞)
.

The mapping M is a contraction in Dµ and the proof is complete.

As a consequence, for system (1), we obtain the following result.

Theorem 2.7. Let Ω ⊂ Rn, n ∈ {2, 3} and ε ∈
(

1
2 , 1
]
. Let further 0 ≤ σ < κ be

given. For z1, z2 ∈ D(A) let Π be the solution to

(A∗Πz1, z2)Y + (ΠAz1, z2)Y + 2σ(z1, z2) +
(
M̃Cz1, M̃Cz2

)
Z

= (MB∗Πz1,MB∗Πz2)U .

Then there exist µ0 > 0 and a nondecreasing function η from R+ into itself such
that if µ ∈ (0, µ0) and ‖(y0, z0)‖Hε(Ω)×L2(Ω) ≤ η(µ), then

∂v

∂t
= ∆v − Iion(v, w) + fv in Ω× (0,∞),

∂w

∂t
= ιv − κw + fw in Ω× (0,∞),

∂v

∂ν
= g −M2B∗Π(v − v̄, w − w̄) on Γ× (0,∞),

v(x, 0) = v̄ + y0 and w(x, 0) = w̄ + z0 in Ω,
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admits a unique solution (v, w) which satisfies

‖eσ·(v − v̄, w − w̄)‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ µ.

3. Dirichlet boundary control. We now consider the linearization of (4) for
θ = 0. Thus, in this section we first focus on

∂y

∂t
= ∆y + α(x)y − dz in Ω× (0,∞),

∂z

∂t
= ιy − (κ− σ)z in Ω× (0,∞),

y = mu on Γ× (0,∞),

y(x, 0) = y0 and z(x, 0) = z0 in Ω.

(27)

Similar as before, let us introduce the operators (A,D(A)) and (A∗,D(A∗)) with

Ay =

(
∆y + α(x)y − dz
ιy − (κ− σ)z

)
, D(A) =

(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω),

A∗y =

(
∆y + α(x)y + ιz
−dy − (κ− σ)z

)
, D(A∗) = D(A).

(28)

With λ0 and Â as in Section 2 let us define the Dirichlet map DÂ via DÂu = y iff

λ0y −∆y − α(x)y + dz = 0 in Ω, y = u on Γ,

λ0z − ιy + (κ− σ)z = 0 in Ω.
(29)

As before, by explicitly solving the second equation for z, and using well-known
results [17, Theorem 2.5.1.1/Remark 2.5.1.2] we conclude that

DÂ : continuous Hs(Γ)→ Hs+ 1
2 (Ω), 0 ≤ s ≤ 5

2
. (30)

Consequently, for the linearized system we now obtain the following boundary con-
trol system

d

dt
y(t) = Ay(t) + BMu(t), y0 =

(
y0

z0

)
, (31)

where B = ÂDÂ ∈ L(L2(Γ), [D(A∗)]′) and M is the multiplication operator asso-
ciated with m.

Lemma 3.1. For all p = (p, q) ∈ D(A∗), it holds that

B∗p = D∗
Â

Â∗p = − ∂p

∂ν

∣∣∣∣
Γ

. (32)

For p ∈ H 3
2 +s(Ω)× L2(Ω), s > 0, it further holds

‖B∗p‖Hs(Γ) ≤ C‖p‖H 3
2

+s(Ω)×L2(Ω)
.

Proof. For p ∈ D(A∗), u ∈ L2(Γ) and DÂu = y we have

(Bu,p)[D(A∗)]′,D(A∗) =
(
DÂu, Â

∗p
)

L2(Ω)
=
(
y, Â∗p

)
L2(Ω)

= (y, λ0p−∆p− α(x)p− ιq)L2(Ω) + (z, λ0q + (κ− σ)q + dp)L2(Ω)

= (λ0y −∆y − α(x)y + dz, p)L2(Ω) + (λ0z − ιy + (κ− σ)z, q)L2(Ω)

−
(
y,
∂p

∂ν

)
L2(Γ)

+

(
∂y

∂ν
, p

)
L2(Γ)

.
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By (29) and the fact that p ∈ D(A∗), we thus obtain

(Bu,p)[D(A∗)]′,D(A∗) =

(
u,−∂p

∂ν

)
L2(Γ)

= (u,B∗p)L2(Γ).

Similar as before, let us note that

Â−γB = Â1−γDÂ ∈ L(U,Y) for γ =
3

4
+ ε, ε > 0. (33)

3.1. Riccati theory for the linearized system. Let us consider the following
cost functional corresponding to (27)

J (u,y) =

∫ ∞
0

(
‖Cy(t)‖2L2(Ω) + ‖u(t)‖2L2(Γ)

)
dt

=

∫ ∞
0

(
‖y(t)‖2L2(Ω) + ‖u(t)‖2L2(Γ)

)
dt.

(34)

Obviously, for the observation operator Cy(t) = y(t) it holds that C ∈ L(Y, Z),
where Z = L2(Ω). As in the Neumann case, conditions (H1)-(H5) hold. From [21,
Section 2.1] we now get the existence of a unique nonnegative self-adjoint solution
Π = Π∗ to an algebraic Riccati equation. We further know ([21, Theorem 2.2.1])

that (Â∗)νΠ ∈ L(Y) for any 0 ≤ ν < 1. As emphasized in [21] and investigated in

[5, 25], in certain cases it is even possible to take ν = 1 such that Π ∈ L(Y,D(Â∗)).
In particular, in [2] it was shown that this always holds true in case that C∗C ∈
L(D(Â

1
2 ),D((Â∗)

1
2 )). Note that the latter condition is fulfilled for C as in (34).

Moreover, for the case of the Navier-Stokes equations, in [25], it has been further
shown that Π ∈ L

(
Hε(Ω), H2+ε(Ω) ∩H1

0 (Ω)
)
, ε ∈

[
0, 1

2

)
. With regard to the

desired local stabilization result for the nonlinear system, a property similar to the
latter one will be essential.

As before, we consider the space Hs
Π and its characterization via (24).

Proposition 3. For s ∈ [0, 3
4 ) it holds that

Hs
Π =

{
H2s(Ω)× L2(Ω) if s ∈ [0, 1

4 ),{
y ∈ H2s(Ω)× L2(Ω) | y +M2B∗Πy = 0 on Γ

}
if s ∈ ( 1

4 ,
3
4 ).

Moreover, for s ∈ [0, 1
4 ), the operator Π satisfies Π ∈ L(D(Âs),D((Â∗)1+s)).

Proof. Note that for y ∈ L2(Ω) it holds that Πy ∈ D(Â∗) [2, Theorem 2]. With

Lemma 3.1 it follows that B∗Πy ∈ H
1
2 (Γ) ⊂ L2(Γ). Since Â−1B = DÂ with

(30) we conclude that Â−1BM2B∗Πy ∈ H
1
2 (Ω) ⊂ D(Âs) for s ∈ [0, 1

4 ). Hence,

y ∈ Hs
Π implies that y ∈ D(Âs) = H2s(Ω) × L2(Ω) for s ∈ [0, 1

4 ). Conversely,

if y ∈ H2s(Ω) × L2(Ω) = D(Âs) again it follows that Â−1BM2B∗Πy ∈ D(Âs).
Hence, y ∈ Hs

Π.

Next, let us show that Π ∈ L(D(Âs),D((Â∗)1+s)) for s ∈ [0, 1
4 ). From [2] we

know that for y ∈ L2(Ω), the operator Π satisfies

A∗Πy + ΠAy −ΠBM2B∗Πy + y = 0 in L2(Ω).

We thus also obtain that

Â∗Πy = −ΠÂy + ΠBM2B∗Πy − (1 + 2λ)y. (35)
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Since Π ∈ L(Y,D(Â∗)) ∩ L([D(Â∗)]′,Y) by interpolation we have that

Π ∈ L([D((Â∗)1−s)]′,D((Â∗)s)), s ∈ [0,
1

4
).

For y ∈ D(Âs), s ∈ [0, 1
4 ), this yields

ΠÂy = (ΠÂ1−s)(Âsy) ∈ D((Â∗)s).

Similarly, using that Â−1BM2B∗Πy ∈ D(Âs), s ∈ [0, 1
4 ), we can conclude that

ΠBM2B∗Πy = (ΠÂ1−s)Âs(Â−1BM2B∗Πy) ∈ D((Â∗)s).

By (35) this leads to Â∗Πy ∈ D((Â∗)s). Since Π ∈ L(L2(Ω)) it thus follows that

Π : D((Â∗)s)→ D((Â∗)1+s) is closed, and hence bounded.
Finally, consider s ∈ ( 1

4 ,
3
4 ) and assume that y ∈ Hs

Π. As shown above, y ∈
L2(Ω) implies that Â−1BM2B∗Πy ∈ D(Â

1
4−µ), for µ > 0. Hence, from y +

Â−1BM2B∗Πy ∈ D(Âs) we conclude that y ∈ D(Â
1
4−µ) and, also, Πy ∈ D((Â∗)

5
4−µ).

Moreover, since B∗Πy ∈ H1−2µ(Γ) with (30) we arrive at Â−1BM2B∗Πy ∈
H

3
2−2µ(Ω) ⊂ H2s(Ω) × L2(Ω). Since this holds for µ arbitrarily small, we con-

clude that Â−1BM2B∗Πy ∈ H2s(Ω) × L2(Ω), s ∈ ( 1
4 ,

3
4 ). This shows that y ∈

H2s(Ω)×L2(Ω) ∈ ( 1
4 ,

3
4 ). The boundary conditions for y follow immediately by the

definition of DÂ.

Conversely, if y ∈ H2s(Ω)×L2(Ω), s ∈ ( 1
4 ,

3
4 ) and y+M2B∗Πy = 0 on Γ, we im-

mediately have that y ∈ D(Â
1
4−µ) for µ > 0. As before, this gives Â−1BM2B∗Πy ∈

H2s(Ω) × L2(Ω), s ∈ ( 1
4 ,

3
4 ). Together this yields z := y + Â−1BM2B∗Πy ∈

H2s(Ω) × L2(Ω). Using the definition of DÂ and the fact that y + M2B∗Πy = 0

on Γ, we also obtain that z = 0 on Γ. Hence, z ∈ D(Âs), s ∈ ( 1
4 ,

3
4 ).

3.2. Results for the nonlinear system. As in the case of Neumann boundary
conditions, we first consider a nonhomogeneous equation of the form

d

dt
y = AΠy + f , y(0) = y0, (36)

with f =

(
f1

0

)
.

With Theorem 2.2 and Proposition 3, we obtain the following result.

Theorem 3.2. Let ε ∈
(
0, 1

2

)
. If f1 ∈ L2(0,∞;Hε−1(Ω)),y0 ∈ Hε(Ω) × L2(Ω),

then (23) has a unique solution

y ∈
(
H1+ε, 1+ε

2 (Q∞) ∩ Cb([0,∞);Hε(Ω))
)
×H 3+ε

2 (0,∞;L2(Ω))

satisfying

‖y‖
H

1+ε, 1+ε
2 (Q∞)×H

3+ε
2 (0,∞;L2(Ω))

≤ C2

(
‖y0‖Hε(Ω)×L2(Ω) + ‖f1‖L2(0,∞;Hε−1(Ω))

)
.

Moreover, we obtain a local stabilization result for the nonlinear system.

Theorem 3.3. Let Ω ⊂ R2 and ε ∈
(
0, 1

2

)
. Then there exist µ0 > 0 and a nonde-

creasing function η from R+ into itself such that if µ ∈ (0, µ0) and ‖y0‖Hε(Ω)×L2(Ω) ≤
η(µ), then

d

dt
y = AΠy + F(y), y(0) = y0,
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admits a unique solution in the set

Dµ =
{

y ∈
(
H1+ε, 1+ε

2 (Q∞) ∩ Cb([0,∞);Hε(Ω))
)
×H 3+ε

2 (0,∞;L2(Ω)),

‖y‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ µ

}
.

Remark 1. For the results in Theorem 2.6 and Theorem 3.3 we assumed that
U = L2(Γ). However, in practical applications it is often more appropriate to utilize
finite dimensional controllers. In this case, one typically assumes that the control

function u is separable, i.e., u(x, t) =
∑`
i=1 hi(x)ui(t), where hi are shape functions

and ` denotes the dimension of the control space U = R`. An essential tool for
showing stabilizability by finite dimensional controllers then is the decomposition
of the spectrum into an infinite dimensional stable part and a finite dimensional
unstable part, see, e.g., [13, Chapter 5]. In essence, the stabilizability problem
then reduces to its finite dimensional counterpart such that, given shape functions
hi, i = 1, . . . , `, one may utilize the Hautus test for stabilizability. Let us emphasize
that due to the structure of the monodomain equations, in [10], we have explicitly
specified the spectrum in terms of the spectrum of the PDE part. In particular,
as long as the desired stabilization rate is limited by the stability of the ODE, the
unstable part of the system is discrete. This way, one may apply the exact same
arguments to extend the results in Theorem 2.6 and Theorem 3.3 to the case of
finite dimensional controllers.

We end this section with our final result for the local exponential stabilization
of system (1) in case that θ = 0.

Theorem 3.4. Let Ω ⊂ R2 and ε ∈
(
0, 1

2

)
. Let further 0 ≤ σ < κ be given. For

z1, z2 ∈ D(A) let Π be the solution to

(A∗Πz1, z2)Y + (ΠAz1, z2)Y + 2σ(z1, z2) +
(
M̃Cz1, M̃Cz2

)
Z

= (MB∗Πz1,MB∗Πz2)U .

Then there exist µ0 > 0 and a nondecreasing function η from R+ into itself such
that if µ ∈ (0, µ0) and ‖y0‖Hε(Ω)×L2(Ω) ≤ η(µ), then

∂v

∂t
= ∆v − Iion(v, w) + fv in Ω× (0,∞),

∂w

∂t
= ιv − κw + fw in Ω× (0,∞),

v = g −M2B∗Π(v − v̄, w − w̄) on Γ× (0,∞),

v(x, 0) = v̄ + y0 and w(x, 0) = w̄ + z0 in Ω,

admits a unique solution (v, w) which satisfies

‖eσ·(v − v̄, w − w̄)‖
H1+ε, 1+ε

2 (Q∞)×H
3+ε

2 (0,∞;L2(Ω))
≤ µ.
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4. Numerical examples. For the numerical validation of the theory presented in
this manuscript, we study the following version of the monodomain equations

∂v

∂t
= α∆v − av3 + bv2 − cv − dw in Ω× (0,∞),

∂w

∂t
= ιv − κw in Ω× (0,∞),

θ
∂v

∂ν
= (θ − 1)v +mũ+ g on Γ× (0,∞),

v(x, 0) = v̄ + y0 and w(x, 0) = w̄ + z0 in Ω,

(37)

where Ω = (0, 1)× (0, 1) and all other parameters are to be specified below. A finite
element discretization is obtained by the MATLAB R© PDE toolbox. All results
correspond to a 64 × 64 regular grid with n = 2 · 4225 = 8450 degrees of freedom.
Given a stationary solution of the form (3), the finite dimensional approximation
of (4) with σ = 0 is given by

Enẏn = Anyn + Fn(yn) + Bnu, (38)

where An,En ∈ Rn×n and B ∈ Rn×`. The nonlinearity Fn : Rn → Rn is defined
elementwise according to the nonlinearity in (37). For the discrete control operator,
` denotes the dimension of the finite dimensional control space (cf. Remark 1). By
Cn ∈ Rp×n we denote the finite dimensional approximation of the output operator
appearing in (13) and (34), respectively. In both Neumann and Dirichlet case, the
multiplication operator m is taken from [29]. The closed loop system is obtained
by solving the following generalized algebraic matrix Riccati equation

AT
nΠnEn + ET

nΠnAn −ETΠnBnBT
nΠnEn + CT

nCn = 0.

For this, a Kleinman-Newton iteration as described in, e.g., [7, 11, 20], has been

used. As a stabilizing initial guess Π
(0)
n we solved a k-dimensional algebraic Bernoulli

equation corresponding to the unstable subspace (of dimension k) of the matrix pen-
cil (An,En). Each Lyapunov equation arising within the Kleinman-Newton method
has been explicitly solved by the MATLAB R© function lyap.

All simulations are generated on an Intel R©Xeon(R) CPU E31270 @ 3.40 GHz
x 8, 16 GB RAM, Ubuntu Linux 14.04, MATLAB R© Version 8.0.0.783 (R2012b)
64-bit (glnxa64). The solutions of the ODE systems are always obtained by the
MATLAB R© routine ode23.

4.1. Neumann boundary control. We start with the Neumann case and thus
consider (37) with θ = 1. We further set α = 0.0015, a = 0.0012, b = 0.1403, c =
1.6140, d = 215.6, ι = 0.00015, κ = 0.015 and g = 0. The control and observation
domains are shown in Figure 1a. In particular, we have Bn = CT

n ∈ Rn×12. Based
on the underlying nonlinear system

0 = −av3 + bv2 − cv − dw
0 = ιv − κw

we obtain three constant (in space and time) stationary solutions to (37) which can
be numerically computed as

(v̄1, w̄1) = (0, 0), (v̄2, w̄2) ≈ (44.0222, 0.4402), (v̄3, w̄3) ≈ (68.9778, 0.6898).

In our experiments, we chose (v̄3, w̄3) for which the corresponding linearized system
exhibited an unstable subspace of dimension 2.
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Γ1

Γ2

Γ3

Γ4 Γ5 Γ6

Γ9

Γ8

Γ7

Γ12 Γ11 Γ10

(a) The Neumann case.

Γ1

Γ3

Γ2

(b) The Dirichlet case.

Figure 1. Control setup.

Perturbation around constant stationary state. In Figure 2, numerical results for an
initial value of the form (v0, w0) = (v̄3 +ξv, w̄3 +ξw) with ξv = 0.3 ·randn(n,1) and
ξw = 0.003 · randn(n,1) are given. As is seen in Figure 2a the uncontrolled system
remains close to the unstable stationary for a certain period of time before it slowly
starts to decrease in magnitude. Finally, for t = 1000, the system approaches
the stable stationary solution (v̄1, w̄1) from below. On the other hand, Figure
2b demonstrates the successful local stabilization of the nonlinear system. The
different dynamical behavior between uncontrolled and controlled system is even
more evident from the results shown in Figure 2d. Here, the temporal evolution
of the L2(Ω) error between computed and desired state is visualized. Again we
emphasize that the uncontrolled system remains close to the desired state first.
Figure 2c shows the control law for some of the control domains specified in Figure
1a. In particular, we see that the magnitude of the feedback control is relatively
small when compared to the actual state.

Stabilization of a reentry wave. As a second test case, we study the feedback law
when the initial value (v0, w0) is chosen such that it causes a reentry pattern (as
arising in context of fibrillation processes). To be more precise, in Figure 3a we
illustrate the wave-like dynamics appearing for the uncontrolled system. Snapshots
of the evolution for the closed loop system are provided in Figure 3b. We emphasize
that, as we have also seen in the first example, when the control is switched off
close to the stationary solution (v̄3, w̄3), the system will converge to the stable
resting state (v̄1, w̄1). This way, the feedback law implicitly allows to perform a
defibrillation process by first controlling the system to the unstable stationary state.
From there the uncontrolled dynamics converges to the origin. Again, a more
detailed comparison between controlled and uncontrolled dynamics can be obtained
in terms of the L2(Ω) error, see Figure 3d. For a precise pattern of the control laws,
we refer to 2c.

4.2. Dirichlet boundary control. Next, we consider (37) with θ = 0. For the
parameters, we take α = 0.0015, a = 0.012, b = 0.1395, c = 1.6050, d = 215.6, ι =
0.00015 and κ = 0.015. Again, we use the underlying ODE system to compute three
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(a) Evolution of v(x, t) (uncontrolled). (b) Evolution of v(x, t) (controlled).
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Figure 2. Stabilization of perturbed initial state.

constant (in space and time) stationary solutions as

(v̄1, w̄1) = (0, 0), (v̄2, w̄2) ≈ (44.4187, 0.4442), (v̄3, w̄3) ≈ (68.5813, 0.6858).

In order to ensure that (v̄3, w̄3) is also a stationary solution of the PDE system,
in (37) we assume an inhomogeneous Dirichlet boundary condition g = v̄3. The
resulting linearized system has 6 eigenvalues with positive real part. In contrast to
the Neumann case, we only take three controls that are visualized in Figure 1b.

Perturbation around constant stationary state. The results shown in Figure 4 cor-
respond to a similar setup as in the Neumann case. For both, uncontrolled and
controlled system, the initial value was taken as a perturbation (0.3 randn(n,1))
of the unstable stationary solution (v̄3, w̄3). As a consequence, the uncontrolled sys-
tem shows an oscillatory behavior, see Figure 4a. On the other hand, the feedback
law computed from the solution of the algebraic Riccati equation allows to locally
stabilize the nonlinear system, see Figure 4b. For a more detailed comparison, we
refer to the temporal evolution of the L2(Ω) error that is provided in Figure 4d.
The performance of the three boundary control patches is visualized in Figure 4c,
also underlining the convergence of the closed loop system.



20 TOBIAS BREITEN AND KARL KUNISCH

(a) Evolution of v(x, t) (uncontrolled). (b) Evolution of v(x, t) (controlled).
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Figure 3. Stabilization of a reentry wave.

5. Conclusions. We have studied boundary feedback control problems for a class
of nonlinear reaction diffusion systems of PDE-ODE type. A particular emphasis
was on the so-called monodomain equations. For the linearized system, we have
investigated the use of classical Riccati-based feedback controllers. Based on some
new Lipschitz estimates for the cubic non monotone nonlinearity, we could show
that the feedback law derived for the linearized system locally stabilizes the nonlin-
ear system as well. While in the case of Neumann boundary conditions, both the
two and three dimensional case could be handled, in the Dirichlet case we restricted
ourselves to the two dimensional setting. Numerical examples for a FEM discretiza-
tion of the monodomain equations illustrated the main theoretical findings.
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