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Abstract

In this paper, the feasible study of the optimal control techniques for the
cardiac defibrillation on the anatomical three spatial dimensional rabbit ven-
tricle geometry in the presence of bilateral control constraints. The present
work addresses the numerical treatment of multiscale and multidomain simu-
lations of bidomain equations, the description of deriving optimality system,
the applicability of primal-dual active set methods to treat the bilateral con-
trol constraints for solving such large scale optimization of cardiac defibrilla-
tion. The numerical results are demonstrated for the successful defibrillation
study on 3D rabbit ventricle geometry by utilizing the less total currents, ro-
bustness of the optimization algorithm w.r.t to the variations in the model
parameters, feasible study of the multiple smaller boundary control support
and the numerical convergence of the optimization algorithm on the finer spa-
tial grids. The parallel efficiency is demonstrated for the primal-dual active
set optimization algorithm on such finer spatial grid.

Keywords: electrophysiology, cardiac arrhythmia, bidomain model, large scale
PDE constraint optimization, control constraints, finite element method, primal-
dual active set strategy.

1 Introduction

In this paper, we present the computational techniques to solve the large scale
optimal control problem constrained by set of reaction-diffusion equations along
with the presence of control constraints. Specifically, we consider the termination
of cardiac arrhythmia in electrophysiology by developing efficient optimal control
techniques. Cardiac defibrillation is a standard procedure to restore the regular
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heart rhythm in the clinical point of view which delivers the electric shocks through
a specified electrodes. The computational tools have been progressively developed
to study the cardiac defibrillation and such numerical study has attracted many
researchers. Very few journal papers are available for such computational study on
anatomical geometry [2, 13, 19, 33, 34].

Here we briefly mention a widely accepted bidomain model [35, 30] which de-
scribes the excitation propagation and external stimulation of heart tissue. Here the
cardiac tissue domain denoted by ΩH , surrounded bath domain denotes ΩB and the
complete domain denoted by Ω = ΩH ∪ ΩB. The space-time cylinder of the whole
domain is denoted by Q = Ω × [0, T ] and the cardiac tissue and bath volume are
denoted by QB = ΩB × [0, T ] and QH = ΩH × [0, T ] respectively. Designing of a
proper cost functional for the optimization of such complex phenomenon is not triv-
ial. In our computational modeling, a natural optimal control approach to cardiac
defibrillation is to determine the control variable in such a way that the undesired
values of the transmembrane voltage v are minimized based on the given desired
trajectory. The optimal control approach to the cardiac defibrillation is defined as
follows:

(P)


min J(v, Ie) ,

e(ub, ue, v, w, Ie) = 0 in Q and Ie ∈ [−R,R] , ,
(1)

where ub, ue, v and w are the state variables and Ie denotes the control variable
of the optimal control problem. Moreover, R is a given maximum threshold value
in order to avoid the damaging of the tissue. We considered that the external
current Ie as control input which acts on the boundary of the bath domain and the
transmembrane potential v as one of the state variables which lives on the tissue
domain.

The coupled systems of partial differential equations constraints expressed by
e(ub, ue, v, w, Ie) = 0 which consists of the following bidomain equations.

0 = ∇ · (σ̄i + σ̄e)∇ue +∇ · σ̄i∇v in QH (2)

∂v

∂t
= ∇ · σ̄i∇v +∇ · σ̄i∇ue − Iion(v, w) + Itr(x, t) in QH (3)

∂w

∂t
= G(v, w) in QH , (4)

where ue : QH → R is the extracellular potential, v : QH → R is the transmembrane
voltage, w : QH → Rn represents the cell model state variables, σ̄i : ΩH → Rd×d

and σ̄e : ΩH → Rd×d are respectively the intracellular and extracellular conductivity
tensors. The term Itr is the transmembrane current density stimulus as delivered
by the intracellular electrode. Here the transmembrane potential is written as v =
ui − ue, ui denotes the intracellular potential. The Iion(v, w) is the current density
flowing through the ionic channels and the function G(v, w) determines the evolution
of the gating variables, which are determined by an electrophysiological cell model,
see [1] for more description on these models. Here we remark that, the ODE should
be solved on each mesh point of computational geometry.

The intra and extra cellular conductivity tensors of the tissue are anisotropic
which is a consequence of myocardium geometry. Let al(x), at(x) and an(x) denotes
the fiber, sheet and normal to the sheet directions respectively in the orthonormal
basis [19] which depends on the position in the heart. In our computational study,
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we assumed the rotational isotropy at the tissue structure, i.e. σi,en = σi,et , then the
local intracellular conductivity tensor σ̄i is expressed as

σ̄i = (σli − σit) al(x)aTl (x) + σit I , (5)

Here σil , σ
i
t denote the measured conductivity coefficients along the corresponding

directions and I is the identity matrix. The fiber directions of the cardiac tissue have
been modeled based on anatomical observations, see Figure 2 for the distributions of
the fiber orientation in our computations. A rule-based method was used to impose
fiber orientations within the cardiac tissue geometry [5] using fiber angles of -60◦ and
+60◦ at the endocardial and epicardial surfaces, respectively, and a smooth linear
variation of fiber angles as a function of depth in between.

In general, an additional Poisson problem has to be solved when the heart is
immersed in a conductive fluid, e.g. tissue bath in an experimental context or a
surrounding torso to model in vivo scenarios.

0 = ∇ · σ̄b∇ub in QB (6)

where ub : QB → R is the bath potential at bath volume and σ̄b : ΩB → Rd×d bath
conductivity tensors at bath volume.

In the modeling, assume that there is no current flow between the intracellular
and extra-myocardial (bath) domains which accomplish the homogeneous Neumann
boundary condition applied to the boundaries on intracellular space.

η · (σ̄i∇v + σ̄i∇ue) = 0 on ΣH = ∂ΩH × [0, T ] (7)

(8)

The boundary conditions for the extracellular potential on the extracellular do-
main were set up as a current balance between the extracellular domain and the
surrounding bath domain [35]. This means, at the boundary of the tissue-bath in-
terface enforce the continuity of the normal component of the extracellular currents
ub and ue.

η · σ̄e∇ue = η · σ̄b∇ub on ΣH (9)

Here η is the outward normal vector on ∂ΩH . Moreover, the extracellular potentials
must also match the values at the common boundary.

ue = ub on ΣH (10)

We assume that no current flow out of the bath domain and apply the ho-
mogeneous Neumann boundary conditions except for those parts of the boundary
where external stimuli are applied, which is injected or withdrawn through elec-
trodes located. We consider that the external stimuli Îe(t) acts as a control for the
optimization problem.

η · σ̄b∇ub = Îe(t) on Γ12 × (0, T ] (11)

η · σ̄b∇ub = 0 on ∂ΩB\Γ12 × (0, T ] . (12)

The current Îe acts as control along the boundary Γ12 = Γ1∪Γ2, where Γi, I = 1, 2, 3
are mutually disjoint and satisfy Γ1 ∪ Γ2 ∪ Γ3 = ∂ΩB, see Figure 1 for pictorial
representation. For compatibility reasons of Eq. (6) it is assumed throughout that∫

∂ΩB

Îe(t, ·) d s = 0 ∀ t ∈ (0, T ) . (13)
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In the numerical experiments, Îe is the only temporally dependent and will take the
following form

Îe = Ie(t)(χΓ1 − χΓ2) , (14)

where χΓi
is the characteristic function of the set Γi, i = 1, 2. Then condition (13) is

satisfied if |Γ1| = |Γ2| where the support regions on χΓ1 and χΓ2 can be considered
to represent a cathode and an anode respectively. Due to the pure Neumann elliptic
system, we impose zero mean condition for the extracellular potential in order to
obtain uniqueness of the elliptic systems.∫

ΩH

ue dx = 0 . (15)

In our computations, the initial values of the transmembrane voltage and ion current
variables are given by prescribed values.

v(x, 0) = v0 and w(x, 0) = w0 on ΩH , (16)

where v0 : ΩH → R denotes the initial transmembrane potential and w0 : ΩH → R
is the initial gating variable at time t = 0.

The dynamics of the ionic activity at the cell membrane is modeled by a or-
dinary differential equations which can be solved independently for each node in
computations. In our numerical computations, considered the model proposed by
Mitchell-Schaeffer(MS) model [26] and modifications by Keener [23]

Iion(v, w) = − 1

τin
wm2(v)[vp − v] +

1

τout
(v − vr) (17)

G(v, w) = αw(v)[1− w]− βw(v)w , (18)

where

m(v) =


0, v < vr
v−vr
vp−vr , vr < v < vp
1, else.

(19)

αw(v) =
1− f(v)

τopen + (τclose − τopen)f(v)
(20)

βw(v) =
f(v)

τopen + (τclose − τopen)f(v)
(21)

f(v) =
1

2
(1 + tanh(κ(v − vgate))) . (22)

Here vr is the resting potential, vp is the peak potential and vgate change-over voltage.
The time constants τin and τout are responsible to the length of the depolarization and
repolarization phases where the τopen and τclose are the characteristic times of gate
opening and closing respectively. The above regularized MS model reduces exactly
to the original MS model if κ → ∞. Although, the MS ionic model is two variable
that keeps the computational complexity as low as possible but on the other hand it
produces several action potential features (conduction speed, restitution properties,
time scales etc. [26]) at the cardiac cell scale. The parameter values for this model
are given in [12].
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In general, the standard numerical methods are easily incorporated to include
anisotropy and inhomogeneity, but the bidomain model equations presents a signif-
icant challenge. Large scale computational defibrillation studies involving the bido-
main model equations have emerged as a challenge and inevitably leads to a high
computational cost due to detailed anatomical geometries of the heart, strongly cou-
pled system of governing model equations, anisotropy of the conductivity tensors,
fine scale discretized spatial and temporal domains which are mandatory to cap-
ture the reentrant wave propagation and handling the virtual electrode polarization
[2, 13, 19, 24, 29, 31, 34, 33]. The numerical treatment of such large multidomain
and multiphysics bidomain equations puts significant challenge on the computer
memory as well as computational times. Furthermore, requires a appropriate nu-
merical schemes in order to obtain accurate numerical results. In this regard, we
have chosen the finite element method for spatial discretization and higher order
Rosenbrock time stepping methods for the temporal discretization to solve the PDE
system. To perform the large scale simulations of such PDE constrained optimal
control problems on realistic geometries is of interest in its own right by utilizing
the parallel programming.

It is clear that the state solution is a sub problem associated with the opti-
mization problem. Thus, solving the optimization problem requires more computa-
tional time than solving the state equations. Efficient numerical treatment of large
scale PDE constrained optimization problem with control constraints poses a sig-
nificant challenge. The primal-dual active set method has proven to be an efficient
numerical method for a large class of PDE constrained optimization problems, see
[6, 18, 21, 17, 36]. In [18] shown that the primal-dual active set strategy is equivalent
to the semi smooth Newton’s method which typically exhibits the local superlinear
convergence. The primal-dual active set strategy for nonlinear problems with bi-
lateral control constraints in [20]. We employ such efficient primal-dual active set
algorithm for such complex nonlinear model problem under consideration and shown
the superlinear convergence in the numerical results.

The objective of the present paper includes 1) The anatomical three spatial di-
mensional rabbit ventricle geometry is considered for the computational domain. 2)
Presents the applicability of the control constraints in order to restrict the external
stimulus which could lead to burning or damaging the cardiac tissue. 3) Terminal
type cost functional is incorporated which could speed up the optimization algo-
rithm. 4) The primal-dual active set method is adopted to solve the optimization
algorithm in order to handle the bilateral control constraints, 5) Investigated the
robustness of the optimization algorithm w.r.t the model parameters on the realistic
3D heart geometry and studied the smaller locally supported control domains at the
boundary of the bath domain.

The remaining of the paper is organized as follows: In the next subsection we
provide the mathematical review of the bidomain-bath model equations which are
needed in the optimal control framework. In Section 2, we provide the optimal con-
trol framework for the cardiac defibrillation and the primal-dual active set algorithm
to solve the optimality system in the presence of control constraints is described in
subsection 2.1. The brief numerical procedure to solve the primal and dual equa-
tions and the optimization algorithmic procedure is given in Section 3. In Section 4,
the computational setup and numerical results for the successful defibrillation is
demonstrated. The different numerical test cases are discussed for robustness of the
optimization algorithm. Finally, we discuss the summary of the presented work.
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1.1 Analytical background

We denote ΩH , ΩB ⊂ R3 are bounded domains with Lipschitz boundaries ∂ΩH and
∂ΩB respectively. The fixed time horizon denoted by T > 0. We denote

H = L2(Ω) , V = H1(ΩH) ,

U =

u ∈ H1(Ω) :

∫
ΩH

u dx = 0

 , Ue =

u ∈ H1(ΩH) :

∫
ΩH

u dx = 0

 .

Here assume that the intra cellular, extra cellular and the bath conductivity tensors
σi, σe are symmetric, positive definite matrix with the coefficients in L∞ i.e. there
exist 0 < m < M

m|ξ|2 ≤ ξTσi,e,bξ ≤M |ξ|2 , for all ξ ∈ R3 . (23)

For the analysis, we assume that the resting potential is zero and the peak potential
is 1. The reaction terms of the membrane model can be written as follows.

Iion(v, w) = f1(v)w + f2(v) (24)

G(v, w) = g1(v)w + g2(v) . (25)

where f1(v) = − 1
τin
wv2(1−v) and f2(v) = v

τout
. For brevity, we denote the following

spaces corresponding to the state solution.

X1 = L2(0, T ;U) X2 = C0(0, T ;H) ∩ L2(0, T ;V ) ∩ L4(QH)

X3 = W 1,∞(0, T ;L∞(Q)) X4 = L∞(0, T ;R) .

The weak solution of the Eqs. (2)-(4) on ΩH is given by∫
ΩH

σ̄i∇v(t)∇ϕ dx+

∫
ΩH

(σ̄i + σ̄e)∇ue(t)∇ϕ dx = 0 (26)

〈vt(t), ψ〉V ∗,V +

∫
ΩH

σ̄i∇(ue(t) + v(t))∇ψ dx +

∫
ΩH

Iion(v(t), w(t))ψ dx

= 〈Itr(t), ψ〉V ∗,V , (27)

〈wt(t), χ〉V ∗H ,VH −
∫

ΩH

G(v(t), w(t))χdx = 0 , (28)

together with initial and boundary conditions (7)-(16) and for all (ϕ, ψ, χ) ∈ (Ue, V,H).
Let V h ⊂ H1(ΩH) be the finite dimensional subspace of piecewise linear basis func-
tions with respect to the spatial grid. We considered that the elliptic system on the
tissue domain Eq. (2) and on bath domain Eq. (2) can be solved monolithically. For
this purpose we define u as the extracellular potential on ΩH ∪ ΩB, i.e.:

u =

{
ub in ΩB

ue in ΩH

and the similar way we can define the global conductivity tensor as follows.

σ̄ =

{
σ̄b in ΩB

(σ̄i + σ̄e) in ΩH
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Using the above definitions, the weak solution of the elliptic system on the integrated
domain Ω reads as follows.∫

ΩH

σ̄i∇v(t)∇ϕb dx+

∫
Ω

σ̄∇u(t)∇ϕb dx =

∫
Γ12

Ie(t, ·)ϕb ds (29)

Definition 1.1. If Ie ∈ L2(∂ΩB × (0, T )), Itr ∈ L2(ΩH × (0, T )),

σi ∈ L∞(ΩH)d×d, σe ∈ L∞(ΩH)d×d, σb ∈ L∞(ΩB)d×d,

are symmetric and uniformly elliptic, and if v0 ∈ VH , and w0 ∈ L∞(ΩH), with
r < w0 ≤ 1 in ΩH , for some r > 0, then a triple (u, v, w) ∈ X1 ×X2 ×X3 is called
the weak solution of the bidomain system (2)-(4), (6) iff the functions u, v, w satisfy
the variation formulation (27)-(29).

Proposition 1.2 (A-priori estimates). If a triple (u, v, w) ∈ (X1×X2×X3) satisfy
a weak solution of the bidomain equations (27)-(29) and satisfy the initial solution
of the state system v0 ∈ L2(ΩH), w0 ∈ L∞(ΩH) then the following a-priori error
estimates holds:

‖u‖L2(0,T ;U) + ‖v‖C0(0,T ;H) + ‖v‖L2(0,T ;H1(ΩH)) + ‖v‖L4(Q) + ‖vt‖Lp
′
(0,T ;V ∗)

+ ‖w‖X3
+ ‖wt‖L2(0,T ;H) ≤ C

(
‖v0‖+ ‖w0‖+ ‖Iitr‖L2(V ∗) + ‖Ie‖X4

)
(30)

For the proof we referred to [9]. Here the estimates were derived for the tissue-
torso model by using the parabolic-parabolic form of the bidomain model.

2 Optimal control formulation

In this section we are concerned with the optimal control of cardiac defibrillation
where the external current acts as a control which presents at the boundary of
the surrounded bath domain. We propose the formulation of the optimal control
formulation for the successful cardiac defibrillation. We derive the first and second
order optimality conditions.

Specifically, in our computations, the cardiac defibrillation aims at driving the
transmembrane voltage v to a desired value denoted by vd at the intracellular space
by properly applying the Ie at the boundary of bath domain. The optimal control
problem suitable to optimize the irregular heart rhythm is formulated as follows.{

min J(v, Ie) = J1(v) + J2(Ie)
subject to (2)− (6) and Ie ∈ Uad.

(31)

where

J1(v) =
α1

2

∫ T

0

∫
ΩH

|v − vd|2 dxdt+
α3

2

∫
ΩH

|v(T )− vd(T )|2 dx

J2(Ie) =
α2

2

∫ T

0

|Ie(t)|2dt

Here α1 and α3 are the weights at the observation domain, α2 is the weight of
the cost of the control. In order to avoid high energy at the tissue we impose the
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bounds on the control data. The set of admissible controls Uad is prescribed by the
following bilateral pointwise constraints.

Uad =
{
Ie ∈ L∞(0, T ;R)

∣∣∣ −R ≤ Ie(t) ≤ R for a.e. t ∈ (0, T )
}
, (32)

for any given constant R ∈ R. We assume that the control domain Uad ∈ L∞(0, T ;R)
is bounded, convex and closed. We point out that, for any feasible control Ie ∈ Uad

there exist a weak solution (ub, ue, v, w) of the bidomain model by the proposi-
tion 1.2. Consequently, the control-to-state mapping is well defined Uad 3 Ie 7−→
(u, v, w) ∈ X1 × X2 × X3. We assume that J1(v) : X2 → R is weakly lower
semi-continuous.

Proposition 2.1 (Existence of a global optimal solution). There exists at least one
global minimizer for the optimal control problem 31.

Proof. Let us define the following

Sad = { (u, v, w, Ie) ∈ X1 ×X2 ×X3 ×X4; e(u, v, w, Ie) = 0 } .

From the existence results for the bidomain-bath equations, we can obtain that
there exists a (u, v, w, Ie) ∈ X1 × X2 × X3 × X4. Consequently, (u, v, w, Ie) ∈ Sad
and Sad 6= 0.

From the additional assumption on the cost functional J that the J is bounded
from below α2

2
‖Ie‖2 ≤ J(v, Ie) < ∞. Then there exists a minimizing sequence

{ Ine } that is uniformly bounded in X4. Let denote the associated state variables
by un, vn, wn. By Proposition 1.2, there exist a subsequence (u∗, v∗, w∗, I∗e ) ∈ X1 ×
X2 ×X3 ×X4 and vt ∈ L2(QH), wt ∈ L2(QH) . Since { Ine } is bounded in X4, the
subsequence {un, vn, wn } is also uniformly bounded. Consequently, we can extract
the following convergent sequence

Ine ⇀ I∗e in X4 as n→∞ ,

un ⇀ u∗ in X1 as n→∞ ,

vn ⇀ v∗ in X2 as n→∞ ,

wn ⇀ w∗ in X3 as n→∞ .

The set Uad is convex and closed in X4 and consequently I∗e satisfies also the
control constraints. It remains to argue that (u∗, v∗, w∗, I∗e ) is a solution to the
bidomain-bath equations by passing to the limit in the equations (un, vn, wn, Ine ).
This can be realized as in [9, Section 3.4]. Additional assumption on the Ji imply
that J is weakly lower semi-continuous and we have the following result.

J(v∗, I∗e ) ≤ J(vn, Ine ) .

Now we turn to derive the optimality system. In this regard, the Lagrangian
related to the optimal control problem is defined by

L(ub, ue, v, w, Ie, pb, p, q, r) = J(v, Ie) + { e(ub, u, v, w, Ie), (pb, p, q, r) } , (33)
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where pb, pe, q, r are the Lagrange multipliers associated to the state Eqs. (6)-(4).
More, specifically the Lagrangian corresponding to Eq. (31) to obtain the first and
second order optimality conditions is given as follows.

L(ub, ue, v, w, Ie, pb, p, q, r) = J(v, Ie)

−
∫ T

0

∫
Ω

σb∇ub∇pb +

∫ T

0

∫
Γ12

Iepb ds dt

−
∫ T

0

∫
ΩH

(σi∇v∇pe + (σi + σe)∇ue∇pe) dx dt

−
∫ T

0

∫
ΩH

(vtq + σi(∇u+∇v)∇q + Iion(v, w)q − Itrq) dx dt

−
∫ T

0

∫
ΩH

wtr −G(v, w)r dx dt,

The first order optimality system is given by the Karusch-Kuhn-Tucker (KKT) con-
ditions. For this purpose the partial derivatives of L with respect to ub, ue, v and
w are set equal to zero. Then we obtain the following dual equations.

0 = ∇ · (σ̄i + σ̄e)∇pe +∇ · σ̄i∇q in QH , (34)

∂q

∂t
= −∇ · σ̄i∇pe −∇ · σ̄i∇q + (Iion)vq − (G)vr − (Vm − Vd)|Ωobs

in QH ,(35)

∂r

∂t
= (Iion)wq − (G)wr in QH , (36)

0 = ∇ · σ̄b∇pb in QB (37)

where pb, pe, q and r are the Lagrange multipliers associated to ub, ue, v and
w respectively. The terminal conditions are

q(T ) = α3 (v(T )− vd(T )) , r(T ) = 0,

and the boundary conditions for the dual states must satisfy

η · (σ̄i∇pe + σ̄i∇q) = 0 on ΣH (38)

σ̄b∇pb · η = 0 on ∂ΩB × [0, T ] . (39)

Furthermore, the following interface conditions should satisfy.

pb = pe and σi∇pe = σb∇pb on ΣH . (40)

In addition the zero mean conditions
∫

ΩB
pb(t) dx = 0 and

∫
ΩH

pe(t) dx = 0 holds for

all t ∈ (0, T ). Finally we have the optimality condition:(
α2 I

∗
e (t) +

∫
Γ1

pb(x, t) dx−
∫

Γ2

pb(x, t) dx

)(
Ie(t)− I∗e (t)

)
≥ 0 for all Ie ∈ U,

(41)
for almost every t ∈ (0, T ), which, in case the constraints are not active becomes

α2 I
∗
e (t) +

∫
Γ1

pb(x, t) dx−
∫

Γ2

pb(x, t) dx = 0, for a.e. t ∈ (0, T ). (42)
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2.1 Primal-Dual active set method

The well known primal-dual active set strategy [6, 17, 20] is explained for the optimal
control of bidomain equations together with the bilateral control constraints in this
section.

We define the solution operator S : L∞(0, T ;R) → X1 × X2 × X3 × X4 by
(ub, u, v, w) = S(Ie) for Ie ∈ L∞(0, T ;R) and (ub, ue, v, w) is the solution to Eqs. (2)-
(6). Introducing the reduced cost functional

Ĵ(Ie) = J(S(Ie), Ie) (43)

and the problem (P) can be expressed as

(P̂)

 min Ĵ(Ie) ,

s.t. u ∈ Uad

(44)

Observe that (P̂) is a minimization problem with bilateral constraints but with no
equality constraints. The gradient of Ĵ(Ie) at fixed point Ie ∈ L∞(0, T ;R) is defined
as

∇Ĵ(Ie) = α2 Ie(t) +

∫
Γ1

pb(x, t) dx−
∫

Γ2

pb(x, t) dx (45)

where (pb, pe, q, r) solve the dual equations for the state solution pair (ub, ue, v, w)
which is a solution to Eqs. (2)-(6) for the given control Ie ∈ L∞(0, T ;R).

Here we recall the definition of Newton-differentiability which is useful in the
following. Let X, Y are Banach spaces and D ⊂ X is an open subdomain in X.
Let F : D → Y be a nonlinear mapping and L(X, Y ) be the set of continuous linear
mappings from X to Z. Assume that the nonlinear operator equation as follows,

F (x) = 0 .

Definition 2.2. The mapping F : D → Y is called Newton differentiable on the
open subset U ⊂ D if there exists a family of generalized derivatives G : U →
L(X, Y ) such that

lim
h→0

1

‖h‖
‖F (x+ h)− F (x)−G(x+ h)h‖Y = 0 ∀ x ∈ U .

Consider the Newton differentiability of the pointwise max-operator. Lets denote
the max operator by max(0, u) for u ∈ X. For δ ∈ R we introduce the following
functions for its generalized derivative of the form,

G(u)(x) =


1 if u(x) > 0
δ if u(x) = 0
0 if u(x) < 0

(46)

The proof of the following proposition can find in [18].

Proposition 2.3. The mapping max(0, .) : Lq(Ω)→ Lr(Ω) with 1 ≤ r < q ≤ ∞ is
Newton differentiable on Lq and Gδ is a generalized derivative.

We refer to [18] for the proof.
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Proposition 2.4. The first order necessary optimality conditions for the (44) can
be expressed as the variational inequality〈

∇Ĵ(Ie),
(
Īe(t)− Ie(t)

)〉
≥ 0 for all Īe ∈ U .

This can be equivalently expressed as an optimality system for the control Ie ∈ Uad
and the corresponding multiplier η ∈ Uad as

Īe(t) + η = 0 (47)

η = max (0, η + c(Ie −R)) + min (0, η + c(Ie +R)) (48)

where max and min are interpreted as pointwise sense.

The proof is straightforward based on the convexity properties of the admissible
control set Uad.

Note that the operator equation (48) is Lipschitz continuous but not differen-
tiable in the classical sense. In spite of that, it enjoys a property called Newton
differentiability that generalizes the concept of differentiability in the case of c = α2,
see for more details in [21, 18]. Other choices c 6= α2 were discussed in [6, 21]. Now
we define the following active and inactive sets at the kth Newton iteration.

Ak+ =
{
t ∈ [0, T ] : Ike (t) + ηk

c
≤ −R

}
,

Ak− =
{
t ∈ [0, T ] : Ike (t) + ηk

c
≥ R

}
,

A = A+ ∪ A−, and Ik = [0, T ]\A.

(49)

With the above settings, the Newton iteration step is formulated as follows(
Ĵ
′′
(Iek) χA
χA 0

)(
δIe
δηAk

)
=

(
Ĵ
′
(Iek) + χAηk

χA+(Iek −R) + χA−(Iek +R)

)
(50)

where χX denotes the characteristic function of a set X and δηAk denotes the re-
striction of the active set Ak

The complete details of primal-dual active set algorithm is given in Algorithm 2.

3 Numerical approach

In this section, we introduce the spatial and temporal discretization of the primal
and dual equations.

Space discretization of the primal problem

We give an overview of the spatial discretization of the bidomain equations by a
piecewise bilinear finite element method in this subsection. As we mentioned that the
elliptic system is solved as a monolithic approach. For the spatial discretization of
the bidomain equations, we consider the weak formulation (27)-(29). In this regard,
the approximate solutions of the vectors u,v and w are expressed in the form u(t) =∑M+N

i=0 u i(t)ωi, v(t) =
∑N

i=0 v i(t)ωi and w(t) =
∑N

i=0w i(t)ωi, respectively, where
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{ωi}Mi=1 and {ωi}Ni=1 denote the basis functions. This semi-discretization in space
results in the following matrix representation of the differential algebraic system.

Aieu +RHAiv = Ie (51)

M
∂v

∂t
= −Aiv −RBAiu− Iion(v,w) + Itr (52)

M
∂w

∂t
= G(v,w), (53)

together with initial conditions for v and w, where Aie = {〈(σi + σe)∇ωi,∇ωj〉}M+N
i,j=1

and Ai = {〈σi∇ωi,∇ωj〉}Ni,j=1 are the stiffness matrices, M = {〈ωi, ωj〉}Ni,j=1 is the

mass matrix, the vectors Ie, Iitr are defined by Ie = {〈(χΓ1Ie − χΓ2Ie) , ωj〉}
MΓ
j=1 and

Itr = {〈Itr, ωj〉}Nj=1, respectively. Here the RH and RB represent the restriction
operator from the tissue domain to the integrated domain and from the integrated
domain to the tissue domain respectively. The expressions (Iion)(v,w) and G(v,w)
are defined by

(Iion)(v,w) = {〈Iion

(
N∑
i=0

v iωi,

N∑
i=0

w iωi

)
, ωj〉}Nj=1 ,

G(v,w) = {〈G

(
N∑
i=0

v iωi,
N∑
i=0

w iωi

)
, ωj〉}Nj=1 .

Remark 3.1. Analogously, we follow the piecewise bilinear finite element method
for the spacial discretization of the dual equations and we obtain similar matrix
representation system as in Eqs. (51)-(53). Moreover, we employ the same spatial
discretization technique for the linearized primal and dual equations.

Remark 3.2. We mention that the compatibility condition for the singular algebraic
system Eq. (51) is satisfied at each time iteration level, i.e.

cT (−RHAiv − Ie) = −(cTRHAi)v − cT Ie = 0,

where c = (1, . . . , 1)T is a constant vector and we take u0 has zero mean. Similarly,
at every time-level the iterative procedure for solving the elliptic system in dual,
linearized primal and linearized dual systems is initialized by a zero-mean function
in order to satisfy the compatibility condition.

Time discretization

In this subsection we give a brief description of the time discretization for solving the
systems of ordinary differential equations. The time discretization of the bidomain
equations can be performed using either implicit, semi-implicit or explicit schemes
and for a detailed comprehensive study on the stability and accuracy of several
bidomain time discretizations we refer to the work in [15]. In our computational
approach, the semi discretized Eqs. (52) and (53) solved as a coupled system which
can be expressed in the following matrix representation.

M̃
∂x

∂t
= F(x), x(t0) = x0. (54)
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where

M̃ =

(
M 0
0 M

)
, x =

(
v
w

)
, (55)

F =

(
−Aiv −RBAiu− Iion(v,w) + Itr

G(v,w)

)
(56)

To solve (54), we introduce discrete steps 0 = t0, t1, . . . , tn = T in the time interval
[0, T ] which are not necessarily equidistant. We further set τ i = ti+1− ti and denote
by xi the numerical solution at time ti. In our computations, we used the linearly
implicit Runge-Kutta methods for the time discretization and they serves as a good
compromise between stability and efficiency, see in [16, 10] which require at each
time step the solution of 24 linear systems. These belong to a large class of methods
which try to avoid the nonlinear system and replace it by a sequence of linear ones.
In simulations, we used exact derivatives of the vector F(x) for the construction
of the Jacobian matrix. For our computations the ROWDA method, see [25], was
employed which has three internal stages to solve in each time step. Here we avoid
the time discretization details for the current problem which was well explained in
[10, Section 3.2].

Computer implementation

In a nutshell, we explain the solution procedure to solve the bidomain equations
and optimization problem. In our computations, the public domain FEM software
package DUNE [3], especially the dune-pdelab [4] discretization module, was used
which is a C++ template based programming environment. For construction of
the parallel grids, the ALUGrid library [14] was employed which in turn uses the
METIS[22] graph partitioner for the decomposition of the grid.

First we give a brief description of numerical techniques to solve the primal sys-
tem and analogously, we can employ similar techniques to solve the dual, linearized
primal and linearized dual equations. The solution of the singular linear systems
of Eq. (51) is defined up to an additive constant and to fix this constant we im-
pose a zero mean condition. For the numerical realization of this condition together
with the PDEs one needs a special purpose numerical methods to solve the system
uniquely. For this purpose, we adopted a stabilized saddle point formulation from
the work of Bochev and Lehoucq [8], see [10, 11] for the discussion and implemen-
tation details of this technique for the current problem. After the full discretization
of the PDEs we obtain a system of linear algebraic equations and to solve the linear
system we employed a Conjugate Gradient (CG) method with AMG preconditioner
[7], which is developed using a greedy heuristic algorithm for the aggregation based
on a strength of connection criterion. We used a BiCGSTAB method with Jacobi
preconditioning to solve the linear algebraic system which arrived after the time
discretization of (54) at each internal stage of the ROWDA method.

Due to the presence of two different grids, the numerical treatment of the bido-
main equations is not a trivial task. As mentioned, we solve the combined elliptic
system Eq. 51 on the integrated domain Ω while the parabolic-ode system Eq. 54
needs to be solved on the cardiac tissue domain ΩH only. Realization of our sim-
ulations based on the loading two grid data structures, one for the whole domain
and a second one for embedded tissue domain, separately. In parallel computations,
two distinct non-overlapping grids constructed, decomposition based on the METIS
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graph partitioner, to solve the PDE system. Every single processor is assigned to
two different subdomains and inter-communication between the processors is nec-
essary at each time step. To accomplish the necessary communication a projection
operator, realized as a generalized scattering operation, was used to map between
the parallel data vectors Vm and φe. In Algorithm 1, we briefly explain the numerical
strategy to solve the primal system which is a fundamental step in the optimization
procedure.

Algorithm 1 Numerical procedure to solve the primal problem.

1: Given v0 = v0, w0 = w0 and final simulation time Tend.
2: repeat
3: Compute the contribution of operator Aiv on the tissue domain and extend

the operator solution RHAiv to the whole domain Ω by using inter-processor
communication, as explained above.

4: Use the resulted extended operator RHAiv at time ti−1, solve the discretized
elliptic system (51) for ui at time ti by using the stabilized saddle point
approach to maintain the zero mean of extracellular potential.

5: Communicate the extracellular potential solution from the complete domain
(u on Ω) to the cardiac tissue domain (ue on ΩH) at time ti.

6: Finally, by utilizing the computed solutions uie solve the discretized parabolic
equation (52) for xi at time ti and time step ∆t by applying the linearly
implicit Runge-Kutta method.

7: Update the simulation time ti+1 = ti + ∆t.
8: until t > Tend

As explained, we employ the primal-dual active set method for solving the op-
timization problem with the presence of control constraints, the Algorithm steps
are given in 2. Briefly, here we discuss the computational complexity of the primal
dual active set method. First, we recall the number of PDE solves that are need
for optimization. The Newton method requires the evaluation of the Hessian of the
reduced cost functional, step 8 in Algorithm 2, in direction of the increment of the
control δIe which is required for any iterative Krylov solver. Each inner iteration
is achieved by one linearized primal and a dual equation solver in order to achieve
the matrix-vector product of the Hessian on δIe. The solution of these linearized
equations in parallel was done similarly to the solution procedure for primal equa-
tions. Here is a brief outline of complete a Newton’s optimization algorithm with
primal-dual active set strategy.

4 Numerical results

In this section, the numerical results are demonstrated for optimal control of car-
diac defibrillation with the presence of control constraints in a 3D rabbit ventricle
geometries. We present the numerical results using different arrangement of control
domain support at boundary of the computational domain. In the first test case, the
feasible study of successful cardiac defibrillation is investigated where stimulus acts
in the two large electrodes at the boundary of the bath domain. In the second test
case we study the robustness of the optimization algorithm using variations in the
conductivity tensors and model parameters and the convergence of the optimization
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Algorithm 2 Line search Newton-CG optimization algorithm.

1: Primal variables: ub, ue, v, w and control Ie.
2: Dual variables : pb, pe, q, r.
3: Choose (I0

e , η
0) ∈ L2(0, T ;R)× L2(0, T ;R), c > 0 and set k = 0.

4: repeat
5: Given pair (Ike , η

k), determine the active/inactive sets accordingly Eq.49.
6: if k ≥ 1, check Ak+ = Ak−1

+ , Ak− = Ak−1
− then STOP.

7: Compute the gradient of reduced cost functional, rhs of Newton system, by
solving once the primal and dual equations

8: Solve the Newton system (50) using CG algorithm on inactive set.
9: set step length βk := 1.0 and compute optimal βk using backtracking method

by checking the strong Wolfe conditions, see [27].
10: Set Ik+1

e = Ike + βkδIe, λk+1 := λk + δλ on Ak, and ηk+1 = 0 on Ik where
optimal βk is computed by checking the strong Wolfe conditions, see [27].

11: Set k ← k + 1.
12: until stopping criteria satisfied
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Figure 1: Schematic picture of the computational domain.

is presented on finer computational grids. In the third test case, the applicability of
the multiple smaller boundary control domain support is investigated. At the end,
the parallel efficiency is demonstrated.

In our computations, full three spatial dimensional rabbit ventricle geometry is
considered which is generated based on the histological images [28]. The size of the
integrated domain, Ω = ΩH ∪ ΩB, is 2.91 × 3.12 × 2.8 cm3. The computational
domain of the integrated geometry comprises of 5,082,272 tetrahedral elements and
862,515 nodal points. The embedded cardiac tissue domain consists of 3,073,529
tetrahedrons and 547,680 nodal points. The computational domain and various
relevant subdomains are depicted in Figure 1.

The conductivity values were chosen to arrive at physiologically relevant con-
duction velocities of 0.64 m/s and 0.41 m/s along and transverse to the principal
fiber axes, respectively, and to keep anisotropy ratios within the range of values re-
ported in experimental studies [32]. A rule-based method was used to impose fiber
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orientations using fiber angles of -60◦ and +60◦ at the endocardial and epicardial
surfaces, respectively, and a smooth linear variation of fiber angles as a function of
depth in between. The glyph of the fiber directions al(x) at the cardiac tissue is
shown in Figure 2 which are used to compute the anisotropic conductivity tensor
values accordingly Eq.(5).

Figure 2: The glyph of the fiber directions al(x).

|
induce reentry

|| shock

optimization
||

post shock
|

t = 0 msec 665 669 1469

Figure 3: Different time horizons considered in the computations.

We followed a standard S1−S2 stimulation protocol to induce the reentry at the
computational domain, for more details see [12]. Brief overview of the three tem-
poral horizons is depicted in Figure 3 to induce the reentry, applied shock strength
duration and post shock simulation duration. The initial state solution of the ex-
tracellular potential, the transmembrane voltage and the gating variable for the
optimization algorithm at time t = 665 msec are depicted in Figure 4.

To obtain a successful defibrillation, the desired trajectory of the transmembrane
potential (vd) in objective function Eq. (31) plays a significant role. Accordingly, a
solution of the primal problem was generated using a prescribed time course of stim-
ulation current Ie(t) = 6 mA/cm3 lasting 4 msec. The resulting desired trajectory
ensures that optimized states attain a steady state during the post shock period.
The aim of the optimal control procedure is to determine an optimal stimulus which
still leads to successful defibrillation but with less energy than that used to vd. In
all test cases, the weight of at the observation domain is fixed α1 = 0.05 and the
weight of the control cost is investigated. Concerning the choice of the parameters
α1 and α2 in Eq. (31), let us note that the optimal control only depends on the
ratio α2

α1
. In the optimization procedure α1 acts as a scaling of the dual variables
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(a) extracellular potential (b) transmembrane voltage (c) gating variable

Figure 4: The solution (u, v, w) at t = 585 msec.

(pb, p, q, r). For fixed α1, the weight α2 describes the relative weight of the cost of
the control Ie. In our computation we set α1 = 0.05 and analyze the effect of vary-
ing α2. The complete optimization code was developed based on the public domain
FEM software package DUNE [3]. The presented numerical results are done on a
Linux cluster consisting of ten nodes where each node consists of 8 quad-core AMD
Opteron processors 8356 clocked at 2.3 GHz and equipped with 1TB RAM.

4.1 Cardiac defibrillation

Here we give the numerical results for the successful defibrillation by utilizing less
applied current. For this simulations, the desired trajectory solution is constructed
by applying the external stimulus strength Ie(t) = 6 mA/cm3 over the 4 msec of
simulation time. In optimization, we impose the bilateral control constraints as
−6 ≤ Īe(t) ≤ 6.

The L2 norm of the gradient and minimization value of the cost functional over
the optimization iterations for different regularization parameter values are depicted
in Figure 5 (log scale at Y-axis).

(a) L2 norm of the gradient of J (b) minimization value of J

Figure 5: The solution (u, v, w) at t = 585 msec.

The optimal control value over the time for different weights of the costs is
depicted in Figure 6. We observed that successful defibrillation is observed during
the post shock simulations except for α2 = 1.0. We can observe that the control
constraints are getting active over the time period as the regularization parameter
is decreased. The total current is 21.7229, 21.4031, 18.6085, 16.1175 and 5.6407
mA/cm3 respectively for α2 = 0.003, 0.008, 0.05, 0.1 and 1.
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Figure 6: The optimal control.

The uncontrolled transmembrane voltage solution is depicted for various time
instances in Figure 7. The tip of the reentrant source is moving around the com-
putational domain and as a consequence the excitation wave fronts appear all the
time on the computational domain. The corresponding optimal state solution and
the postshock solution are shown in Figure 8 for different time steps. Here we can
observe that during the initial shock period, there are many virtual electrodes at
time t = 665.4 . From this point on, during the shock period, the virtual electrode
polarization strength increases in the vicinity of the initial polarization. Due to
sufficient mass of virtual electrode polarization and small excitability gap, the ex-
isted reentrant wave did not survive to propagate further excitation wavefronts. We
can observe that the reentrant phenomena has completely disappeared at time 1340
msec.

Figure 7: The uncontrolled solution of transmembrane voltage v at times t= 665.40,
7611.90, 866.40, 931.0, 1195.2 and 1331.90 msecs respectively.

Figure 8: The optimal state solution of transmembrane voltage v during the shock
period at times t= 665.40 and 669 msecs in first two panels. In last 4 panels, the
solution of v during the post-shock period at times t= 673.15, 931.0, 1195.3 and
1331.0 msec respectively.
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4.2 Robustness w.r.t to variations in model parameters

In this subsection, the robustness of the approach is demonstrated by introducing
the variations in the model parameters as well as in the conductivity tensor values.
Here we perform two test cases for the demonstration. In the first test case, the
characteristic time of closing gate parameter is reduced by 10% in the simulations
while the other parameters were kept unchanged. In both test cases, we choose
the regularization parameter α2 = 0.05. Due to the reduction in τclose, the result
of the APD duration is shortened from 330 msec to 302 msec in the simulations.
The optimal control Īe(t) is depicted in Figure 9(a) over the time with variations
in the τclose model parameter. The time course of the optimal control over the time
looks very similar to the one presented in the above subsection. The computed total
current is 18.6248 mA/cm3 as opposed to the 18.6085 mA/cm3. We point out that
with the reduction of 15% in closing gate parameter, we did not see a successful
defibrillation.
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Figure 9: The optimal control solution .

In the second test case, 10% of reduction is included in the conductivity tensor
values which results in slowdown of the propagation of the wavefront in numerical
simulations. The optimal control Īe(t) is depicted in Figure 9(b) over the time with
variations in the conductivity tensor values. In this test case the computed total
current is 19.3155 mA/cm3. Both test cases are considered to test the successful de-
fibrillation for different patient data by utilizing the pre-computed desired trajectory
solution in our simulations.

4.3 Convergence with finer grid

The optimization algorithm convergence w.r.t. the fine resolution mesh is studied in
this subsection. The global refinement of the coarse grid rabbit ventricle geometry,
shown in Figure 1, mesh is called the finer mesh in our computations. In it the
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integrated domain consists of 40,658,176 tetrahedral elements and 6,828,862 nodes
and the tissue geometry comprises of 24,588,232 tetrahedrons and 4,235,684 vertices.
For this test case, the initial guess for the control is taken from the optimal control
solution obtained for the test case with α2 = 0.05 in Figure 6.

Figure 10: The optimal control solution on the finer and coarse grid geometries.

We observed that the Newton-CG optimization algorithm has taken 4 iterations
to converge the solution. The optimal control solution is shown in Figure 10. In this
finer grid computation case, the optimal control value is higher at the beginning
of the time and then it is smaller as compared to coarse grid computations, see
Figure 6 for the case of α = 0.05. The total current is 17.0771 mA/cm3 and we can
observe that the finer grid computation takes less total current compare to coarse
grid which was 18.6085 mA/cm3.

4.4 Multiple boundary control domains

In this subsection numerical results are presented based on the smaller support of
the control domains at the boundary of the computational domain as shown in
Figure 11. The local support of the anode boundary regions are placed on three
lateral boundary surfaces and the local support of the cathode boundary regions
is placed along one boundary surface of the computational domain. For practical
relevance, it is desirable that multiple injected current boundary support be as small
as possible. In this case, the desired trajectory is generated by applying the external
stimulus strength Ie(t) = 6 mA/cm3 in this test case as well. The weight of the cost
of the control is reduced to α2 = 0.001 in order to obtain successful defibrillation.
Moreover, a larger than this value did not lead to a successful defibrillation.

We point out that the same experiment was carried with anode boundary regions
only placed on top surface rather than on three surfaces. Due to lack of appearance
of sufficiently many virtual electrodes and larger excitable gaps, this did not lead to
a successful defibrillation.

The L2-norm of the gradient of the cost functional and optimal control solution
is depicted in Figure 12. We can observe that the control constraints are active from
0.2 msec to about 1 msec of simulation time. The total current is 22.2178 mA/cm3.
In this case, we observed that the reentrant wave is disappeared at simulation time
1365 msec.
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Figure 11: The computational domain with smaller control support at the boundary.

Figure 12: The L2-norm of the gradient of the cost functional at the left and the
optimal control value over the time at the right.

4.5 Parallel efficiency

To achieve significant reduction in computational time it is key to optimize solvers
in terms of strong scalability of the partial differential equations which dominate
the overall computational cost in an optimal control solver. Benchmarking paral-
lel scalability of the optimization algorithm was performed using a high resolution
mesh (minimum edge size is h = 1.8533), which is demonstrated in Section 4.3, to
assess the strong scaling properties of the solvers. The strong parallel efficiency was
computed as

e =
Nr

N

Tr
TN

where Nr and Tr are number of cores and total cpu time of a reference simulation,
respectively, and N and TN are number of cores and total cpu time in the scalability
experiments. We have chosen Nr = 4 in this test case due to too long computational
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Figure 13: Parallel efficiency for different components of the optimization algorithm.

Benchmark results are illustrated in Fig. 13 for different components of bidomain
solver. The parallel efficiency is calculated based on the first iteration of optimization
algorithm. First we discuss the absolute times at the reference simulation. The cpu
times for elliptic, PDE/ODE, primal and dual solves require 9156 minutes, 4470
minutes, 13670 min, and 12156 minutes. In computations, due to the solution
strategy of bidomain system, we observed that the communication time for sending
the elliptic solution from the whole domain to the tissue domain taken 48.4 seconds
and 56.3 seconds for communicating the transmembrane solution from the tissue
domain to the whole domain. The complete optimization took approximately 3
days 14 hours on 80 cores to complete optimization algorithm. We can observe that
the parallel efficiency of e = 0.89 could be achieved for the primal and dual solves
on 80 cores.

5 Summary

In the present work, we demonstrated the efficient primal dual active set methods
for the optimization of bidomain equations on realistic 3D anatomical rabbit ven-
tricle geometries. We extended our earlier study [12] by considering the realistic 3D
anatomical geometries, in the presence of the bilateral control constraints to circum-
vent the excess injected currents. In our computations, we adapted a primal-dual
active set [18] strategy to accommodate the control constraints in the optimization
algorithm. In the numerical experiments we observed that the control constraints
are active when the weight of the cost of control is getting smaller.

We studied the possibility of successful defibrillation on such realistic 3D anatom-
ical geometries with considering the phenomenological model, Mitchell-Schaeffer
model by delivering the strong shocks at the boundary of the bath domain. In
our computations, we considered this served as a reference solution for optimization
algorithm. Optimal control techniques demonstrated that the successful defibrilla-
tion is possible with less total current comparing with the ad-hoc strategy.

We demonstrated the robustness of the optimization algorithm by modifying
the model parameters and conductivity tensors values. This can be attributed as
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using a pre-existing trajectory solution which was computed based on existing data
and testing the successful defibrillation for different patient data. Moreover, we
conducted the convergence study of the finer meshes for the demonstration of the
robustness of the optimization algorithm. In this case the finer grid computation
takes less injected current than the coarser grid computation. In our numerical
experiment we investigated the applicability of the multiple smaller boundary control
support and demonstrated that successful defibrillation can be achieved. In this case,
the disappearance of reentrant wave took more time than the appearance of control
at the full boundary surface. The good parallel efficiency is accomplished for the
primal-dual active set strategy for such complex geometries on 80 cores.
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