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ais work is concerned with optimal control of partial diòerential equations where
the control enters the state equation as a coeõcient and should take on values only
from a given discrete set of values corresponding to available materials. A “multi-
bang” framework based on convex analysis is proposed where the desired piecewise
constant structure is incorporated using a convex penalty term. Together with a
suitable tracking term, this allows formulating the problem of optimizing the topology
of the distribution of material parameters as minimizing a convex functional subject
to a (nonlinear) equality constraint. ae applicability of this approach is validated for
two model problems where the control enters as a potential and a diòusion coeõcient,
respectively. ais is illustrated in both cases by numerical results based on a semi-
smooth Newton method.

1 introduction

In this work, topology optimization consists in determining the optimal distribution of two or
more given materials within a domain, where the material properties enter as the values of a
spatially varying coeõcient u(x) into the operator of a partial diòerential equation. We propose
to follow a direct approach and minimize a cost functional of interest subject to the constraint
u(x) ∈ {u1, . . . , ud}, where ui are given parameters speciûc to diòerent materials. ais constraint
is realized by means of the penalty functional

G0(u) = ∫
Ω

α
2
∣u(x)∣2 + β d∏

i=1
∣u(x) − ui ∣0 dx ,
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where ∣t∣0 = 0 for t = 0 and ∣t∣0 = 1 otherwise and α and β are ûxed parameters to be further
discussed below (see Corollary 2.3). ais functional was analyzed in [Clason and Kunisch 2014]
in the context of linear optimal control problems. aere it was shown that, under mild technical
assumptions, the solutions to optimal control problems based on the convex envelope GΓ of G0
have the desired property of being exactly multi-bang. ais means that the solutions assume values
in {u1, . . . , ud} pointwise a.e. in the control domain, provided that β is suõciently large. ais
property is related to the use of the ℓ1 norm in sparse optimization as the convex envelope (on the
unit interval) of the ℓ0 “norm”. Although the explicit form of GΓ is not needed in our approach, we
compute it in section 3 and remark on its relation to a direct L1-type penalization of the constraint
u(x) ∈ {u1, . . . , ud}.

In this work, we focus on tracking-type functionals for multi-material optimization, i.e., we
consider the optimization problem

(1.1) min
u∈U

1
2
∥S(u) − z∥2

Y + GΓ(u),
where

U = {u ∈ L2(Ω) ∶ u(x) ∈ [u1, ud] for almost all x ∈ Ω}
is the admissible set with u1 < ⋅ ⋅ ⋅ < ud given, Y is a Hilbert space, z ∈ Y is the given desired state,
and S ∶ U → Y is the (nonlinear) parameter-to-state mapping.
Following [Clason and Kunisch 2014; Clason, Ito, and Kunisch 2015], we can derive a ûrst-order

necessary primal-dual optimality system

(1.2) {−p̄ = S′(ū)∗(S(ū) − z),
ū ∈ ∂G∗0 (p̄)

(where ∂G∗0 is the convex subdiòerential of the (convex) Fenchel conjugate of G0), whose Moreau–
Yosida regularization is amenable to numerical solution by a superlinearly convergent semismooth
Newton method. While in earlier works, we considered the case of linear S, the main focus here is
on nonlinear, and in particular bilinear, parameter-to-state mappings. Our aim is to demonstrate
that the proposed methodology provides a viable technology for solving shape and topology
optimization problems without the need for computing shape or topological derivatives.

ae general theory to be developed will be tested on two particular model problems. For the
ûrst one, the mapping S ∶ u ↦ y ∈ H2(Ω) is the solution operator to

{−∆y + uy = f ,
∂ν y = 0,

for u in an appropriate subset of L2(Ω) and ûxed f ∈ L2(Ω). ae second one is motivated by the
mapping S̃ ∶ u ↦ y ∈ H1

0(Ω), where y is the solution to

{−∇ ⋅ (u∇y) = f ,
y = 0,
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with u in a subset of L∞(Ω). It is well known from [Murat 1977] that (1.1) does not admit a solution
in this case, since the diòerential equation is not closed under weak-∗ convergence in L∞(Ω). For
this reason we shall introduce a local smoothing operator G and deûne the associated solution
operator as S = S̃ ○G. We point out that the operator to be used in section 4 will be of local nature.
It acts as smoothing of the constant values ui across interior interfaces of boundaries between
diòerent materials and will justify the use of a semi-smooth Newton method for the numerical
realization.

Topology optimization has received a considerable amount of attention. Let us very brie�y point
out some of the alternative approaches and give very selective references. Relaxation methods
[Allaire 2002; Bendsøe and Sigmund 2003; Pironneau 1984; Neittaanmaki, Sprekels, and Tiba
2006] are amongst the earliest and most frequently used techniques. A standard approach for
the two-material case consists in setting u(x) = u1w(x) + u2(1 − w(x)) and minimizing over
the set of all characteristic functions w(x) ∈ {0, 1}. ais problem is non-convex, but its convex
relaxation – minimizing over all w(x) ∈ [0, 1] – o�en has a bang-bang solution, i.e., w(x) ∈{0, 1} almost everywhere. For multi-material optimization, this approach can be extended by
introducing multiple characteristic functions; non-overlapping materials can be enforced by
considering the third domain as an intersection of two (possibly overlapping) domains, e.g.,
u(x) = u1w1(x) + u2(1 −w1(x))w2(x) + u3(1 −w1(x))(1 −w2(x)) for w1(x),w2(x) ∈ [0, 1]. For
an increasing number d ofmaterials, this approach has obvious drawbacks due to the combinatorial
nature and increasing non-linearity. Shape calculus techniques [Pironneau 1984; Sokołowski and
Zolésio 1992] focus on the eòect of smooth perturbations of the interfaces on the cost functional
and have reached a high level of sophistication. From the point of view of numerical optimization,
they are ûrst-order methods and stable, with the drawback that they mostly allow only smooth
variations of the reference geometry. When combined with level-set techniques [Allaire, Jouve, and
Toader 2004; Ito, Kunisch, and Li 2001], they are �exible enough to allow vanishing andmerging of
connected components, but they do not allow the creation of holes. ais is allowed in the context
of topological sensitivity analysis [Garreau, Guillaume, and Masmoudi 2001; Sokołowski and
Żochowski 1999], which investigates the eòect of the creation of holes on the cost. Let us point
out that in our work we do not rely in any explicit manner on knowledge of the shape or the
topological derivatives. Moreover, the numerical technique that we propose is of second order
rather than of gradient nature. Second-order shape or topological derivative analysis is available,
but it is involved when it comes to numerical realization. Multi-material optimization for elasticity
problems are further investigated in [Haslinger et al. 2010] by means of H-convergence methods
and by phase-ûeld methods in [Blank et al. 2014]. ae work which in part is most closely related
to ours is [Amstutz 2011], see also [Amstutz and Andrä 2006; Amstutz 2010], where for the case
of linear solution operators and two materials, the set of coeõcients is expressed in terms of
characteristic functions, and the resulting problem is considered in function spaces rather than in
terms of subdomains and their boundaries. ae ûrst order-optimality condition is derived and
formulated as a nonlinear equation for which a semi-smooth Newton method is applicable.

ais work is organized as follows. In section 2, existence of a solution to (1.1) is shown and the
explicit form of (1.2) is derived. Section 3 is devoted to the explicit form of G and its comparison
to an alternative L1-type penalty. ae numerical solution is addressed in section 4, where the
Moreau–Yosida regularization and its convergence are treated for general nonlinear mappings in
section 4.1. ae analysis of the semismooth Newton method for the regularized problems requires
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speciûc properties of the state equation and is therefore addressed in 4.2 separately for each model
problem. Finally, numerical results are presented in section 5.

2 existence and optimality conditions

We set

F ∶ L2(Ω) → R, F(u) = 1
2
∥S(u) − z∥2

Y ,

G0 ∶ L2(Ω) → R, G0(u) = α2 ∥u∥2
L2 + β∫

Ω

d∏
i=1

∣u(x) − ui ∣0 dx + δU(u),
where δU is the indicator function of the convex and closed set U ⊂ L2(Ω). For S ∶ U → Y , we
assume that

(a1) S ∶ U → Y is weak-to-weak continuous, i.e., {un}n∈N ⊂ U and un ⇀ u ∈ U in L2(Ω) implies
S(un) ⇀ S(u) ∈ Y ;

(a2) S is twice Fréchet diòerentiable.

Both assumptions are satisûed for the twomodel problems stated in the introduction. Now consider

(2.1) min
u∈L2(Ω)

F(u) + G(u)
for

G ∶= G∗∗0 ,

where G∗∗0 is the biconjugate of G0, i.e., the Fenchel conjugate of
G∗0 ∶ L2(Ω) → R, G∗0 (q) = sup

u∈L2(Ω)
⟨q, u⟩ − G0(u).

Since Fenchel conjugates are always lower semicontinuous and convex, see, e.g. [Bauschke and
Combettes 2011, Proposition 13.11], it follows that G is proper, lower semicontinuous and convex
for any α > 0 and β ≥ 0. Existence of a solution to (1.1) thus follows under the stated assumptions
on S.

Proposition 2.1. aere exists a solution ū ∈ U to (1.1) for any α > 0 and β ≥ 0.

Proof. Due to Assumption (a1), the tracking termF is weakly lower semicontinuous and bounded
from below. Similarly, G0 is bounded from below by 0, which implies that G∗∗0 ≥ 0 as well, see, e.g.
[Bauschke and Combettes 2011, Proposition 13.14]. Since U is a compact subset of L2(Ω), we have

U = domG0 ⊂ domG∗∗0 ⊂ domG0 = U = U ,

see, e.g., [Bauschke and Combettes 2011, Proposition 13.40], and hence that G = G∗∗0 is coercive.
ais implies that F + G is proper, weakly lower semicontinous and coercive, and application of
Tonelli’s direct method yields existence of a minimizer.
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We next derive ûrst-order necessary optimality conditions of primal-dual type.

Proposition 2.2. Let ū ∈ U be a local minimizer of (2.1). aen there exists a p̄ ∈ L2(Ω) satisfying

(2.2) {−p̄ = S′(ū)∗(S(ū) − z),
ū ∈ ∂G∗(p̄).

Proof. Let ū ∈ U be a local minimizer, i.e., for t > 0 small enough and any u ∈ U there holds

(2.3) F(ū) + G(ū) ≤ F(ū + t(u − ū)) + G(ū + t(u − ū)).
Since G is convex, we have

G(ū + t(u − ū)) = G(tu + (1 − t)ū) ≤ tG(u) + (1 − t)G(ū),
which implies

G(tu + (1 − t)ū) − G(ū) ≤ t(G(u) − G(ū)).
Inserting this in (2.3) and rearranging yields

F(ū + t(u − ū)) − F(ū) + t(G(u) − G(ū)) ≥ 0.

Since F is Fréchet-diòerentiable due to Assumption (a2), we can divide by t > 0 and let t → 0 to
obtain

⟨F ′(ū), u − ū⟩ + G(u) − G(ū) ≥ 0

for every u ∈ U , i.e.,

p̄ ∶= −F ′(ū) ∈ ∂G(ū).
Since G is convex, this is equivalent to ū ∈ ∂G∗(p̄). Applying the chain rule for Fréchet derivatives
to F then yields the desired optimality conditions.

aequestion of optimality of solutions to Problem (2.1) with respect to the non-convex functionalF + G0 has been addressed (for linear S) in [Clason and Kunisch 2014]; here we only remark
that since G = G∗∗0 ≤ G0 and G(u) = G0(u) for u(x) ∈ {u1, . . . , ud} almost everywhere (see
section 3 below), it follows that if a (local) minimizer ū of (2.1) satisûes ū(x) ∈ {u1, . . . , ud} almost
everywhere, we have for all u ∈ U (suõciently close to ū) that

F(u) + G0(u) ≥ F(u) + G(u) ≥ F(ū) + G(ū) = F(ū) + G0(ū),
i.e., ū is a (local) minimizer of F + G0 as well.

Since G∗ = (G∗∗0 )∗ = G∗∗∗0 = G∗0 , see, e.g., [Bauschke and Combettes 2011, Proposition 13.14 (iii)],
we can make use of the following characterization from [Clason and Kunisch 2014, § 2.1].
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Corollary 2.3. If α and β satisfy the relation

(2.4) α
2
(ui+1 − ui) ≤ √

2αβ for all 1 ≤ i < d ,
then u ∈ ∂G∗(p) if and only if for almost all x ∈ Ω,

(2.5) u(x) ∈
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{u1} p(x) < α
2 (u1 + u2),{ui} α

2 (ui−1 + ui) < p(x) < α
2 (ui + ui+1), 1 < i < d ,{ud} p(x) > α

2 (ud−1 + ud),[ui , ui+1] p(x) = α
2 (ui + ui+1), 1 ≤ i < d .

aus, with (2.4) holding, u(x) coincides with one of the preassigned control values ui , except in
the singular cases when p(x) = α

2 (ui + ui+1) for some i. If, on the other hand, (2.4) is not satisûed,
then u = 1

α p may hold on subsets Ω̂ of nontrivial measure. In this case we call u∣Ω̂ a free arc, and
refer to [Clason and Kunisch 2014] for details.

3 relation to l1 penalization

We now compare the penalty G to a direct L1 penalization of u(x)−ui , i ∈ {1, . . . , d}. First, we give
an explicit characterization of G = G∗∗0 . Since G0 is deûned via the integral of a pointwise function
of u(x), we can compute the Fenchel conjugate and its subdiòerential pointwise as well; see, e.g.,
[Ekeland and Témam 1999, Props. IV.1.2, IX.2.1], [Bauschke and Combettes 2011, Prop. 16.50]. It
therefore suõces to consider

g0 ∶ R→ R, g0(v) = α2 ∣v∣2 + β d∏
i=1

∣v − ui ∣0 + δ[u1 ,ud](v).
To compute g∗∗0 we make use of the fact that the biconjugate coincides with the lower convex
envelope (or Gamma-regularization)

gΓ(v) = sup{a(v) ∶ a ∶ R→ R is aõne and a ≤ g0} ,
see, e.g., [Schirotzek 2007, aeorem 2.2.4 (a)]. We assume again that (2.4) holds.
First, note that g0(ui) = α

2u
2
i for all 1 ≤ i ≤ d, which implies that gΓ(ui) ≤ α

2u
2
i . Now consider a

single interval [ui , ui+1] for 1 ≤ i < d. Obviously, a candidate for gΓ(v) in v ∈ {ui , ui+1} is given by
the linear interpolant gi of g0(ui) and g0(ui+1), i.e.,

gi(v) = α2 ((ui + ui+1)v − uiui+1) .

ais function in fact satisûes the conditions for gΓ also for v ∈ (ui , ui+1), which follows from the
fact that on this open interval, the quadratic function

(g0 − gi)(v) = α2 (v2 − (ui + ui+1)v + uiui+1) + β
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has a unique minimizer (since α > 0) in its critical point v̄ = 1
2(ui + ui+1), where

(g0 − gi)(v) = α2 (− 1
4
(ui + ui+1)2 + uiui+1) + β

= −α
8
(ui+1 − ui)2 + β ≥ 0

by (2.4). Hence, gi(v) ≤ g0(v) for all v ∈ [ui , ui+1] with equality in v ∈ {ui , ui+1}.
To obtain a global function, we deûne ḡ ∶ [u1, ud] → R via

ḡ(v) ∶= gi(v) for v ∈ [ui , ui+1], 1 ≤ i < d .
It remains to verify that for each ûxed i, we have g j(v) ≤ gi(v) for all j ≠ i and v ∈ [ui , ui+1]. A
short computation shows that g j(ui) ≤ gi(ui). Moreover, due to the ordering of the ui we have

g′j(v) = α2 (u j + u j+1) > α2 (ui+1 + ui+2) = g′i(v)
for all j > i and similarly g′i(v) < g′j(v) for all j < i. ais implies that g j(v) ≤ gi(v) for all j ≠ i and
v ∈ [ui , ui+1]. Using again that dom gΓ = dom g0 = [u1, ud] since the interval is closed, we obtain

g∗∗0 (v) = gΓ(v) = ḡ(v) + δ[u1 ,ud](v)
= ⎧⎪⎪⎨⎪⎪⎩

α
2 ((ui + ui+1)v − uiui+1) v ∈ [ui , ui+1], 1 ≤ i < d ,∞ v ∈ R ∖ [u1, ud].

and hence

G(u) = ∫
Ω

gΓ(u(x)) dx .
From the above, we have that gΓ is the unique continuous and piecewise (on [ui , ui+1]) aõne

functionwith gΓ(ui) = α
2u

2
i . It is not surprising that using such a function in optimization promotes

solutions lying in the “kinks” (cf. sparse optimization using ℓ1-type norms, where the only “kink”
is at v = 0). Other penalties h with a similar piecewise aõne structure can be constructed by
prescribing diòerent values for h(ui), although the obvious choice h(ui) = α∣ui ∣ results in a
shi�ed ℓ1 norm which has only one “kink” at v = mini ∣ui ∣ and hence does not have the desired
structure.
An alternative to this piecewise aõne construction is the direct ℓ1-penalization of the deviation,

i.e., choosing

h(v) = α d∑
i=1

∣v − ui ∣ + δ[u1 ,ud](v).
(Note that the product∏d

i=1 ∣v − ui ∣ is a polynomial of order d and hence in general is not convex.)
We ûrst point out that the value h(ui) depends on all u j, 1 ≤ j ≤ d, (and in particular, on d) rather
than on ui only, whichmay be undesirable; see Figure 1. To further illustrate the practical diòerence
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Figure 1: Plot of g∗∗0 and g0 (le�), h (right) for d = 3, (u1, u2, u3), α = 0.5, β = 0.26 (satisfying
(2.4))

between using gΓ and h, we compute the corresponding subdiòerential ∂h∗ which would appear
in (2.2). First, we determine the Fenchel conjugate

h∗(q) = sup
v∈[u1 ,ud]

vq − α d∑
i=1

∣v − ui ∣.
Since the function to be maximized is continuous and piecewise aõne on R, the supremum must
be attained at v̄ = ui for some 1 ≤ i ≤ d. Making use of the fact that the ui are ordered, we obtain
that h∗(q) must be equal to one of the functions

h∗i (q) = qui − α ⎛⎝
i−1∑
j=1

(ui − u j) + d∑
j=i+1

(u j − ui)⎞⎠
= ui(q + α(d + 1 − 2i)) + α i−1∑

j=1
u j − α d∑

j=i+1
u j

(with the convention that empty sums evaluate to 0). It remains to determine the supremum
over 1 ≤ i ≤ d based on the value of q. For this, we ûrst compare h∗i (q) with h∗i+1(q). Simple
rearrangement of terms shows that h∗i (q) ≤ h∗i+1(q) if and only if

α(2i − d)(ui+1 − ui) ≤ q(ui+1 − ui).
Since ui+1 > ui , we deduce that this is the case if and only if q ≥ α(2i − d). Hence, the supremum
is attained for the largest i for which q ≥ α(2i − d). ais yields

h∗(q) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u1(q + α(d − 1)) − α∑dj=2 u j

1
α q < 2 − d ,

ui(q + α(d + 1 − 2i)) − α∑i−1
j=1 u j + α∑dj=i+1 u j 2(i − 1) − d ≤ 1

α q < 2i − d , 1 < i < d ,
ud(q − α(d + 1)) + α∑d−1j=1 u j

1
α q ≥ d − 2.
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Figure 2: Plot of ∂g∗ (le�), ∂h∗ (right) for d = 3, (u1, u2, u3), α = 0.5, β = 0.26

Since h∗ is continuous and piecewise diòerentiable, we have that the convex subdiòerential is
given by

∂h∗(q) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{u1} 1
α q < 2 − d ,{ui} 2(i − 1) − d < 1

α q < 2i − d , 1 < i < d ,{ud} 1
α q > d − 2,[ui , ui+1] 1
α q = 2i − d , 1 ≤ i < d .

Comparing this with Corollary 2.3, we see that the case distinction is independent of ui , but rather
depends on d only, with the individual cases always being intervals of length 2α. In particular,
for ûxed q, the value ∂h∗(q) changes if the number of parameters d is increased, independent
of the magnitude of the additional parameters. Furthermore, since the distribution of intervals
is symmetric around the origin, h tends to favor for increasing α those ui closer to the “middle
parameter” ud/2, rather than those of smaller magnitude as is the case for g∗∗0 ; see Figure 2.

4 numerical solution

For the numerical solution, we follow the approach described in [Clason, Ito, and Kunisch 2015],
where we replace ∂G∗ by its Moreau–Yosida regularization and apply a semi-smooth Newton
method with backtracking line search and continuation. We ûrst introduce the regularization
and discuss its convergence to the original problem for general nonlinear parameter-to-state
mappings in section 4.1. ae explicit form and well-posedness of the Newton step (from which
superlinear convergence follows) requires exploiting the structure of themapping, hence we discuss
it separately for each model problem in section 4.2.
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4.1 regularization

Since F is not convex, we cannot proceed directly to the regularized system. Instead, we start by
considering for γ > 0 the regularized problem

(4.1) min
u∈L2(Ω)

F(u) + G(u) + γ
2
∥u∥2

L2(Ω).

By the same arguments as in the proof of Proposition 2.1, we obtain the existence of a minimizer
uγ ∈ U . We now address convergence of uγ as γ → 0.

Proposition 4.1. ae family {uγ}γ>0 of global minimizers to (4.1) contains at least one subsequence{uγn}n∈N converging to a global minimizer of (2.1) as n →∞. Furthermore, for any such subsequence
the convergence is strong.

Proof. Since U is bounded, the set {uγ}γ>0 contains a subsequence {uγn}n∈N with γn → 0 con-
verging weakly to some ū. Furthermore, it follows that limn→∞

γn
2 ∥uγn∥2

L2(Ω) = 0. By the weak
lower semicontinuity of J ∶= F + G and the optimality of uγn , we thus have for any u ∈ U that

J (ū) ≤ lim inf
n→∞
J (uγn) = lim inf

n→∞
J (uγn) + γn

2
∥uγn∥2

L2(Ω)

≤ J (u) + lim
n→∞

γn
2
∥u∥2

L2(Ω) = J (u),
i.e., ū is a global minimizer of (2.1).

To show strong convergence, it suõces to show lim supn→∞ ∥uγn∥ ≤ ∥ū∥. ais follows from

J (uγn) + γn
2
∥uγn∥2

L2(Ω) ≤ J (ū) + γn
2
∥ū∥2

L2(Ω) ≤ J (uγn) + γn
2
∥ū∥2

L2(Ω)

for every n ∈ N due to the optimality of uγ and ū. Hence, ∥uγn∥L2(Ω) → ∥ū∥L2(Ω), which together
with weak convergence implies strong convergence in the Hilbert space L2(Ω) of the subsequence.

Arguing as in the proof of Proposition 2.2, we obtain the abstract ûrst-order necessary optimality
conditions

{−pγ = F ′(uγ),
uγ ∈ ∂(Gγ)∗(pγ),

where

Gγ(u) ∶= G(u) + γ
2
∥u∥2

L2(Ω).

We now use that (G + γ
2∥ ⋅ ∥2

L2(Ω))∗ is equal to the inûmal convolution of G∗ and 1
2γ∥ ⋅ ∥2

L2(Ω),
which in turn coincides with the Moreau envelope of G∗; see, e.g., [Bauschke and Combettes 2011,
Proposition 13.21]. Furthermore, the Moreau envelope is Fréchet-diòerentiable with Lipschitz-
continuous gradient which coincides with the Moreau–Yosida regularization (∂G∗)γ of ∂G∗; see,
e.g., [Bauschke and Combettes 2011, Proposition 12.29]. We can therefore make use of the pointwise
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characterization of Hγ ∶= (∂G∗)γ = ∂(Gγ)∗ from [Clason, Ito, and Kunisch 2015, Appendix A.2],
assuming again that (2.4) holds, to obtain

(4.2) [Hγ(p)](x) = ⎧⎪⎪⎨⎪⎪⎩
ui p(x) ∈ Qγ

i , 1 ≤ i ≤ d ,
1
γ (p(x) − α

2 (ui + ui+1)) p(x) ∈ Qγ
i ,i+1, 1 ≤ i < d .

where

Qγ
1 = {q ∶ q < α

2 ((1 + 2γ
α )u1 + u2)} ,

Qγ
i = {q ∶ α2 (ui−1 + (1 + 2γ

α )ui) < q < α
2 ((1 + 2γ

α )ui + ui+1)} for 1 < i < d ,
Qγ
d = {q ∶ α2 (ud−1 + (1 + 2γ

α )ud) < q} ,
Qγ

i ,i+1 = {q ∶ α2 ((1 + 2γ
α )ui + ui+1) ≤ q ≤ α

2 (ui + (1 + 2γ
α )ui+1)} for 1 ≤ i < d ,

to obtain the explicit primal-dual ûrst-order necessary conditions

(4.3) {−pγ = S′(uγ)∗(S(uγ) − z),
uγ = Hγ(pγ).

Comparing (4.2) to (2.5), we observe that the Moreau–Yosida regularization is of local nature,
acting along interfaces between regions with diòerent material parameters.

Since Hγ is a superposition operator deûned by a Lipschitz continuous and piecewise diòeren-
tiable scalar function, Hγ is Newton-diòerentiable from Lr(Ω) → L2(Ω) for any r > 2; see, e.g.,
[Ito and Kunisch 2008, Example 8.12] or [Ulbrich 2011, aeorem 3.49]. Its Newton derivative at p
in direction h is given pointwise almost everywhere by

[DNHγ(p)h](x) = ⎧⎪⎪⎨⎪⎪⎩
1
γ h(x) if p(x) ∈ Qγ

i ,i+1, 1 ≤ i < d ,
0 else.

4.2 semismooth newton method

We now wish to apply a semismooth Newton method to (4.3). For this purpose, we need to argue
that pγ ∈ V for some V ↪ Lr(Ω) with r > 2 and show uniform invertibility of the Newton step.
Since the control-to-state mapping is nonlinear, this requires exploiting its concrete structure. We
thus directly consider the speciûc model problems.

4.2.1 Potential problem

Weûrst express (4.3) in equivalent form by introducing the state yγ = S(uγ) ∈ H1(Ω), i.e., satisfying
for u = uγ

(4.4) {−∆y + uy = f in Ω,
∂ν y = 0 on ∂Ω.

11



In the following, we assume that Ω ⊂ RN , N ≤ 3, is suõciently regular such that for any f ∈ L2(Ω)
andanyu ∈ UM ∶= {u ∈ L2(Ω) ∶ u1 ≤ u ≤ M a.e.}, the solution to (4.4) satisûes y ∈ H2(Ω) together
with the uniform a priori estimate

(4.5) ∥y∥H2(Ω) ≤ CM∥ f ∥L2(Ω).

We also consider for given u ∈ UM and y ∈ H2(Ω) the adjoint equation

(4.6) {−∆w + uw = −(y − z) in Ω,
∂νw = 0 on ∂Ω,

whose solution w ∈ H2(Ω) also satisûes the uniform a priori estimate (4.5). Due to the Sobolev
embedding theorem, we have that the solutions y and w are also bounded in L∞(Ω) uniformly
with respect to u ∈ UM .
By standard Lagrangian calculus, we can nowwrite pγ = yγwγ , wherewγ ∈ H1(Ω) is the solution

to (4.6) with u = uγ and y = yγ. We further eliminate uγ using the second equation of (4.3) to
obtain the reduced system

(4.7) {−∆wγ +Hγ(−yγwγ)wγ + yγ = z,−∆yγ +Hγ(−yγwγ)yγ = f .
Due the regularity of yγ and pγ, we can consider this as an equation in L2(Ω) × L2(Ω) for(yγ , pγ) ∈ H2(Ω) × H2(Ω). By the Sobolev embedding theorem, we have yγwγ ∈ L∞(Ω), and
hence that the system (4.7) is semismooth. By the chain rule, the Newton derivative of Hγ(−yw)
with respect to y in direction δy is given by

DN ,yHγ(−yw)δy = − 1
γ
χ(−yw)w δy,

where χ(−yw) is the characteristic function of the inactive set

Sγ(−yw) ∶= d−1⋃
i=1

{x ∈ Ω ∶ −y(x)w(x) ∈ Qγ
i ,i+1} .

Similarly,

DN ,wHγ(−yw)δw = − 1
γ
χ(−yw) y δw .

For convenience, we set χk ∶= χ(−ykwk). A Newton step consists in solving

(4.8)
⎛⎜⎝

1 − 1
γ χ

k(wk)2 −∆ +Hγ(−ykwk) − 1
γ χ

k ykwk

−∆ +Hγ(−ykwk) − 1
γ χ

k ykwk − 1
γ χ

k(yk)2

⎞⎟⎠
⎛⎝
δy

δw
⎞⎠

= −⎛⎝
−∆wk +Hγ(−ykwk)wk + yk − z

−∆yk +Hγ(−ykwk)yk − f
⎞⎠

and setting yk+1 = yk + δy and wk+1 = wk + δw.
To show local superlinear convergence, it remains to prove uniformly bounded invertibility of

(4.8). We proceed in several steps. First, we consider the oò-diagonal terms in (4.8).

12



Lemma 4.2. For any γ > 0 and y,w ∈ H2(Ω), the linear operator B ∶ H2(Ω) → L2(Ω),
B = −∆ +Hγ(−yw) − 1

γ χ(−yw)yw ,
is uniformly invertible, and there exists a constant C > 0 independent of y,w such that

∥B−1∥L(L2(Ω),H2(Ω)) ≤ C .

Proof. We ûrst note that by deûnition, [Hγ(p)](x) ∈ [u1, ud] for any p ∈ L2(Ω). Furthermore, on
the inactive set Sγ(−yw) we have, again by deûnition,

u1 ≤ α
2γ

(u1 + u2) + u1 ≤ 1
γ
(−yw)(x) ≤ α

2γ
(ud−1 + ud) + ud ≤ (1 + α

γ )ud .
aus, Hγ(−yw) − 1

γ χ(−yw)yw ∈ UM for M = (2 + α
γ )ud , and the claim follows from the a priori

estimate (4.5).

Proposition 4.3. For γ > 0, let (yγ ,wγ) ∈ H2(Ω)×H2(Ω) be a solution to (4.7) with wγ satisfying∥wγ∥L∞(Ω) < √γ. Furthermore, let U(yγ) be a bounded neighborhood of yγ in H2(Ω), and let
U(wγ) be a bounded neighborhood of wγ in H2(Ω) such that ∥w∥L∞(Ω) ≤ √γ for any w ∈ U(wγ).
aen there exists a constant C > 0 such that for any (y,w) ∈ U(yγ)×U(wγ) and any r1, r2 ∈ L2(Ω),
there exists a unique solution (δy, δw) ∈ H2(Ω) ×H2(Ω) to

(4.9)
⎛⎝
1 − 1

γ χ(−yw)w2 B
B − 1

γ χ(−yw)y2
⎞⎠⎛⎝

δy
δw

⎞⎠ = ⎛⎝
r1
r2

⎞⎠
satisfying

∥δy∥H2(Ω) + ∥δw∥H2(Ω) ≤ C (∥r1∥L2(Ω) + ∥r2∥L2(Ω)) .

Proof. We exploit the invertibility of B to obtain the required bounds on δy and δw. For the sake
of convenience, we set ω ∶= Sγ(−yw) and h ∶= 1 − 1

γ χ(−yw)w2. As a ûrst step, we introduce the
following bilinear form on L2(ω) × L2(ω):

aω(w1,w2) ∶= (w1,w2)L2(ω) + (hB−1( 1√γ yEωw1), B−1( 1√γ yEωw2))
L2(Ω)

,

where Eω denotes the extension by zero operator from ω to Ω. Due to the assumption on w, we
have that h ia nonnegative. aus the second term on the right hand side of the above equation is
non-negative as well. Hence aω is symmetric, continuous and elliptic on L2(ω) (uniformly on the
set of admissible (y,w)). ais implies the existence of a unique solution δw̃ ∈ L2(ω) to

(4.10) aω(δw̃ , w̃) = ( 1√γ yB
−1 (r1 − hB−1r2) , w̃)

L2(ω)
for all w̃ ∈ L2(ω)

satisfying

∥δw̃∥L2(ω) ≤ C (∥r1∥L2(Ω) + ∥r2∥L2(Ω)) .
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(Here and below, C is a generic constant that may change its value between occurences but does
not depend on y and w.)

Next we consider the auxiliary equation

(4.11) Bδy = r2 + 1√γ yEωδw̃ .

From Lemma 4.2 we obtain a unique solution δy ∈ H2(Ω) to (4.11) satisfying

∥δy∥H2(Ω) ≤ C (∥r2∥L2(Ω) + 1√γ∥δw̃∥L2(ω)) ≤ C (∥r1∥L2(Ω) + ∥r2∥L2(Ω)) ,
using that y ∈ U(yγ) is uniformly bounded in L∞(Ω). Given δy ∈ H2(Ω), the ûrst equation of
(4.9) now admits a unique solution δw ∈ H2(Ω) satisfying

∥δw∥H2(Ω) ≤ C (∥r1∥L2(Ω) + ∥δy∥L2(Ω)) ≤ C (∥r1∥L2(Ω) + ∥r2∥L2(Ω)) ,
using the uniform boundedness of w ∈ U(wγ) in L∞(Ω).

To complete the proof, it remains to verify that δw = 1√γ yδw̃ on ω. For this purpose we note
that by the ûrst of equation of (4.9) and (4.11),

δw + B−1 (hB−1 ( 1√γ
yEωδw̃)) = B−1 (r1 − hB−1r2) .

Taking the inner product of this equation in L2(ω) with 1
γ yEωw2 for arbitrary w2 ∈ L2(ω) and

subtracting (4.10), we arrive at

( 1
γ yδw − δw̃ ,w2)L2(ω)

= 0 for all w2 ∈ L2(ω).
Inserting into (4.11) now veriûes the second equation of (4.9).

We remark that according to the a priori estimate (4.5), the required smallness ofwγ corresponds
to smallness of the tracking error ∥yγ − z∥L2(Ω). In the following we give an alternative suõcient
condition for the uniform continuous invertibility of the Newton iteration matrix (4.9) that does
not rely on the smallness of wγ. For this purpose, we set ωγ ∶= Sγ(−yγwγ) and deûne

∂ωγ ∶= d−1⋃
i=1

{x ∈ Ω ∶ −yγ(x)wγ(x) ∈ ∂Qγ
i ,i+1} .

We also introduce the compact self-adjoint operator

C ∶ L2(ωγ) → L2(ωγ), C = (B−1( 1√γ yEωγ))∗ (hγ Id) (B−1( 1√γ yEωγ)) ,
where hγ = 1 − 1

γ χ(−yγwγ)w2
γ and B = B(yγ ,wγ). We require the following two assumptions.

(h1) −1 ∉ σ(C),
(h2) ∣∂ωγ ∣ = 0.
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Proposition 4.4. For γ > 0, let (yγ ,wγ) ∈ H2(Ω) × H2(Ω) be a solution to (4.7) satisfying (h1)
and (h2). aen there exists a neighborhood U(yγ) ×U(wγ) of (yγ ,wγ) in H2(Ω) ×H2(Ω) such
that the conclusion of Proposition 4.3 holds.

Proof. By (h1) and as a consequence of the proof of Proposition 4.3, the system matrix in (4.9)
is continuously invertible in (yγ ,wγ). Since the set of continuously invertible operators between
Hilbert spaces is open with respect to the topology of the operator norm (see, e.g., [Wouk 1979,ae-
orem 6.2.3]), the claim will be established once we have argued that the system matrix, considered
as an operator from H2(Ω) ×H2(Ω) to L2(Ω) × L2(Ω), depends continuously in the operator
norm on (y,w) ∈ H2(Ω)×H2(Ω) in a neighborhood of (yγ ,wγ). For this purpose, we ûrst argue
that p ∶= −yw ↦ χ(p) is continuous from C(Ω) to L2(Ω) in a neighborhood of pγ ∶= −yγwγ . For
ε > 0 suõciently small, we set

∂S εγ ∶= d−1⋃
i=1

{x ∈ Ω ∶ dist (pγ(x), ∂Qγ
i ,i+1) < ε} .

ae family {∂S εγ}ε>0 is monotone with respect to set inclusion and satisûes

lim
ε→0

∣∂S εγ ∣ = ∣lim
ε→0

∂S εγ ∣ = ∣∂Sγ ∣ = 0.

For any ε > 0 and any p ∈ C(Ω) such that ∥p − pγ∥C(Ω) < ε
2 , we thus have

∥χ(p) − χ(pγ)∥2
L2(Ω) = ∫Ω∖∂S εγ

∣χ(p)(x) − χ(pγ)(x)∣2 dx + ∫
∂S εγ

∣χ(p)(x) − χ(pγ)(x)∣2 dx
= 0 + ∣∂S εγ ∣ → 0 for ε → 0,

since dist (p(x), ∂Qγ
i ,i+1) < ε

2 on Ω∖∂S εγ due to the choice of p. Due to the continuous embedding
H2(Ω) ↪ C(Ω), there exists η = η(ε) such that ∥y− yγ∥H2(Ω) < η and ∥w−wγ∥H2(Ω) < η implies∥yw − yγwγ∥C(Ω) < ε

2 . Hence yw → χ(−yw) is continuous from H2(Ω) ×H2(Ω) to L2(Ω).
In a similar manner, one argues continuity of Hγ from H2(Ω) × H2(Ω) to L2(Ω), since the

pointwise case distinction in the deûnition (4.2) can equivalently be expressed via the sum of
characteristic functions. It follows from these considerations that the system matrix in (4.9) as
an operator from H2(Ω) ×H2(Ω) to L2(Ω) × L2(Ω) depends continuous on (y,w) ∈ H2(Ω) ×
H2(Ω).

Semismoothness of (4.7) together with Proposition 4.3 or Proposition 4.4 now implies local
convergence of the Newton iteration; see, e.g., [Ito and Kunisch 2008, aeorem 8.6].

aeorem 4.5. Under the assumptions of either Proposition 4.3 or Proposition 4.4, if (y0,w0) is
suõciently close in H2(Ω)×H2(Ω) to a solution (yγ ,wγ) to (4.7), the semismooth Newton iteration
(4.9) converges superlinearly in H2(Ω) ×H2(Ω) to (yγ ,wγ).
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4.2.2 Diòusion problem

We now consider the optimization of the leading coeõcient. Here we are immediately faced with
the diõculty that the state equation is not closed with respect to weak convergence of u in L2(Ω)
or even weak-∗ convergence in L∞(Ω); in particular, we cannot expect (a2) to hold. ais is a
classical diõculty concerning the identiûcation of diòusion coeõcients when only pointwise
bounds are available. In this respect we recall results from [Murat 1977] where, for given data z,and
inhomogeneities f and g, examples for non-existence of solutions to the problem

min
0<u1≤u≤u2

∫
Ω
∣y(u) − z∣2 dx s.t −∇ ⋅ (u∇y) = f , y∣∂Ω = g ,

are given, as well as the notion of H- and G-convergence [Murat and Tartar 1997]. To address this
diõculty and thus to ensure (a2), we propose to introduce a local bounded smoothing operator
G ∶ L2(Ω) → L2(Ω) with the property that its restrictions satisfy G ∈ L(Ls(Ω),W 1,s(Ω)) and
G∗ ∈ L(W 1,s(Ω),W 1,s(Ω)) for s ∈ (n,∞) and G(U) ⊂ U . ais choice of s guarantees that
W 1,s(Ω) embeds compactly into C(Ω) and that W 1,s(Ω) is a Banach algebra. For example, we
can choose G as local averaging, i.e.,

(4.12) [Gu](x) = 1∣Bρ ∣ ∫Bρ
u(x + ξ) dξ,

where Bρ is a ball with radius ρ > 0 and center at the origin, and u is extended by u1 outside of Ω.
ae corresponding state equation is

(4.13) {−∇ ⋅ (Gu∇y) = f in Ω,
y = 0 on ∂Ω.

We assume that Ω ⊂ RN , N ≤ 3, is suõciently regular such that for any f ∈ Ls(Ω) and any u ∈ UM ,
the solution to (4.13) satisûes y ∈W2,s(Ω) ∩H1

0(Ω) together with the uniform a priori estimate

(4.14) ∥y∥W2,s(Ω) ≤ CM∥ f ∥Ls(Ω).

ais is the natural W2,s(Ω) regularity estimate for strongly elliptic equations, see [Ladyzhenskaya
and Ural’tseva 1968, page 191]. Here we use that the set G(U) is bounded in W 1,s(Ω) and hence
that elements in G(U) have a uniform modulus of continuity (which aòects the constant CM).
Setting S ∶ u ↦ y in (4.13) and Y = L2(Ω), the assumptions (a1) and (a1) are satisûed. Digressing
for a moment, we recall that our solutions to (2.1) and (4.1) still depend on G, and in particular in
the case of (4.12), they depend on ρ. Let us denote this dependence by uρ. aen as ρ → 0, these
solution converge weakly in Ls(Ω) and G-converge to a – possibly diòerent – limit which both
satisûes the constraints involved in U and appears as diòusion coeõcient in the state equation;
see, e.g., [Allaire 2002, Chapter 1.3].
We next turn for given z ∈ Ls(Ω) and any u ∈ UM and y ∈W2,s(Ω) to the adjoint equation

(4.15) {−∇ ⋅ (Gu∇w) = −(y − z) in Ω,
w = 0 on ∂Ω,
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whose solution w ∈W2,s(Ω) ∩H1
0(Ω) also satisûes the uniform a priori estimate (4.14). We note

that the solutions y and w satisfy ∇y ⋅ ∇w ∈W 1,s(Ω).
Using the solution yγ to (4.13) for u = uγ and the solution wγ to (4.15) for u = uγ and y = yγ , we

can write pγ = −G∗(∇yγ ⋅ ∇wγ) ∈W 1,s(Ω) and thus express (4.3) equivalently as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇ ⋅ (Guγ∇wγ) + yγ = z,

uγ −Hγ(−G∗(∇yγ ⋅ ∇wγ)) = 0,−∇ ⋅ (Guγ∇yγ) = f .
A�er eliminating uγ using the second equation, the reduced system has the form

(4.16)
⎧⎪⎪⎨⎪⎪⎩
−∇ ⋅ ((GHγ(−G∗(∇yγ ⋅ ∇wγ))) ∇wγ) + yγ = z,

−∇ ⋅ ((GHγ(−G∗(∇yγ ⋅ ∇wγ))) ∇yγ) = f .
We consider this again as an equation in Ls(Ω) × Ls(Ω) for (yγ , pγ) ∈ (W2,s(Ω) ∩ H1

0(Ω)) ×(W2,s(Ω) ∩H1
0(Ω)), and interpret Hγ as bounded linear operator from W 1,s(Ω) to Ls(Ω). ais

renders system (4.16) semismooth. Appealing again to the chain rule for Newton derivatives and
introducing χ = χ(−G∗(∇y ⋅ ∇w)), we obtain the Newton system

(4.17)
⎛⎝

Id+Ak(wk , ⋅,wk) −∇ ⋅ (Guk∇⋅) + Ak(yk , ⋅,wk)
−∇ ⋅ (Guk∇⋅) + Ak(wk , ⋅, yk) Ak(yk , ⋅, yk)

⎞⎠⎛⎝
δy

δw
⎞⎠

= −⎛⎝
−∇ ⋅ (Guk∇wk) + yk − z

−∇ ⋅ (Guk∇yk) − f
⎞⎠ ,

where we have set uk ∶= Hγ(−G∗(∇yk ⋅ ∇wk)) and
Ak(v1, v2, v3) ∶= ∇ ⋅ (G ( 1

γ χ
kG∗(∇v1 ⋅ ∇v2)) ∇v3) .

Note that for all y,w , δy, δw ∈ H2(Ω),
(Ak(y, δy,w), δw)L2(Ω) = (Ak(w , δw , y), δy)L2(Ω) .

It remains to provide suõcient conditions for the uniform bounded invertibility of the system
matrix in (4.17). For this purpose we specify the critical set ∂ωγ for the present case:

∂ωγ ∶= d−1⋃
i=1

{x ∈ Ω ∶ −G∗(∇yγ(x) ⋅ ∇wγ(x)) ∈ ∂Qγ
i ,i+1} .

aeorem 4.6. Let (yγ ,wγ) denote a solution to (4.16), assume that ∣∂ωγ ∣ = 0, and that the system
matrix (4.17) evaluated at (yγ ,wγ) is continuous invertible as an operator from (W2,s ∩H1

0(Ω))2

to (Ls(Ω))2. aen, if (y0,w0) is suõciently close in (W2,s ∩H1
0(Ω))2 to (yγ ,wγ), the semismooth

Newton iteration (4.9) converges superlinearly to (yγ ,wγ).
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Proof. It suõces to argue that the system matrix depends continuously on (y,w) ∈ (W2,s(Ω) ∩
H1

0(Ω))2 in a neighborhoodof (yγ ,wγ) considered as operators inL((W2,s(Ω)∩H1
0(Ω))2, Ls(Ω)2).

For this purpose we consider the operator

(W2,s(Ω) ∩H1
0(Ω))2 ∋ (y,w) ↦ A(w , ⋅,w) ∈ L(W2,s(Ω) ∩H1

0(Ω), Ls(Ω)),
whereA still depends on χ = χ(−G∗(∇y⋅∇w)). Firstwe argue exactly as in the proof of Proposition
4.4 that

(W2,s(Ω) ∩H1
0(Ω))2 ∋ (y,w) ↦ χ = χ(−G∗(∇y ⋅ ∇w)) ∈ Ls(Ω)

is continuous. Next we observe that

W2,s(Ω) ∩H1
0(Ω) ∋ w ↦ G∗(∇w ⋅ ∇⋅) ∈ L(W2,s(Ω) ∩H1

0(Ω),W 1,s(Ω))
is continuous, and consequently

(W2,s(Ω) ∩H1
0(Ω))2 ∋ (y,w) ↦ G( 1

γ χG
∗(∇w ⋅ ∇⋅)) ∈ L(W2,s(Ω) ∩H1

0(Ω), Ls(Ω))
is continuous as well. From here we can conclude that (y,w) ↦ A(w , ⋅,w) is continuous from(W2,s(Ω) ∩ H1

0(Ω))2 to L((W2,s(Ω) ∩ H1
0(Ω)), Ls(Ω)). We argue similarly for the mappings

A(w , ⋅, y), A(y, ⋅,w) and A(y, ⋅, y), which establishes the claim.

Returning to the assumption on the well-posedness of the system matrix at (yγ ,wγ), we now
argue that this is indeed the case if wγ is suõciently small in theW2,s(Ω) norm, i.e., for small
residual problems. For w = 0, the system matrix in (4.17) has the form

⎛⎝
Id −∇ ⋅ (u1∇⋅)

−∇ ⋅ (u1∇⋅) 0

⎞⎠
since uγ = GHγ(0) = Gu1 = u1 becauseGu = u for u constant. ais operator is clearly continuously
invertible. A perturbation argument as in the proof ofaeorem 4.6 implies continuous invertibility
also for (yγ ,wγ) if ∥wγ∥W2,s(Ω) is suõciently small.

5 numerical examples

We illustrate the behavior of the proposed approach with numerical examples modeling a simple
material design problem for the potential and the diòusion equation. In both cases, a reference
binary material distribution ur (i.e., using only two values: matrix or void uv , and material um)
is speciûed, and the corresponding solution yr to the state equation is taken as the target z for
the multi-material optimization problem (2.1) with additional available material parameters. ais
problem is then solved using the described regularized semismooth Newton method. To address
the local convergence of Newton methods and to avoid having to choose the Moreau–Yosida
regularization parameter γ a priori, a continuation strategy is applied where the problem is solved
starting with a large γ0 = 1, which is successively reduced via γk+1 = γk/2, taking the previous
solution as a starting point. ae iteration is terminated if γ = 10−12 is reached or more than 300
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Newton iterations are performed. ais is combined with a non-monotone backtracking line seach
based on the residual of the optimality system (4.3), starting with a step length of 1 and using
a reduction factor of 1/2, where a minimal step length of 10−6 is accepted even if it leads to a
(small) increase in the residual norm. ae partial diòerential equations are discretized using ûnite
diòerences on a uniform grid of 128× 128 grid points. Our Matlab implementation of the described
algorithm can be downloaded from https://github.com/clason/multimaterialcontrol.

5.1 potential problem

We ûrst consider the design problem for (4.4), where we ûx Ω = [−1, 1]2 and
f (x1, x2) = sin(πx1) cos(πx2).

ae reference material parameter is

(5.1) ur(x1, x2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2.5 if 1/4 < ∣x∣2 < 3

4 and x1 > 1
10 ,

2.5 if 1/4 < ∣x∣2 < 3
4 and x1 < − 1

10 ,
1.5 else,

see Figure 3a; the corresponding reference state yr is shown in Figure 3b. We then solve the multi-
material design problem for the target z = yr with the extended feasible parameter set {1, 1.5, 2, 2.5}
and α = 10−6 using the described algorithm, which terminated at γ ≈ 10−12 because the minimal
value of γ was reached. In all cases, a�er some initial reduced steps were taken for γ < 5 ⋅ 10−5,
the Newton iteration entered a superlinear phase and converged a�er at most three iterations.
Depending on γ, the total number of Newton iterations was between 5 and 28. ae ûnal material
distribution uγ is shown in Figure 3c. As can be seen, at almost all points, only the feasible parameter
values are attained. ae relative total material cost reduction is (∥ur∥L2 − ∥uγ∥L2)/∥ur∥L2 ≈ 0.18.
ae corresponding state is shown in Figure 3d and has a relative tracking error ∥yγ− yr∥L2/∥yr∥L2 ≈
0.008.

5.2 diffusion problem

For the design problem for the diòusion equation (4.13), we set f ≡ 10 and ur as given in (5.1)
(shown again in Figure 4a to facilitate comparison).ae smoothing operatorG is taken as averaging
over the local ûve-point stencil. ae corresponding reference state yr is shown in Figure 4b. For the
multimaterial design problem,we choose the extended feasible parameter set {1.5, 1.75, 2, 2.25, 2.5}
and set α = 10−3. In this case, the algorithm terminated at γ ≈ 3 ⋅ 10−8 due to reaching the maximal
number of Newton iterations. ae material coeõcient Guγ from the last successful iteration with
γ ≈ 6 ⋅ 10−8 is shown in Figure 4c. Although the multi-bang structure is no longer perfect, it can
be observed that the penalty is successful in promoting the desired parameter values even in the
presence of the smoothing operator G. ae relative total material cost reduction is approximately
0.05. ae behavior of the Newton method is similar as in the potential problem, although the
required number of Newton iterations now increases signiûcantly as γ is decreased due to the
line search leading to smaller step lengths (including in total six non-monotone steps due to the
minimal step length being reached). Finally, the corresponding state is shown in Figure 4d. It has
a relative tracking error of approximately 0.01.
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(a) reference coeõcient ur (b) target z = yr

(c) optimal control uγ (d) optimal state yγ

Figure 3: Results for potential problem

6 conclusion

A convex analysis approach is presented for the determination of piecewise constant coeõcients
in a partial diòerential equation where the constants range over a predetermined discrete set.
Since the subdomains where the coeõcient is constant are not speciûed a priori, this constitutes a
topology optimization problem. Two model applications are analyzed in detail. For the case where
the unknown coeõcient enters into the potential term, the numerical results are very encouraging.
If the unknown parameter enters into the diòusion term, regularization is required that has a
smoothing eòect on the solutions, and thus the numerical results are less “crisp”. In practice, this
could be addressed by a post-processing step, either by standard thresholding or by evaluating the
unregularized subdiòerential at the computed optimal dual variable, i.e., taking an appropriate
selection ũ ∈ ∂G∗(pγ). Since the considered problems resemble inverse coeõcient problems, it
comes as no surprise that the diòusion problem is more ill-posed than the potential problem.

In future work, we plan to return to the diòusion problem and to formulate the multi-topology
optimization problem based on a bounded variation framework using a functional including the
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(a) reference coeõcient ur (b) target z = yr

(c) optimal control uγ (d) optimal state yγ

Figure 4: Results for diòusion problem

total variation seminorm. It may also be of interest to search for other types of functionals which
serve the purpose of multi-material topology optimization. In particular, we note that the currently
used formulation in (1.1) favors values u(x) = ui with small magnitude over other ones. Depending
on the practical relevance of the ui , this may not be a desired eòect. In this case, functionals should
be constructed that favor diòerent criteria (e.g., the weight or the price of diòerent materials) while
still keeping the “multi-bang” property feature of promoting controls with values only from the
given set.
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