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Abstract. Stabilization problems for parabolic equations with polynomial nonlinearities are
investigated in the context of an optimal control formulation with a sparsity enhancing cost func-
tional. This formulation allows that the optimal control completely shuts down once the trajectory is
sufficiently close to a stable steady state. Such a property is not present for commonly chosen control
mechanisms. To establish these results it is necessary to develop a function space framework for a
class of optimal control problems posed on infinite time horizons, which is otherwise not available.

AMS subject classifications. 35K58, 49J20, 49J52, 49K20,

Key words. Semilinear parabolic equations, stabilization, optimal control, sparse controls

1. Introduction. In recent years there has been significant interest in the topic
of sparse optimal controls. These controls contribute towards the control objective
and simultaneously shut down to zero as much as possible. Up to now optimal con-
trol problems with sparsity constraints have typically been investigated for tracking
problems on finite time horizons. Sparsity with more general cost functionals was in-
vestigated in [6]. In this case the objective is to steer the trajectory of the controlled
dynamical system to the desired state while simultaneously minimizing the support of
the control. By an adapted choice of the cost functional, the sparsity structure can be
influenced. The focus in previous work was set on controlling the sparsity structure
in spatial directions. This led to choose controls in the spaces like L2(0, T ;L1(Ω))
or L1(Ω;L2(0, T )) where for technical reasons the L1-spaces have to be replaced by
spaces of measures [5], [10], [7], unless other precautions as for instance constraints
on the controls are taken [6], [9].

In the present paper we focus on optimal controls which exhibit temporal sparsity.
This can be achieved by choosing a cost-functional for the control variable which is
non-smooth in time. We shall concentrate on optimal control formulations for sta-
bilization problems. It will be demonstrated that these problems are particularity
well-suited to benefit from the sparsity structure. Specifically, if ye is a stable equi-
librium of a dynamical system, optimal control strategy typically provide controls
which asymptotically steer the system to ye with the control not shutting down to
zero even if the controlled trajectory is already in the close vicinity of ye. Such strate-
gies can be based, for instance, on applying Riccati or Lyapunov techniques to the
linearized system or on feedback mechanisms which respect the nature of the differ-
ential equation and the control objective, as for example feeding back some weighted
difference between the state and ye; see, for instance, [1], [2], [16]. With temporally
sparse controls, on the other hand, it can be guaranteed that the optimal control will
automatically shut down to zero in the vicinity of ye. Of course such a property can
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not be expected unless ye is stable. In the present paper we develop the necessary
concepts for a class of semilinear parabolic equations. This will include in particular
to propose a function space framework for open loop infinite time horizon nonlinear
optimal control problems. This topic has received very little attention in the literature
even in case of smooth cost functionals.

To demonstrate the sparsity nature of optimal controls for stabilization problems
we consider

∂y

∂t
−∆y + f(y) = uχω

together with an ininital condition and homogenous Neumann boundary conditions.
The nonlinearity f : R → R is a polynomial function of degree 2m + 1 with m ∈ N
arbitrary if n ≤ 2 and m = 1 if n = 3, and further specifications to be given below.
Due to the choice of Neumann boundary conditions every root of f is an equilibrium of
the uncontrolled state equation. Successive distinct roots of f alternate between stable
and unstable behavior. As described above here we are interested in the behavior of
sparse controls in the neighborhood of a stable equilibrium, which after a possible
change of variables is assumed to be the origin. Consequently, we make the following
assumption on f :

f(0) = 0, f ′(0) > 0 and the leading coefficient of f is positive. (1.1)

It will be shown that this condition guarantees that 0 is a stable equilibrium for
our dynamical system, see Theorems 2.5 and 2.6.

Let us point out that reaction diffusion systems of polynomial type arise in many
interesting applications including models in physiology, for instance in the context of
FitzHughNagumo models, which describe the prototype of excitable systems, e.g. see
[12], or Schlögl’s model which is a canonical example of a chemical reaction system
[14]. See [3], [8], [13] for the optimal control of these systems.

We are now prepared to formulate the optimal control problem which will be
analyzed in this work:

(P) min
u∈U

J(u) =
1

2

∫ ∞
0

∫
Ω

y2
u dx dt+

ν

2

∫ ∞
0

∫
ω

u2 dx dt+ α

∫ ∞
0

(∫
ω

u2 dx
)1/2

dt,

where

U = L2(0,∞;L2(ω)) ∩ L1(0,∞;L2(ω)), ν > 0, α > 0.

Here yu denotes the solution of the following parabolic equation
∂y

∂t
−∆y + ay + f(y) = uχω in Q = Ω× (0,∞),

∂ny = 0 on Σ = Γ× (0,∞),

y(0) = y0 in Ω,

(1.2)

where Ω is a bounded domain in Rn, 1 ≤ n ≤ 3, with a Lipschitz boundary Γ, ω is a
subdomain of Ω, χω denotes the characteristic function of ω, a ∈ L∞(Ω), 0 ≤ a 6≡ 0,
and y0 ∈ H1(Ω).

Remark 1.1. The assumption a 6≡ 0 has been introduced just for simplicity of the
presentation, but it is not necessary. All the results of this paper remain valid if we take
a ≡ 0. Indeed, from the assumptions on f we know that f(s) = a1s+ · · · a2m+1s

2m+1
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with a1 > 0. Therefore we can take 0 < ã1 < a1 so that the polynomial f̃(s) =
ã1s+a2s

2 + · · · a2m+1s
2m+1 has the same properties as f . If a ≡ 0 we set a = a1− ã1

and all the above assumptions are fulfilled.
Concerning the three terms in the cost functional J , the first one reflects the

objective of stabilization to 0. The second one is required for the well-posedness of
the control problem, and the last one promotes the temporal sparsity of the optimal
controls. We observe that cost J can take the value ∞ for some controls u ∈ U ,
because yu 6∈ L2(Q). We will say that u ∈ U is a feasible control if J(u) <∞.

We shall frequently use the following property of f which is a consequence of
assumption (1.1) and the fact that the polynomial is of odd degree

∃Λ > 0 such that f ′(t) ≥ −Λ ∀t ∈ R. (1.3)

The plan of this paper is as follows. Section 2 contains the analysis of the con-
trolled state equation in spaces with infinite time horizons. Moreover two theorems
are presented which provide sufficient conditions for exponential stability of the un-
controlled trajectories provided that the initial condition is ether sufficiently small or
it is appropriately located with respect to the roots of the polynomial. In Section 3
existence of optimal controls is proved and the sensitivity and adjoint equations are
analyzed. Finally Section 4 contains the optimality system. It allows to deduce the
sparsity properties of the optimal controls.

2. Analysis of the State Equation. We shall denote by L2
loc(0,∞;H1(Ω)) the

space of functions y belonging to L2(0, T ;H1(Ω)) for every 0 < T <∞. Analogously
we define L2

loc(0,∞;L2(Ω)) and L∞loc(0,∞;L2(Ω)).
Definition 2.1. We call y a solution to (1.2) if y ∈ L2

loc(0,∞;H1(Ω)) ∩
C([0,∞);L2(Ω)), f(y) ∈ L2

loc(0,∞;L2(Ω)) and for every T > 0 the restriction of
y to QT = Ω× (0, T ) satisfies in the usual variational sense the equation

∂y

∂t
−∆y + ay + f(y) = uχω in QT ,

∂ny = 0 on ΣT ,

y(0) = y0 in Ω,

(2.1)

We have the following existence and uniqueness result.
Theorem 2.2. For every u ∈ L2(0,∞;L2(ω)) equation (1.2) has a unique solu-

tion. Moreover y ∈ H1
loc(0,∞;L2(Ω)) holds.

Proof. This proof can not rely on the usual techniques for semilinear monotone
equations because the right hand side u is not in any Lp(0, T ;Lq(Ω)) space with p and
q large enough so that the corresponding state belongs to L∞(QT ). First we make
the change of variables according to z(x, t) = e−Λty(x, t), where Λ is introduced in
(1.3). Then the resulting equation for z is given by

∂z

∂t
−∆z + az + f̃(t, z) = e−Λtuχω in QT ,

∂nz = 0 on ΣT ,

z(0) = y0 in Ω,

(2.2)

where

f̃(t, s) = e−Λtf(eΛts) + Λs ∀(t, s) ∈ R2.
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For any positive integer k we denote by Proj[−k,+k](s) the projection of a real number

s on the interval [−k,+k] and we set f̃k(t, s) = f̃(t,Proj[−k,+k](s)). As a consequence

of (1.1) and (1.3), we have that f̃k(t, 0) = 0 and ∂sf̃k(t, s) = f ′(eΛts) + Λ ≥ 0 if
|s| < k and ∂sf̃k(t, s) = 0 if |s| > k. Moreover, ∂sf̃k(t, 0) = f ′(0) + Λ > 0 holds.
By an application of Schauder’s fixed point theorem we can obtain the existence of a
solution zk ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ], L2(Ω)) of the following equation

∂zk
∂t
−∆zk + azk + f̃k(t, zk) = e−Λtuχω in QT ,

∂nzk = 0 on ΣT ,

zk(0) = y0 in Ω.

(2.3)

The uniqueness of zk is a consequence of the monotonicity of f̃k. Because of the
regularity of y0 ∈ H1(Ω) and the fact that u ∈ L2(0, T ;L2(ω)), we know that zk ∈
H1(0, T ;L2(Ω)) as well; see, for instance, [15, Proposition III-2.5]. Multiplying (2.3)
by zk, integrating by parts in QT and using that f̃k(t, zk)zk ≥ 0, we get the existence
of a constant Ca such that for every t ∈ [0, T ]

1

2
‖zk(t)‖2L2(Ω) + Ca‖zk‖2L2(0,t;H1(Ω) ≤

1

2
‖zk(t)‖2L2(Ω) +

∫
QT

(|∇zk|2 + az2
k) dx dt

≤
∫ T

0

∫
ω

e−Λtuzk dx dt+
1

2
‖y0‖2L2(Ω) ≤ ‖u‖L2(0,T ;L2(ω))‖zk‖L2(0,T ;H1(Ω))

+
1

2
‖y0‖2L2(Ω) ≤

1

2Ca
‖u‖2L2(0,T ;L2(ω)) +

Ca
2
‖zk‖2L2(0,T ;H1(Ω)) +

1

2
‖y0‖2L2(Ω).

From here we deduce

‖zk‖L∞(0,T ;L2(Ω)) + ‖zk‖L2(0,T ;H1(Ω)) ≤
√

2

Ca
‖u‖L2(0,T ;L2(ω)) +

√
2‖y0‖L2(Ω). (2.4)

Next we prove that {f̃k(·, zk)}∞k=1 is a bounded sequence in L2(QT ). Since f̃(t, s)
is a polynomial in the variable s of degree 2m + 1 with coefficients depending on t,
but uniformly bounded in [0, T ], and leading positive coefficient, elementary calculus
leads to the existence of two constants C1 > 0 and C2 ≥ 0 such that

f̃(t, s)2 ≤ C1f̃(t, s)s2m+1 + C2 ∀(t, s) ∈ [0, T ]× R.

Now, setting ẑk = Proj[−k,+k](zk) we have that f̃k(t, zk) = f̃(t, ẑk) and

f̃k(t, zk)2 ≤ C1f̃(t, ẑk)ẑ2m+1
k + C2 = C1f̃k(t, zk)ẑ2m+1

k + C2 ∀t ∈ [0, T ].

Since the sign of the functions ẑk coincide with the sign of zk we get f̃k(t, zk)ẑ2m+1
k ≥ 0.

Hence the boundedness of {f̃k(·, zk)}∞k=1 in L2(QT ) will follow from the boundedness

of {f̃k(·, zk)ẑ2m+1
k }∞k=1 in L1(QT ). To prove this boundedness first we observe that

ẑ2m+1
k ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) because zk belongs to this space and
ẑk ∈ L∞(QT ). Then we can multiply the state equation (2.3) by ẑ2m+1

k and integrate
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by parts. To this end we observe that∫ T

0

∫
Ω

∂zk
∂t

ẑ2m+1
k dx dt =

∫
Ω

zk(T )ẑ2m+1
k (T ) dx−

∫
Ω

y0y
2m+1
0k dx

− (2m+ 1)

∫ T

0

∫
Ω

zk
∂ẑk
∂t

ẑ2m
k dx dt ≥

∫
Ω

ẑ2m+2
k (T ) dx−

∫
Ω

y2m+2
0 dx

− (2m+ 1)

∫ T

0

∫
Ω

∂ẑk
∂t

ẑ2m+1
k dx dt, (2.5)

where y0k = Proj[−k,+k](y0). Recall that y0 ∈ H1(Ω) ⊂ L2m+2(Ω) for any positive
integer m if n ≤ 2 and for m ≤ 2 if n = 3 and so the above integral involving y0 is
finite. The last integral can be computed as follows∫ T

0

∫
Ω

∂ẑk
∂t

ẑ2m+1
k dx dt =

1

2m+ 2

∫ T

0

d

dt

∫
Ω

ẑ2m+2
k dx dt

=
1

2m+ 2

(∫
Ω

ẑ2m+2
k (T ) dx−

∫
Ω

y2m+2
0k dx

)
.

Inserting this identity in (2.5) we get∫ T

0

∫
Ω

∂zk
∂t

ẑ2m+1
k dx dt ≥ 1

2m+ 2

∫
Ω

ẑ2m+2
k (T ) dx−

∫
Ω

y2m+2
0 dx.

Moreover we have that ∇zk∇ẑ2m+1
k = (2m + 1)ẑ2m

k ∇zk∇ẑk = (2m + 1)ẑ2m
k |∇ẑk|2.

Hence combining these facts, we deduce from equation (2.3)

1

2m+ 2

∫
Ω

ẑ2m+2
k (T ) dx+

∫
QT

ẑ2m
k [(2m+ 1)|∇ẑk|2 + aẑ2

k] dx dt

+

∫
QT

f̃k(t, zk)ẑ2m+1
k dx dt ≤

∫ T

0

∫
ω

e−Λtuẑ2m+1
k dx dt+

∫
Ω

y2m+2
0 dx

≤ ‖u‖L2(0,T ;L2(ω))

(∫
QT

ẑ4m+2
k dx dt

)1/2

+ C‖y0‖2m+2
H1(Ω).

Since f̃(t, s)sm+1 is a polynomial in s of even degree 4m+2 and positive leading coeffi-
cient, there exist constants C3 > 0 and C4 ≤ 0 such that f̃(t, s)sm+1 ≥ C3s

4m+2 +C4.
Hence we have that f̃k(t, zk)ẑ2m+1

k = f̃(t, ẑk)ẑ2m+1
k ≥ C3ẑ

4m+2
k + C4. Using this fact

in the above inequality we infer with the Young inequality∫
QT

f̃k(t, zk)ẑ2m+1
k dx dt ≤ ‖u‖L2(0,T ;L2(ω))

(∫
QT

ẑ4m+2
k dx dt

)1/2

+ C‖y0‖2m+2
H1(Ω)

≤ 1

2C3
‖u‖2L2(0,T ;L2(ω)) +

C3

2

∫
QT

ẑ4m+2
k dx dt+ C‖y0‖2m+2

H1(Ω)

≤ 1

2C3
‖u‖2L2(0,T ;L2(ω)) +

1

2

∫
QT

f̃k(t, zk)ẑ2m+1
k dx dt− C4|QT |

2
+ C‖y0‖2m+2

H1(Ω),

where |QT | denotes the Lebesgue measure of QT , and hence∫
QT

f̃k(t, zk)ẑ2m+1
k dx dt ≤ 1

C3
‖u‖2L2(0,T ;L2(ω)) − C4|QT |+ 2C‖y0‖2m+2

H1(Ω).
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Thus we have the boundedness of {f̃k(·, zk)}∞k=1 in L2(QT ) as desired. Now using
(2.3) we deduce that {∂zk∂t − ∆zk}∞k=1 is bounded in L2(QT ). Since y0 ∈ H1(Ω),
from the maximal parabolic regularity property of the heat equation it follows that
{∂zk∂t }

∞
k=1 is bounded in L2(QT ) as well. Combining this fact with (2.4), we deduce

the existence of a subsequence such that

zk ⇀ z in L2(0, T ;H1(Ω)) and
∂zk
∂t

⇀
∂z

∂t
in L2(QT ),

which implies the strong convergence zk → z in L2(QT ). By taking a new subsequence,
if necessary, we can assume that zk(x, t)→ z(x, t) for almost every point (x, t) ∈ QT .
This implies the pointwise convergence f̃k(t, zk(x, t)) → f̃(t, z(x, t)) for almost all
(x, t) ∈ QT . This together with the boundedness of {f̃k(·, zk)}∞k=1 in L2(QT ) implies
that f(·, z) ∈ L2(QT ) and fk(·, zk) ⇀ f(·, z) in L2(QT ). Moreover, since the space
L2(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω) is continuously embedded in C([0, T ];L2(Ω)), we
deduce that z is in this space. According to the convergence properties of {zk}∞k=1

described above, it is immediate to pass to the limit in (2.3) and deduce that z is
a solution of (2.2). Its uniqueness follows from the monotonicity of f̃ . From the
equivalence between equations (2.1) and (2.2), we get that y = eΛtz is the unique
solution of (2.1). Since T was an arbitrary positive number we conclude that y
satisfies all the requirements of Definition 2.1, and therefore y is the unique solution
of (1.2).

Finally, the fact that y ∈ H1(0, T ;L2(Ω)) follows from (2.1) taking into account
that f(y) ∈ L2(QT ) and y0 ∈ H1(Ω), [15, Proposition III-2.5].

In the next theorem we establish some infinite horizon regularity properties of the
solution of (1.2).

Remark 2.3. We remark that if y0 ∈ H1(Ω) ∩ L∞(Ω) and u ∈ Lp(0, T ;Lq(ω))
with 1

p + n
2q < 1, then we have that y ∈ L∞(QT ) for every T > 0. Moreover, if

y0 ∈ C(Ω̄), then y ∈ C(Q̄T ) holds. The proof is standard for the solution of (2.2) and
from here we deduce the corresponding regularity for y = eΛtz.

Theorem 2.4. Let u ∈ L2(0,∞;L2(ω)) and let y be the solution of (1.2) corre-
sponding to u. If ‖y‖L2(Q) <∞, then the following properties hold

f(y), y2m+1 ∈ L2(Q), (2.6)

y ∈ L2(0,∞;H1(Ω)) ∩ C([0,∞);H1(Ω)) and
∂y

∂t
∈ L2(Q), (2.7)

lim
T→∞

‖y(T )‖L2(Ω) = 0. (2.8)

Moreover, there exists a constant C independent of u and y such that

‖f(y)‖L2(Q) + ‖y2m+1‖L2(Q) + ‖y‖H1(Q) + ‖y‖L∞(0,∞;H1(Ω))

≤ C
(
‖y‖L2(Q) + ‖u‖L2(0,∞;L2(ω)) + ‖y0‖m+1

H1(Ω)

)
. (2.9)

Proof. We divide the proof into three parts.

Proof of (2.6). First we demonstrate that f(y)y2m+1 ∈ L1(Q). Let us write

f(s) =

2m+1∑
j=1

ajs
j and Cf =

2m+1∑
j=1

|aj |. (2.10)
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Observe that f(0) = 0 implies that a0 = 0. From here we infer

|f(s)s2m+1| ≤ Cfs4m+2 ∀|s| ≥ 1 and |f(s)s2m+1| ≤ Cfs2 ∀|s| ≤ 1. (2.11)

Moreover, from the properties assumed for f we deduce the existence of µ0 > 0
and M0 > µ0 such that

f ′(s) > 0 and f(s)s ≥ 0 ∀|s| ≤ µ0 and ∀|s| ≥M0. (2.12)

We will take

µ = min{1, µ0} and M > max
{
M0,

2

a2m+1

2m∑
j=1

|aj |
}
.

Let us denote Qδ = {(x, t) ∈ Q : |y(x, t)| > δ} for any real number δ > 0, and
Qµ,M = {(x, t) ∈ Q : µ < |y(x, t)| < M}. Since y ∈ L2(Q) we have

|Qδ| ≤ 1

δ2

∫
Qδ
y2(x, t) dx dt ≤ 1

δ2
‖y‖2L2(Q) <∞ ∀δ > 0, (2.13)

hence |Qµ,M | ≤ |Qµ| < ∞ as well. Now we set CM = maxµ≤|s|≤M |f(s)|. With this
notation and using (2.12) and (2.11) we get for every T > 0

∣∣∣ ∫
QT

f(y)y2m+1 dx dt
∣∣∣ ≤ Cf ∫

QT \Qµ
y2 dx dt+ CMM

2m+1|QT ∩Qµ,M |

+

∫
QT∩QM

f(y)y2m+1 dx dt ≤ Cf‖y‖2L2(Q) + CMM
2m+1|Qµ,M |

+

∫
QT∩QM

f(y)y2m+1 dx dt. (2.14)

Thus we only need to prove the integrability of f(y)y2m+1 in QM . To this end,
for every k > M we define the projection yk = Proj[−k,+k](y) and we multiply (2.1)

by y2m+1
k∫
QT

∂y

∂t
y2m+1
k dx dt+

∫
Q

[∇y∇y2m+1
k + ayy2m+1

k ] dx dt+

∫
QT∩QM

f(y)y2m+1
k dx dt

≤ Cf‖y‖2L2(Q) + CMM
2m+1|Qµ,M |+

∫ T

0

∫
ω

uy2m+1
k dx dt. (2.15)

Arguing as in the proof of Theorem 2.2 we have∫ T

0

∫
Ω

∂y

∂t
y2m+1
k dx dt ≥ 1

2m+ 2

∫
Ω

y2m+2
k (T ) dx−

∫
Ω

y2m+2
0 dx

and ∇y∇y2m+1
k = (2m+1)y2m

k ∇y∇yk = (2m+1)y2m
k |∇yk|2. Using this in (2.15) and

taking into account that (2.12) implies that f(y(x, t))yk(x, t) ≥ 0 for every (x, t) ∈
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Q \Qµ,M we obtain

0 ≤
∫
QT∩QM

f(y)y2m+1
k dx dt ≤

∫
Ω

y2m+2
0 dx+ Cf‖y‖2L2(Q) + CMM

2m+1|Qµ,M |

+ ‖u‖L2(0,+∞;L2(ω))

(∫
QT∩QM

y4m+2
k dx dt

)1/2

≤ ‖y0‖2m+2
H1(Ω) + Cf‖y‖2L2(Q) + CMM

2m+1|Qµ,M |

+
1

a2m+1
‖u‖2L2(0,+∞;L2(ω)) +

a2m+1

4

∫
QT∩QM

y4m+2
k dx dt. (2.16)

Due to the choice of M we have for |s| ≥M

f(s)s2m+1 ≥ s4m+2
(
a2m+1 −

2m∑
j=1

|aj |
1

|s|2m+1−j

)

≥ s4m+2
(
a2m+1 −

1

M

2m∑
j=1

|aj |
)
≥ a2m+1

2
s4m+2.

Since f ′(s) > 0 for |s| ≥M and k > M , we get

f(y(x, t))y2m+1
k (x, t) ≥ f(yk(x, t))y2m+1

k (x, t) ≥ a2m+1

2
y4m+2
k (x, t), (x, t) ∈ QM .

Inserting this inequality in the right hand side of (2.16) and (2.13) we conclude that

0 ≤
∫
QT∩QM

f(y)y2m+1
k dx dt

≤ C
(
‖y0‖2m+2

H1(Ω) + ‖y‖2L2(Q) + ‖u‖2L2(0,∞;L2(ω))

)
∀T > 0 and ∀k,

where C only depends on f and M . Since yk(x, t)→ y(x, t) a.e. in Q, we deduce from
the above inequality, (2.13), (2.14), and Fatou’s Lemma that∫

Q

|f(y)||y2m+1| dx dt ≤ C
(
‖y0‖2m+2

H1(Ω) + ‖y‖2L2(Q) + ‖u‖2L2(0,∞;L2(ω))

)
,

for a new C only depending on f and M . Now we have∫
Q

y4m+2 dx dt ≤
∫
Q\Qµ

y2 dx dt+

∫
Qµ,M

M4m+2 dx dt+

∫
QM

y4m+2 dx dt

≤ ‖y‖2L2(Q) +M4m+2|Qµ,M |+ 2

a2m+1

∫
QM

f(y)y2m+1 dx dt <∞,

which proves that y2m+1 ∈ L2(Q). Moreover, since |f(s)| ≤ Cf |s|2m+1 ∀|s| ≥ 1 and
|f(s)| ≤ Cf |s| ∀|s| ≤ 1, we deduce that

f(s)2 ≤ C2
f (s2 + s4m+2) ∀s ∈ R.

Therefore, the fact that y and y2m+1 ∈ L2(Q) implies that f(y) ∈ L2(Q) and the proof
of (2.6) is complete. Additionally, these arguments obviously lead to the estimates
for the first two terms of (2.9).
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Proof of (2.7). First we observe that y ∈ C([0, T ];H1(Ω)) for every T > 0.
Indeed, this is a consequence of he fact that f(y) ∈ L2(Q) and y0 ∈ H1(Ω); see
[15, Proposition III-2.5]. Hence y : [0,∞) → H1(Ω) is continuous. To prove that
y ∈ L2(0,∞;H1(Ω)) it is enough to multiply (2.1) by y and integrate in QT , T > 0
arbitrary, to get

1

2
‖y(T )‖L2(Ω) +

∫
QT

(|∇y|2 + ay2) dx dt

=

∫ T

0

∫
ω

uy dx dt+
1

2
‖y0‖2L2(Ω) −

∫
QT

f(y)y dx dt

≤ ‖u‖L2(0,∞;L2(ω))‖y‖L2(Q) +
1

2
‖y0‖2L2(Ω) + ‖f(y)‖L2(Q)‖y‖L2(Q) <∞,

Above we have used the assumption y ∈ L2(Q). Now it is enough to make T →∞ to
deduce that y ∈ L2(0,∞;H1(Ω)).

To prove that y ∈ L∞(0,∞;H1(Ω)) we take into account that by Theorem 2.2
y ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) for every T > 0. We can multiply the equation
(2.1) by ∂y

∂t and integrate in QT to get

‖∂y
∂t
‖2L2(QT ) +

∫ T

0

1

2

d

dt

∫
Ω

(|∇y|2 + ay2) dx+

∫
QT

f(y)
∂y

∂t
dx dt =

∫ T

0

∫
ω

u
∂y

∂t
dx dt.

This implies

‖∂y
∂t
‖2L2(QT ) +

1

2

∫
Ω

(|∇y(T )|2 + a0y
2(T )) dx

≤
(
‖u‖L2(0,T ;L2(ω)) + ‖f(y)‖L2(Q)

)
‖∂y
∂t
‖L2(QT ) +

1

2

∫
Ω

(|∇y0|2 + a0y
2
0) dx

≤ 1

2
(‖u‖L2(0,T ;L2(ω)) + ‖f(y)‖L2(Q)

)2
+

1

2
‖∂y
∂t
‖2L2(QT ) +

C

2
‖y0‖2H1(Ω),

hence

‖∂y
∂t
‖2L2(QT ) +

∫
Ω

(|∇y(T )|2 + a0y
2(T )) dx

≤ (‖u‖L2(0,T ;L2(ω)) + ‖f(y)‖L2(Q)

)2
+ C‖y0‖2H1(Ω).

Since T > 0 is arbitrary, the above inequality concludes the proof of (2.7). Moreover,
from the obtained estimates the bounds for the second two terms in (2.9) follow.

Proof of (2.8). Since y ∈ H1(0, T ;L2(Ω)) for every T > 0, then the function
t ∈ [0, T ]→ ‖y(t)‖2L2(Ω) is absolutely continuous and

d

dt
‖y(t)‖2L2(Ω) = 2

∫
Ω

y(t)
∂y

∂t
(t) dx;

see, for instance, [15, Proposition III-1.2]. Moreover, the fact that y ∈ L2(Q) implies
the existence of a monotone increasing sequence of positive numbers {tk}∞k=1 such
that ‖y(tk)‖L2(Ω) → 0 as k →∞. Then, given T > 0 and taking tk > T and we get

‖y(T )‖2L2(Ω) = ‖y(tk)‖2L2(Ω) − 2

∫ tk

T

∫
Ω

y(t)
∂y

∂t
(t) dx dt

≤ ‖y(tk)‖2L2(Ω) + 2‖y‖L2(T,∞;L2(Ω))‖
∂y

∂t
‖L2(T,∞;L2(Ω))
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Taking the limit when k →∞ we get

‖y(T )‖2L2(Ω) ≤ lim
T→∞

2‖y‖L2(T,∞;L2(Ω))‖
∂y

∂t
‖L2(T,∞;L2(Ω)) = 0.

Theorem 2.4 suggests to introduce the following space of solutions:

Y = {y ∈ H1(Q) ∩BC([0,∞);H1(Ω)) : ∆y ∈ L2(Q) and ∂ny = 0 on Σ},

where BC([0,∞);H1(Ω)) is the Banach space of continuous and bounded functions
y : [0,∞) −→ H1(Ω). The space Y endowed with the norm

‖y‖Y = ‖y‖H1(Q) + ‖y‖L∞(0,∞,H1(Ω)) + ‖∆y‖L2(Q)

is a Banach space. Let us point out that any element y ∈ H1(0,∞;L2(Ω)) satisfies
(2.8). This was proved in the last step of the proof of Theorem 2.4. Hence this
property holds for every element y ∈ Y .

In the next theorem we prove that if ‖y0‖L2(Ω) is sufficiently small, then the
solution of (1.2) associated to the null control u ≡ 0 is stable and it has an exponential
decay. Let us introduce some notation to make precise how small ‖y0‖L2(Ω) must be.
Let µ0 and M0 satisfy (2.12) and set C ′0 = maxµ0≤|s|≤M0

|f ′(s)|. Now we take

Kf =
µ0C

2
a

(C ′0C4)2
, (2.17)

where Ca > 0 and C4 > 0 are taken so that∫
Ω

(|∇z|2 + az2) dx ≥ Ca‖z‖2H1(Ω) ≥ Ca‖z‖
2
L2(Ω)

‖z‖L4(Ω) ≤ C4‖z‖H1(Ω), ∀z ∈ H1(Ω).

(2.18)

Theorem 2.5. Let us assume that ‖y0‖L2(Ω) < Kf and u ≡ 0. Then the solution
of (1.2) belongs to L2(Q) and there exists λ > 0 such that

‖y(t)‖L2(Ω) ≤ ‖y0‖L2(Ω)e
−λt ∀t > 0. (2.19)

Together with (2.9) of Theorem 2.4 this theorem provides a sufficient condition for
y ∈ Y .

Proof. Let us take

K0 =
1

2

(
‖y0‖L2(Ω) +Kf

)
and T0 = sup{T > 0 : ‖y(t)‖L2(Ω) < K0, ∀t ∈ [0, T ]}.

Since y : [0,∞)→ L2(Ω) is a continuous function and ‖y(0)‖L2(Ω) = ‖y0‖L2(Ω) < K0,
we have that T0 > 0. We will prove that T0 =∞. For every t ∈ (0, T0) we define

Ωt = {x ∈ Ω : µ0 < |y(x, t)| < M0}.

Then we have

|Ωt| ≤
1

µ2
0

∫
Ωt

y2(t) dx ≤ 1

µ2
0

‖y(t)‖2L2(Ω) <
K2

0

µ2
0

∀t ∈ (0, T0). (2.20)
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We will use the following interpolation inequality, see e.g. [4, p. 93].

‖z‖L8/3(Ω) ≤ ‖z‖
1/2
L2(Ω)‖z‖

1/2
L4(Ω) ≤ C

1/2
4 ‖z‖1/2L2(Ω)‖z‖

1/2
H1(Ω) ∀z ∈ H

1(Ω). (2.21)

Then, multiplying (1.2) by y(t), t ∈ (0, T0), integrating in Ω, taking into account that
f(y(t))y(t) ≥ 0 in Ω \ Ωt by (2.12), using (2.20) and (2.21), and Young’s inequality
we deduce for almost all t ∈ (0, T0) for some θ(x, t) ∈ [0, 1]

1

2

d

dt
‖y(t)‖2L2(Ω) + Ca‖y(t)‖2H1(Ω) ≤

1

2

d

dt
‖y(t)‖2L2(Ω) +

∫
Ω

(|∇y(t)|2 + ay(t)2) dx

+

∫
Ω\Ωt

f(y(t))y(t) dx = −
∫

Ωt

f(y(t))y(t)) dx = −
∫

Ωt

f ′(θ(t)y(t))y2(t) dx

≤ ‖f ′(θ(t)y(t))‖L4(Ωt)‖y(t)‖2L8/3(Ω) ≤ C
′
0|Ωt|1/4C4‖y(t)‖L2(Ω)‖y(t)‖H1(Ω)

≤ C
′2
0 C

2
4 |Ωt|1/2

2Ca
‖y(t)‖2L2(Ω) +

Ca
2
‖y(t)‖2H1(Ω).

With (2.20) this leads to

1

2

d

dt
‖y(t)‖2L2(Ω) +

Ca
2
‖y(t)‖2L2(Ω) ≤

1

2

d

dt
‖y(t)‖2L2(Ω) +

Ca
2
‖y(t)‖2H1(Ω)

≤ C
′2
0 C

2
4 |Ωt|1/2

2Ca
‖y(t)‖2L2(Ω) ≤

C
′2
0 C

2
4K0

2Caµ0
‖y(t)‖2L2(Ω),

hence

1

2

d

dt
‖y(t)‖2L2(Ω) + λ‖y(t)‖2L2(Ω) ≤ 0, (2.22)

where

λ =
1

2

(
Ca −

C
′2
0 C

2
4K0

Caµ0

)
.

From the choice of K0 and (2.17) we infer that λ > 0. Then we have d
dt‖y(t)‖2L2(Ω) ≤ 0

∀t ∈ (0, T0), hence T0 =∞. Moreover, inequality (2.22) implies (2.19).
Let us denote by ρ− the biggest negative root of the polynomial f such that f(ρ)

changes the sign when ρ crosses ρ−; i.e. ρ− is a root of f of odd multiplicity. If f has
no negative root with such a property, then we set ρ− = −∞. Analogously, we define
ρ+ as the smallest positive root of f with odd multiplicity, and we take ρ+ = +∞ if
such a root does not exist. Then we have the following theorem.

Theorem 2.6. Let us assume that ρ− ≤ y0(x) ≤ ρ+ for a.a. x ∈ Ω, and u ≡ 0.
Then the solution y of (1.2) belongs to L2(Q), ρ− ≤ y(x, t) ≤ ρ+ ∀(x, t) ∈ Q, and

‖y(t)‖L2(Ω) ≤ ‖y0‖L2(Ω)e
−Cat ∀t > 0, (2.23)

where Ca > 0 is given by (2.18)
Proof. First we assume that y0 ∈ C(Ω̄) and ρ− < y0(x) < ρ+ ∀x ∈ Ω̄. Let

us set λ− = min{0,minx∈Ω̄ y0(x)} and λ+ = max{0,maxx∈Ω̄ y0(x)}. Then we have
ρ− < λ− ≤ 0 ≤ λ+ < ρ+. Let y be the solution of (1.2) associated to u ≡ 0. Since
y0 ∈ C(Ω̄), then y ∈ C(Q̄T ) ∀T > 0; see Remark 2.3. Then, limt→0 ‖y(t)−y0‖C(Ω̄) = 0
holds. This implies that

T ∗ = sup{T > 0 : ρ− < y(x, t) < ρ+ ∀(x, t) ∈ Q̄T } > 0.
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Let us proof that T ∗ = +∞. We argue by contradiction. If T ∗ < +∞, then there
exists at least one point x∗ ∈ Ω̄ such that ρ− < y(x, t) < ρ+ ∀(x, t) ∈ Ω̄ × [0, T ∗)
and either y(x∗, T ∗) = ρ− or y(x∗, T ∗) = ρ+. Let us assume that y(x∗, T ∗) = ρ−
and take z(x, t) = (y(x, t)− λ−)− = min{y(x, t)− λ−, 0}. It is clear that ∂y

∂t z = ∂z
∂t z,

∇y∇z = |∇z|2, and yz ≥ z2 almost everywhere in QT∗ . Hence, multiplying (2.1) by
z, integrating in QT∗ and using that z(0) = 0 we get

‖z(T ∗)‖2L2(Ω) +

∫
QT∗

(|∇z|2 + az2) dx dt+

∫
QT∗

f(y)z dx dt = 0.

Now, we observe that f(s)s ≥ 0 ∀s ∈ [ρ−, ρ+], hence f(y(x, t))z(x, t) ≥ 0 ∀(x, t) ∈
QT∗ . Using this in the above inequality we obtain with (2.18)

‖z(T ∗)‖2L2(Ω) + Ca‖z‖2L2(QT∗ ) ≤ 0,

therefore z = 0. This implies that y(x, t) ≥ λ− > ρ− ∀(x, t) ∈ QT∗ , which contradicts
the equality y(x∗, T ∗) = ρ−.

In the case y(x∗, t∗) = ρ+, we take z(x, t) = max{y(x, t) − λ+, 0} and we argue
similarly as above. Hence T ∗ = ∞ holds. If λ− = ρ− or λ+ = ρ+, then we take
y0ε = Proj[λ−+ε,λ+−ε](y0(x)). Then y0ε → y0 in C(Ω̄) ∩ H1(Ω) holds. If we denote
by yε the solution of (1.2) associated with y0ε and u ≡ 0, then we have that yε → y
in Q̄T for every T > 0. Since ρ− ≤ yε(x, t) ≤ ρ+ ∀(x, t) ∈ Q, we conclude that
ρ− ≤ y(x, t) ≤ ρ+ ∀(x, t) ∈ Q as well.

Since f(y(x, t))y(x, t) ≥ 0 ∀(x, t) ∈ Q, multiplying the equation (1.2) by y and
integrating in Ω we get

1

2

d

dt
‖y(t)‖2L2(Ω) + Ca‖y(t)‖2L2(Ω) ≤ 0,

which implies (2.23), and consequently y ∈ L2(Q).
Finally, if y0 ∈ H1(Ω) \ C(Ω̄) and ρ− ≤ y0(x) ≤ ρ+ for a.a. x ∈ Ω, then we take

a sequence {zk}∞k=1 ⊂ H1(Ω) ∩ C(Ω̄) such that zk → y0 in H1(Ω) and zk(x)→ y0(x)
a.e. in Ω. Now, we take y0k(x) = Proj[ρ−,ρ+](zk(x)), and we still have that {y0k}∞k=1 ⊂
H1(Ω) ∩ C(Ω̄), y0k → y0 in H1(Ω), and y0k(x)→ y0(x) a.e. in Ω. The solution yk of
(1.2) corresponding to the initial condition y0k belongs to L2(Q), ρ− ≤ yk(x, t) ≤ ρ+

∀(x, t) ∈ Q, and it satisfies

‖yk(t)‖L2(Ω) ≤ ‖y0k‖L2(Ω)e
−Cat ∀t > 0.

Now, it is easy to prove the boundedness of {yk}∞k=1 in Y , and hence we pass to the
limit in the above inequality as k →∞ and we deduce that y satisfies (2.23).

Remark 2.7. Let us come back to our original equation

∂y

∂t
−∆y + f(y) = uχω, (2.24)

where a ≡ 0. We consider ρ− and ρ+ as in Theorem 2.6. Then the proof of Theorem
2.6 and (2.23) fail. However we can still stabilize the system by a feedback control.
Indeed, let us take a = λχω, where λ is an arbitrary strictly positive constant. Then
we are under the conditions of Theorem 2.6 and the theorem holds. Now, we take
u = −ay = −λχωy, the equation (2.24) holds and the state y is stabilized.

Remark 2.8. We remark that the fact that the nonlinearity f in the equation
(1.2) is a polynomial function played an essential role in the proofs of this section.
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However, if we assume that if y0 ∈ H1(Ω) ∩ L2m+2(Ω), then all the results of this
section are valid for a polynomial of arbitrary degree 2m+1, with the obvious changes
in the estimates. The assumption m = 1 in dimension 3 will be used in Theorem 3.4
below.

3. Analysis of the Control Problem. We divide this section into three parts.
First we study the existence of an optimal control. Then, we address the sensitivity
of the states with respect to the controls, and finally we analyze the adjoint state
equation.

3.1. Existence of a solution to (P). Before proving the existence of an optimal
control we establish the following lemma.

Lemma 3.1. Let {uk} be a bounded sequence in L2(0,∞;L2(ω)) such that the
corresponding states {yk} are bounded in L2(Q). Then, there exist subsequences such
that uk ⇀ ū in L2(0,∞;L2(ω)) and yk ⇀ ȳ in H1(Q), where ȳ is the state associated
to ū.

Proof. From the assumptions of the lemma and (2.9) we deduce the existence
of subsequences such that uk ⇀ ū in L2(0,∞;L2(ω)) and yk ⇀ ȳ in H1(Q). We
prove that ȳ is the solution of (1.2) associated to ū. To this end we have to check
Definition 2.1. First we observe that ȳ ∈ H1(Q) ⊂ C([0,∞);L2(Ω)). Now let T > 0
be arbitrary. From the compactness of the embedding H1(QT ) ⊂ L2(QT ) we infer
the existence of a subsequence such that

yk → ȳ in L2(QT ) and yk(x, t)→ ȳ(x, t) a.e. in QT .

Using again (2.9) we deduce from the above pointwise convergence that f(yk) ⇀ f(ȳ)
in L2(QT ). Then it is easy to pass to the limit weakly in the state equation (1.2)
and to deduce that ȳ satisfies the equation in the variational sense in QT with ū
on the right hand side. Moreover, from the continuity of the embedding H1(QT ) ⊂
C([0, T ];L2(Ω)) we have ȳ(0) = limk→∞ yk(0) = y0.

Theorem 3.2. Assume that there exists an element u0 ∈ L2(0,∞;L2(ω)) such
that J(u0) <∞. Then (P) admits at least one solution.

Proof. Since the set of feasible controls is nonempty, we can take a minimizing se-
quence {uk}. From the inequality J(uk) ≤ J(u0) for every k large (unless u0 is already
an optimal control), we deduce the boundedness of {(uk, yk)} in L2(0,∞;L2(ω)) ∩
L1(0,∞, L2(ω))×L2(Q), where yk denotes the state associated with uk. Let (ū, ȳ) be
a weak limit in L2(0,∞;L2(ω))× L2(Q) of a subsequence, denoted in the same way.
Lemma 3.1 implies that ȳ is the solution of (1.2) corresponding to ū. To prove that
ū is a solution to (P), we consider the following inequality for every T > 0

1

2

∫
QT

ȳ2 dx dt+
ν

2

∫ T

0

∫
ω

ū2 dx dt+ α

∫ T

0

(∫
ω

ū2 dx
)1/2

dt ≤ lim inf
k→∞

J(uk) = inf (P),

which follows from the convexity of the objective functional with respect to pair (y, u)
and the continuity of the embedding L2(0, T ;L2(ω)) ⊂ L1(0, T ;L2(ω)). Now we have

J(ū) = sup
T>0

{1

2

∫
QT

ȳ2 dx dt+
ν

2

∫ T

0

∫
ω

ū2 dx dt+ α

∫ T

0

(∫
ω

ū2 dx
)1/2

dt
}

= inf (P),

which concludes the proof.
Remark 3.3. Concerning the feasibility assumption of Theorem 3.2, Theorems

2.5 and 2.6 provide sufficient conditions on y0 to assure that u0 ≡ 0 is a feasible
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control for (P). If y0 does not satisfy the required assumptions, but equation (1.2)
is approximately controllable to zero, again we can rely on the above theorems to
guarantee existence of a feasible control. In particular, for the case ω = Ω we can
prove approximate controllability as follows. First we solve the equation

∂y

∂t
−∆y + (a+ Λ)y + f(y) = 0 in Q,

∂ny = 0 on Σ,

y(0) = y0 in Ω,

where Λ is given by in (1.3). Then we have

Λs2 + f(s)s = (Λ + f ′(θs))s2 ≥ 0 ∀s ∈ R,

where θ = θ(s) ∈ [0, 1].
Hence, we infer the estimate

1

2

d

dt
‖y(t)‖2L2(Ω) + Ca‖y(t)‖2L2(Ω)

≤ 1

2

d

dt
‖y(t)‖2L2(Ω) +

∫
Ω

[|∇y(t)|2 + (a+ Λ)y(t)2] dx+

∫
Ω

f(y(t))y(t) dx = 0.

Therefore we can argue as in the proofs of Theorems 2.2 and 2.4 to deduce the existence
of a unique solution y ∈ Y . Moreover, from the above inequality we infer

‖y(t)‖L2(Ω) ≤ ‖y0‖L2(Ω)e
−Cat.

Now, it is enough to take u = −Λy in (1.2) and then yu = y and u ∈ U . Indeed, since
Y ⊂ L2(Q) we have that u ∈ L2(Q). Furthermore from the last inequality we get∫ ∞

0

∫
Ω

‖u(t)‖L2(Ω) dt ≤ Λ‖y0‖L2(Ω)

∫ ∞
0

e−Cat dt <∞.

Thus u is a feasible control for (P).

3.2. Sensitivity of the relationship control-to-state. We define U as the
subset of the elements u ∈ L2(0,∞;L2(ω)) for which there exists a solution yu ∈ Y
as well as the mapping G : U −→ Y by G(u) = yu. We remark that for every
u ∈ L2(0,∞;L2(ω)) there exists a unique solution yu in the sense of Definition 2.1.
Further, due to Theorem 2.4, an element u ∈ L2(0,∞;L2(ω)) belongs to U if and only
if yu ∈ L2(Q).

Theorem 3.4. The set U is open in L2(0,∞;L2(ω)) and G : U −→ Y is of class
C1. Furthermore, for every (u, v) ∈ U × L2(0,∞;L2(ω)) the derivative zv = DG(u)v
is the unique solution to

∂y

∂t
−∆z + az + f ′(yu)z = vχω in Q,

∂nz = 0 on Σ,

z(0) = 0 in Ω.

(3.1)

Proof. The proof is based on the implicit function theorem applied to the mapping

F : Y × L2(0,∞;L2(ω)) −→ L2(Q)×H1(Ω),

F(y, u) =
(∂y
∂t
−∆y + ay + f(y)− uχω, y(0)− y0

)
.
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The mapping F is well defined. Indeed, the only delicate issue concerns the member-
ship f(y) ∈ L2(Q). To prove this we use that f(y)2 ≤ C2

f (y2 + y4m+2), as established

in the proof of Theorem 2.4. Thus, it suffices to verify that y4m+2 ∈ L1(Q). Recalling
that 4m+ 2 ≤ 6 for n = 3, this is obtained as follows∫

Q

y4m+2 dx dt ≤ C
∫ ∞

0

‖y(t)‖4m+2
H1(Ω) dt ≤ C‖y‖

4m
L∞(0,∞;H1(Ω))‖y‖

2
L2(0,∞;H1(Ω)) <∞.

The above argument, in particular, implies that Y is continuously embedded in
L4m+2(Q). It is easy to check that the mapping y ∈ L4m+2(Q) ∩ L2(Q) → f(y) ∈
L2(Q) is of class C1. Hence, we have that F is also of class C1, and the first partial
derivative of F with respect to y at (y, u) in a direction z ∈ Y is given by

∂F
∂y

(y, u)z =
(∂z
∂t
−∆z + az + f ′(y)z, z(0)

)
.

Now for any u ∈ U we have that F(yu, u) = F(G(u), u) = (0, 0). To complete the
verification of the assumptions of the implicit function theorem it remains to prove
that ∂F

∂y (yu, u) : Y −→ L2(Q) × H1(Ω) is an isomorphism, or equivalently that the
equation 

∂z

∂t
−∆z + az + f ′(yu)z = g in Q,

∂nz = 0 on Σ,

z(0) = z0 in Ω.

(3.2)

has a unique solution in Y for every (g, z0) ∈ L2(Q)×H1(Ω). This is done in Lemma
3.5 below.

Lemma 3.5. For every (g, z0) ∈ L2(Q) × H1(Ω) equation (3.2) has a unique
solution z ∈ Y . Moreover, there exists a constant independent of (g, z0) such that

‖z‖Y ≤ C
(
‖g‖L2(Q) + ‖z0‖H1(Ω)

)
. (3.3)

Proof. From our assumptions on f we infer the existence of a polynomial p of
degree 2m− 2 such that

f ′(s) = (2m+ 1)a2m+1s
2m + a1 + p(s)s ≥ p(s)s because a2m+1 > 0 and a1 > 0.

Moreover there exists a constant C ′f > 0 such that |f ′(s)| ≤ C ′f (s2m + 1). We observe
that m = 1 in dimension n = 3 and consequently p is a constant in that case.

Since yu ∈ Y , given ε > 0 we can use (2.8) to deduce the existence of Tε > 0 so
that

‖yu(t)‖L2(Ω) < ε ∀t ≥ Tε. (3.4)

Let us take T > Tε arbitrary. From (2.9) we have that y2m+1
u ∈ L2(Q), hence

f ′(yu) ∈ L2+ 1
m (QT ). The the classical theory for linear parabolic equations (see, for

instance, [11, Chapter III]) we deduce the existence of a unique solution z ∈W (0, T )
of (3.2) with

W (0, T ) =
{
z ∈ L2(0, T ;H1(Ω)) :

∂z

∂t
∈ L2(0, T ;H1(Ω)∗)

}
.
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Moreover we have that

‖z‖W (0,T ) ≤ CT
(
‖g‖L2(QT ) + ‖z0‖L2(Ω)

)
. (3.5)

To obtain the estimates for z in Q we introduce for every t > 0 the following sets

Ωt = {x ∈ Ω : |yu(x, t)| < M0},

where M0 was given in (2.12). Set Cp = max|s|≤M0
|p(s)|. Now, multiplying (3.2) by

z, making integration by parts in QT and using that f ′(yu)z2 ≥ p(yu)yuz
2 in Q and

f ′(yu(x, t)) ≥ 0 for every x ∈ Ω \ Ωt we get

1

2
‖z(T )‖2L2(Ω) + Ca‖z‖2L2(0,T ;H1(Ω))

≤ 1

2
‖z0‖2L2(Ω) +

∫
QT

gz dx dt−
∫ T

0

∫
Ωt

p(yu)yuz
2 dx dt

≤ 1

2
‖z0‖2L2(Ω) + ‖g‖L2(QT )‖z‖L2(QT )

+

∫ Tε

0

∫
Ωt

|p(yu)yu|z2 dx dt+

∫ T

Tε

∫
Ωt

|p(yu)yu|z2 dx dt

≤ 1

2
‖z0‖2L2(Ω) + ‖g‖L2(QT )‖z‖L2(0,T ;H1(Ω))

+ CpM0‖z‖2L2(QTε)
+ Cp

∫ T

Tε

‖yu(t)‖L2(Ω)‖z(t)‖2L4(Ω) dt

≤ 1

2
‖z0‖2L2(Ω) +

1

Ca
‖g‖2L2(Q) +

Ca
4
‖z‖2L2(0,T ;H1(Ω))

+ CpM0‖z‖2L2(QTε)
+ Cpε‖z‖2L2(0,T ;H1(Ω)),

where Ca is the constant that appeared in (2.4). Taking ε = Ca
4Cp

we infer from the

above inequality and (3.5) that

‖z‖L2(0,T ;H1(Ω)) ≤
1√
Ca

(
‖z0‖L2(Ω) +

√
2√
Ca
‖g‖L2(Q) +

√
2CpM0‖z‖L2(QTε)

)
≤ C ′

(
‖g‖L2(Q) + ‖z0‖L2(Ω)

)
∀T > Tε. (3.6)

Hence z ∈ L2(0,∞;H1(Ω)) holds. Next we prove that z ∈ Y . To this end we first
establish that f ′(yu)z ∈ L2(Q). Since

f ′(yu)2z2 ≤ C ′f
2
(y2m
u + 1)2z2 ≤ 2C ′f

2
(y4m
u + 1)z2,

it is enough to prove that y4mz2 ∈ L1(Q). Using Hölder inequality with p = 4m+2
4m

and p′ = 2m+ 1, this is obtained as follows∫
Q

y4m
u z2 dx dt ≤

∫ ∞
0

‖yu(t)‖4mL4m+2(Ω)‖z(t)‖
2
L4m+2(Ω) dt

≤ C
∫ ∞

0

‖yu(t)‖4mH1(Ω)‖z(t)‖
2
H1(Ω) dt ≤ C‖yu‖

4m
L∞(0,∞;H1(Ω))‖z‖

2
L2(0,∞;H1(Ω)).

Additionally, with (3.6) we get the estimate

‖f ′(yu)z‖L2(Q) ≤ C ′′
(
‖yu‖2mL∞(0,∞;H1(Ω)) + 1

)(
‖g‖L2(Q) + ‖z0‖L2(Ω)

)
. (3.7)



Stabilization by Sparse Controls 17

Finally, the regularity ∂z
∂t ∈ L

2(Q) and z ∈ L∞(0,∞;H1(Ω)) and the corresponding
estimates are proved as in the last two steps of the proof of Theorem 2.4, just taking
into account the obtained a priori estimates (3.6) and (3.7).

Remark 3.6. Let us note that the assumption m = 1 in the case n = 3 was crucial
in the proof of Theorem 3.4 to deduce that ‖y‖L4m+2(Q) <∞.

3.3. Adjoint state equation. Let u ∈ U and yu be the associated state. We
denote by ϕu the adjoint state to yu, which is the solution in Y to{

−∂ϕ
∂t
−∆ϕ+ aϕ+ f ′(yu)ϕ = yu in Q,

∂nϕ = 0 on Σ.
(3.8)

We observe that for any element ϕ ∈ Y we have that ∂ϕ
∂t ,∆ϕ ∈ L

2(Q), hence the first

equation in (3.8) is interpreted in L2(Q), and the second in the L2(0,∞;H−
1
2 (Γ))

sense. Moreover, since ϕ ∈ Y we recall that limt→∞ ‖ϕ(t)‖L2(Ω) = 0.
Theorem 3.7. Equation (3.8) has a unique solution ϕu ∈ Y and

‖ϕu‖Y ≤ C‖yu‖L2(Q) (3.9)

for some constant independent of u ∈ U . Moreover the following identity holds∫
Q

ϕu
(∂z
∂t
−∆z + az + f ′(yu)z

)
dx dt =

∫
Q

yuz dx dt ∀z ∈ Y0, (3.10)

where Y0 = {z ∈ Y : z(0) = 0 in Ω}.
Proof. For every T > 0 we consider the auxiliary equation

∂zT
∂t
−∆zT + azT + f ′(yT )zT = yT in QT ,

∂nzT = 0 on ΣT ,

zT (0) = 0 in Ω,

where yT (x, t) = yu(x, T − t) ∀(x, t) ∈ QT . As in Lemma 3.5 we have that this
equation has a unique solution zT ∈W (0, T ) and the estimates (3.5)-(3.7) become in
this case for every T

‖zT ‖W (0,T ) + ‖f ′(yT )zT ‖L2(QT ) ≤ C‖yT ‖L2(QT ) ≤ C‖yu‖L2(Q).

From these estimates and arguing as in the proof of Theorem 2.4 we get

‖zT ‖L∞(0,T ;H1(Ω)) + ‖∂zT
∂t
‖L2(QT ) ≤ C ′‖yu‖L2(Q).

Now we take

ϕT (x, t) =

{
zT (x, T − t) if t ∈ [0, T ],

0 if t > T.

From the above estimates for zT we deduce that ϕT ∈ Y and ‖ϕT ‖Y ≤ C ′′‖yu‖L2(Q).
Moreover ϕT satisfies

−∂ϕT
∂t
−∆ϕT + aϕT + f ′(yu)ϕT = yu in QT ,

∂nϕT = 0 on ΣT ,

ϕT (T ) = 0 in Ω.
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Now we take a sequence Tk → ∞ such that ϕTk ⇀ ϕ in Y . It is immediate to pass
to the limit in the equations satisfied by the functions ϕTk and to deduce that ϕ is a
solution to equation (3.8) and (3.9) is satisfied. To verify (3.10) let us note that∫

Q

(∂ϕT
∂t
−∆ϕT + aϕT + f ′(yu)ϕT

)
z dx dt =

∫
Q

yuz dx dt ∀z ∈ Y0,

which implies that∫ T

0

∫
Ω

ϕT
(∂z
∂t
−∆z + az + f ′(yu)z

)
dx dt =

∫ T

0

∫
Ω

yuz dx dt ∀z ∈ Y0.

Passing to the limit T →∞ we obtain (3.10). Finally if ϕ1
u and ϕ2

u are two solutions
of the adjoint equation then∫

Q

(ϕ1
u − ϕ2

u)
(∂z
∂t
−∆z + az + f ′(yu)z

)
dx dt = 0 ∀z ∈ Y0.

Since the mapping of z → ∂z
∂t −∆z + az + f ′(yu)z from Y0 to L2(Q) is surjective by

Lemma 3.5, we obtain that ϕ1
u = ϕ2

u. This concludes the proof.

4. Optimality Conditions and Sparsity. Before establishing the optimality
conditions we analyze the cost functional J . We distinguish two terms in the func-
tional: J(u) = F (u) + αj(u) with

F (u) =
1

2

∫ ∞
0

∫
Ω

y2
u dx dt+

ν

2

∫ ∞
0

∫
ω

u2 dx dt and

j(u) =

∫ ∞
0

(∫
ω

u2 dx
)1/2

dt =

∫ ∞
0

‖u(t)‖L2(ω) dt.

Proposition 4.1. The function F : U −→ R is of class C1 and

F ′(u)v =

∫ ∞
0

∫
ω

(ϕu + νu)v dx dt ∀u ∈ U and ∀v ∈ L2(0,∞, L2(ω)). (4.1)

Proof. With the notation of Theorem 3.4 we have that

F (u) =
1

2
‖G(u)‖2L2(Q) +

ν

2
‖u‖2L2(0,∞;L2(ω)).

Hence, we deduce from the chain rule and Theorem 3.4 that F is of class C1, and

F ′(u)v =

∫
Q

yuzv dx dt+ ν

∫ ∞
0

∫
ω

uv dx dt.

Then, taking ϕu ∈ Y as the solution of (3.8), noting that zv ∈ Y0, and using (3.1)
and (3.10) we obtain (4.1).

Now we study the functional j : L1(0,∞;L2(Ω)) −→ R. This functional is not
differentiable at every point of the domain, but it is convex and Lipschitz. Therefore
there exist the directional derivatives j′(u; v) for every u, v ∈ L1(0,∞;L2(Ω)) and the
subdifferential ∂j(u) is nonempty for every u. Let us characterize these objects.

Given an element u ∈ L1(0,∞;L2(ω)), we denote

Iu = {t ∈ (0,∞) : ‖u(t)‖L2(ω) 6= 0} and I0
u = (0,∞) \ Iu.

Proposition 4.2. The following statements hold.
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1. λ ∈ ∂j(u) is equivalent to λ ∈ L∞(0,∞;L2(ω)) and
‖λ(t)‖L2(ω) ≤ 1 for a.a. t ∈ I0

u,

λ(x, t) =
u(x, t)

‖u(t)‖L2(ω)
for a.a. (x, t) ∈ ω × Iu.

(4.2)

2. For every u, v ∈ L1(0,∞;L2(ω))

j′(u; v) =

∫
I0u

‖v(t)‖L2(ω) dt+

∫
Iu

1

‖u(t)‖L2(ω)

(∫
ω

uv dx

)
dt. (4.3)

The reader is referred to [6, Proposition 2.8] for the proof of this result where the
role of x and t are reversed.

Now we are prepared to establish the optimality conditions for a local solution of
(P) in the sense of L2(0,∞;L2(ω)).

Theorem 4.3. Let ū be a local solution of (P). Then there exists λ̄ ∈ ∂j(ū) such
that

ϕ̄+ νū+ αλ̄ = 0 in ω × (0,∞), (4.4)

where ϕ̄ is the adjoint state associated with ȳ = yū.
Proof. For arbitrary u ∈ U = L2(0,∞;L2(ω)) ∩ L1(0,∞;L2(ω)) we have with

(4.1) and the convexity of j

0 ≤ lim
ρ↘0

J(ū+ ρ(u− ū))− J(ū)

ρ

= lim
ρ↘0

F (ū+ ρ(u− ū))− F (ū)

ρ
+ α lim

ρ↘0

j(ū+ ρ(u− ū))− j(ū)

ρ

≤ F ′(ū)(u− ū) + α[j(u)− j(ū)] =

∫ ∞
0

∫
ω

(ϕ̄+ νū)(u− ū) + α[j(u)− j(ū)].

We set λ̄ = − 1
α (ϕ̄+νū)χω ∈ L2(0,∞;L2(ω)). Then the above inequality implies that∫ ∞

0

∫
ω

λ̄(u− ū) dx dt+ j(ū) ≤ j(u) ∀u ∈ U. (4.5)

Let us check that λ̄ ∈ ∂j(ū). To this end we need to prove that λ̄ ∈ L∞(0,∞;L2(ω)).
We define

E = {t ∈ (0,∞) : ‖λ̄(t)‖L2(ω) > 1}.

We will prove that |E| = 0. Since λ̄ ∈ L2(0,∞;L2(ω)) we have that |E| <∞. Set

v(x, t) =

{
λ̄(x, t) if t ∈ E,

0 otherwise,
and u = ū+ v ∈ U.

Putting this u in (4.5) we get∫
E

‖λ̄(t)‖2L2(ω) dt =

∫ ∞
0

∫
ω

λ̄v dx dt

=

∫ ∞
0

∫
ω

λ̄(u− ū) dx dt ≤ j(u)− j(ū) ≤ j(v)

=

∫ ∞
0

‖v(t)‖L2(ω) dt =

∫
E

‖λ̄(t)‖L2(ω) dt,
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which is a contradiction to the definition of E unless |E| = 0. Thus ‖λ̄‖L∞(0,∞;L2(ω)) ≤
1 holds. Finally, it is enough to use the density of U in L1(0,∞;L2(ω)) to deduce
that (4.5) holds ∀u ∈ L1(0,∞;L2(ω)), and hence λ̄ ∈ ∂j(ū).

Corollary 4.4. Let (ū, ϕ̄, λ̄) be as in Theorem 4.3. Then the following properties
hold

‖ū(t)‖L2(ω) = 0⇔ ‖ϕ̄(t)‖L2(ω) ≤ α, (4.6)

λ̄(x, t) =


− 1

α
ϕ̄(x, t) if t ∈ I0

ū,

ū(x, t)

‖ū(t)‖L2(ω)
if t ∈ Iū,

(4.7)

ū(x, t) = −
‖ū(t)‖L2(ω)ϕ̄(x, t)

ν‖ū(t)‖L2(ω) + α
, (4.8)

for almost every x ∈ ω. Moreover λ̄, ū ∈ C([0,∞);L2(ω)) and

‖ū‖L∞(0,∞;L2(ω)) ≤
1

ν
‖ϕ̄‖L∞(0,∞;L2(ω)). (4.9)

Proof. First we observe that (4.7) is an immediate consequence of (4.2) and (4.4).
Combining (4.4) and (4.7) we infer

ϕ̄(x, t) + ū(x, t)
[
ν +

α

‖ū(t)‖L2(ω)

]
= 0 for a.a. (x, t) ∈ ω × Iū. (4.10)

Taking norms in this identity we get

‖ϕ̄(t)‖L2(ω) = ν‖ū(t)‖L2(ω) + α for a.a. t ∈ Iū. (4.11)

From (4.7) and (4.2) we have that

‖ϕ̄(t)‖L2(ω) = α‖λ̄(t)‖L2(ω) ≤ α for a.a. t ∈ I0
ū.

Since ū is zero in I0
ū we get from above relationship and (4.11)

‖ū(t)‖L2(Ω) =
1

ν
max{0, ‖ϕ̄(t)‖L2(ω) − α} for a.a. t ∈ (0,∞). (4.12)

From here (4.6) follows. Moreover, since ϕ̄ ∈ C([0,∞;L2(Ω)) we deduce that the func-
tion t ∈ [0,∞)→ ‖ū(t)‖L2(ω) ∈ R is continuous. Now, from (4.10) we obtain that (4.8)
holds in Iū. But, taking into account that ū is zero in I0

ū, we conclude that the identity
(4.8) holds a.e. in [0,∞). Additionally, the continuity of t ∈ [0,∞)→ ‖ū(t)‖L2(ω) ∈ R
and the property ϕ̄ ∈ C([0,∞);L2(Ω)) imply that ū ∈ C([0,∞);L2(ω)). From (4.4)
the same regularity follows for λ̄. Finally, (4.9) is an immediate consequence of (4.8).

Remark 4.5. Let us observe that ϕ̄ ∈ Y and consequently

lim
t→∞

‖ϕ̄(t)‖L2(ω) ≤ lim
t→∞

‖ϕ̄(t)‖L2(Ω) = 0.

Hence there exists Tα > 0 such that ‖ϕ̄(t)‖L2(ω) ≤ α for all t ≥ Tα. Then (4.6)
implies that ū(x, t) = 0 at least for all t ≥ Tα. This proves the sparsity of the optimal
control.
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