PDE constrained optimization of electrical
defibrillation in a 3D ventricular slice geometry

Nagaiah Chamakuri'*, Karl Kunisch'?!, Gernot Plank?®!

I Radon Institute for Computational and Applied Mathematics,
Altenbergerstr. 69, Linz, A-4040 Austria.
2 Institute of Mathematics and Scientific Computing,
University of Graz, Heinrichstr. 36, Graz, A-8010 Austria.
3 Institute of Biophysics, Medical University of Graz,
Harrachgasse 21, Graz, A-8010 Austria.

July 4, 2016

Abstract

A computational study of an optimal control approach for cardiac defib-
rillation in a 3D geometry is presented. The cardiac bioelectric activity at
the tissue and bath volumes is modeled by the bidomain model equations.
The model includes intramural fiber rotation, axially symmetric around the
fiber direction, and anisotropic conductivity coefficients which are extracted
from a histological image. The dynamics of the ionic currents are based on
the regularized Mitchell-Schaeffer model. The controls enter in the form of
electrodes which are placed at the boundary of the bath volume with the goal
of dampening undesired arrhythmias. The numerical optimization is based on
Newton techniques. We demonstrated the parallel architecture environment
for the computation of potentials on multidomains and for the higher order
optimization techniques.

Keywords: electrophysiology, regularized Mitchell-Schaeffer model, cardiac ar-

rhythmia, bidomain model, PDE constraint optimization, finite element method,

second order optimization methods.

Introduction

Cardiac fibrillation is the breakdown of the organized electrical activity in the
heart into disorganized self-sustained electrical activation patterns. Such fibrilla-
tory episodes when affecting the ventricles, i.e. the main pumping chambers of the
heart, result in loss of cardiac output and, unless timely intervention is administered,
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death quickly ensues. The only known effective therapy for lethal disturbances in
cardiac rhythm is defibrillation, the delivery of a strong electric shock to the heart.
This technique, as accomplished nowadays by automatic, implantable cardioverter-
defibrillator (ICD) devices, constitutes the most effective means of combating sud-
den cardiac death [2]. Several multi-center clinical trials have provided consistent
evidence that ICD therapy prolongs patient life.

Despite undeniable survival benefits of ICD implant [3], there are several known
adverse effects secondary to the administration of strong electrical shocks which
motivate experimental [22] and theoretical research [19]26] to further improve safety
and efficacy of the therapy. For instance, tissue in the proximity of shock electrodes
may be permanently damaged by electroporation [I7), 5], which is an inevitable
consequence of the high field strength required to achieve defibrillation success.
Even more importantly, psychological effects on patients play a non-negligible role.
Conscious patients may perceive shock delivery as extremely painful which leads to
traumatization and reduction in quality of life [TT].

It is well established that success and failure of defibrillation shocks as well as
their adverse side effects depend on the waveform of shock delivery. For instance,
defibrillation is achieved with biphasic shocks more easily than with monophasic
shocks, requiring significantly less energy [43] or that shocks are more effective with
truncated waveforms [36]. With increasing clinical relevance of defibrillation therapy
finding of optimal shock waveforms has become an important research topic. The
two main design objectives in waveform design are to minimize delivered energy
as well as minimize peak voltage and current. Besides empirical studies simplified
RC network models have been used for waveform optimization [20]. While the RC
model as a first order approximation neglects several important factors such as the
non-linearity of cell membranes, the spatial distribution of the applied field or tissue
heterogeneity [38], all major predictions have been verified in experimental studies.

A more comprehensive approach which appreciates all known biophysical mecha-
nisms involved in the defibrillation process employs the cardiac bidomain equations
[39], a homogenized continuum representation of electrical activity in cardiac tis-
sue. In bidomain theory it is assumed that cardiac tissue consists of two spaces, an
intracellular space and an extracellular or interstitial space, which are interpenetrat-
ing, but separated by a cellular membrane at any point in space. Computational
bidomain modeling has proven to be an extremely powerful tool for gaining better
insight into the biophysical mechanisms [37, B8] which govern success and failure
of defibrillation shocks. More recently, PDE constrained optimization techniques
have been applied, for the first time, to the bidomain model to predict optimized
shock waveforms [15], [16, [14]. In these preceding studies, applicability of optimal
control was investigated using model representations of the heart which were sim-
plified in several regards. Cardiac anatomy and structure was approximated as a
2D sheet with spatially non-varying fiber orientation, but with random variations
in tissue conductivity, and cellular dynamics was modeled using the phenomeno-
logical Fitzhugh-Nagumo model [16], [14]. Moreover, it was assumed that the heart
is surrounded by a non-conductive material which is a significant limitation when
studying defibrillation. Not only are bath loading effects [7, 8] ignored, also shock
electrodes cannot be placed in the surrounding bath, as this is the case in any exper-
imental or clinical setting. In the current study some of these previously assumed
simplifications have been lifted. In particular, an anatomically realistic rabbit biven-
tricular geometry with experimentally based fiber and sheet orientations, immersed



in a conductive bath medium, is considered and cellular dynamics is represented by
the more recent Mitchell-Schaeffer model.

The optimal control approach to cardiac defibrillation is to determine an applied
external stimulus in such a way that it optimizes a given design objective, which is,
in our case, the restoration of a tissue state in which fibrillatory propagation cannot
be maintained. This can be achieved by driving the whole tissue to a resting state,
or equivalently, to an excited state. In both cases the main ingredients for maintain-
ing fibrillation, namely the presence of both propagating wavefronts and a sufficient
mass of excitable tissue at rest, referred to as “excitable gap”, in which these wave-
fronts can travel, are missing. Achieving these objectives is challenging since, on
biophysical grounds, shock-induced changes in polarization of both polarities are
always present during shock delivery.

The main ingredient in the optimal control approach is to design a proper cost
functional. A natural choice in optimizing the process of defibrillation is to deter-
mine a control variable which aim to minimize undesired values of the transmem-
brane voltage, v, based on a given desired trajectory. In our computations, the cost
functional is chosen as

‘](,07 [e) = Jl(v) + J2(Ie)7 (1)

where Jj(v) and Jo(I.) denote state cost and control cost, respectively. The ex-
tracellular current I, injected in and withdrawn from the extracellular domain is
considered as control input. The transmembrane voltage v is the state variable
at the tissue domain which needs to be optimized based on a desired trajectory
solution.

Solving optimal control problems with nonlinear PDEs as constraints poses a sig-
nificant numerical challenge due to the large size of the state systems and the high
spatio-temporal resolutions required to resolve the dynamics of wavefront propaga-
tion in the heart. Moreover, solving the optimality system involves solving both the
primal as well as the adjoint equations. These two systems are of similar complex-
ity and must be solved frequently within any iterative solution process. Therefore,
efficient discretization techniques play an important role. Here we have chosen the
finite element method for spatial discretization and higher order Rosenbrock time
stepping methods for the temporal discretization to solve the PDE system.

Due to these high computational costs the application of parallel computing
techniques is essential to enable large scale simulations of such PDE constrained
optimal control problems on realistic geometries. In this study we applied a Newton-
Krylov method to the Lagrangian stationary conditions. The implementation of the
parallel optimization code was based on the freely available public domain package
DUNE [4].

The outline of the paper is as follows. In the next section we briefly describe the
bidomain model equations for cardiac tissue immersed in a conductive bath volume.
A biventricular slice model is used for numerical experiments where tissue structure
is assumed to be transversely isotropic and the regularized Mitchell-Schaeffer ionic
model is used to describe cellular dynamics. In Section [3] the optimal control frame
work is presented and the derivation of first and second order conditions is discussed.
The numerical discretization of the optimality system and optimization algorithm to
solve the discretized system is explained in Section [d] Numerical results are shown
for the termination of reentrant waves in Section [Bl



2 Mathematical model

The cardiac tissue and the surrounding bath domains are denoted by Q5 C R3, and
Qp C R?, respectively, and Q = Qpy U Qp. The space-time cylinder of the whole
domain is denoted by @ = © x (0,7] and the cardiac tissue and bath volume are
expressed as Qp = Qp x (0,7] and Qg = Qg x (0,7.

The bidomain equations consist of the following coupled system of PDEs and
ODEs together with initial and boundary conditions which will be determined below:

0 = V-5,Vu, in@p (2)
0 = V-(6i+7.)Vuc+V-5;Vv in Qy (3)
0
a_: = V6Vt V6V, — Lgy(v,w) + Ln(2,t) in Qy (4)
ow .
5 = Gv,w) in Qpg, (5)

where u,: (Qp — R is the bath potential in the bath volume, u.: Qg — R is the ex-
tracellular potential, w: Qg — R™ are the cell model state variables, ¢;,: Qg — R4
the extracellular conductivity tensors in the bath volume, &;: Qy — R¥9 and
Ge: QO — R are respectively the intracellular and extracellular conductivity
tensors and the spatial dimension is d = 3 here. The term I[;. is the transmem-
brane current density stimulus as delivered by the intracellular electrode. Here,
v: Qg — R denotes the transmembrane voltage which is the difference between the
intracellular and extracellular potentials. Finally I;,,(v,w) is the current density
flowing through the ionic channels and G(v, w) determines the evolution of the gat-
ing variables, which are determined by an electrophysiological cell model, see e.g.
[1] for description on these models. Egs. — are referred to as primal system in
the context of optimal control.

Conductivity tensors

The anisotropy within the intra and extracellular domains of the cardiac tissue is
characterized by the conductivity tensors &; and .. It is a consequence of myocyte
geometry, the spatial arrangement of myocytes and interstitial spaces, as well as
the direction dependent expression of gap junction proteins which interconnect the
intracellular spaces of adjacent myocytes. This yields conductivities which are higher
along the long axes of myocytes, often referred to as “fiber orientation”, than in the
transverse direction. In principle the ventricular myocardium is also organized in
sheets, which at any spatial point gives rise to three characteristic directions for
the conductivity values of the tissue [33], parallel to the fibers, perpendicular to the
fibers but parallel to the sheet, and perpendicular to the sheet. Let a;(x), a;(x) and
a,(x) be the orthonormal vectors associated to the structure of the myocardium at
any spatial point x where a;(x) is parallel to the fibers, a;(x) is perpendicular to the
fibers but parallel to the sheet plane, and a,(x) is normal to the sheet plane. The
measured conductivity coefficients along the corresponding directions are denoted
by 07, o7 and ¢¢. In this study the simplifying assumption of rotational isotropy
is made, that is, 0¢ = Uz’e. Consequently, the local intracellular conductivity tensor
ot is expressed as

o' = (0] — 0y) a(x)a) (x) + 07 I, (6)

where [ is the identity matrix.



Membrane model

Cellular dynamics that we follow here is described by the model proposed by Mitchell-
Schaeffer (MS) [27] and modified by Keener [24]

Lign(v,w) = —%wmQ(v)[vp — o] + Tolm (v—v,) (7)
Gv,w) = au(©)[1—w] - Bu(v)w, (8)
where
0, v < Uy
mv) ={ 7=, v <v <y (9)
1, else.
B 1 - f(v)
aw(v) B Topen + (Tclose - Topen)f(v) <10)
_ f(v)
Bw(v) B Topen + (Tclose - Topen)f(v) <11)
flv) = % (1 + tanh(k(v — vgate))) - (12)

Here v, is the resting potential, v, is the peak potential and vy, is the threshold
voltage. The time constants 7;, and 7., govern the length of depolarization and
repolarization phases where 7,,., and 7..s are the characteristic time constants of
gate opening and closing, respectively. The above regularized MS model reduces to
the original MS model if K — oo. While the MS model consists of two state variables
only which keeps the computational complexity as low as possible, it faithfully cap-
tures several important salient action potential features such as realistic restitution
properties. The parameter values, see [27], for this model are given in Table .

Tin 03| k 1000
Tout 0.0 | Vgare -67
Topen 120 | v, -80
Telose 150 | v, 40

Table 1: Simulation parameters.

Boundary and initial conditions

Here we assume that there is no intracellular current flow across the tissue-bath
interface and thus homogeneous Neumann boundary condition are applied to seal
the boundaries along the intracellular space,

n-(aVo+a;Vu,) = 0 on Xy =090y x (0,T], (13)

where 7 is the outer unit normal vector to 2. The tissue-bath interface conditions
in the extracellular domain were set up to enforce current conservation across the
interface [39],

n-d.Vu, = n-d,Vu, on Xp. (14)



Moreover, the extracellular and the bath potentials must be continuous across the
interface and therefore,

Ue = Up ON Dip. (15)

We assume zero flux at the boundary of the bath domain and apply homogeneous
Neumann boundary conditions, except for those parts of the boundary where bath
stimuli /.(t) are applied:

~

n-oyVu, = IL(t,z) on Ty x (0,7T] (16)
n-opVu, = 0 on 9Qp\I'2 x (0,77]. (17)

The current fe acts as control along the boundary I'yy = I'yUTl'y, where I';, 1 = 1,2, 3
are mutually disjoint and satisfy I'y UT, U3 = 9Qp, see Figure[l] For compatibility
reasons it is assumed throughout that

/ Lt )ds=0 Vie(0,T). (18)

In the numerical experiments, I. is only temporally dependent and will take the
following form

L= L) (xr, — Xxrs) »

where xp, is the characteristic function of the predefined set I';, ¢ = 1,2. Then
condition is satisfied if |I';| = |T's| where the support regions I'y and I'y can be
considered to represent a cathode and an anode respectively. Moreover, we impose
zero mean condition for the extracellular potential in order to obtain uniqueness of

the elliptic systems:
/ e = 0. (19)
Qp

The initial values of the transmembrane voltage and cell model state variable
are given by prescribed values.

v(z,0) =vy and w(z,0) =wy, on Q, (20)

where vg : 2 — R denotes the initial transmembrane potential and wy : €2 — R is
the initial gating variable at time ¢ = 0.

To conclude this section we provide some background on the well-posedness of
the mathematical model. For this purpose we introduce

V—{soeﬂl(m‘/g pdr =0}, Vg = H' (), H = L*(Qn)

— oy in QB - Up in QB
o= 0, + 0. in Q. “= Ue 10 Q.
Definition 2.1. A triple (u,v,w) € L*(0,T;V) x (LOO(O,T; Vi) N Hl(O,T;H)) X

HY(0,T; H) is called variational solution to the bidomain equations —, —
if holds, and

and set

A

/Q Ew(t)wdwr/gavu(t)wda::/ L.t ds, (21)

oNp

6



/QH vy () dx+/QH o,V (ue(t)+ov(t)) Vi d:zc—l—/QH Lion(v(t), w(t)) dx = /QH L. ()Y dx

(22)
wilt) — G(o(t),w(t) =0, (23)

for all (¢,v) € V x V. Here equations and are supposed to hold almost
every where with respect to t € (0,7") and a.e. in Qy x (0, 7).

The following existence result is verified in [I2] for the homogenous case, but the
inclusion of the forcing term I, can be achieved by standard methods.

Proposition 2.2. If I, € L*(dQp x (0,T)), I, € L*(Qy x (0,T)),
Fi c LOO(QH)dXd, U_e c LOO(QH)dXd,U_b c LOO(QB)dXd,

are symmetric and uniformly elliptic, and if vy € Vg, and wy € L*®(Qy), with
r < wg < 1in Qp, for some r > 0, then —, — admits a variational
solution.

3 The optimal control problem

In this section we discuss the optimal control formulation for cardiac defibrillation
that we follow here. The goal consists in finding an extracellular current I.(t) which
is as weak as possible while still leading to defibrillation. This will be achieved by
means of minimizing a cost-functional subject to the bidomain equations. More
precisely, the cardiac defibrillation will aim at driving the transmembrane voltage v
to a desired value denoted by v, at the intracellular space by properly applying the
I, at the boundary of bath domain. The resulting optimization problem becomes,

min J(v, I,) = min %fOT <a1 Jo, lv = val” dz + o ]Ie(t)|2) dt,
(24)
subject to (2) — (5) and I, € U = L?(0,T; R),

Here «a; and as denote positive weights for the tracking term and the control cost
respectively. It can be shown with standard techniques that there exists an opti-
mal input [} with an associated state variables (u*,v*,w*) which solve ([24)). The
numerical realization of relies on the necessary optimality conditions which are
obtained by applying a formal Lagrange formulation. For this purpose we define the
Lagrangian corresponding to by

’U,(,,Ue,'v w Ie7pb7p7 q,T U [)

/ / aquprb + / / Db dsdt
ISP}

T
/ (0;VuVpe + (0, + 0.)Vu.Vp,) dr dt
0

D

T
/ (viq + 0;(Vu + Vo)Vq + Ly, (v,w)q — Iiq) doe dt
0

ED

T
/ wyr — G(v,w)r dz dt,
0

fe}



where py, pe, ¢, 7 are the Lagrange multipliers associated to the state Egs. —.
The first order optimality system is given by the Karusch-Kuhn-Tucker (KKT) con-
ditions. For this purpose the partial derivatives of £ with respect to u,, u., v and
w are set equal to zero. We obtain the following system of equations which are refer
to as the dual equations,

0 = V-(6;4+7.)Vp.+V-5,Vq in Qp,

0 .
a_(j = -V U_ivpe -V szq + (Iion)vq - (G)vr - (Vm - ‘/;l)|ﬂobs m QH )
0 .
a_;n = ([ion)wq - (G)w?” m QH;
0 = V- a‘prb in QBa

where py, pe, ¢ and r are the Lagrange multipliers associated to wuy, u., v and w
respectively. The terminal conditions are

and the boundary conditions for the adjoint states must satisfy

n- (@Vpe + 5ZVQ) =0 on EH (25)
aVp,-n=0 on 0Qp x[0,7T]. (26)

Furthermore, the following interface conditions must be observed:
Py = pe and o;Vp, = 0, Vp, on Xp . (27)

In addition the zero mean conditions fQH Pe(t) dz = 0 holds for all ¢ € (0,7). Finally
we have the optimality condition:

(a () + /F ol ) d — /F (2, 1) d:c) (L)~ () >0 forall I, € U,

(28)
for almost every ¢ € (0,7) and the minimizer I}. In case, the constraints are not
active this inequality results in

alX(t) +/ po(z,t) doe — / po(z,t)dx =0, for a.e. t € (0,7). (29)
Fl 1—‘l2

Newton’s method

Let us explain Newton’s method to solve the optimization problem. It is based on
the reduced cost functional J(I,) = J(v(I,),I.), where v(I,) denotes the second
coordinate of the variational solution (u(Z.),v(l.),w(l.)) as a function of I.. Thus
J (I.) involves implicitly the state variables depending on I.. The Newton’s method
aims for computing I* by updating I* in an iterative fashion based on the following
system:

J'(IF) 61, = =V JI¥), I =T1F 4 Bl (30)

where J”(I¥) denotes the Hessian of the reduced cost functional, 81, is the search
direction obtained from the Newton equation and [ is the step length parameter
attained from the line search method. For large-scale PDE-constrained optimization
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problems like the present one, explicit construction of the Hessian matrix is not
feasible. Moreover, solving Eq. with a direct method is generally impractical.
Therefore, an inexact-Newton-Krylov approach is used to solve the system . Due
to the attractive use of matrix-vector products Krylov based solvers avoid the need
to form the Hessian matrix explicitly. We briefly summarize the main ingredients
to compute “the action of the Hessian of the reduced cost” on a given vector.

For brevity, the state variables on bath and tissue domains are denoted by y =
(up, ue, v, w). The second derivative of the reduced cost functional is derived based
on the Lagrangian functional which can be expressed as follows, see for more details
[13, [16] . K
T (L) = Liu1, + 8Y* Lyr, + L1,y 8y + 0y Ly 0y ,
where dy = —e;lele. Here e = e(uyp, ue, v, w, I,) is an abstract notation for the
complete coupled PDE and ODE bidomain system together with boundary and
initial conditions. Given I, then considering e(uy, u., v, w, I.) = 0 means solving the
primal (nonlinear) equations for (u, u.,v,w) as a function of I.. Next, e, denotes
the linearized primal system where we have set y = (uy, u,, v, w), and e, ! f stands for

solving the linearized primal system for some right hand side f . The derivatives are
always taken at a current iteration point (uy((Ie)g), te((Le)x), v((Le)r), w((Le)k), (Ie)k)
of the Newton method. Further, to compute J the second derivative of the operator
L applied to the vector (dup, due, dv, dw) is needed. It can be expressed as follows

0
0
00| obs — [Lion)vw@00 — [Lion]ww@0w + [Glyerov + [Glywrdw
—[Lion)uww @0V — [Lionwwqow + [Gluwprdv + [Gywrdw

Lyy = (31)

where the subscripts denote the derivatives w.r.t. the state variables. To compute
the action of the Hessian on a given vector requires to compute the dual-(or ad-
joint) equation to obtain the action of dy* = —e}‘e(e;l)*. In fact, every step of a
Krylov solver to solve requires one linearized primal (contained in dy) and dual
solve (contained in dy*) For detailed exposition of the Newton’s algorithm for the
bidomain equations we refer to [16, Section 2]

4 Numerical approach

Here we briefly explain the space and time discretization techniques to solve the
partial differential equations which are needed to resolve the complete optimality
system. A finite element method was used for the spatial discretization and a linearly
implicit Runge-Kutta methods for the temporal discretizations.

Semi-discretization in space

In this subsection we give an overview of the spatial discretization of the primal
and dual equations by a piecewise bilinear finite element method based on the weak
formulation.

Space discretization of the primal problem

In our computations, the elliptic system on the bath domain Eq. and on the tissue

domain Eq. can be solved monolithically. Here we define u as the extracellular

9



potential on Qg U Qp, i.e.:

| w inQp
v= { Ue in QH (32>

and introduce the global conductivity tensor

— 5’b in QB
7= { (6;+5.) inQp. (33)

The weak solution (u,v,w) € V x Vi x H of the combined system satisfies for all
(%07 1/1) eV x VH

/QH a;Vu(t)Vedr + /95Vu(t)V<p de = /QQB I.(t,)ppda (34)
(e(t), V) yuy + /QH iV (ue(t) +v(t))Vipde + /QH Lion(v(t), w(t))y dx

= <[tr(t)a¢>v*,v ) (35)

wy(t) = G(u(t, z),w(t,x)) a.e. in Qg , (36)

together with initial and boundary conditions (13)-(20). Let V* ¢ H'(Qp) be
the finite dimensional subspace of continuous piecewise linear basis functions with
respect to the spatial grid. The approximate solutions u,v and w are expressed
in the form u(t) = SN wi(t)ws, v(t) = SN jvi(tw; and w(t) = SN w,(t)w;,
respectively, where {w;}1*; and {w;}1y,, denote the basis functions. This semi-
discretization in space results in the differential algebraic system:

Aieu + AiV = I6 (37)
ov
ME =—-Av—-—Au-1I,(v,w)+ 1L, (38)
M@@_\;V = G(v,w), (39)
M+N

together with initial conditions for v and w, where A;e = {((0; + 0.)Vwi, Vw;) o 150
and A; = {(0:Vwi, Vw;)q 11—, are the stiffness matrices, M = {{w;,w;)q }ij—; is
the mass matrix, the vectors I, I;, are defined by I. = {((xr, le — xr,1¢) ,wj>9}jﬂirl
and L, = {(Ir,w;)q, 1121, respectively. The expressions (Lipn)(v, w) and G(v, w)
are defined by

N N
Iian(VaW> = {Iion (Zviwiazwiwi> 7wj}§\[:1a

=0 =0
N N
G(v,w) = {G (Zviwiazwiwi> ,Wj}év:y
1=0 1=0

Space discretization of the dual problem

We use the same finite element space to discretize the dual equations in the bath and
tissue domains. The approximate solutions p, q, and r can be expressed in the form

10



p(t) = Zf\ingi(t)wi, q(t) = Zi]i() qi(t)w; and r(t) = Zi]\io ri(t)w; respectively and
the following semi discrete form of the dual equations is obtained:

Aiep +Aiq=0 (40)
Mg—t =Aip+ Aiq+ (Lion)v(v,w) — G, (v, w)Mr — Ms(v —vg)  (41)
M% = —G,(v,w)r + (Liy,)w(v,w)q, (42)

with terminal conditions q(7") = 0, r(7") = 0. The locally defined mass matrix for
the observation domain is M s = {(wl, XQupe Wj) Hj1- The expressions (Lign )y (v, W),
(Lion)w (v, W) (Gion)v (v, W) and (Gion)w (v, W) are defined by

Ol [~ =
(L’on)v(vvw) = { azm <Zviwiazwiwi>7wj}§v:1
ajion N
(Iion>w(v7w) = { ow ZU szw i Wi 7wj}j:1

(G)y(v,w) = 8_G (ZU wuzw Wz) 7%‘};‘\7:1
(G)w(v,w) = % (Zv wZ,Zw wz) ,wj}év:l.

Remark 4.1. We mention that uy has zero mean and the compatibility condition for
the singular algebraic system Eq. is satisfied at each time iteration level, i.e.

c(—Aywv —1,) = —(c"Ay)v — "I, =0,

where ¢ = (1,...,1)T is a constant vector. Correspondingly, at every time-level the
iterative procedure for solving is initialized by a zero-mean function. Then the
compatibility condition for the singular algebraic system is satisfied.

Analogously, the same spatial discretization technique is applied for the lin-
earized primal and dual equations.

Time discretization

In this subsection we give a brief description of the time discretization for solving
the systems of ordinary differential equations. We solve the Eqgs. and as a
coupled system which can be expressed in the following form:

~ 0%

ME =F(x), x(t°)=x° (43)

where
() ()
_— (—Aiv - AE(V,IQST)L.( w) + IW) (45)

11



Similarly, we can write the Egs. and in the form. To solve (43)), we
introduce discrete steps 0 = t°, ¢!, ... ¢" = T in the time interval [0, T] which are not
necessarily equidistant. We further set 7¢ = t**! —#* and denote by x’ the numerical
solution at time t'. Rosenbrock type linearly implicit Runge-Kutta methods are
used for time discretization. They belong to a large class of methods which try
to avoid the nonlinear system and replace it by a sequence of linear ones. In our
computations, we used exact derivatives of the vector F(x) for the construction of the
Jacobian matrix. The ROS3PL method was employed which has four internal stages
to solve in each time step see [25]. Here we do not repeat the time discretization
details for the current problem which were well explained in [I4, Section 3.2].

Parallel implementation

It is well known that due to complex geometries and space-time scaling consider-
ations bidomain equations simulations are computationally challenging to achieve
realistic simulations on the one hand and acceptable computational times on the
other, see e.g. [32, 42, 31, 29]. In our simulations the software package DUNE
[4], especially the dune-pdelab [5] discretization module, which is a C++ template
based programming environment for solving a general class of PDE’s was used. For
parallel grid construction the ALUGrid library [I8] was employed which in turn uses
the METIS[23] graph partitioner for the decomposition of the grid. We briefly point
out the need of partitioning the computational domain for the current problem.

The combined elliptic system Eq. [37|should be solved on the entire body domain
) while the parabolic-ode system Eq. needs to be solved on the cardiac tissue
domain Q25 only. We use the following partitioning strategy. First we partition the
cardiac tissue 2y into P nonoverlapping subdomains. Then the whole domain (2
is partitioned into P nonoverlapping subdomains. Because of the domain decom-
position of the disjoint domains (the whole domain and the tissue domain), each
single processor assigned to two different subdomains one from the whole domain
and one from tissue domain, which might be distinctive. Due to the presence of
two grids, inter-communication between the processors is necessary at each time
step. To accomplish the necessary communication a projection operator, realized
as a generalized scattering operation, was used to map between the parallel data
vectors V,, and ¢..

Solution procedure for the primal system

We briefly turn to the solution procedure for the primal system. Analogous tech-
niques were used to solve the dual as well as the linearized primal systems. After
the time discretization of we obtain a system of linear algebraic equations at
each internal stage of the ROS3PL method. To solve this linear system we employed
a BiICGSTAB method with Jacobi preconditioning.

The solutions of the singular linear systems which arise after the full discretiza-
tion of Eq (3] is defined up to an additive constant. A zero mean condition is applied
to fix this constant. For the numerical realization of this condition, we employed a
stabilized saddle point formulation from the work of Bochev and Lehoucq [10] For
the discussion and implementation details of this technique for the current problem
we refer to [14][16]. Finally, to solve the linear system we employed a BICGSTAB [40]
method with AMG preconditioner [9], which is developed using a greedy heuristic
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algorithm for the aggregation based on a strength of connection criterion.
Summarizing, the algorithmic solution procedure to solve the primal system is
the following one.

Step 1: Copy the transmembrane solution from the tissue domain (x on Qp) to
the complete domain (x, on ) by using inter-processor communication, as
explained in the subsection parallel implementation at section [4l Here the
columns and rows of zeros are padded in the solution vector x; at the bath
domain.

Step 2: Use the solution x; at time ¢*, solve the discretized elliptic system for
ut! at time #*! by using the stabilized saddle point approach.

Step 3: Communicate the extracellular potential solution from the complete do-
main (u on ) to the cardiac tissue domain (u, on Qp) at time ¢+,

Step 4: Finally, by utilizing the computed solutions u’™ solve the discretized

parabolic equation for x**1 at time #**! by applying the linearly implicit
Runge-Kutta method.

Optimization algorithm

Here we briefly explain the algorithm which is used to solve the complete optimality
system. The essential component in the optimization algorithm is the action of the
Hessian evaluation, see left hand side of Eq. , which needs to be evaluated at
every inner iteration of the CG method. We note that in order to evaluate the
action of the Hessian on a given vector, one linearized primal problem and one
adjoint equation have to be solved, this is explained in step 2 below. The essential
steps of the optimization algorithm are summarized as follows.

1. Compute the first derivative J' (I%) = a I¥(t) + Jr, ool t) do — [i po(2,t) da,
which requires one primal and one adjoint solve.

2. In each CG iteration step for solving (30), evaluate the action of .J"(I") on 61
by means of the following sequence of computation:

(a) solve the linearized primal equation for (dup, due, dv, dw) using §1

V- abV6ub
V- (0;+ 0.) Vu. + V- (0, Vv)
V- (0:Vov) + V- (0,Vou) — (0v + [Lion], v + [Lion),, W)
dwy — Z—iév + Mamzow

o O OO

with the following initial, boundary and interface conditions

n-(o;Vov+0o;Véu) = 0 on Xy
n-opVou, = (XCF1 — XcFQ) dI(t) on Ty
n-opyVou, = 0 on 9Qp\I'
n-.Vou, = n-0,Vou, and du, = du, on Xy
dv(z,0) = dvy and dw(z,0) =dwy on €,

(b) evaluate (Sla 527 537 64) = ‘ny(yk7 Zk)((;uba 5“’67 &Ua 5w7 616) from "
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Figure 1: Schematic illustration of the computational domain which is comprised of
tissue and bath domain.

(c) solve the adjoint equation with (&1, &, &3,&4) as r.hus., ie.

V - oV, &

V. (Ji + Je) Vwy, +V - Jing - 52
V-o,Vwy + V- 0,;Vws + ws, — [Iion]vw3 — Z—;w4 - &3
~[Lion)wws — wa, + nam3 w4 &4

by using homogenous initial and boundary conditions,

(d) compute the action J"(I*)6I = a61|r,, + wi|r, — wir,.

5 Numerical Results

Numerical results for the optimization of cardiac defibrillation shocks based on the
NCG and Newton’s optimization algorithm are presented. For computations, a
3D slice geometry is considered which is generated from the histological image of
rabbit ventricle [41I]. The integrated domain Q = Qp U Qp is [-0.171,—0.121] x
[—1.18,2.04] x [—1.52,1.38] of size 0.05x 3.22x 2.9 cm? and the cardiac tissue domain
size is 0.05 x 2.9 x 2.42 cm?®. The computational domain of the composite geometry
consists of 499,270 tetrahedral elements and 111,589 nodal points. The cardiac tissue
domain comprises 266,846 tetrahedron and 59,292 nodal points. The computational
domains, the control domains, I'; and I's, and the relevant subdomains are depicted
in Figure [T}

The conductivity values were chosen to arrive at physiologically relevant con-
duction velocities of 0.64 m/s and 0.41 m/s along and transverse to the principal
fiber axes, respectively, and to keep anisotropy ratios within the range of values re-
ported in experimental studies [34]. A rule-based method was used to impose fiber
orientations within the biventricular slice geometry [6] using fiber angles of -600 and
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+600 at the endocardial and epicardial surfaces, respectively, and a smooth linear
variation of fiber angles as a function of depth in between.

Figure 2: Fiber directions a;(z) in yz-plane at top and bottom of slab.

A standard S1 — S2 stimulation protocol was applied to induce a reentrant
activation pattern. First, an initial stimulus S1 of I;, = 30 u A/cm? was applied at
time ¢ = 0.5 msec for a duration of 5 msec in the box [—0.171, —0.121] x [0.53, 0.8] x
[—1.52, —1] of the cardiac tissue sheet to initiate a planar wavefront. At time ¢ =
340 msec, when the critical recovery isoline arrived at point (-0.185,0.61,-0.55), a
second S2 stimulus of strength I, = 30 u A/cm?® was applied in a small region of
0.4 c¢m radius for a duration of 5 msec. This S2 stimulus generated a reentrant
excitation wave front. The direct simulation was carried out until time ¢t = 2500
msec to ensure that the induced reentry is maintained for a prolonged period of time.
The solution at t = 585 msec was then chosen as the initial state for the optimal
control experiment. The three temporal horizons: reentry induction, optimization
duration, and post shock simulation as depicted in Figure

induce reentry | shock post shock

|
t = 0'msec 585 optimization 589 939

Figure 3: Different time horizons considered in the computations.

The initial solution of the extracellular potential, the transmembrane voltage
and the gating variable for the optimization algorithm at time ¢ = 585 msec are
depicted in Figure [4]

To fully specify the optimal control problem the desired trajectory of the trans-
membrane potential (v4) needs to be specified. Here it is chosen as a trajectory
which corresponds to successful defibrillation. It is generated by solving once the
primal problem with a stimulation I.(t) = 30 mA/cm?. Its graph looks similar to
that which is shown in Figure [7] The optimal control procedure then determines a
stimulus which still leads to defibrillation but with less energy.

In our computations, the termination of the optimization algorithm is based on
the following condition:

|VI@)|| . <1072 |J(@E)| or [JAE) — JA)| < 107 (46)
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Figure 4: The solution (u,v,w) at ¢t = 585 msec.

If this condition was not satisfied within a prescribed number of 12 iterations, the
algorithm was terminated. If as is large enough stopping is achieved by . An
Armijo type condition is imposed in the line search algorithm. The complete op-
timization code was developed based on the public domain FEM software package
DUNE [4]. The presented numerical results were computed on a Linux cluster
consisting of ten nodes where each node consists of 8 quad-core AMD Opteron pro-
cessors 8356 clocked at 2.3 GHz and equipped with 1TB RAM. All presented results
are based on the parallel Newton-CG algorithms using 16 cores.

Termination of reentry waves

In the following we present the numerical results. This test case demonstrates that
the optimal control strategy will compute the suitable optimal control for termina-
tion of reentry waves by properly choosing the weight of the control cost. Here the
weight of the tracking term is fixed a; = 0.05 and the weight of the control cost
is investigated. Concerning the choice of the parameters a; and as in Eq. , let
us note that the optimal control only depends on the ratio 2. In the optimiza-
tion procedure «; acts as a scaling of the adjoint variables (py,p,q,7). For fixed
a1, the weight ay describes the relative weight of the cost of the control /.. In our

computation we set a; = 0.05 and analyze the effect of varying .

The desired trajectory using I. = 30 mA /cm?

In this subsection, the desired trajectory is constructed using I, = 30 mA/cm?® by
solving the primal system over the time period of 4 msec. Here we ensure that the
computed solution at the shock period leads to successful defibrillation during the
post shock simulations.

In this test case the initial value for the control is taken as I, = 10 mA /cm?®. The
norm of the gradient of the cost functional is shown in left hand side of Figure [5
where the norm of the gradient value is depicted on log scale for better reading at
the last iterations of optimization algorithm. In this test case, the weight of the
control cost is as = 0.05, 0.1, 0.5, 1.0 and 5.0. We can observe that the norm of
the gradient value is reduced during first iterations which is about 95.93. Then the
reduction is very small at the last iterations and the smallest gradient value is 0.009.

The optimal control value is depicted in Figure [0] for different weights of the
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Figure 5: The gradient (log scale at Y-axis) and the minimum value of the cost
functional are shown on the left and right figures respectively.

30

time [msec]

Figure 6: Optimal control.

costs. We observed the optimal control obtained for a;=0.05, 0.1 and 0.5 leads to
a successful defibrillation during the post shock simulations. For ap, = 1 and 5 the
successful defibrillation was not achieved due to not sufficient field strength during
the shock period. The obtained total current, fOT |I.| dt, for ay = 0.05, 0.1, 0.5,
1.0 and 5.0 is 98.6429, 89.3688, 53.7900, 36.7685 and 11.7117 mA /cm?® respectively.
From this experiment we observed that the minimum as, = 0.5 is required to obtain
a successful defibrillation. As a consequence we take this control trajectory value
for our next test case. For this test case, the Newton optimization algorithm takes
11 outer iterations to achieve the desired tolerance and an average of 6 inner CG
iterations were required to solve the Hessian system.

Remark 5.1. Let us make make a few comments on the performance of the opti-
mization algorithm.

1)The stopping criteria plays an important role to obtain convergence to a local so-
lution. We observed that the line search algorithm for the Newton’s method rejects
full step lengths at the beginning of the optimization algorithm and accepts full step
length after about 10 iterations.

2) It is well known that the Newton method requires a good starting point to guar-
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antee its convergence. To address this issue for our situation, we constructed the ini-
tial guess by two optimization iterations of the nonlinear conjugate gradient method
(NCG) with the Hager-Zhang update, see [30), page 121]. This ensured the conver-
gence of the Newton’s method in our computations. For example with the initial
guess I.(t) = 0 the Newton-CG algorithm diverges, which with the initialization as
just described it converges.

3) We observed that the state v at time 560 msec as initial state for the optimization
did not lead to successful defibrillation in the direct numerical simulation. More-
over, increasing the strength of the external stimulus also did not lead a successful
defibrillation. The initial state solution for the shock period at times 575, 580 and
590 msecs led to a successful termination of reentry waves during the post shock
simulations. This is consistent with the fact that the time of shock is essential for
the successful defibrillation.

f.

Figure 7: The optimal state solution of transmembrane voltage v during the shock
period at times t= 585.32, 587.4 and 589 msec.

The 3D colored plots of transmembrane voltage solution (color bar is re-scaled
for better comparison with the uncontrolled solution) during the shock period is
illustrated in Figure [7] for different time instances and for ay = 0.5. As can be seen
in the first panel of Fig. 7| at t = 585.32 ms, a large number of virtual electrodes
appear within the cardiac tissue domain. During the post shock simulation, these
small-scale polarizations start to diffuse out at time ¢ = 589.52 ms, see Figure [§
Then the appearance of numerous small-scale virtual electrodes all over the tissue
in both excitable gap as well as in depolarized regions effectively block the further
propagation of the spiral wave. At time 941 msec the reentrant wave disappears
completely from the cardiac tissue domain.

OOOd®

Figure 8: The solution of transmembrane voltage v during the post-shock period at
times ¢=589.13, 589.52, 607.31, 630.41, 723.06 and 922.44 msec (color bar should be
the same as in Figure [7)).

Remark 5.2. From the above results we conclude that the optimal control strategy
18 successful in the sense that it can provide a control that leads to successful de-
fibrillation at a lower cost than controls based on educated guesses. One can think
of iterating the chosen procedure and replacing in a second experiment the desired
trajectory vg by the trajectory corresponding to the optimal control I. for the choice
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as = 0.5, which is still defibrillating. We carried out this experiment and observed
that no significant further reduction of the energy required for defibrillation can be
achieved.

The desired trajectory using I, = 17 mA /cm?

In this test case, we use the constant I, = 17 mA/cm? for creating the desired
trajectory which is just sufficient, the maximum value in that curve, to terminate the
reentry wave by the knowledge from previous test case. This test case is considered
to demonstrate the robustness of optimal control techniques. In this test cases,
different regularization parameter values are used to bring the computed solution
as close as possible to the desired trajectory so that it will lead to terminate the
reentrant wave during the post shock solution. The norm of the gradient value at the
left and the computed optimal control value over the time at the right of Figure [J]is
shown for different regularization parameter values. Here, from observed post shock
simulations, we observe that a; = 0.02 is sufficient to fulfill the desired objective
which is to terminate the reentrant wave during the post shock solution. The cases
ay = 0.08 and 0.8 did not lead to a successful defibrillation. The total current for the
construction of the desired trajectory is 68 mA/cm?, whereas the optimal control
approach requires only 53.4475 mA/cm3. Thus we can further decrease but this
decrease is significantly smaller than the case described in the previous subsection.
The optimal control for this test case is different from the previous one, but the
total current is approximately same. A comparison between two optimal control
solutions is depicted in Figure 10}

—+0, = 0.02 16
-0, = 0.08 14/

_e_(x2=0.8

o 8
10" 6
0, =0.02
4 2
102 <-0,,=0.08
2 ~0,=038
0
10‘3 L n L I L L 1 L
0 2 4 6 8 10 12 0 1 2 3 4
optimization iterations time [msec]

Figure 9: The gradient value (log scale at Y-axis) of the cost functional and the
optimal control value are shown on the left and right figures respectively.

Parallel efficiency

In general, solving the primal or adjoint equations dominates overall computational
cost in an optimal control solver. Due to the solving of state equations on two dif-
ferent geometries €2 and g, it plays a important role to achieve a strong scalability
over the solution of complete direct problem. In this study, the benchmark simu-
lations were performed on the tissue domain surrounded by a bath domains shown
in Figure [1] to assess the strong scaling properties of the complete bidomain system
solvers used in this study. The test case 2 was adopted and the weight of the control
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Figure 10: Comparison between two optimal control solutions.

cost is ay = 0.02. The parallel efficiency of this benchmark was demonstrated for
different components of the solver as well as for the complete optimization. The
strong scalability was tested up to 16 cores and the parallel efficiency was computed

as
17T

N Ty
where T7 and T are total CPU time of a reference simulation and T is the total
CPU time on N number of cores, respectively.

Here we compare the computing times of reference computation on single CPU
and the parallel efficiency up to 16 CPUs. First we give the component-wise CPU
times for the primal solver at first iteration of optimization solver. The elliptic solver
took 414.98 seconds and the coupled PDE/ODE solver consumed 1091.21 seconds.
The first primal solve took 1511.81 seconds and similarly the corresponding dual
solve took 1547.20 seconds. The complete optimization algorithm has taken 6.23
days on one CPU. For the parallel efficiency the data is shown in Figure

Now we turn to the communication CPU times between the integrated and
tissue geometries. We observed that the communication time for sending the elliptic
solution from the whole domain to the tissue domain attained 0.152 seconds and
0.612 seconds for communicating the transmembrane solution from the tissue domain
to the whole domain on one CPU. On 16 CPUs the CPU times for communicating
the data are 0.316 and 0.332 respectively. The CPU time for building the look
up table for communicating the data between the two grids took 0.9 seconds on
16 CPUs. We can observe that the communication CPU times between the two
geometries is almost negligible as compared to the solution of the PDE system. Here
we point out that, the load balancing of the cardiac tissue grid on 16 cores assigns
approximately 4,000 nodal points on each core. The drop in the parallel efficiency
can be attributed to the unfavorable surface-to-volume ratio of local domains. With
increasing number of cores, the relation between the local compute work performed
on inner nodes of the domain and the data communication which are proportional
to the size of shared domain interfaces, deteriorates, thus impeding further efficient
scaling.

e
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Figure 11: Parallel efficiency over the numbers of processors

6 Summary

It was demonstrated that optimal control techniques allow successful defibrillation
with less energy when compared to ad-hoc choices of the shock strength. Compared
to our earlier work the electrophysiology modeling was significantly expanded by
including a bath domain as well as imaging based conductivity tensors which rep-
resent more realistically the orthotropic architecture of the cardiac tissue structure.
Moreover, we adopted the simplified Mitchell-Schaeffer ionic model which describes
physiological properties such as activation dynamics, inward and outward currents
and the concomitant action potential shape in more detail than the ionic models
used in previous optimal control studies. Due to these changes we observed that
the fibrillatory activity and the appearance of virtual electrode polarization during
the shock period is different from our previous optimal control studies [16], 14] and
relates more close to other DNS studies [21].

We should also mention that with a bath domain included and with the struc-
turally more realistic orthotropic tissue properties, the FitzHugh-Nagumo ionic
model did not allow successful defibrillation in our computations on the 3D slice
geometry while the Mitchell-Schaeffer did. The numerical results demonstrate that
we have found a promising approach for an optimal control treatment of defibril-
lation problems, the question of appropriate locations of applying control and the
applying stimulus timings of optimal control strategies for such problems remains a
most challenging one.

We have encountered that the initial guess of the control and the stopping criteria
plays a crucial role for convergence of the optimization algorithm. The optimization
algorithm was performed well for the given desired trajectory, which is obtained from
the computed optimal control, to achieve the desired objective and demonstrated
that no significant further reduction of the energy is required.

Solving the optimal control problem of bidomain equations in a whole heart
model would be an extremely costly endeavor. However, the forward simulation
benchmark data strongly support the notion, see [28] for benchmark results of the
forward problem of a rabbit ventricular whole heart model, that such simulations
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are certainly feasible in future. Replacing the simplified phenomenological models
by various biophysically detailed models is our primary goal in the near future which
makes difference in after the break of the shock, depending on how refractoriness
and recovery from refractoriness.
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