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PARABOLIC CONTROL PROBLEMS IN SPACE-TIME MEASURE SPACES ∗

Eduardo Casas1 and Karl Kunisch2

Abstract. Optimal control problems in measure spaces governed by parabolic equations with are
considered. The controls appear as spatial measure in the initial condition and as space-time measures
as forcing functions. First order optimality conditions are derived and certain structural properties, in
particular sparsity, are discussed. An framework for approximation if these highly irregular problems
is also proposed.
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.

1. Introduction

In this paper we study optimal control problems for parabolic equations where the space-time controls appear
as volume sources and also as measure valued initial conditions. In particular, we consider the following problem:

(P) min
(u,u0)∈M(Qc)×M(Ω)

J(u, u0) =
1

q
‖y − yd‖qLq(Q) + α‖u‖M(Qc) + β‖u0‖M(Ω), (1.1)

where y is the solution of the problem
∂y

∂t
−∆y = u in Q = Ω× (0, T )

y(x, 0) = u0 in Ω
y(x, t) = 0 on Σ = Γ× (0, T ).

(1.2)

Here Qc = ω × I, where ω ⊂ Ω is the control domain, the subinterval I of (0, T ), is the control horizon, and
M(Qc) andM(Ω) denote measure spaces. More details on the notation and the variational solution concept to
(1.2) will be given in the following section. For results of this paper the Laplacian can be replaced by a second
order elliptic operator with regular coefficients.
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The importance of measure valued controls is by now well-established. The solution of measure-valued
optimal control problems have the structural property of sparsity. This property can be used for formulating
the problem of optimal actuator placement or for source identification problems. Formally, these properties
could also be achieved by an L1 approach. This space, however, does not allow an appropriate topology for
compactness arguments to guarantee existence of solutions to (1.1). The papers [4, 9] may have been the first
ones to address measure valued control problems with the goal of sparsity for linear elliptic control systems.
The approach was extended to semi-linear elliptic equations in [6]. A-priori error estimates for finite element
approximation of linear elliptic optimal control problems with measure valued controls were investigated in [16].
The parabolic case was considered in [5] and [13] with different measure valued topologies to enhance directional
spatial sparsity. The terminology directional sparsity was introduces in [12]. In the present paper we succeed
in establishing an analytical framework which allows to consider measure-valued controls on the space-time
cylinder. Let us mention that the difficulty of dealing with existence in the presence of L1 controls can also
be addressed by utilizing either constraints on the controls or regularization terms in a finer norm than the L1

norm which then allows to use weak or weak∗ convergence arguments. Finally we mention the recent paper [7]
which also uses measure-valued controls in the context of approximate controllability into an L2(Ω) ball. To
compensate for the lack of sufficient regularity of the trajectories the controls only act on a subset of the full
time horizon.

The plan of the paper is as follows. In the following section we address well-posedness of the state equation
(1.2) and existence of solutions to (1.1). The optimality system and sparsity properties of the solution are
analyzed in Section 3. An approximation framework to these highly irregular problems is developed in Section
4, where strong (subsequential) convergence of the discrete optimal trajectories and weak∗ convergence of the
discrete optimal controls to optimal trajectories and optimal controls of the continuous problem is proved. In
the final section we consider the case when the observation is only assumed to be available in a sub-cylinder
Ωo × I0 of Ω × (0, T ) and analyze the support of the optimal controls relative to the location of Ωo × I0 and
Ω× I.

2. Assumptions and existence of solutions

The following notation will be utilized through this paper. By Ω we denote an open bounded domain in Rd,
for d ∈ {1, 2, 3}, with a Lipschitz boundary Γ. Let us set Qc = ω × I, where ω is a relatively closed domain
of Ω and I is an interval relatively closed in (0, T ) for some T > 0 given. With M(Qc) and M(Ω) we denote
the spaces of real and regular Borel measures in Qc and Ω, respectively. The appearance of u ∈ M(Qc) in the
state equation (1.2) is understood as an extension to Q by zero outside Qc. We assume that α > 0, β > 0 and
1 ≤ q < min{2, d+2

d }. We also assume that yd ∈ Lq(Q). Under these assumptions we shall prove that (P) is
well defined and it has a unique solution. To this end, we first analyze the state equation (1.2).

Definition 2.1. We say that a function y ∈ L1(Q) is a solution of (1.2) if the following identity holds∫
Q

−(
∂φ

∂t
+ ∆φ)y dxdt =

∫
Qc

φdu+

∫
Ω

φ(0) du0, ∀φ ∈ Φ, (2.1)

where

Φ = {φ ∈ L2(0, T ;H1
0 (Ω)) :

∂φ

∂t
+ ∆φ ∈ L∞(Q) and φ(x, T ) = 0 in Ω}.

Let us observe that the problem 
∂φ

∂t
+ ∆φ = f in Q

φ(x, T ) = 0 in Ω
φ(x, t) = 0 on Σ

(2.2)
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has a unique solution φ ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) for every f ∈ L∞(Q). Moreover, the regularity

φ ∈ C(Q̄) holds. This continuity property follows from the results in [1]; see [3, Theorem 5.1]. The reader is
also referred to [17].

Theorem 2.2. There exists a unique solution y of (1.2). Moreover, y ∈ Lr(0, T ;W 1,p
0 (Ω)) for all p, r ∈ [1, 2)

with (2/r) + (d/p) > d+ 1, and the following estimate holds

‖y‖Lr(0,T ;W 1,p
0 (Ω)) ≤ Cr,p(‖u‖M(Qc) + ‖u0‖M(Ω)). (2.3)

Proof. The uniqueness is an immediate consequence of (2.1) and the fact that the mapping ∂
∂t+∆ : Φ −→ L∞(Q)

is surjective; see (2.2). To prove the existence and the regularity we choose two sequences {uk}k ⊂ C(Q̄c)

and {u0k}k ⊂ C(Ω̄) such that uk
∗
⇀ u in M(Qc) and u0k

∗
⇀ u0 in M(Ω), and ‖uk‖L1(Qc) ≤ ‖u‖M(Qc) and

‖u0k‖L1(Ω) ≤ ‖u0‖M(Ω). This can be achieved by taking the convolution with sequences of mollifiers. Associated

with (uk, u0k) we define the sequence of solutions {yk}k ⊂ L2(0, T ;H1
0 (Ω)) of (1.2). Then, using the regularity

of yk we can make integration by parts to obtain for every φ ∈ Φ∫
Q

−(
∂φ

∂t
+ ∆φ)yk dxdt =

∫
Q

(
∂yk
∂t

+ ∆yk)φdxdt+

∫
Ω

φ(0)u0k dx

=

∫
Qc

φuk dx dt+

∫
Ω

φ(0)u0k dx. (2.4)

Let us obtain the estimates (2.3) for yk. To this end, we take {ψj}dj=0 ⊂ D(Q) and take φ ∈ Φ satisfying
∂φ

∂t
+ ∆φ = ψ0 −

∂ψj
∂xj

in Q

φ(x, T ) = 0 in Ω
φ(x, t) = 0 on Σ.

(2.5)

Following [1] and [3, Theorem 5.1], we know that there exists a constant C such that

‖φ‖C(Q̄) ≤ C
d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω)). (2.6)

Now, using distributional derivatives we obtain from (2.4)-(2.6)

〈yk, ψ0〉+

d∑
j=1

〈∂xjyk, ψj〉 =

∫
Q

yk(ψ0 −
d∑
j=0

∂xjψj) dx dt

=

∫
Q

(
∂φ

∂t
+ ∆φ)yk dxdt = −

∫
Qc

φuk dx dt−
∫

Ω

φ(0)u0k dx

≤ C(‖uk‖L1(Qc) + ‖u0k‖L1(Ω))

d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω))

≤ C(‖u‖M(Qc) + ‖u0‖M(Ω))

d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω)).
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This proves that {yk}k ⊂ Lr(0, T ;W 1,p
0 (Ω)) and every yk satisfies (2.3). Finally, by taking a subsequence, we

deduce the existence of y ∈ Lr(0, T ;W 1,p
0 (Ω)) such that yk ⇀ y in this space. Then, passing to the limit in

(2.4) we obtain that y satisfies (2.1), as well as (2.3). �

Remark 2.3. The notion of solution given here differs from definitions used in [3] or [7]; see also [2]. In those

papers, the solution was assumed to belong to Lr(0, T ;W 1,p
0 (Ω)) from the beginning. However, here our solution

is supposed to belong just to L1(Q). This is convenient for the numerical analysis that will be carried out later.
In the case of parabolic equations with regular coefficients both definitions coincide.

Remark 2.4. For d = 2 or 3 the condition 1 ≤ q < d+2
d was required in the formulation of the cost-functional.

If we take

p̃ =
dq

dq + q − 2
,

then (2/q) + (d/p̃) = d + 1 and p̃ ∈ (1, d
d−1 ] are satisfied. From Sobolev’s embedding we also have W 1,p̃

0 (Ω) ⊂
L(d+2)/d(Ω). Therefore, for any q < min(2, 2+d

d ) there exists some p such that

1 ≤ p < p̃,
2

q
+
d

p
> d+ 1, and W 1,p

0 (Ω) ⊂ Lq(Ω) compactly. (2.7)

Hence, Theorem 2.2 states that the solution y of (1.2) belongs to Lq(0, T ;W 1,p
0 (Ω)) ⊂ Lq(Q). This motivates

the choice of q in the cost functional.
In dimension d = 1, the condition on q is 1 ≤ q < 2, and there always exists p > 1 such that (2/q)+(1/p) > 2.

For any such p we have Lq(0, T ;W 1,p
0 (Ω)) ⊂ Lq(Q) and the compact embedding W 1,p

0 (Ω) ⊂ Lq(Ω).

Remark 2.5. Since the solutions of (1.2) belong to Lq(Q), the density of L∞(Q) in Lq
′
(Q) implies that the

identity (2.1) is valid for every φ in the space

Φq = {φ ∈ L2(0, T ;H1
0 (Ω)) :

∂φ

∂t
+ ∆φ ∈ Lq

′
(Q) and φ(x, T ) = 0 in Ω}.

Indeed, first we observe that q′ > 2 and q′ > 1 + d
2 , which follows from the inequality q < min{2, d+2

d }. Then

for any g ∈ Lq′(Q), there exists a sequence {gn} ⊂ L∞(Q) with gn → g in Lq
′
(Q). As a consequence of the

regularity results in [1] and [14] there exists a sequence {φn} ⊂ Φq and φ ∈ Φ with ∂φn
∂t +∆φn = gn,

∂φ
∂t +∆φ = g,

and limn φn = φ in C(Q̄). Passing to the limit in (2.2) with φ replaced by φn implies that φ ∈ Φg.

Before proving the existence of an optimal control for (P), let us establish a technical lemma that will be
useful later.

Lemma 2.6. Let {(uk, u0k)}k ⊂ L1(Qc)× L1(Ω) be a weakly∗ convergence sequence in M(Qc)×M(Ω) to an
element (u, u0). Then, the associated states {yk}k converge strongly in Lq(Q) to the state y corresponding to
(u, u0) for every 1 ≤ q < d+2

d .

Proof. Let us take p as in the previous remark. Then, from (2.3) we get that yk ⇀ y in Lq(0, T ;W 1,p
0 (Ω))

and {∂tyk}k is bounded in L1(0, T ;W−1,p(Ω)) = L1(0, T ;W 1,p′

0 (Ω)∗). Indeed, obviously {∆yk}k is bounded in
Lq(0, T ;W−1,p(Ω)). In addition, we observe that the weak∗ convergence of {uk}k implies its boundedness in

L1(Q). Now, we check that L1(Q) ⊂ L1(0, T ;W−1,p(Ω)). For this purpose it is enough to show that W 1,p′

0 (Ω) ⊂
C(Ω̄) which holds if p′ > d. The latter is is obvious for d = 1. For dimensions d = 2 and d = 3 we have that

p < 2 and p < 3/2, respectively, which leads to p′ > d. Finally, we have that W 1,p
0 (Ω) ⊂ Lq(Ω) ⊂ W−1,p(Ω),

where the first inclusion is compact and the second is continuous. Then, from [19, Corollary 4], we deduce the
strong convergence yk → y in Lq(Q). �

We conclude this section by studying the existence of solutions for the control problem (P).
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Theorem 2.7. Problem (P) has at least one solution (ū, ū0) ∈M(Qc)×M(Ω) for every 1 ≤ q < min{2, d+2
d }.

Furthermore, if q > 1 then the solution is unique.

Proof. Let {(uk, u0k)}k be a minimizing sequence. By the coercivity of J we can obtain a weak∗ convergence
subsequence, denoted in the same way, with limit (ū, ū0). By Theorem 2.2 we get that the sequence of states

{yk}k associated to {(uk, u0k)}k converges to ȳ = y(ū, ū0) weakly in Lr(0, T ;W 1,p
0 (Ω)) for every (2/r)+(d/p) >

d+ 1. Now, (2.7) implies that yk ⇀ ȳ in Lq(Q). Hence, J(ū, ū0) ≤ lim infk→∞ J(uk, u0k) = inf (P) holds. The
uniqueness follows from the strict convexity of J for q > 1 and the injectivity of the mapping (u, u0)→ y from
M(Qc)×M(Ω) to Lq(Q). Here we use that the observation is taken on the whole domain. �

Remark 2.8. Let us observe that the existence of a solution to (P) can also be obtained for arbitrary q ≥
min{2, d+2

d }. The only change in the argument of the above proof is that yk ⇀ ȳ in Lq(Q) is obtained from the

boundedness of {J(uk, u0k)}k and the fact that 1
q‖yk−yd‖

q
Lq(Q) ≤ J(uk, u0k). Our assumption on the parameter

q will be needed in the following section devoted the necessary optimality conditions.

3. Optimality Conditions

In this section, we state the optimality conditions satisfied by a solution (ū, ū0) of (P) and discuss its sparsity
structure. Let us fix some notation. By S :M(Qc)×M(Ω) −→ Lq(Q) we denote the solution operator of (1.2).
We write the cost functional in the form

J(u, u0) = (F ◦ S)(u, u0) + αjQ(u) + βjΩ(u0),

where

F : Lq(Q) −→ R, F (y) =
1

q
‖y − yd‖qLq(Q)

jQ :M(Qc) −→ R, jQ(u) = ‖u‖M(Qc)

jΩ :M(Ω) −→ R, jΩ(u0) = ‖u0‖M(Ω).

We set as usual

sign(s) =

 {+1} if s > 0
{−1} if s < 0

[− 1,+1] if s = 0.

Further, we observe that for q > 1 the mapping F is of class C1 and for q = 1 the subdifferential of F is given
by

∂F (y) = {g ∈ L∞(Q) : g(x, t) ∈ sign(y(x, t)− yd(x, t)) a.e.}. (3.1)
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Theorem 3.1. Let (ū, ū0) denote a solution to (P) with associated state ȳ. Then, there exists an element
ϕ̄ ∈ L2(0, T ;H1

0 (Ω)) ∩ C(Q̄) satisfying 
−∂ϕ̄
∂t
−∆ϕ̄ = ḡ in Q

ϕ̄(x, T ) = 0 in Ω
ϕ̄(x, t) = 0 on Σ,

(3.2)


∫
Qc

ϕ̄ dū+ α‖ū‖M(Qc) = 0

‖ϕ̄‖C(Q̄c)

{
= α if ū 6= 0
≤ α if ū = 0,

(3.3)


∫

Ω

ϕ̄(0) dū0 + β‖ū0‖M(Ω) = 0

‖ϕ̄(0)‖C(Ω̄)

{
= β if ū0 6= 0
≤ β if ū0 = 0,

(3.4)

where

ḡ(x, t)

{
= |ȳ(x, t)− yd(x, t)|q−2(ȳ(x, t)− yd(x, t)) if 1 < q < min{2, d+2

d }

∈ sign(ȳ(x, t)− yd(x, t)) if q = 1.
(3.5)

Furthermore, ϕ̄ is unique if q > 1.

Proof. First we consider the case q > 1. In this case we can compute the derivative of the mapping F ◦S. Given
(u, u0) ∈M(Qc)×M(Ω), we denote y = S(u, u0). Then, we have

〈(F ◦ S)′(ū, ū0), (u, u0)〉 = 〈S∗F ′(ȳ), (u, u0)〉 = 〈F ′(ȳ), S(u, u0)〉 =

∫
Q

ḡy dx dt, (3.6)

where ḡ is given by (3.5). Since ḡ ∈ Lq′(Q), to follows from Remark 2.5 that there exists a unique solution ϕ̄
of (3.2), that additionally satisfies the identity (2.1). From there and (3.6) we get

〈(F ◦ S)′(ū, ū0), (u, u0)〉 =

∫
Qc

ϕ̄ du+

∫
Ω

ϕ̄(0) du0. (3.7)

Now, using the optimality of (ū, ū0), the convexity of jQ and jΩ, and the differentiability of F ◦ S, we get

0 ≤ lim sup
ρ→0

1

ρ
[J(ū+ ρ(u− ū), ū0 + ρ(u0 − ū0)))− J(ū, ū0)]

≤ 〈(F ◦ S)′(ū, ū0), (u− ū, u0 − ū0)〉+ α[jQ(u)− jQ(ū)] + β[jΩ(u0)− jΩ(ū0)].

By inserting (3.7) in this expression we infer ∀(u, u0) ∈M(Qc)×M(Ω)

−
∫
Qc

ϕ̄ d(u− ū)−
∫

Ω

ϕ̄ d(u0 − ū0) + αjQ(ū) + βjΩ(ū0) ≤ αjQ(u) + βjΩ(u0). (3.8)

In the case q = 1, we use the convexity and continuity of the three functionals defining J and the rules of
the subdifferential calculus to get

0 ∈ ∂J(ū, ū0) = ∂(F ◦ S)(ū, ū0) + ∂[αjQ(ū) + βjΩ(ū0)]

⊂ S∗∂F (ȳ) + ∂[αjQ(ū) + βjΩ(ū0)].
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Hence, we deduce the existence of ḡ ∈ ∂F (ȳ) such that −S∗ḡ ∈ ∂[αjQ(ū) + βjΩ(ū0)], or equivalently ∀(u, u0) ∈
M(Qc)×M(Ω)

−〈ḡ, S(u− ū, u0 − ū0)〉+ αjQ(ū) + βjΩ(ū0) ≤ αjQ(u) + βjΩ(u0).

From (3.1) we have that ḡ ∈ L∞(Q) and it is given by (3.5). Taking ϕ̄ in the space L2(0, T ;H1
0 (Ω)) ∩ C(Q̄)

solution of (3.2) and using (2.1), we get again (3.8) from the above inequality.
Finally, (3.3) and (3.4) follow from (3.8). We will prove (3.3), the proof of (3.4) being analogous. Let us take

u0 = ū0 in (3.8), then we have

−
∫
Qc

ϕ̄ d(u− ū) + αjQ(ū) ≤ αjQ(u) ∀u ∈M(Qc).

Taking in these inequalities u = 0 and u = 2ū, respectively, we deduce the first identity of (3.3). Hence, we get∫
Qc

ϕ̄ du ≤ αjQ(u) ∀u ∈M(Qc).

This implies that ‖ϕ̄‖C(Q̄c) ≤ α. But the first identity of (3.3) leads to the equality ‖ϕ̄‖C(Q̄c) = α if ū 6= 0.

We conclude the proof noting that the uniqueness of ϕ̄ for q > 1 is an immediate consequence of (3.2) and
the definition of ḡ.

�

From (3.3) and (3.4), and [5, Lemma 3.4] we deduce the following corollary which shows the sparsity structure
of (ū, ū0).

Corollary 3.2. Under the assumptions and notations of Theorem 3.1 we have that{
Supp(ū+) ⊂ {(x, t) ∈ Q̄c : ϕ̄(x, t) = −α}
Supp(ū−) ⊂ {(x, t) ∈ Q̄c : ϕ̄(x, t) = +α} (3.9){
Supp(ū+

0 ) ⊂ {(x, t) ∈ Ω : ϕ̄(x, t) = −β}
Supp(ū−0 ) ⊂ {(x, t) ∈ Ω̄ : ϕ̄(x, t) = +β} (3.10)

where ū = ū+ − ū− and ū0 = ū+
0 − ū

−
0 are the Jordan decompositions of ū and ū0, respectively.

Remark 3.3. Let us observe that ‖ϕ̄‖C(Q̄) ≤ M for some constant M independently of α and β. Indeed, this

is obvious for q = 1 because ‖ϕ̄‖C(Q̄) ≤M‖ḡ‖L∞(Q) = M . For q > 1, we have that

‖ϕ̄‖C(Q̄) ≤ C‖ḡ‖Lq′ (Q) = C‖ȳ − yd‖q−1
Lq(Q)

≤ C[q J(ū, ū0)]
q−1
q ≤ C[q J(0, 0)]

q−1
q = C‖yd‖q−1

Lq(Q) =: M.

As a consequence, if α > M or β > M , then ū ≡ 0, respectively ū0 ≡ 0.

Let us mention some additional consequences of the optimality conditions. If α < β and Q̄c ⊃ Ω×{0}, then
‖ϕ̄(0)‖C(Ω̄) ≤ α < β, with (3.4) implies that ū0 ≡ 0. Conversely, if α > β, then by uniform continuity of ϕ̄

there exists ε > 0 such that |ϕ̄(x, t)| < α for every (x, t) ∈ Ω× [0, ε]. Hence, supp(ū) ⊂ Q̄c ∩ (Ω× [ε, T ]) holds.

Remark 3.4. The results of Sections 2 and 3, in particular Theorem 2.7, Theorem 3.1, and Corollary 3.2
can be extended to the case where F is a convex, weakly lower semi-continuous functional on Lq(Q), which in
addition is bounded from below, and which is strictly convex if q > 1. In this case (3.5) needs to be replaced by

ḡ ∈ ∂F (ȳ) ∈ Lq′(Q), where q′ is the conjugate exponent to q.
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4. Numerical Approximation of (P)

In this section, Ω is supposed to be convex. To avoid technicalities in the presentation we also assume that
Qc = Q. We consider a dG(0)cG(1) discontinuous Galerkin approximation of the state equation (1.2) (i.e.,
piecewise constant in time and linear nodal basis finite elements in space; see, e.g., [20]). Associated with a
parameter h we consider a family of triangulations {Kh}h>0 of Ω̄. To every element K ∈ Kh we assign two
parameters ρ(K) and ϑ(K), where ρ(K) denotes the diameter of K and ϑ(K) is the diameter of the biggest ball

contained in K. The size of the grid is given by h = maxK∈Kh ρ(K). We will denote by {xj}Nhj=1 the interior
nodes of the triangulation Kh. In addition, the following usual regularity assumptions on the triangulation are
assumed.

(i) There exist two positive constants ρΩ and ϑΩ such that

h

ρ(K)
≤ ρΩ and

ρ(K)

ϑ(K)
≤ ϑΩ

hold for every K ∈ Kh and all h > 0.
(ii) Let us set Ωh = ∪K∈KhK with Ωh and Γh being its interior and boundary, respectively. We assume

that the vertices of Kh placed on the boundary Γh are also points of Γ.

We also introduce a temporal grid 0 = t0 < t1 < . . . < tNτ = T with τk = tk−tk−1 and set τ = max1≤k≤Nτ τk.
We assume that there exist ρT > 0, CΩ,T > 0 and cΩ,T > 0 independent of h and τ such that

τ ≤ ρT τk, for 1 ≤ k ≤ Nτ . (4.1)

We will use the notation σ = (τ, h) and Qh = Ωh × (0, T ).

4.1. Discretization of the controls and states

We first discuss the spatial discretization, which follows [4]. Associated to the interior nodes {xj}Nhj=1 of Kh
we consider the spaces

Uh =

uh ∈M(Ω) : uh =

Nh∑
j=1

ujδxj , where {uj}Nhj=1 ⊂ R


and

Yh =

yh ∈ C0(Ω) : yh =

Nh∑
j=1

yjej , where {yj}Nhj=1 ⊂ R

 ,

where {ej}Nhj=1 is the nodal basis formed by the continuous piecewise linear functions such that ej(xi) = δij for
every 1 ≤ i, j ≤ Nh.

For every σ we define the space of discrete controls and states by

Uσ = {uσ ∈ L1(I, Uh) : uσ|Ik∈ Uh, 1 ≤ k ≤ Nτ}

and

Yσ = {yσ ∈ L2(I, Yh) : yσ|Ik∈ Yh, 1 ≤ k ≤ Nτ},
where Ik = (tk−1, tk]. The elements uσ ∈ Uσ and yσ ∈ Yσ can be represented in the form

uσ =

Nτ∑
k=1

uk,hχk and yσ =

Nτ∑
k=1

yk,hχk,
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where χk is the indicator function of Ik, uk,h ∈ Uh and yk,h ∈ Yh. Moreover, by definition of Uh and Yh, we can
write

uσ =

Nτ∑
k=1

Nh∑
j=1

ukjχkδxj and yσ =

Nτ∑
k=1

Nh∑
j=1

ykjχkej .

Thus Uσ and Yσ are finite dimensional spaces of dimension Nτ × Nh, and bases are given by {χkδxj}k,j and
{χkej}k,j .

As in [5], associated to the triangulation of Ω we define the linear operators Λh :M(Ω) −→ Uh ⊂M(Ω) and
Πh : C0(Ω) −→ Yh ⊂ C0(Ω) by

Λhu0 =

Nh∑
j=1

〈u0, ej〉δxj and Πhy =

Nh∑
j=1

y(xj)ej . (4.2)

The operator Πh is the nodal interpolation operator for Yh. Concerning the operator Λh we have the following
result.

Proposition 4.1 ( [4, Theorem 3.1]). The following properties hold.

(i) For every u0 ∈M(Ω) and every y ∈ C0(Ω) and yh ∈ Yh we have

〈u0, yh〉 = 〈Λhu0, yh〉, (4.3)

〈u0,Πhy〉 = 〈Λhu0, y〉. (4.4)

(ii) For every u0 ∈M(Ω) we have

‖Λhu0‖M(Ω) ≤ ‖u0‖M(Ω), (4.5)

Λhu0
∗
⇀ u0 in M(Ω) and ‖Λhu0‖M(Ω) → ‖u0‖M(Ω) as h→ 0. (4.6)

Analogously, we define for every σ the operators

Υσ :M(Q) −→ Uσ Υσu =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej du δxjχk,

Ψσ : C([0, T ], C0(Ω)) −→ Yσ Ψσy =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

y(xj , t) dt ejχk.

(4.7)

Now, we prove the proposition analogous to 4.1.

Proposition 4.2. The following properties hold.

(i) For every u ∈M(Q) and every y ∈ C([0, T ], C0(Ω)) and yσ ∈ Yσ we have

〈u, yσ〉 = 〈Υσu, yσ〉, (4.8)

〈u,Ψσy〉 = 〈Υσu, y〉. (4.9)

(ii) For every u ∈M(Q) we have

‖Υσu‖M(Q) ≤ ‖u‖M(Q), (4.10)

Υσu
∗
⇀ u in M(Q) and ‖Υσu‖M(Q) → ‖u‖M(Q) as |σ| → 0. (4.11)
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Proof. Using the representation of yσ in the base {ejχk}j,k we have

〈u, yσ〉 =

Nτ∑
k=1

Nh∑
j=1

ykj

∫
Ik

∫
Ω

ej du.

On the other hand,

〈Υσu, yσ〉 =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej du 〈δxjχk, yσ〉

=

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej du

∫
Ik

yσ(xj , t) dt =

Nτ∑
k=1

Nh∑
j=1

ykj

∫
Ik

∫
Ω

ej du,

which implies (4.8). Turning to (4.9), we get

〈u,Ψσy〉 =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

y(xj , t) dt〈u, ejχk〉 =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

y(xj , t) dt

∫
Ik

∫
Ω

ej du,

and

〈Υσu, y〉 =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej du 〈δxjχk, y〉 =

Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej du

∫
Ik

y(xj , t) dt.

As claimed, these two expressions coincide. Inequality (4.10) is obtained as follows

‖Υσu‖M(Q) ≤
Nτ∑
k=1

Nh∑
j=1

1

τk

∫
Ik

∫
Ω

ej d|u| ‖δxjχk‖M(Q)

=

Nτ∑
k=1

Nh∑
j=1

∫
Ik

∫
Ω

ej d|u| ≤
∫
Q

d|u| = ‖u‖M(Q).

From this estimate we deduce the existence of a subsequence, denoted in the same way, such that Υσu
∗
⇀ ũ as

|σ| → 0 for some ũ ∈ M(Q). For any function y ∈ C([0, T ], C0(Ω)) we know that Ψσy → y in C([0, T ], C0(Ω))
as |σ| → 0. Hence, using (4.9) we obtain

〈ũ, y〉 = lim
|σ|→0

〈Υσu, y〉 = lim
|σ|→0

〈u,Ψσy〉 = 〈u, y〉.

Therefore ũ = u and consequently the whole sequence {Υσu}σ converges weakly∗ to u. This convergence and
(4.10) imply that

‖u‖M(Q) ≤ lim inf
|σ|→0

‖Υu‖M(Q) ≤ ‖u‖M(Q),

which concludes the proof of (4.11) �

4.2. Discrete state equation

In this section we approximate the state equation. We recall that Ik was defined as (tk−1, tk] and consequently
yk,h = yσ(tk) = yσ|Ik , 1 ≤ k ≤ Nτ . To approximate the state equation in time we use a dG(0) discontinuous
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Galerkin method, which can be formulated as an implicit Euler time stepping scheme. Given a control (u, u0) ∈
M(Q)×M(Ω), for k = 1, . . . , Nτ and zh ∈ Yh we set

(
yk,h − yk−1,h

τk
, zh

)
+ a(yk,h, zh) =

1

τk

∫
Ik

∫
Ω

zh du

y0,h = y0h,

(4.12)

where (·, ·) denotes the scalar product in L2(Ω), a is the bilinear form associated to the operator −∆, i.e.,

a(y, z) =

∫
Ω

∇y∇z dx,

and y0h is the unique element of Yh satisfying

(y0h, zh) =

∫
Ω

zh du0 ∀zh ∈ Yh. (4.13)

Obviously, the discrete state yσ associated to u is uniquely defined by (4.12). The strong convergence of yσ
to y = y(u) in L2(0, T ;H1

0 (Ω)) for regular functions (u, u0), for instance (u, u0) ∈ L2(Q)×L2(Ω), is well known.
Indeed, the proof of the weak convergence is standard. The strong convergence follows from the compactness
result [21, Theorem 3.1].

4.3. Definition of the discrete problem (Pσ) and convergence analysis

The approximation of the optimal control problem (P) is defined as

(Pσ) min
(uσ,u0σ)∈Uσ×Uh

Jσ(uσ, u0h) =
1

q
‖yσ − yd‖qLq(Qh) + α‖uσ‖M(Q) + ‖u0h‖M(Ω),

where yσ is the discrete state associated to (uσ, u0h), i.e., the solution to (4.12).
Let us recall that 1 ≤ q < min{2, d+2

d }. Hence, its conjugate q′ = q/(q − 1) satisfies max{2, d+2
2 } < q′ ≤ ∞.

We make the following assumption.

(A) Given q such that 1 < q < min{2, d+2
d }, ∀f ∈ L

q′(Ω) there exists a unique solution ϕ of (2.2) belonging

to Lq
′
(0, T ;W 2,q′(Ω)) ∩W 1,q′

0 (Ω).

Under assumption (A), we also deduce from the equation (2.2) that ϕ ∈ H1(Q). In addition, since q′ > 1 + d
2

and f ∈ Lq′(Q), then using again [1] we get that ϕ ∈ C(Q̄).
It is well known that assumption (A) holds if Γ is of class C1,1; see for instance [14, Theorem 9.1]. In the

case of a convex polygonal domain Ω ⊂ R2, assumption (A) also holds for q′ < 2
2−(π/θ) , where θ is the biggest

angle of the polygon. This regularity can be proved by standard arguments and using the W 2,p(Ω) regularity
for elliptic problems in polygonal domains; see [11].

Now, we state the main result of this section.

Theorem 4.3. (Pσ) has at least one solution (ūσ, ū0h). Furthermore, if assumption (A) holds, 1 < q <
min{2, d+2

d }, and {(ūσ, ū0h)}σ denotes a sequence of such solutions with associated states {ȳσ}σ, then the
following convergence properties hold

lim
|σ|→0

‖ȳ − ȳσ‖Lq(Q) = 0, (4.14)

(ūσ, ū0h)
∗
⇀ (ū, ū0) as |σ| → 0 in M(Q)×M(Ω), (4.15)

lim
|σ|→0

(
‖ūσ‖M(Q), ‖ū0h‖M(Ω)

)
=
(
‖ū‖M(Q), ‖ū0‖M(Ω)

)
, (4.16)

where (ū, ū0) is the unique solution of (P) and ȳ its associated state.
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Proof. The existence of a solution of (Pσ) is an immediate consequence of the finite dimension of Uσ ×Uh, and
the continuity and coercivity of Jσ. Let us prove (4.14)-(4.16). First, we observe that Jσ(ūσ), ū0h) ≤ J(0, 0) ≤
1
q‖yd‖

q
Lq(Q). Consequently, the sequences {ūσ, ū0h)}σ and {ȳσ}σ are bounded in M(Q) ×M(Ω) and Lq(Q),

respectively. Hence, we can take subsequences, denoted in the same way such that

(ūσ, ū0h)
∗
⇀ (ũ, ũ0) in M(Q)×M(Ω) and ȳσ ⇀ ỹ in Lq(Q). (4.17)

Let us split the rest of the proof into several steps.

I - ỹ is the solution of (1.2) corresponding to (ũ, ũ0). Let us take ξ ∈ C1[0, T ] with ξ(T ) = 0, and ψ ∈
W 2,q′(Ω) ∩W 1,q′

0 (Ω). We approximate ψ by ψh ∈ Yh satisfying

a(ψh, zh) = a(ψ, zh) ∀zh ∈ Yh, ‖ψ − ψh‖C(Ω̄) → 0 as h→ 0. (4.18)

Many papers are devoted to prove error estimates for ‖ψ − ψh‖∞; see, for instance, [8, Theorem 19.3, pages
143-144] for a simple proof or [18] and the references therein for improved error estimates. Using (4.12) we have

∫ T

0

(ȳσ(t), ψh)ξ′(t) dt =

Nτ∑
k=1

∫
Ik

(yk,h, ψh)ξ′(t) dt =

Nτ∑
k=1

(yk,h, ψh)(ξ(tk)− ξ(tk−1))

= −
Nτ∑
k=1

(yk,h − yk−1,h, ψh)ξ(tk−1)− (y0h, ψh)ξ(0)

=

Nτ∑
k=1

{
τka(yk,h, ψh)−

∫
Ik

∫
Ω

ψh dūσ

}
ξ(tk−1)− (y0h, ψh)ξ(0)

=

∫ T

0

a(ȳσ(t), ψh)ξ(t) dt−
∫ T

0

∫
Ω

ψhξ(t) dūσ − (y0h, ψh)ξ(0)

+

Nτ∑
k=1

{∫
Ik

a(yk,h, ψh)(ξ(tk−1)− ξ(t)) dt−
∫
Ik

∫
Ω

ψh(ξ(tk−1)− ξ(t)) dūσ
}

and with (4.13), (4.18) and ψ ∈W 2,q′(Ω) ∩W 1,q′

0 (Ω)

=

∫ T

0

a(ȳσ(t), ψ)ξ(t) dt−
∫ T

0

∫
Ω

ψhξ(t) dūσ −
∫

Ω

ψh dū0hξ(0)

+

Nτ∑
k=1

{∫
Ik

a(yσ(t), ψ)(ξ(tk−1)− ξ(t)) dt−
∫
Ik

∫
Ω

ψh(ξ(tk−1)− ξ(t)) dūσ
}

=

∫ T

0

(ȳσ(t),−∆ψ)ξ(t) dt−
∫ T

0

∫
Ω

ψhξ(t) dūσ −
∫

Ω

ψh dū0hξ(0)

+

Nτ∑
k=1

{∫
Ik

(yσ(t),−∆ψ)(ξ(tk−1)− ξ(t)) dt−
∫
Ik

∫
Ω

ψh(ξ(tk−1)− ξ(t)) dūσ
}
.

Using (4.18), it is immediate to pass to the limit and to obtain

lim
|σ|→0

∫ T

0

(ȳσ(t), ψh)ξ′(t) dt =

∫ T

0

(ỹ(t), ψ)ξ′(t) dt
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and

lim
|σ|→0

{∫ T

0

(ȳσ(t),−∆ψ)ξ(t) dt−
∫ T

0

∫
Ω

ψhξ(t) dūσ −
∫

Ω

ψh dū0h ξ(0)

}

=

∫ T

0

(ỹ(t),−∆ψ)ξ(t) dt−
∫ T

0

∫
Ω

ψξ(t) dũ−
∫

Ω

ψ dũ0 ξ(0).

The remaining terms can be estimated as follows∣∣∣∣∣
Nτ∑
k=1

{∫
Ik

(yσ(t),−∆ψ)(ξ(tk−1)− ξ(t)) dt−
∫
Ik

∫
Ω

ψh(ξ(tk−1)− ξ(t)) dūσ
}∣∣∣∣∣

≤ ‖ȳσ‖Lq(Q)‖∆ψ‖Lq′ (Ω)τ‖ξ
′‖∞ + ‖ψh‖C(Ω̄)‖ūσ‖M(Q)τ‖ξ′‖∞ → 0 as |σ| → 0.

From the above equalities we infer that∫
Q

−ỹ(
∂

∂t
+ ∆)(ψξ) dx dt =

∫
Q

(ψξ) dũ+

∫
Ω

(ψξ)(0) dũ0.

Since ỹ ∈ Lq
′
(Q), by density arguments, we have that the identity (2.1) is satisfied by ỹ for every φ ∈

Lq
′
(0, T ;W 2,q′(Ω) ∩ W 1,q′

0 (Ω)) ∩ H1,q′(Q) ∩ C(Q̄). Due to assumption (A), the solutions of (2.2) enjoy this
regularity for every f ∈ L∞(Q). Hence, we conclude that ỹ is the solution of (1.2) associated to (ũ, ũ0).

II - J(ũ, ũ0) ≤ J(u, u0) ∀(u, u0) ∈ C(Q̄) × C(Ω̄). Since Ω is convex, the solution y of (1.2) associated to
one of these regular controls (u, u0) belongs to L2(0, T ;H2(Ω) ∩H1

0 (Ω)) ∩H1(Q). As we mentioned above, the
corresponding discrete solutions yσ, of (4.12), converge strongly to y in L2(0, T ;H1

0 (Ω)) ⊂ Lq(Q) since q < 2.
Now, set (uσ, u0h) = (Υσu,Λhu0). From (4.3) and (4.8), we deduce that the discrete states associated to

(u, u0) and (uσ, u0h) coincide. Indeed, first we observe that (4.3) implies that∫
Ω

zh du0 =

∫
Ω

zh du0,h, ∀zh ∈ Yh.

Therefore, (4.13) shows that y0h coincides for both controls. Second, we use (4.8) replacing yσ by zhχk ∈ Yσ,
for any zh ∈ Yh and 1 ≤ k ≤ Nτ , then we get

1

τk

∫
Ik

∫
Ω

zh du =
1

τk

∫
Ik

∫
Ω

zh duσ.

Hence, the effects of (u, u0) and (uσ, u0h) on the discretized equation (4.12) coincide and they provide the same
solution. From (4.6) and (4.11), and yσ → y in Lq(Q), it follows that Jσ(uσ, u0h) → J(u, u0). Using that
(ūσ, ū0h) is a solution of (Pσ) and (4.17) we infer that

J(ũ, ũ0) ≤ lim inf
|σ|→0

Jσ(ūσ, ū0h) ≤ lim sup
|σ|→0

Jσ(ūσ, ū0h)

≤ lim sup
|σ|→0

Jσ(uσ, u0h) = J(u, u0). (4.19)

III - (ũ, ũ0) = (ū, ū0). To prove this, it is enough to show that (ũ, ũ0) is a solution of (P). Then the
uniqueness implies the desired equality. To this purpose, let us chose a sequence (uk, u0k) ∈ C(Q̄)×C(Ω̄) such
that

(uk, u0k)
∗
⇀ (ū, ū0) in M(Q)×M(Ω),

‖uk‖L1(Q) ≤ ‖u‖M(Q) and ‖u0k‖L1(Ω) ≤ ‖u‖M(Ω).
(4.20)
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From Lemma 2.6 we deduce the strong convergence yk → ȳ, where {yk}k are the states associated to {(uk, u0k)}k.
On the other hand, (4.20) implies that

‖ū‖M(Q) ≤ lim inf
k→∞

‖uk‖L1(Q) ≤ lim sup
k→∞

‖uk‖L1(Q) ≤ ‖ū‖M(Q).

Hence, ‖uk‖M(Q) → ‖ū‖M(Q). Analogously we get the convergence ‖u0k‖M(Q) → ‖ū0‖M(Ω). Altogether shows
that J(uk, u0k) → J(ū, ū0). Together with (4.19), this implies that J(ũ, ũ0) ≤ J(ū, ū0) = inf (P). Hence, we
have that (ũ, ũ0) = (ū, ū0), and using once again (4.19) and (4.17) we get

lim
|σ|→0

Jσ(ūσ, ū0h) = J(ū, ū0) and ȳσ ⇀ ȳ in Lq(Q). (4.21)

IV - Proof of (4.14)-(4.16). We have proved that any subsequence of solutions of (Pσ) converges to the
unique solution (ū, ū0) of (P). This gives (4.15). From (4.21) we deduce

1

q
‖ȳ − yd‖qLq(Q) ≤ lim inf

|σ|→0

1

q
‖ȳσ − yd‖qLq(Q) ≤ lim sup

|σ|→0

1

q
‖ȳσ − yd‖qLq(Q)

= lim sup
|σ|→0

{
Jσ(ūσ, ū0h)− α‖ūσ‖M(Q) − β‖ū0h‖M(Ω)

}
≤ lim sup
|σ|→0

Jσ(ūσ, ū0h)− lim inf
|σ|→0

{
α‖ūσ‖M(Q) + β‖ū0h‖M(Ω)

}
≤ J(ū, ū0)−

{
α‖ū‖M(Q) + β‖ū0‖M(Ω)

}
=

1

q
‖ȳ − yd‖qLq(Q).

Together with the weak converge ȳσ ⇀ ȳ in Lq(Q), this implies the strong convergence (4.14). To prove that
‖ūσ‖M(Q) → ‖ū‖M(Q) we proceed in a similar way

α‖ū‖M(Q) ≤ lim inf
|σ|→0

α‖ūσ‖M(Q) ≤ lim sup
|σ|→0

α‖ūσ‖M(Q)

= lim sup
|σ|→0

{
Jσ(ūσ, ū0h)− 1

q
‖ȳσ − yd‖qLq(Qh) − β‖u0h‖M(Ω)

}

≤ lim sup
|σ|→0

Jσ(ūσ, ū0h)− lim inf
|σ|→0

{
1

q
‖ȳσ − yd‖qLq(Qh) + β‖u0h‖M(Ω)

}

≤ J(ū, ū0)−
{

1

q
‖ȳ − yd‖qLq(Q) + β‖u0‖M(Ω)

}
= α‖ū‖M(Q).

Finally, ‖ū0h‖M(Ω) → ‖ū0‖M(Ω) is an immediate consequence of (4.14), ‖ūσ‖M(Q) → ‖ū‖M(Q) and (4.21). �

5. Extensions

In this section we analyze the situations where not both controls u and u0 are simultaneously present in the
state equation. We also consider some cases where the observation domain is a strict subset of the physical
domain Ω and temporal observation is not necessarily during the whole time (0, T ). We are especially interested
in the consequences on the sparsity structure of the optimal controls.
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5.1. Separated control and observation domains

Here, we consider where the observation takes places in a open set Ωo and during an interval of time Io. Let
us denote Qo = Ωo × Io. On the other hand, the distributed control u is supported on a region ω such that
ω̄ ∩ Ω̄o = ∅. The cost functional is then given by

J(u, u0) =
1

q
‖y − yd‖qLq(Qo) + α‖u‖M(Qc) + β‖u0‖M(Ω).

For this new cost functional, Theorem 2.7 is still valid except for the uniqueness of solutions. The difficulty
arises from the lack of injectivity of the control to observation mapping, which excludes the strict convexity of
J even if q > 1. Of course, this effects that Theorem 4.3 on the numerical approximation in the sense that we
can have different sequences of discrete optimal controls converging to different solutions of (P). Otherwise the
convergence properties still hold along (4.14)-(4.16), now interpreted subsequentially. In the optimality system
(3.2)-(3.4), the definition of ḡ given by (3.5) is only correct in Qo and it should taken as zero outside.

Let us discuss the sparsity properties of the optimal controls (ū, ū0). From (3.2) we get that

∂̄ϕ̄

∂t
+ ∆ϕ̄ = 0 in Q1 = [(Ω \ Ω̄o)× (0, T )] ∪ [Ω× ((0, T ) \ Ī0) ].

From the properties of the heat operator we deduce that ϕ̄ ∈ C∞(Q1) ∩ C(Q̄). Let us verify that there exists
0 < T0 < T such that the support of ū is contained in (∂ω∩Ω)× [0, T0]. Indeed, according to (3.9), it is enough
to show that |ϕ̄(x, t)| < α for every x ∈ ω and all t > T0. Since ϕ̄(x, T ) = 0 ∀x ∈ Ω̄ and ϕ̄ is continuous in Q̄, we
deduce the existence of 0 < T0 < T such that |ϕ̄(x, t)| < α ∀(x, t) ∈ Ω̄× (T0, T ). Let us prove that |ϕ̄(x, t)| < α
for every x ∈ ω. We argue by contradiction and let us assume that there exists a point x0 ∈ ω and some
t0 ∈ [0, T0] such that ϕ̄(x0, t0) = α. From (3.3) this means that the maximum of ϕ̄ is achieved at (x0, t0). Then,
from the parabolic strong maximum principle [10, Theorem 11, page 375] and the connectivity of ω we deduce
that ϕ̄(x, t) = α ∀(x, t) ∈ ω × [t0, T ], which contradicts that ϕ̄(x, t) = 0 whenever t > T0. In the same manner
we can exclude the possibility of achieving the value −α in ω. In the case d = 1 and ω = (a, b) with [a, b] ⊂ Ω,
then ∂ω = {a, b}, which implies that ū = ūaδa + ūbδb, with ūa, ūb ∈M([0, T0]), and δa and δb denote the Dirac
measures concentrated at a and b, respectively. Moreover, since the maximum and minimum values of ϕ̄ are
achieved on the boundary of ω for every t and since |ϕ̄(x, t)| 6≡ α in ω for all t, then if ϕ̄(a) = α, then ϕ̄(b) < α.
We can argue in the same way with b. This shows that supp(u+

a )∩ supp(u+
b ) = ∅ and supp(u−a )∩ supp(u−b ) = ∅.

To deal with ū0 we assume that 0 6∈ Īo. Then, we prove that ū0 is supported on a set in Ω with a zero
Lebesgue measure. To this end, now we use (3.10). Since the mapping x ∈ Ω −→ ϕ̄(x, 0) ∈ R is analytic, then
either |ϕ̄(x, 0)| = β in Ω or the set of points where |ϕ̄(x, 0)| = β has a zero Lebesgue measure. But the boundary
condition ϕ̄(x, 0) = 0 for x ∈ Γ excludes the first possibility. Once again, we can get some extra information in
the one-dimensional case, d = 1. Indeed, the analyticity of x ∈ Ω −→ ϕ̄(x, 0) ∈ R implies that the set points

where |ϕ̄(x, 0)| = β in Ω is finite. Let us denote them by {xk}mk=1. Hence, the equality ū0 =

m∑
k=1

λ̄kδxk holds for

some real numbers {λ̄k}mk=1.

5.2. Terminal observation with initial controls

In this case, we consider the cost functional is given by

J(u0) =
1

q
‖y(T )− yd‖qLq(Ω) + β‖u0‖M(Ω),

where y is the unique solution of the state equation (1.2) with u = 0, and yd ∈ Lq(Ω) is given. From the state
equation we deduce that any feasible state y belongs to C∞(Ω × (0, T ]). Hence, the control problem is well
formulated for any q ∈ [1,+∞). In any of these cases, there exists at least one optimal control. Moreover, if
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q > 1, then the solution is unique. Indeed, let us assume that u01 and u02 are solutions of the problem. Then,
the convexity of the norm ‖ · ‖M(Ω) and the strict convexity of the functional z → ‖z − yd‖qLq(Ω) imply that

yu01(T ) = yu02(T ). Set u0 = u01 − u02 and let y be the state associated to u0. Then, y is solution of the heat
equation in Q, vanishing on the boundary Σ and y(T ) = 0. Now, the backward uniqueness of the heat equation
implies that y = 0 and hence u0 = y(0) = 0.

The optimality system satisfied by an optimal control ūo is formulated as follows
−∂ϕ̄
∂t
−∆ϕ̄ = 0 in Q

ϕ̄(x, T ) = ḡ in Ω
ϕ̄(x, t) = 0 on Σ,

(5.1)


∫

Ω

ϕ̄(0) dū0 + β‖ū0‖M(Ω) = 0

‖ϕ̄(0)‖C(Ω̄)

{
= β if ū0 6= 0
≤ β if ū0 = 0,

(5.2)

where

ḡ(x)

{
= |ȳ(x, T )− yd(x)|q−2(ȳ(x, T )− yd(x)) if 1 < q < +∞

∈ sign(ȳ(x, T )− yd(x)) if q = 1.
(5.3)

To prove this optimality system we proceed in an analogous way to Theorem 3.1 using the fact that ϕ̄ ∈
C(Ω̄× [0, T )). From this optimality system we can deduce the same sparsity structure for ū0 as obtained in the
second paragraph of the previous sub-section.

This problem is related to applications for inverse problems of source identification studied in the literature.
Under the above formulation of the control problem, we deduce for d = 1 that the optimal control has the

structure ū0 =

m∑
k=1

λ̄kδxk , as assumed in [15].
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