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Abstract. Measure valued optimal control control problems governed by the linear wave equa-
tion are analyzed. The space of vector measures M(Ωc, L2(I)) is chosen as control space and the
corresponding total variation norm as control cost functional. The support of the controls (sparsity
pattern) is time-independent which is desired in many applications, e.g., inverse problems or optimal
actuator placement. New regularity results for the linear wave equation are proven and used to show
the well-posedness of the control problem in all three space dimensions. Furthermore first order
optimality conditions are derived and structural properties of the optimal control are investigated.
Higher regularity of optimal controls in time is shown on the basis of the regularity results for the
state. Finally the optimal control problem is used to solve an inverse source problem.
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1. Introduction. This work is dedicated to optimal control problems of the
following form

(P) min
u,y

J(y) + α ‖u‖M(Ωc,L2(I)) ,

subject to

(1.1)


∂tty − c2∆y = u in I × Ω

y = 0 on I × ∂Ω

(y, ∂ty) = (y0, y1) in {0} × Ω.

The set Ω ⊂ Rd, d ∈ {1, 2, 3} denotes a bounded domain with a sufficiently smooth
boundary ∂Ω and I = (0, T ) is the time interval. Furthermore the control set Ωc is a
compact subset of Ω. Problem (P) constitutes an optimal control problem governed by
the linear undamped wave equation with constant wave speed c ∈ R+ and homogenous
Dirichlet boundary-conditions. Equation (1.1) describes the generation of acoustic
waves by the source u and its evolution in a homogenous medium. More complicated
(vector valued) versions of this equation model the behaviour of seismic waves. The
control u is chosen fromM(Ωc, L

2(I)), the space of finite vector measures with values
in L2(I), and enters the state equation as a source term. The cost functional J consists
of a quadratic tracking functional and a control cost functional. We will concentrate
on a tracking functional of the following form

(1.2) J(y) =
1

2

{
ν1‖y − z1‖2L2(ΩT ) + ν2‖y(T )− z2‖2L2(Ω) + ν3‖∂ty(T )− z3‖2H−1(Ω)

}
with νi ≥ 0, so C(Ī , L2(Ω)) ∩ C1(Ī , H−1(Ω)) regularity of the state y will be essential.
The non-smooth control cost term is given by the total variation norm for vector
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measures u ∈M(Ωc, L
2(I)) and is weighted by a control cost parameter α > 0.

The choice of the control space M(Ωc, L
2(I)) can be motivated by the following

considerations. Every vector measure u ∈ M(Ωc, L
2(I)) can be decomposed into a

space dependent measure part |u| ∈ M(Ωc)
+ and a space-time dependent function

u′(x, t) ∈ L1((Ω, |u|), L2(I)) (Radon-Nikodym derivative), in particular it has the
form

du(t) = u′(x, t) d|u|.

Therefore the support of a vector-measure u ∈ M(Ωc, L
2(I)) (sparsity pattern) is

time independent and thus the control spaceM(Ωc, L
2(I)) can be seen as a measure-

valued generalization of group (joint, directional) sparsity. This concept is well known
in the context of compressed sensing, e.g., [16]. We note that pointwise controls with
fixed positions and time dependent intensities

(1.3) u(t) =

N∑
i=1

ui(t)δxi , {ui}i=1,...,N ⊂ L2(I), {xi}i=1,...,N ⊂ Ωc,

or more general controls of the form

u(t) =

N∑
i=1

ui(t)µ(x), µ ∈M(Ωc)

e.g., µ as a line or surface measure, can be realized withinM(Ωc, L
2(I)). Such controls

are of great interest in the context of inverse problems or optimal actuator placement
problems. In particular point sources of the form (1.3) are often used as simple mod-
els for localized acoustic or seismic events, e.g. explosions, earthquakes or volcano
eruptions. The optimal control problem which uses directly the ansatz (1.3) and
therefore optimizes the position of the point sources and their intensities directly is
non-convex, whereas the formulation in the space of vector measures is a convex opti-
mization problem which also optimizes for the locations of the potential point sources
and their intensities. But it can be guaranteed only under certain assumptions on the
optimal adjoint state that the optimal control of problem (P) has the structure (1.3).
These conditions will emerge from the first-order optimality conditions of (P).
The particular control space was first investigated in a paper [20], which deals with op-
timal control problems governed by linear parabolic PDEs. The authors establish the
well-posedness of the optimal control problem and derive first order optimality condi-
tions. We will rely partly on their analysis. In [18] the concept of group sparsity was
introduced to optimal control of PDEs. The functional ‖u‖L1(Ωc,L2(I))+‖u‖2L2(I×Ωc)

is
used as control cost term. In [7] the authors consider the control space L2(I,M(Ωc)),
the space of L2-functions in time with values inM(Ωc), in connection with parabolic
optimal control problems. The major difference between our control space and their
control space is that the latter allows for a time-dependent support of the measure
(sparsity pattern), e.g., moving point sources are allowed as controls. The article [10]
studies controls fromM([0, T̂ ]×Ωc) with T̂ < T , therefore space-time Dirac measures
are allowed as controls. Furthermore it can be guaranteed that the optimal controls
consist of a finite sum of Dirac measures in the setting of [10]. In [9] the authors
investigate a measure valued optimal control problem involving the initial data as
control. Measure valued controls were also investigated in connection with elliptic
PDEs, see e.g., [11, 12] and semilinear elliptic PDEs [8]. In [5] measure valued con-
trols are considered from the inverse problem point of view.
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The main contributions of the present paper are the following. Firstly we show im-
proved regularity results for (1.1) with controls fromM(Ωc, L

2(I)). In particular we
prove

y ∈ C(Ī , [H2(Ω) ∩H1
0 (Ω), L2(Ω)]1/2−θd) ∩ C1(Ī , [L2(Ω), (H2(Ω) ∩H1

0 (Ω))∗]−θd)

with θd = 1/4 (1−d). This is a 1
2 +ε improvement in Sobolev regularity over standard

regularity theory for the linear wave equation, which uses the embedding

M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)) ↪→ L2(I,H−d/2−ε(Ω))

for arbitrary ε > 0, e.g., [25, 23]. The proof is based on improved regularity results
for (1.1) with u(t) = f(t)δx̃ ∈ M(Ωc, L

2(I)), f ∈ L2(I) and x̃ ∈ Ωc which can be
found in [2, 27, 24]. Furthermore the proof uses explicitly the properties of the space
M(Ωc, L

2(I)) and is not based on the embedding M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)).

The second important result of this paper is the well-posedness of problem (P). The
proof utilizes the mentioned improved regularity results for the state variable. Fur-
thermore improved regularity of the optimal control in time is established, namely
ū ∈ C2−d, 12−ε(Ī ,M(Ωc)) for d = 1, 2 and any 0 < ε ≤ 1/2. Moreover we adopt
the problem formulation (P) for the solution of an inverse problem motivated by a
geophysical application, namely the reconstruction of the locations and intensities of
seismic events from noisy observations of the emitted waves.
The outline of this paper is as follows. In section 2 the spaceM(Ωc, L

2(I)) is intro-
duced. In section 3 the required results from interpolation theory of Sobolev spaces
are collected. In section 4 well-posedness of the wave equation and dual wave equation
for different regularity classes of data is discussed. Section 5 is dedicated to improved
regularity for the primal and dual wave equation. In section 6 well-posedness of the
control problem (P) is proven. Section 7 is concerned with the derivation of first
order optimality conditions for problem (P). In section 8 the discretization of (P)
with finite elements and its algorithmic solution by a continuation method are dis-
cussed. Finally in section 9 the problem formulation (P) is applied to an inverse
source problem.

2. The space M(Ωc, L
2(I)). In this section we introduce the control space

M(Ωc, L
2(I)) and its properties. Let µ : B(Ωc) → L2(I) be a countably additive

mapping on the Borel sets B(Ωc) of Ωc with values in L2(I). For µ we denote by
|µ| ∈ M+(Ωc) (positive regular Borel measure) the total variation measure defined
by

|µ|(B) = sup
π

∑
E∈π
‖µ(E)‖L2(I)

where π is the set of all disjoint partitions of B ∈ B(Ωc). The space

M(Ωc, L
2(I)) = {µ : B(Ωc)→ L2(I) : µ countably additive, |µ|(Ωc) <∞}

is the space of vector measures with values in L2(I). Equipped with the norm

‖µ‖M(Ωc,L2(I)) = |µ|(Ωc)

it is a Banach space. The support of µ, respectively of its total variation measure |µ|,
is defined by

suppµ = supp |µ| = Ω \
(⋃
{B open in Ωc| |µ|(B) = 0}

)
.
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The vector measure µ possesses a Radon-Nikodym derivative, see [21],

(2.1) µ′ ∈ L∞((Ωc, |µ|), L2(I)) with ‖µ′(·)‖L2(I) ≡ 1

with respect to its total variation measure |µ|. So µ can be represented in the following
way

dµ = µ′ d|µ|.

Next we introduce the space C(Ωc, L2(I)) of vector-valued continuous functions p : Ωc →
L2(I). Equipped with the norm

‖p‖C(Ωc,L2(I)) = max
x∈Ωc

‖p(x, ·)‖L2(I)

it is a separable Banach space. The dual space of C(Ωc, L2(I)) can be characterized
byM(Ωc, L

2(I)), i.e.,

C(Ωc, L2(I))∗ ∼=M(Ωc, L
2(I)).

A proof is given in [17]. Next we introduce the space L2(I,M(Ωc)). It is the space
of weakly-∗ measurable functions µ : I →M(Ωc) which satisfy∫ T

0

‖µ(t)‖2M(Ωc)
dt <∞

whereM(Ωc) is the space Radon measures on Ωc and ‖ · ‖M(Ω) is the total variation
norm inM(Ωc). It holds

(2.2) M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)).

Next we deal with sequential weak-∗ compactness inM(Ωc, L
2(I)). Let {µn}n∈N be a

bounded sequence inM(Ωc, L
2(I)). Then there exists an element µ ∈ M(Ωc, L

2(I))
and a subsequence {µnk}k∈N with

(2.3) µnk ⇀
∗ µ inM(Ωc, L

2(I)),

see e.g.,[6, Corollary 3.30]. Finally we state the following density result involving the
spaceM(Ω, H1

0 (I)) which can be constructed in the same manner asM(Ωc, L
2(I)).

Proposition 2.1. The spaceM(Ωc, H
1
0 (I)) is densely embedded intoM(Ωc, L

2(I)).

Proof. We chose any µ ∈ M(Ωc, L
2(I)) and let µ′ ∈ L∞((Ωc, |µ|), L2(I)) be

its Radon-Nikodym derivative. Extension by zero and the Tonelli-Fubini theorem
imply that µ′ ∈ L2(R×Rd,L⊗ |µ|) holds where L⊗ |µ| denotes the product measure
consisting of the Lebesgue measure on R and the total variation measure |µ| extended
to Rd by zero. Due to the density of C∞c (R × Rd) in L2(R × Rd,L ⊗ |µ|) [4, Lemma
4.2.1] there exists for each ε > 0 a function µ̃′ ∈ C∞c (R× Rd) such that

‖µ′ − µ̃′‖L2(R×Rd,L⊗|µ|) < ε

holds. Furthermore we define µ̃ ∈M(Ω, H1(I)) ⊂M(Ωc, L
2(I)) by

dµ̃ = µ̃′ d|µ|.

Then we use the dual formulation of the norm inM(Ωc, L
2(I)) and get

‖µ− µ̃‖M(Ωc,L2(I)) = sup
‖ψ‖C(Ωc,L2(I))≤1

∫
Ωc

∫ T

0

ψ(x, t)(µ′(x, t)− µ̃′(x, t)) dt d|µ|

≤ c (Ωc, T ) ‖µ′ − µ̃′‖L2(R×Rd,L⊗|µ|) < c (Ωc, T ) ε

which proves the assertion.
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3. Interpolation spaces. In this section we discuss the required interpolation
theory of Sobolev spaces based on L2(Ω). Let A = −∆: D(A) ⊂ L2(Ω) → L2(Ω) be
the Laplace operator with the dense domain

D(A) = {v ∈ L2(Ω)| v|∂Ω = 0, Av ∈ L2(Ω)}.

It is an unbounded, positive, self-adjoint and therefore closed operator with a bounded
inverse A−1 : L2(Ω) → D(A). The fractional powers Aθ of A with domains D(Aθ)
can be defined for θ ≥ 0 as in [3, Part 2, Section 1.5]. In the following sections we
will use the notation

V 3 = D(A3/2), V 2 = D(A), V = D(A1/2), H = L2(Ω).

The space D(Aθ) is a Banach space when endowed with the graph norm

v 7→ ‖v‖H + ‖Aθv‖H , v ∈ D(Aθ).

Since Aθ has a bounded inverse the functional

v 7→ ‖Aθv‖H , v ∈ D(Aθ),

defines an equivalent norm on D(Aθ) and we set ‖ · ‖D(Aθ) := ‖Aθ · ‖H . For 0 ≤ θ ≤ 1

the spaces D(Aθ) can be represented using complex interpolation spaces [·, ·]1−θ in
the following form

(3.1) D(Aθ) = [V 2, H]1−θ,

see [3, Proposition 6.1, Part 2, Section 1]. The spaces D(Aθ) can also be characterized
as the Sobolev spaces H2θ(Ω) with additional boundary conditions as follows:

D(Aθ) =

{
v ∈ H2θ(Ω):

v|∂Ω = 0 if 1 ≥ θ > 1/4

v · ζ−1/2 ∈ H if θ = 1/4

}

where ζ ∈ C∞(Ω̄) vanishes on ∂Ω of the order of dist(x, ∂Ω) (distance from x to ∂Ω).
In particular it holds that

(3.2) D(Aθ) =


H2θ(Ω) ∩ V 3/4 < θ ≤ 1

H2θ
0 (Ω) 1/4 < θ ≤ 3/4

H
1/2
00 (Ω) θ = 1/4

H2θ(Ω) 0 ≤ θ < 1/4,

e.g. [25, Chapter 1, Theorem 11.5, 11.6, 11.7]. The space H1/2
00 (Ω) is given by

H
1/2
00 (Ω) =

{
v ∈ H1/2(Ω)| ζ−1/2v ∈ H

}
and therefore we have H1/2

00 (Ω) ⊂ H1/2(Ω). The space D(Aθ)∗ is a Banach space
when endowed with the operator norm

‖w‖D(Aθ)∗ = sup
‖v‖

D(Aθ)
≤1

〈w, v〉D(Aθ)∗,D(Aθ), w ∈ D(Aθ)∗.
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The topological dual operator of Aθ has the following property (Aθ)∗ : H → D(Aθ)∗

and

(y,Aθv)H = 〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ), y ∈ H, v ∈ D(Aθ).

Since Aθ is an isomorphism from D(Aθ) to H, the operator (Aθ)∗ is also an isomor-
phism with the inverse (Aθ)−∗ : D(Aθ)∗ → H. This also means that the equation

(Aθ)∗y = w in D(Aθ)∗

has an unique solution y = (Aθ)−∗w ∈ H for every w ∈ D(Aθ)∗. Using this dual
equation we can estimate

‖w‖D(Aθ)∗ = sup
‖v‖

D(Aθ)
≤1

〈w, v〉D(Aθ)∗,D(Aθ) = sup
‖v‖

D(Aθ)
≤1

〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ)

≤ ‖y‖H = ‖(Aθ)−∗w‖H
and

‖(Aθ)−∗w‖H =
(y,AθA−θy)H
‖y‖H

=
〈(Aθ)∗y,A−θy〉D(Aθ)∗,D(Aθ)

‖A−θy‖D(Aθ)

≤ ‖w‖D(Aθ)∗

which implies

‖w‖D(Aθ)∗ = ‖(Aθ)−∗w‖H .

The duality pairing 〈·, ·〉D(Aθ),D(Aθ)∗ can be expressed using (Aθ)−∗ in the following
form

〈w, v〉D(Aθ)∗,D(Aθ) = 〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ) = (y,Aθv)H

= ((Aθ)−∗w,Aθv)H for v ∈ D(Aθ), w ∈ D(Aθ)∗.

In the following we give a characterization of D(Aθ)∗ by Sobolev spaces with negative
indices. According to [25, Chapter 1, Theorem 6.2]

D(Aθ)∗ = [H,V 2∗]θ, 0 ≤ θ ≤ 1

holds, and more concretely

D(Aθ)∗


⊂ H−2θ(Ω) 3/4 < θ ≤ 1

= H−2θ(Ω) (0 ≤ θ < 1/4) ∨ (1/4 < θ ≤ 3/4)

= (H
1/2
00 (Ω))∗ θ = 1/4,

e.g. [25, Chapter 1, Theorem 12.2], where H−1/2(Ω) ⊂ H
1/2
00 (Ω)∗. Using (3.2) it

follows by classical theory for fractional Sobolev spaces that

(3.3) D(Aθ) ↪→ C(Ωc)

holds for θ > θd with θd = d/4 and therefore also

(3.4) M(Ωc) ↪→ D(Aθ)∗

for θ > θd. Finally we define the following space

Xθ :=

{
D(Aθ) 0 ≤ θ ≤ 3/2

D(A|θ|)∗ − 3/2 ≤ θ < 0,

which will be convenient in our analysis. Its norm is denoted by ‖ · ‖Xθ and is given
by the norm of the underlying space. The duality pairing is denoted by 〈·, ·〉Xθ,X−θ .
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4. Well-posedness of the state equation and adjoint equation. In this
section we introduce the weak and very weak formulation of the linear wave equation

(4.1)


∂tty −∆y = f in I × Ω

y = 0 on I × ∂Ω

(y, ∂ty) = (y0, y1) in {0} × Ω.

(With no loss of generality we set the constant wave speed to c = 1.) We show
existence, uniqueness and regularity of solutions of (4.1) and its dual counterpart for
different regularity classes of data. First we introduce the notion of weak solution of
(4.1).

Definition 4.1. Let (f, y0, y1) ∈ L1(I,H)× V ×H. A function

y ∈ L2(I, V ) ∩W 2,1(I, V ∗)

is called a weak solution of (4.1) if it satisfies∫ T

0

〈∂tty, v〉V,V ∗ + (∇y,∇v)H dt =

∫ T

0

(f, v)H dt ∀v ∈ L∞(I, V )

(y(0), v)H = (y0, v)H ∀v ∈ H
(∂ty(0), v)H = (y1, v)H ∀v ∈ H.

Remark 4.2. The values of y(0) and ∂ty(0) are well defined since

L2(I, V ) ∩W 2,1(I, V ∗) ↪→ C(Ī , H) ∩ C1(Ī , V ∗).

Next we deal with the existence, uniqueness and regularity of a weak solution for the
linear wave equation (4.1).

Theorem 4.3. The following existence, uniqueness and regularity results hold
true:

1. (Standard regularity) Let (f, y0, y1) ∈ Lr(I,H)×V ×H for r ≥ 1. Then there
exists a unique weak solution y of (4.1) satisfying the following regularity
property

y ∈ C(Ī , V ) ∩ C1(Ī , H) ∩W 2,r(I, V ∗).

Furthermore there exists a constant c > 0 such that

(4.2) ‖y‖C(Ī,V ) + ‖∂ty‖C(Ī,H) + ‖∂tty‖Lr(I,V ∗)

≤ c
(
‖f‖Lr(I,H) + ‖y0‖V + ‖y1‖H

)
holds.

2. (Higher regularity) Let (f, y0, y1) ∈ L2(I, V )× V 2 × V . Then the solution of
(4.1) satisfies

y ∈ C(Ī , V 2) ∩ C1(Ī , V ) ∩W 2,r(I,H)

and there exists a constant c > 0 such that

(4.3) ‖y‖C(Ī,V 2) + ‖∂ty‖C(Ī,V ) + ‖∂tty‖Lr(I,H)

≤ c
(
‖f‖Lr(I,V ) + ‖y0‖V 2 + ‖y1‖V

)
is fulfilled.
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Proof. The first result is covered in [23, Theorem 2.1] and the second in [23,
Theorem 2.6].

Remark 4.4. Due to the time reservability of the linear wave equation, Proposi-
tion 4.3 can be applied to the adjoint wave equation

(4.4)


∂ttp−∆p = φ in I × Ω

p = 0 on I × ∂Ω

(p, ∂tp) = (p0, p1) in {T} × Ω

and yields existence, uniqueness and the same regularity results for p as for the solu-
tion of (4.1). In the remainder of the section we turn our attention to the case of
(4.1) with a more irregular source term f .

Definition 4.5. For (f, y0, y1) ∈ L1(I, V 2∗)× V ∗ × V 2∗ a function y with

(y, y(T ), ∂ty(T )) ∈ L2(I, V ∗) ∩W 2,1(I, V 3∗)× V ∗ × V 2∗

is called a very weak solution of (4.1), if it satisfies the following equation

(4.5)
∫ T

0

〈y, φ〉V ∗,V dt− 〈y(T ), p1〉V ∗,V + 〈∂ty(T ), p0〉V 2∗,V 2

=

∫ T

0

〈f, p〉V 2∗,V 2 dt− 〈y0, ∂tp(0)〉V ∗,V + 〈y1, p(0)〉V 2∗,V 2

for all (φ, p1, p0) ∈ L1(I, V ) × V × V 2, where p(φ, p1, p0) ∈ C(Ī , V 2) ∩ C1(Ī , V ) is
the solution of (4.4). Next we show the existence and uniqueness of a very weak
solution. For that we need the following Gronwall-Lemma.

Lemma 4.6. Suppose

v(t)2 ≤ c2 + 2

∫ t

0

ψ(s)v(s) ds a.e. t ∈ I

where c ∈ R, ψ ∈ L1(I) with ψ(t) ≥ 0 and v ∈ L∞(I) with v(t) ≥ 0. Then it holds

v(t) ≤ c+

∫ t

0

ψ(s) ds a.e. t ∈ I.

Proof. The proof can be found e.g. [13, Theorem 5].
Proposition 4.7. Let (f, y0, y1) ∈ Lr(I, V 2∗) × V ∗ × V 2∗ for r ≥ 1. Then

there exists a unique very weak solution y of (4.1) which has the following regularity
property

y ∈ C(Ī , V ∗) ∩ C1(I, V 2∗) ∩W 2,r(I, V 3∗).

Furthermore there exists a constant c > 0 such that

(4.6) ‖y‖C(Ī,V ∗) + ‖∂ty‖C(Ī,V 2∗) + ‖∂tty‖Lr(I,V 3∗)

≤ c
(
‖f‖Lr(I,V 2∗) + ‖y0‖V ∗ + ‖y1‖V 2∗

)
holds.

Proof. The proof of existence is based on approximation of the data [25, Chapter
3, Theorem 9.3]. For that purpose we introduce the following approximating sequences
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• {fn}n∈N ⊂ L1(I,H) with fn → f in L1(I, V 2∗)
• {y0,n}n∈N ⊂ V with y0,n → y0 in V ∗
• {y1,n}n∈N ⊂ H with y1,n → y1 in V 2∗.

Then we consider the following auxiliary problem

(4.7)


∂ttyn −∆yn = fn in I × Ω

yn = 0 on I × ∂Ω

(yn, ∂tyn) = (y0,n, y1,n) in {0} × Ω

which has a unique weak solution

yn ∈ C(Ī , V ) ∩ C1(Ī , H) ∩W 2,1(I, V ∗)

according to Proposition 4.3 and satisfies

(4.8)

∫ T

0

〈∂ttyn, v〉V ∗,V + (∇yn,∇v)H dt =

∫ T

0

(fn, v)H dt ∀v ∈ L∞(I, V )

(yn(0), v)H = (y0,n, v)H ∀v ∈ H
(∂tyn(0), v)H = (y1,n, v)H ∀v ∈ H.

Then we set v = χ(0,t)A
−1(A−∗∂tyn) ∈ L∞(I, V 2) in (4.8) and see∫ t

0

〈∂ttyn, A−1(A−∗∂tyn)〉V ∗,V dt =

∫ t

0

(A−∗∂ttyn, A
−∗∂tyn)H dt

=
1

2
(‖∂tyn(t)‖V 2∗ − ‖y1,n‖V 2∗) ,

∫ t

0

(∇yn,∇A−1(A−∗∂tyn))H dt =

∫ t

0

(yn, A
−∗∂tyn)H dt

=

∫ t

0

((A1/2)−∗yn, (A
1/2)−∗∂tyn)H dt =

1

2

(
‖yn(t)‖2V ∗ − ‖y0,n‖2V ∗

)
as well as∫ t

0

〈fn, A−1(A−∗∂tyn)〉V 2∗,V 2 dt =

∫ t

0

(A−∗fn, A
−∗∂tyn)H dt

≤ ‖fn‖L1(I,V 2∗)‖∂tyn‖C(Ī,V 2∗).

Applying the Gronwall-type Lemma 4.6 yields the following estimate

(4.9) ‖yn‖C(Ī,V ∗) + ‖∂tyn‖C(Ī,V 2∗) ≤ c(‖fn‖L1(I,V 2∗) + ‖y0,n‖V ∗ + ‖y1,n‖V 2∗).

This estimate implies that {yn}n∈N and {∂tyn}n∈N are Cauchy sequences in C(Ī , V ∗)
respectively C(Ī , V 2∗). So there exist a y ∈ C(Ī , V ∗) ∩ C1(Ī , V 2∗) with yn → y in
C(Ī , V ∗) and ∂tyn → ∂ty in C(Ī , V 2∗). Equation (4.8) can be also tested with a weak
solution p ∈ C(Ī , V 2) ∩ C1(Ī , V ) of (4.4) for any (φ, p1, p0) ∈ L1(I, V ) × V × V 2.
Integration by parts in time and in space yields

(4.10)
∫ T

0

〈yn, φ〉V ∗,V dt− 〈yn(T ), p1〉V ∗,V + 〈∂tyn(T ), p0〉V 2∗,V 2

=

∫ T

0

〈fn, p〉V 2∗,V 2 dt− 〈y0,n, ∂tp(0)〉V ∗,V + 〈y1,n, p(0)〉V 2∗,V 2 .
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After passing to the limit in (4.10) we see that y fulfills (4.5). Moreover y satisfies

(4.11) ‖y‖C(Ī,V ∗) + ‖∂ty‖C(Ī,V 2∗) ≤ c(‖f‖L1(I,V 2∗) + ‖y0‖V ∗ + ‖y1‖V 2∗).

We still need to show that y ∈ W 2,1(I, V 3∗) holds. For this purpose we choose any
ψ ∈ C∞c (I, V 3). Then we set φ = ∂ttψ −∆ψ and p1 = p0 = 0 in (4.5) which implies
that p = ψ. Thus we get∫ T

0

〈y, ∂ttψ −∆ψ〉V ∗,V dt =

∫ T

0

〈f, ψ〉V 2∗,V 2 dt

which implies that y ∈W 2,1(I, V 3∗) and

(4.12) ∂tty −∆y = f in (C∞c (I, V 3))∗

holds. Finally this means that y is a very weak solution of (4.1). Next we drive an
estimate for ∂tty using (4.11), in particular

‖∂tty‖L1(I,V 3∗) ≤ c (‖y‖C(Ī,V ∗) + ‖f‖L1(I,V 2∗))

≤ c (‖f‖L1(I,V 2∗) + ‖y0‖V ∗ + ‖y1‖V 2∗).

Uniqueness is shown next. Suppose that y1 and y2 are two very weak solutions of
(4.1) for the datum (f, y0, y1). Setting p0 = p1 = 0 in the very weak formulations for
both y1 and y2 and subtracting both forms yields∫ T

0

〈y1 − y2, φ〉V ∗,V dt = 0 ∀φ ∈ L1(I, V ).

Testing with φ = A−1/2
(
A1/2

)−∗ (
y1 − y2

)
∈ C(Ī , V ) allows to conclude that y1 = y2

holds.
The case r > 1 can be treated analogously.

Remark 4.8. From (4.12) follows y(0) = y0 and ∂ty(0) = y1. Now we
can achieve the following regularity results by interpolation of the solution operator
S : (f, y0, y1) 7→ (y, ∂ty, ∂tty) between the results of Proposition 4.3 and Proposition
4.7.

Corollary 4.9. Let θ ∈ [−1, 1/2]. If (f, y0, y1) ∈ Lr(I,Xθ)×Xθ+1/2 ×Xθ for
r ≥ 1. Then there exists a unique solution y of (4.1) which satisfies

y ∈ C(Ī , Xθ+1/2) ∩ C1(Ī , Xθ) ∩W 2,r(I,Xθ−1/2).

Furthermore there exists a constant c > 0 such that

(4.13) ‖y‖C(Ī,Xθ+1/2) + ‖∂ty‖C(Ī,Xθ) + ‖∂tty‖Lr(I,Xθ)

≤ c
(
‖f‖Lr(I,Xθ) + ‖y0‖Xθ+1/2

+ ‖y1‖Xθ
)

holds.
Remark 4.10. The results of Corollary 4.9 holds also for the dual equation.

Finally we consider the state equation (1.1) with controls from M(Ωc, L
2(I)). We

recall (2.2) and (3.4) which imply the embedding

(4.14) M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)) ↪→ L2(I,X−d/4−ε)
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for any (4 − d)/4 > ε > 0. Then we can use Corollary (4.9) to establish the well-
posedness of (1.1) in the following sense:

Corollary 4.11. For any (u, y0, y1) ∈ M(Ωc, L
2(I)) ×X(2−d)/4−ε ×X−d/4−ε,

there exists a unique very weak solution y of (1.1) which additionally satisfies

y ∈ C(Ī , X(2−d)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(2+d)/4−ε)

and it exists a constants c > 0

‖y‖C(Ī,X(2−d)/4−ε)
+ ‖∂ty‖C(Ī,X−d/4−ε) + ‖∂tty‖L2(I,X−(2+d)/4−ε)

≤ c
(
‖u‖M(Ωc,L2(I)) + ‖y0‖X(2−d)/4−ε + ‖y1‖X−d/4−ε

)
.

According to the last corollary it holds y ∈ C(Ī , L2(Ω)) ∩ C1(Ī , H−1(Ω)) only for
d = 1.
Since the embedding (4.14) is used for the proof of Corollary 4.11 it is not clear if
the regularity results of Corollary 4.11 are sharp. In the next section we will see that
regularity is lost by using the embedding (4.14).

5. Improved regularity results for the state and adjoint equation. In
this section we will establish higher regularity of the state variable y using explicitly
properties of the control spaceM(Ωc, L

2(I)) and not through the embedding (4.14).
To do so we will first establish C(Ωc, L2(I)) regularity of the solution p of the dual
wave equation (4.4) for certain regularity classes of data. These results can be used to
show the mentioned higher regularity of the primal variable. In the following we will
invoke and recap some regularity results for the primal equation (4.1) with a specific
source term f(t) = h(t)δx0 with x0 ∈ Ωc and h ∈ L2(I) which were proven in [27, 24]
for dimensions d = 1, 2, 3 and in [2] for d = 3. These results will play an important
role in the proof of the C(Ωc, L2(I)) regularity of p. In other words, we consider the
following equation

(5.1)


∂tty −∆y = hδx0

in I × Ω

y = 0 on I × ∂Ω

(y, ∂ty) = 0 in {0} × Ω.

Corollary 4.11 implies that a unique very weak solution y of (5.1) exists and at least
has the regularity

y ∈ C(Ī , X−(d−2)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(d+2)/4−ε).

But this result is not optimal. In the remainder of this paper we fix the following
notation

θd = 1/4 (1− d).

Proposition 5.1. Let h ∈ L2(I), x0 ∈ Ωc and let y be the very weak solution of
(5.1). Then

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

holds. Moreover there exists a constant c > 0 independent of y, h and x0 such that

(5.2) ‖y‖C(Ī,Xθd+1/2) + ‖∂ty‖C(Ī,Xθd ) ≤ c ‖h‖L2(I)
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holds.
Proof. We first consider the free space problem

(5.3)

{
∂ttψ −∆ψ = hδx0

in Rn × I
(φ, ∂tφ) = 0 on {0} × Rn.

In [27] it was shown using the Laplace-transform in time and the Fourier-transform
in space that (5.3) admits a solution ψ with the following regularity property

ψ ∈ C(Ī , [H2(Rn), L2(Rn)]1/2−θd) ∩ C1(Ī , [L2(Rn), H−2(Rn)]−θd)

and that there exists a constant c > 0 independent of ψ, h and x0 such that

(5.4) ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + ‖∂tψ‖C(Ī,[L2(Rn),H−2(Rn)]−θd ) ≤ c ‖h‖L2(I)

holds. This results can be transferred to bounded domains. For that purpose we
introduce a smooth cut-off function ξ ∈ C∞c (Ω) with the property ξ(x0) = 1. Then
we introduce the function ψ0 = ξψ ∈ C(Ī , Xθd+1/2)∩ C1(Ī , Xθd). This function solves
the following equation

∂ttψ0 −∆ψ0 = hδx0 + f in I × Ω

ψ0 = 0 on I × ∂Ω

(ψ0, ∂tψ0) = 0 in {0} × Ω

with f = −∆ξ ψ − 2∇ξ · ∇ψ. Additionally we introduce the function w = ψ0 − y
which is a solution of 

∂ttw −∆w = f in I × Ω

w = 0 on I × ∂Ω

(w, ∂tw) = 0 in Ω,

where y is the very weak solution of (5.1). Since ψ ∈ C(Ī , [H2(Rn), L2(Rn)]1/2−θd)
we have

f = −∆ξ ψ − 2∇ξ · ∇ψ ∈ C(Ī , Xθd).

Therefore Corollary 4.9 implies that

w ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

and

(5.5) ‖w‖C(Ī,Xθd+1/2) + ‖∂tw‖C(Ī,Xθd ) + ‖∂ttw‖L2(I,Xθd−1/2) ≤ c‖f‖L2(I,Xθd ).

According to the definition of w we have y = ψ0 − w which implies that

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2).

Finally we show the a priori estimate (5.2). We use y = ψ0 −w, the a priori estimate
(5.5) for the w-problem, and the definition of f to get

‖y‖C(Ī,Xθd+1/2) ≤ ‖ψ0‖C(Ī,Xθd+1/2) + ‖w‖C(Ī,Xθd+1/2)

≤ c
(
‖ξψ‖C(Ī,Xθd+1/2) + ‖∆ξψ‖C(Ī,Xθd+1/2) + ‖∇ξ · ∇ψ‖C(Ī,Xθd )

)
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Then we use the estimate

‖∇ξ · ∇ψ‖C(Ī,Xθd ) + ‖∆ξψ‖C(Ī,Xθd+1/2) + ‖ξψ‖C(Ī,Xθd+1/2)

≤ c
(
‖ξ‖L∞(Ω) + ‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω)

)
‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd )

which follows by interpolation of the continuous of operators ψ 7→ ξψ, ψ 7→ ∆ξψ
and ψ 7→ ∇ξ · ∇ψ. By assumption Ωc is compact, so there exists a constant c > 0
independent of x0 ∈ Ωc such that

‖ξ‖L∞(Ω) + ‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω) ≤ c

holds. Then (5.4) implies the assertion. The estimate for ‖∂ty‖C(Ī,Xθd ) can be derived
analogously.

Remark 5.2. The compactness assumption on Ωc is essential in the proof of
Proposition 5.1. The crucial part is the regularity of the cut-off function ξ ∈ C∞c (Ω).
We demand that ξ(x0) = 1 where x0 is the position of the Dirac measure. Suppose
that x0 converges to ∂Ω. Then it would hold

‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω) →∞.

This implies

‖y‖C(Ī,Xθd+1/2) ≤ c(‖∇ξ‖L∞(Ω), ‖∆ξ‖L∞(Ω))‖h‖L2(I) →∞ for dist(x0, ∂Ω)→ 0

which makes this estimate unusable. Proposition 5.1 can be also proved using other
techniques. For instance, let ψ be the solution of (5.3). Further let z be a function
satisfying the following equation

(5.6)


∂ttz −∆z = 0 in I × Ω

z = ψ on I × ∂Ω

(z, ∂tz) = 0 in {0} × Ω.

Then the solution of (5.1) is given by y = ψ− z. Problem (5.6) has a unique solution
z ∈ C(Ī , Xθd+1/2) for Dirichlet data from ψ ∈ C(Ī , [H2(∂Ω), L2(∂Ω)]1/2−θd) and the
following a priori estimate

‖z‖C(Ī,Xθd+1/2) ≤ c ‖ψ‖C(Ī,[H2(∂Ω),L2(∂Ω)]1/2−θd )

holds, see e.g. [23]. Therefore we can estimate

‖y‖C(Ī,Xθd+1/2) ≤ ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + ‖z‖C(Ī,Xθd+1/2)

≤ ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + c ‖ψ‖C(Ī,[H2(∂Ω),L2(∂Ω)]1/2−θd )

I order to establish (5.2) we need to derive an estimate of the following form

(5.7) ‖ψ‖C(Ī,[H2(∂Ω),L2(∂Ω)]1/2−θd ) ≤ c ‖h‖L2(I),

where c is independent of x0. In the case d = 1 it is easy to show that the constant
in (5.7) is independent of x0 ∈ Ω by using the explicit solution formula for problem
(5.3). In the case d = 3 the following estimate

(5.8) ‖ψ‖C(Ī,L2(∂Ω)) ≤
c

dist(x0, ∂Ω)
‖h‖L2(I)
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was shown by Lions in [2] by using the explicit solution formula. Due to the compact-
ness assumption on Ωc the constant in estimate (5.7) can be chosen independently of
x0 ∈ Ωc in this case. Estimate (5.8) is sharp in the sense that it can happen

‖ψ‖C(Ī,L2(∂Ω)) →∞ for dist(x0, ∂Ω)→ 0.

This is shown in the following example. Let Ω have the following form

Ω = {x ∈ R3 : x2
1 + x2

2 < 1, − 1 < x3 < 0}.

We set h ≡ 1 and x0 = (0, 0,−%) with % > 0. The solution of (5.3) in this case is
given by

ψ(t, x) =

{
1

4π
1

‖x−x0‖R3
if t ≥ ‖x− x0‖R3

0 else,

see [2]. Next we calculate ‖ψ(t)‖L2(∂Ω1) for

∂Ω1 = {x ∈ R3 : x2
1 + x2

2 ≤ 1, x3 = 0}.

This amounts to

‖ψ(t)‖L2(∂Ω1) =

{
1

4
√
π

(ln(t2)− ln(%2))
1
2 if t ≥ %

0 else

and therefore it holds

‖ψ‖C(Ī,L2(∂Ω)) →∞ for %→ 0.

In the case d = 2 the explicit solution formula has a more complicated structure and
therefore an estimate of the form (5.7) has not been obtained. Thus this approach is
not applicable.

Next we show that the solution p of (4.4) lies in C(Ωc, L2(I)) for certain classes
of data using the previous regularity result for the primal equation.

Theorem 5.3. Let (φ, p1, p0) ∈ L1(I,X−θd−1/2) ×X−θd−1/2 ×X−θd . Then the
solution p of (4.4) satisfies

p ∈ C(Ωc, L2(I)) ∩ C(Ī , X−θd) ∩ C1(Ī , X−θd−1/2) ∩W 2,1(I,X−θd−1)

and there exists a constant c > 0 such that

(5.9) ‖p‖C(Ωc,L2(I)) ≤ c
(
‖φ‖L1(I,X−θd−1/2) + ‖p0‖X−θd + ‖p1‖X−θd−1/2

)
holds.

Proof. We intend to show C(Ωc, L2(I)) regularity of p. For that we choose the
following approximating sequences

• {φn}n∈N ⊂ L1(I, V ) with φn → φ in L1(I,X−θd−1/2)
• {p0,n}n∈N ⊂ V 2 with p0,n → p0 in X−θd
• {p1,n}n∈N ⊂ V with p1,n → p1 in X−θd−1/2.

Then we consider the following equation

(5.10)


∂ttpn −∆pn = φn in I × Ω

pn = 0 on I × ∂Ω

(pn, ∂tpn) = (p0,n, p1,n) in {T} × Ω.
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Proposition 4.3 implies that the solution pn fulfills

pn ∈ C(Ī , V 2) ↪→ C(Ī , C(Ωc)).

For x0 ∈ Ωc arbitrary, let ξn be the very weak solution of the following problem

(5.11)


∂ttξn −∆ξn = pn(x0, t)δx0

in I × Ω

ξn = 0 on I × ∂Ω

(ξn, ∂tξn) = 0 in {0} × Ω.

Proposition 5.1 implies that

ξn ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

as well as the existence of a constant c > 0 independent of x0 such that

(5.12) ‖ξ‖C(Ī,Xθd+1/2) + ‖∂tξ‖C(Ī,Xθd ) ≤ c ‖pn(x0, ·)‖L2(I)

holds. Using the very weak formulation (4.5) of (5.11) and (5.12) we can estimate

‖pn(x0, ·)‖2L2(I) =

∫ T

0

〈ξn, φn〉V ∗,V dt− 〈ξn(T ), p1,n〉V ∗,V + 〈∂tξn(T ), p0,n〉V 2∗,V 2

=

∫ T

0

〈ξn, φn〉Xθd+1/2,X−θd−1/2
dt− 〈ξn(T ), p1,n〉Xθd+1/2,X−θd−1/2

+ 〈∂tξn(T ), p0,n〉Xθd ,X−θd
≤ ‖ξn‖C(Ī,Xθd+1/2)‖φn‖L1(I,X−θd−1/2) + ‖ξn(T )‖Xθd+1/2

‖p1,n‖X−θd−1/2

+ ‖∂tξn(T )‖Xθd‖p0,n‖X−θd
≤ c ‖pn(x0, ·)‖L2(I)

(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖Xθd−1/2

+ ‖p1,n‖X−θd
)
.

Since x0 ∈ Ωc was arbitrary and the constant c in the last estimate does not depend
on x0 according to Proposition (5.1) we get

(5.13) ‖pn‖C(Ωc,L2(I)) ≤ c
(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖X−θd + ‖p1,n‖X−θd−1/2

)
.

The inequality (5.13) and linearity of (5.10) imply that {pn}n∈N is a Cauchy sequence
in C0(Ω, L2(I)). So there exists a p̃ ∈ C(Ωc, L2(I)) with pn → p̃ in C(Ωc, L2(I)).
Finally we have to show that p̃ is a solution of the adjoint wave equation (4.4). We
know from Corollary 4.9 and Remark 4.10 that

‖pn‖C(Ī,X−θd ) + ‖∂tpn‖C(Ī,X−θd−1/2)

≤ c
(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖X−θd + ‖p1,n‖X−θd−1/2

)
holds which implies that {pn}n∈N is a Cauchy sequence in C(Ī , X−θd)∩C1(Ī , X−θd−1/2).
Therefore it holds

p̃ ∈ C(Ī , X−θd) ∩ C1(Ī , X−θd−1/2).
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Then we pass to the limit in∫ T

0

〈pn, f〉V ∗,V dt+ 〈pn(0), y1〉V ∗,V − 〈∂tpn(0), y0〉V 2∗,V 2

=

∫ T

0

〈φn, y〉V 2∗,V 2 dt+ 〈p0,n, ∂ty(T )〉V ∗,V − 〈p1,n, y(T )〉V 2∗,V 2

for all (f, y0, y1) ∈ L1(I, V )× V 2 × V where y ∈ C(Ī , V 2)∩ C1(Ī , V ) is the solution of
(4.1) for the data (f, y0, y1). We see that p̃ satisfies the very weak formulation (4.5)
of (4.4). Using similar arguments as in the proof of Proposition 4.7 we can show

p ∈W 2,1(I,X−θd−1) ↪→W 2,1(I, V 3∗).

Consequently p̃ is a very weak solution of (4.4).
In order to establish higher regularity of the velocity ∂ty we need the following

lemma.
Lemma 5.4. Let φ ∈W 1,1

0 (I,X−θd) and consider the following equation

(5.14)


∂ttp−∆p = ∂tφ in I × Ω

p = 0 on I × ∂Ω

(p, ∂tp) = 0 in {0} × Ω.

Then there exists a constant c > 0 such that

‖p‖C(Ωc,L2(I)) ≤ c‖φ‖L1(I,X−θd )

holds.
Proof. Since ∂tφ ∈ L1(I,X−θd), Corollary 4.9, Remark 4.10, and Theorem 5.3

guarantee the existence of a unique solution p of (5.14) with

p ∈ C(Ī , X−θd+1/2) ∩ C1(Ī , X−θd) ∩W 2,1(I,X−θd−1/2) ∩ C(Ωc, L2(I)).

Next choose any x0 ∈ Ωc. Then let ξ ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) be the very weak
solution of (5.1) with h = p(x0, ·)δx0

. Then we proceed similarly as in the proof of
Theorem 5.3

‖p(x0)‖2L2(I) =

∫ T

0

〈ξ, ∂tφ〉Xθd+1/2,X−θd−1/2
dt

= −
∫ T

0

〈∂tξ, φ〉Xθd ,X−θd dt

≤ ‖∂tξ‖C(Ī,Xθd )‖φ‖L1(I,X−θd )

≤ c ‖p(x0)‖L2(I)‖φ‖L1(I,X−θd ).

This finishes the proof.
The following proposition establishes higher regularity of the state variable for

sources which are more smooth in time, in particular from M(Ωc, H
1
0 (I)). These

results will be extended toM(Ωc, L
2(I)) in a combined density and duality argument.

Proposition 5.5. Let (f, y0, y1) ∈ M(Ωc, H
1
0 (I)) × Xθd+1/2 × Xθd . Then the

solution y of (4.1) has the following regularity properties

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩ C2(Ī , Xθd−1/2).
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Proof. First we remark that

M(Ωc, H
1
0 (I)) ↪→ H1

0 (I,X−d/4−ε)

for all (4 − d)/4 > ε > 0. Therefore it holds that ∂tf ∈ L2(I,X−d/4−ε). Then we
consider the equation

(5.15)


∂ttỹ −∆ỹ = ∂tf in I × Ω

ỹ = 0 on I × ∂Ω

(ỹ, ∂tỹ) = (y1, y2) in Ω

with

(5.16) y2 = f(0) + ∆y0 ∈ Xθd−1/2.

Since L2(I,X−n/4−ε) ↪→ L2(I,Xθd−1/2) for ε small enough equation (5.15) has a
unique solution ỹ with

ỹ ∈ C(Ī , Xθd) ∩ C1(Ī , Xθd−1/2)

according to Corollary 4.9. Furthermore there exists a y ∈ C1(Ī , Xθd) such that
∂ty = ỹ and (y(0), ∂ty(0)) = (y0, y1) holds. We observe that ∂ty fulfills (4.12), in fact
in the space L2(I, V 3∗). Therefore it holds

∂

∂t
(∂tty(t)−∆y(t)− f(t)) = 0 in V 3∗ a.e. t ∈ I,

which implies together with ∂tty(0)−∆y(0)− f(0) = 0 that

∂tty(t)−∆y(t) = f(t) in V 3∗ a.e. t ∈ I

holds. Since y ∈ C2(Ī , Xθd−1/2) and f ∈ C(Ī , Xθd−1/2) we have

−∆y(t) = f(t)− ∂tty(t) ∈ Xθd−1/2 ∀t ∈ I.

Then by using that −∆: Xθd+1/2 → Xθd−1/2 is an isomorphism we conclude that

y ∈ C(Ī , Xθd+1/2)

holds which implies

(5.17) ∂tty −∆y = f in (L2(I, V 2))∗.

Let p ∈ C(Ī , V 2)∩ C1(Ī , V ) be the solution of (4.4) for any (φ, p1, p0) ∈ L1(V )×V ×V 2.
We use p as a test function in (5.17) and integrate by parts in time which leads to∫ T

0

〈y, φ〉V ∗,V dt+ 〈∂ty(T ), p0〉V 2∗,V 2 − 〈y(T ), p1〉V ∗,V =∫ T

0

〈f, p〉V 2∗,V 2 dt+ 〈y1, p(0)〉V 2∗,V 2 − 〈y0, ∂tp(0)〉V ∗,V .

Finally we recall that y ∈ C2(Ī , Xθd−1/2) holds which implies that y is a very weak
solution of (4.1).
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Now we have introduced all preparatory results in order to prove higher regularity
of the state.

Theorem 5.6. Let (u, y0, y1) ∈M(Ωc, L
2(I))×Xθd+1/2×Xθd and y be the very

weak solution of the state equation (1.1). Then it holds

y ∈ C(Ī , Xθd+1/2) ∩ C1(I,Xθd) ∩H2(I,Xθd−1/2).

Furthermore there exists a constant c > 0 such that

(5.18) ‖y‖C(Ī,Xθd+1/2) + ‖∂ty‖C(Ī,Xθd ) + ‖∂tty‖L2(I,Xθd−1/2)

≤ c
(
‖u‖M(Ωc,L2(I)) + ‖y0‖Xθd+1/2

+ ‖y1‖Xθd
)

holds.
Proof. Corollary 4.11 implies the existence of a unique solution y of (1.1) which

satisfies

y ∈ C(Ī , X−(d−2)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(d+2)/4−ε), (d− 4)/4 > ε > 0.

But the regularity of y can be essentially improved in the following way. First of all we
consider the case with homogenous initial data y0 = y1 = 0. Proposition 2.1 implies
the existence of a sequence {un}n∈N ⊂M(Ωc, H

1
0 (I)) with

(5.19) ‖u− un‖M(Ωc,L2(I)) → 0 for n→∞.

Now we consider the problem

(5.20)


∂ttyn −∆yn = un in I × Ω

yn = 0 on I × ∂Ω

(yn, ∂tyn) = 0 in {0} × Ω

which has a solution unique solution yn with

yn ∈ C(Ī , Xθd+1/2) ∩ C1(I,Xθd) ∩ C2(I,Xθd−1/2)

according to Proposition 5.5. Next we prove the estimate

‖yn‖L∞(I,Xθd+1/2) ≤ c‖un‖M(Ωc,L2(I))

using the very weak formulation of (5.20) in the following form∫ T

0

〈yn, φ〉Xθd+1/2,X−θd−1/2
dt = 〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I)),

where p is the solution of 
∂ttp−∆p = φ in I × Ω

p = 0 on I × ∂Ω

(p, ∂tp) = 0 in {T} × Ω

with φ ∈ L1(I,X−θd−1/2). According to Theorem 5.3 this equation has a unique
solution p ∈ C(Ωc, L2(I)) which fulfills the following estimate

‖p‖C(Ωc,L2(I)) ≤ c‖φ‖L1(I,X−θd−1/2).
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Therefore we can estimate in the following manner∫ T

0

〈yn, φ〉Xθd+1/2,X−θd−1/2
dt = 〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I))

≤ ‖un‖M(Ωc,L2(I))‖p‖C(Ωc,L2(I))

≤ c‖un‖M(Ωc,L2(I))‖φ‖L1(I,X−θd−1/2),

which implies that

‖yn‖L∞(I,Xθd+1/2) ≤ c‖un‖M(Ωc,L2(I))

holds. We proceed with an estimate of the form

‖∂tyn‖L∞(I,Xθd ) ≤ c‖un‖M(Ωc,L2(I))

using the very weak formulation of (5.20) involving the solution p of
∂ttp−∆p = ∂tφ in I × Ω

p = 0 on I × ∂Ω

(p, ∂tp) = 0 in {T} × Ω

with φ ∈W 1,1
0 (I,X−θd). According to Theorem 5.3 this equation has a unique solution

p ∈ C(Ωc, L2(I)) and the following estimate

‖p‖C(Ωc,L2(I)) ≤ c‖φ‖L1(I,X−θd )

holds according to Lemma 5.4. We choose any φ ∈ W 1,1
0 (I,X−θd) and have after

integration by parts in time that∫ T

0

〈∂tyn, φ〉Xθd ,X−θd dt = −
∫ T

0

〈yn, ∂tφ〉Xθd+1/2,X−θd−1/2

= −〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I))

≤ ‖un‖M(Ωc,L2(I))‖p‖C(Ωc,L2(I))

≤ c‖un‖M(Ωc,L2(I))‖φ‖L1(I,X−θd ).

The density of W 1,1
0 (I,X−θd) in L1(I,X−θd) yields the desired estimate

‖∂tyn‖L∞(I,Xθd ) ≤ c‖un‖M(Ωc,L2(I)).

Now we take any n,m ∈ N and use the linearity of the state equation to obtain the
following estimate

‖yn − ym‖L∞(I,Xθd+1/2) + ‖∂t(yn − ym)‖L∞(I,Xθd ) ≤ c‖un − um‖M(Ωc,L2(I)).

Hence (5.19) implies that {yn}n∈N is a Cauchy sequences in

C(Ī , Xθd+1/2) ∩ C(Ī , Xθd).

Therefore there exists an element y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) with yn → y and
∂tyn → ∂ty. We pass to the limit in the very weak formulation of (5.20) and see
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that y fulfills the very weak formulation of the state equation. The regularity result
y ∈ H2(I,Xθd−1/2) and the estimate

∂tt‖y‖L2(I,Xθd−1/2) ≤ c‖u‖M(Ωc,L2(I))

can be shown in the same manner as in the proof of Proposition 4.7. Therefore y is
a very weak solution of the state equation. Due to the linearity of the state equation
the case with inhomogeneous initial data can be treated separately using Corollary
4.9.

6. Existence of optimal controls. In this section we prove the well-posedness
of (P), employing the regularity results of the last section. Throughout the remainder
of this paper we assume that (y0, y1) ∈ Xθd+1/2×Xθd . The control-to-state mapping
is denoted by

(6.1) S : M(Ωc, L
2(I))→ L2(I × Ω)×H × V ∗, u 7→ (y, y(T, ·), ∂ty(T, ·)),

where y is the very weak solution of (1.1) for a control u. According to Theorem
5.6, it is a bounded affine linear operator. Furthermore we specify the data tracking
functional

J(y1, y2, y3) =
1

2

{
ν1‖y1 − z1‖2L2(I×Ω) + ν2‖y2 − z2‖2H + ν3‖y3 − z3‖2V ∗

}
for (y1, y2, y3) ∈ L2(I × Ω)×H × V ∗, (z1, z2, z3) ∈ L2(I × Ω)×H × V ∗ and νi ≥ 0.
Using the operator S we introduce the reduced cost functional

(6.2) j(u) = J(Su) + α‖u‖M(Ωc,L2(I)).

Next we proof weak continuity properties of S.
Lemma 6.1. Let {un}n∈N ⊂ M(Ωc, L

2(I)) and u ∈ M(Ωc, L
2(I)) with un ⇀∗ u

inM(Ω, L2(I)). Then it holds Sun ⇀∗ Su in L∞(I,H)×H × V ∗ for d = 1, 2, 3 and
additionally Sun → Su in L2(I × Ω)×H × V ∗ for d = 1, 2.

Proof. Let yn be the solution of (1.1) for the control un. From the a priori
estimate (5.18) it follows that there exist a subsequence of {yn}n∈N (denoted with the
same index n) and elements

(y, ŷ, ỹ) ∈ L∞(I,H)×H × V ∗

such that (yn, yn(T ), ∂tyn(T )) ⇀∗ (y, ŷ, ỹ) in L∞(I,H) × H × V ∗ holds. From
(5.18) follows also the existence of another subsequence which converges weakly in
H1(I, V ∗) ∩ H2(I, V 2∗) to some ξ ∈ H1(I, V ∗) ∩ H2(I, V 2∗). Since weak limits are
unique it holds ξ = y. Due to weak to weak continuity of the time-point evaluation
operator

E : H1(I, V ∗) ∩H2(I, V 2∗)→ V ∗ × V 2∗, y 7→ (y(T ), ∂ty(T ))

it holds ŷ = y(T ) and ỹ = ∂ty(T ). Passing to the the limit in the very weak formula-
tion (4.5) of the equation for yn we obtain that y fulfills∫ T

0

〈y, φ〉V ∗,V dt− 〈y(T ), p1〉V ∗,V + 〈∂ty(T ), p0〉V 2∗,V 2

= 〈u, p〉M(Ωc,L2(I)),C(Ωc,L2(I)) − 〈y0, ∂tp(0)〉V ∗,V + 〈y1, p(0)〉V 2∗,V 2 ,
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where p ∈ C(Ωc, L2(I))×C(Ī , V 2)×C1(Ī , V ) is the solution of (4.4) for any (φ, p1, p0) ∈
L1(I, V )× V × V 2. Overall this means that y is a very weak solution of the the state
equation for the control u. From (5.18) we conclude that (yn, yn(T ), ∂tyn(T )) is
bounded in (

C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd)
)
×Xθd+1/2 ×Xθd .

For d = 1, 2 the embedding(
C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd)

)
×Xθd+1/2 ×Xθd ↪→ L2(I × Ω)×H × V ∗

is compact according to the Aubin-Lions Lemma [26, Chapter 3, Proposition 1.3].
This implies strong convergence of (yn, yn(T ), ∂tyn(T )) in L2(I×Ω)×H×V ∗.

Now we are ready to prove the well-posedness of problem (P) by classical argu-
ments.

Proposition 6.2. Problem (P) has a solution ū ∈M(Ωc, L
2(I)) which is unique

for ν1 > 0.
Proof. Since j is bounded from below there exists a sequence

{un}n∈N ∈M(Ωc, L
2(I))

with j(un)→ infu∈M(Ωc,L2(I)) j(u) = j̄. For all n ∈ N large enough it holds that

‖un‖M(Ωc,L2(I)) ≤ j(un) ≤ j(0) + 1.

We recall the weak-∗ sequential compactness of bounded sets in M(Ωc, L
2(I)) from

Section 2. Consequently there exists a subsequence {unk}k∈N and ū ∈ M(Ωc, L
2(I))

with unk ⇀∗ ū in M(Ωc, L
2(I)). From Lemma 6.1 we know Sunk ⇀∗ Sū in

L∞(I,H)×H×V ∗. Moreover J is weak lower semi-continuous in L2(I,H)×H×V ∗
and ‖ · ‖M(Ωc,L2(I)) is weak-∗ lower semi-continuous inM(Ωc, L

2(I)). So it holds

j̄ = lim inf
k→∞

j(unk) ≥ lim inf
k→∞

J(Sunk) + lim inf
k→∞

α‖unk‖M(Ωc,L2(I))

≥ J(Sū) + α‖ū‖M(Ωc,L2(I))

which implies that ū is a minimizer of j.
Remark 6.3. Concerning uniqueness of the optimal control, we observe that it

cannot be obtained from the control cost ‖u‖M(Ωc,L2(I)) since it is not strictly convex.
However, since (y1, y2, y3) 7→ J(y1, y2, y3) is strictly convex, uniqueness of the optimal
control follows from injectivity of the control-to-state operator S. In the case of solely
terminal observation S is not injective (ν1 = 0).
So far we assumed the availability of observations on all of I × Ω. In the case that
the observation domain is of the form Ωo × I with Ωo ⊂ Ω, existence of a solution to
(P) remains correct. Uniqueness of the solution is guaranteed if the control-to-state
operator S : M(Ωc, L

2(I)) → L2(Ωo × I) × L2(Ωo) × H−1(Ω) is injective. This is
related to Huygens-principle and the location of Ωo relative to Ω.

In the next section we derive optimality conditions for (P).

7. First order optimality conditions. In this section we derive first order
optimality conditions. We rely on similar arguments as in [20]. Furthermore we use
the first order optimality conditions to establish structural properties of the optimal
control. Finally we prove improved regularity of the optimal adjoint state and optimal
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control. First we introduce the pre-dual operator S? of the linearized control-to-
observation operator S′ which is equal to S for zero initial data. It is denoted by

S? : L2(I × Ω)×H × V → C(Ωc, L2(I)), (q1, q2, q3) 7→ p

where p is the solution of (4.4) for φ = q1, p0 = q3 and p1 = q2.
Proposition 7.1. Let (ū, ȳ) be a solution of (P). Then there exists a unique

adjoint state p̄ ∈ C(Ωc, L2(I)) which solves

(7.1)


∂ttp̄−∆p̄ = ȳ − z1 in I × Ω

p̄ = 0 on I × ∂Ω

p̄(T ) = A−1/2(A−1/2)∗(∂tȳ − z3) in {T} × Ω

∂tp̄(T ) = ȳ − z2 in {T} × Ω

and fulfills the subgradient condition

−p̄ ∈ α∂‖ū‖M(Ωc,L2(I))

or equivalently

(7.2) α‖ū‖M(Ωc,L2(I)) = 〈ū,−p̄〉M(Ωc,L2(I)),C(Ωc,L2(I)), ‖p̄‖C(Ωc,L2(I)) ≤ α.

Proof. Problem (P) can be formulated in the following form

min
u∈M(Ωc,L2(I))

(J ◦ S + F )(u),

with F (u) = α‖u‖M(Ωc,L2(I)). The control ū ∈M(Ωc, L
2(I)) is a solution of problem

(P) if and only if

0 ∈ ∂(J ◦ S + F )(ū)

where ∂ · is the subdifferential of a convex function onM(Ωc, L
2(I)) equipped with

its weak-∗ topology. Due to the Gateaux differentiability of J ◦ S the optimality
condition can be rewritten as

(7.3) −S′?(J ′(Sū)) ∈ ∂F (ū).

Next we differentiate J ◦ S with respect to u in direction δu ∈ M(Ωc, L
2(I)) and

obtain the following expression

〈J ′(Su), δu〉C(Ωc,L2(I)),M(Ωc,L2(I)) = ((Su)1 − z1, (S
′δu)1)L2(I×Ω)

+ ((Su)2 − z2, (S
′δu)2)H + 〈A−1/2(A−1/2)∗((Su)3 − z3), (S′u)3〉V,V ∗ .

We define

p̄ := S′?((Sū)1 − z1, (Sū)2 − z2, A
−1/2(A−1/2)∗((Su)3 − z3))

which means that p̄ is the solution of the adjoint wave equation with right hand side
φ = (Sū)1 − z1, initial displacement p0 = A−1/2(A−1/2)∗((Sū)3 − z3), and initial
velocity p1 = (Su)2 − z2. Thus (7.3) can be expressed in the following form

(7.4) −p̄ ∈ ∂F (ū).
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This subgradient condition is equivalent to

(7.5) F (ū) + F ?(−p̄) = 〈ū,−p̄〉M(Ωc,L2(I)),C(Ωc,L2(I)),

e.g. see [14, Proposition 5.1], where F ? is the convex conjugate of F with respect to
the weak-∗ topology. It is given by

(7.6) F ?(p) =

{
0 ‖p‖C(Ωc,L2(I)) ≤ α
∞ else.

Therefore (7.5) is equivalent to (7.2).
Next we establish structural properties of the optimal control ū.
Proposition 7.2. Let ū ∈ M(Ωc, L

2(I)) be the solution of (P), |ū| its total
variation measure, ū′ its Radon-Nikodym derivative and p̄ the optimal adjoint state.
Then it holds

ū′ = − 1

α
p̄ in L1((Ω, |ū|), L2(I))(7.7)

supp |ū| ⊆ {x ∈ Ωc : ‖p̄(x)‖L2(I) = α}.(7.8)

Proof. A proof for these results can be found in [20, Theorem 2.12].
Next we show improved regularity of the optimal adjoint state p̄ in space and of

the optimal control ū in time.
Theorem 7.3. Let ū ∈M(Ωc, L

2(I)) be the solution of (P) and p̄ ∈ C(Ωc, L2(I))
the corresponding optimal adjoint state. Additionally let z1 ∈ C(Ī , Xθd+1/2), z2 ∈
Xθd+1/2 and z3 ∈ Xθd . Then the regularity result

p̄ ∈ C(Ī , Xθd+1) ∩ C1(Ī , Xθd+1/2) ∩ C2(Ī , Xθd),

for d = 1, 2, 3 and

ū ∈ C2−d,1/2−ε(Ī ,M(Ωc))

for d = 1, 2 and any ε ∈ (0, 1/2] holds.
Proof. Due to the assumptions on z1, z2, z3 and according to Theorem 5.6 it

holds

φ = ȳ − z1 ∈ C(Ī , Xθd+1/2), p1 = ȳ(T )− z2 ∈ Xθd+1/2,

p0 = A−1/2(A−1/2)∗(∂tȳ(T )− z3) ∈ Xθd+1 for d = 2, 3,

p0 = A−1(∂tȳ(T )− z3) ∈ V 2 for d = 1.

So the improved regularity of p̄ for d = 1, 2 follows from Corollary 4.10 and the fact
that the continuity of the righthand side φ in time implies the continuity of ∂ttp̄ in
time. Next we show the improved regularity of ū for d = 1, 2. We have for any
ε ∈ (0, 1/2]

p̄ ∈ C1(Ī , X1/2) ∩ C2(Ī , X0) ↪→ C1,1/2−ε(Ī , X1/4+ε) ↪→ C1,1/2−ε(Ī , C(Ωc)) for d = 1

and

p̄ ∈ C(Ī , X3/4) ∩ C1(Ī , X1/4) ↪→ C0,1/2−ε(Ī , X1/2+ε) ↪→ C0,1/2−ε(Ī , C(Ωc)) for d = 2.
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Details concerning this embedding of vector valued spaces can be found in [1, Theorem
5.2]. First we consider the case d = 2. We recall that

dū = − 1

α
p̄ d|ū|

holds. Then we pick any t0, t1 ∈ Ī and estimate using the continuity of p̄ in space

‖ū(t0)− ū(t1)‖M(Ωc) = sup
‖φ‖C(Ωc)≤1

∫
Ω

φ(x) d(ū(t0)− ū(t1))

= sup
‖φ‖C(Ωc)≤1

1

α

∫
Ω

φ(x)(p̄(x, t0)− p̄(x, t1)) d|ū|

≤ 1

α
‖p̄(t1)− p̄(t0)‖C(Ωc)‖ū‖M(Ωc,L2(I))

≤ c|t0 − t1|1/2−ε‖ū‖M(Ωc,L2(I)),

which implies that

ū ∈ C0, 12−ε(Ī ,M(Ωc)).

The property ū ∈ C1, 12−ε(Ī ,M(Ωc)) in the case d = 1 can be shown analogously using
that p̄ ∈ C1, 12−ε(Ī , C(Ωc)).

8. Numerical solution. Next we turn our focus on the discretization of Prob-
lem (P) by finite elements. For the discretization of the state equation (1.1) we rewrite
it as a system of first order equations in time

(8.1)


∂ty − v = 0 in I × Ω

∂tv −∆y = u in I × Ω

v = y = 0 on I × ∂Ω

(y, v) = (y0, y1) in {0} × Ω.

Then the state variables (y, v) are discretized by continuous linear finite elements in
time and space. The test functions are chosen from the space of piecewise constant
functions in time and piecewise linear, continuous functions in space. Due to the
the different ansatz- and test-spaces in time the proposed discretization scheme is a
Petrov-Galerkin scheme. The resulting discrete system of equations corresponds to the
Crank-Nicolson time stepping scheme applied to space-discrete version of equations
(8.1). More details on the proposed discretization method for the state equation can
be found in [19]. In this paper the authors also derive a gradient-consistent discrete
adjoint time stepping scheme. This adjoint scheme corresponds to the discretization
of the two adjoint state variables by piecewise constant functions in time and by
piecewise linear, continuous functions in space. The discrete control variable has the
following form

ukh =

N∑
j=1

uj(t)δxj

where the functions ui(t) are piecewise constant and δxi are Dirac-measures concen-
trated in the grid points xi of the spatial mesh. Therefore the discrete control cost
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term has the following form

‖ukh‖M(Ωc,L2(I)) =

N∑
j=1

(
NT∑
i=1

τiu
2
j,i

)1/2

where NT is the number time-steps and τi the size of the i-th time step. The result-
ing discrete control cost term is a weighted l1− l2-norm in RN×NT which is known in
compressive sensing in connection with the concept of group sparsity or joint sparsity.
This control discretization was also used and analyzed in [20] and [7].
After discretization of all variables Problem (P) is a non-smooth and convex opti-
mization problem in RN×NT . For the solution of the discrete problem we adapt the
strategy of [20]. We add an additional L2-regularization term to the cost functional
of the continuous problem. The resulting regularized problem is posed in L2(Ω̊c × I)
and the corresponding semi-smooth Newton method can be applied and analyzed
directly on the continuous level (mesh-independence). In order to solve the unreg-
ularized problem we apply a continuation strategy. The regularization parameter is
reduced gradually and the solutions of the regularized subproblems are used for ini-
tialization of the Newton iterations. This continuation strategy can also be seen as a
globalization strategy. Since in numerical practice it can be observed that the New-
ton iteration converges independently of the initial guess only if the regularization
parameter is sufficiently large. It can be verified that the solution of the regularized
problem converges in the weak-∗ sense to the solution of the unregularized problem,
see [20].

9. Inverse source problem. In this section we use the problem formulation
(P) to solve an inverse source problem originating from geophysical sciences. Our
problem set up will not fit exactly to the problem formulation (P) and therefore the
theoretical findings of the previous sections can only be applied in part.
Seismic events, for example earthquakes or eruptions of volcanoes, emit seismic waves
travelling through the ground. These waves are picked up by seismographs all over the
world. Geophysicists use the recorded data to reconstruct the locations and intensities
of the initial seismic events. Motivated by such a scenario we intend to solve the
following inverse source problem for the acoustic/scalar wave equation (approximation
of the elastic wave equation).
Let Ω ⊂ R2 be a domain in which N ≥ 1 sources of the form

(9.1) u(x, t) =

N∑
i=1

ui(t)δxi ∈M(Ωc, L
2(I))

which emit waves. MoreoverM ≥ 1 mean values zj(t) of the emitted waves on patches
Pj ⊂ Ω for j = 1, . . . ,M are observed over time. We aim to reconstruct the number of
point sources N , the locations xi and the time-dependent intensities ui(t) from noisy
versions of these seismograms zi(t). The scenario is depicted in Figure 1. This inverse
problem can be formulated as an optimal control problem of the form

(9.2) min
u,X

1

2M

M∑
j=1

‖Oj(y)− zj‖2L2(I))
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Ω

Ωc

Point sources

P1 P2 P3

P5P6P7

P3
P8 (0.6, 0.5)

(0.3, 0.7)

Fig. 1: Schematic description of the inverse problem

subject to

(9.3)


∂tty −∆y =

N∑
i=1

uiδxi in I × Ω

∂ty + ∂ny = 0 on I × ∂Ω

(y, ∂ty) = 0 in {0} × Ω

with

(9.4) Oj(y)(t) =
1

|Pj |

∫
Pj

y(t, x) dx, i = 1, . . . ,M,

u = {ui(t)}i=1,...,N , X = {xi}i=1,...,N ⊂ Ωc and ∂n· the normal derivative on ∂Ω. The
condition ∂ny+∂ty = 0 on ∂Ω is used as approximative absorbing boundary condition
in order to avoid unrealistic reflections at the boundary, see e.g. [15].
The optimal control problem (9.2) is not well-posed. If, as a first remedy, the regu-
larization term

(9.5) u 7→
N∑
i=1

‖ui‖L2(I)

is added, problem (9.2) is well-posed, but not convex since the state y depends non-
linearly on the positions xi of the point sources. In order to obtain a convex problem
we instead formulate the optimal control problem in the space M(Ωc, L

2(I)) which
contains and favours sources of the form (9.1). We therefore suggest to cast the inverse
problem in the form

(9.6) min
u,y

1

2M

M∑
j=1

‖Oj(y)− zj‖2L2(I) + α ‖u‖M(Ωc,L2(I))
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subject to 
∂tty −∆y = u in I × Ω

∂ty + ∂ny = 0 on I × ∂Ω

(y, ∂ty) = 0 in {0} × Ω.

If the optimal control ū has the form (9.1), it holds that

‖ū‖M(Ωc,L2(I)) =

N∑
i=1

‖ui‖L2(I).

The problem formulation (9.6) is not covered by our analysis due to the absorbing
boundary condition of the state equation and the patch-wise observation. The adjoint
of the linear observation operator Oj : L2(I, L1(Ω))→ L2(I) is given by

O∗j : L2(I)→ L2(I, L∞(Ω)), O∗j q =
1

|Pj |
χPj (x)q(t)

with

χPj (x) =

{
1 x ∈ Pj
0 else,

and therefore the adjoint state equation has the form

(9.7)


∂ttp̄−∆p̄ =

1

M

M∑
j=1

O∗j (Oj(ȳ)− zj) in I × Ω

−∂tp̄+ ∂np̄ = 0 on I × ∂Ω

(p̄, ∂tp̄) = 0 in {T} × Ω.

Note that the source term of (9.7) is an element of L2(I × Ω). Therefore patchwise
observation fits into our framework (cf. Theorem 5.3) in the case of zero Dirichlet
boundary conditions. The adjoint waves p̄ are triggered by the time reversed misfit
terms Oi− zi on the observation patches Pi and travel into the domain. The optimal
control ū of problem (9.6) can be represented using the optimal adjoint state p̄ (see
Proposition 7.2) in the form

dū = − 1

α
p̄ d|ū|.

We recall from Proposition 7.2 that

supp |ū| ⊆ {x ∈ Ωc : ‖p̄(x)‖L2(I) = max
x∈Ωc

‖p̄(x)‖L2(I)}

holds. In the case that the function ‖p̄(x)‖L2(I) attains its maximum at N̂ discrete
points in Ωc the optimal control ū has the form

(9.8) ū(t) = − 1

α

Ñ∑
i=1

cip̄(t, xi)δxi
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with Ñ ≤ N̂ and constants ci. The positions of the maxima of ‖p̄(x)‖L2(I) correlate to
regions in Ωc where the adjoint waves overlap. This feature is related to time reversal
techniques which are used by geo-physicists for the reconstruction of seismic events
but are not optimization based, see e.g. [22].
In our numerical experiment we set Ω = (0, 1)2, I = [0, 1.5], Ωc = [3/16, 13/16]2 and
the patches Pi have the size 8−2. The time dependent source functions are chosen as

f1(t, ts, σ, k) =
1√
2πσ

sin

(
k(t− ts)

σ

)
e−

1
2 ( t−tsσ )

2

,

f2(t, ts, σ) =
2√

3σ
√
π

(
1−

(
t− ts
σ

)2
)
e−

1
2 ( t−tsσ )

2

.

The first one is a Gabor wavelet and the second one a Ricker wavelet. In our con-
crete example we intend to reconstruct two point sources and their time-dependent
intensities, in particular

(9.9) u†(t) = f1(t, 0.3, 0.1, 2) δx1
+ f2(t, 0.4, 0.1) δx2

with x1 = (0.3, 0.7) and x2 = (0.6, 0.5). The exact intensities and positions are
depicted in Figure 2. In Figure 3 four snapshots of the exact state y† = S(u†) are

0 0.5 1 1.5
−4

−2

0

2

4

time

(0.3, 0.7)

(a) f1(t, 0.3, 0.1, 2) and x1

0 0.5 1 1.5
−4

−2

0

2

4

time

(0.6, 0.5)

(b) f2(t, 0.4, 0.1) and x2

Fig. 2: Exact intensities and positions

shown. The exact state consists of two traveling waves originating from the two point
sources. During the evolution of the two waves they interfere with each other. As can
be seen in Figure 4 the waves arrive at the observation patches at different times. In
this figure we also depict the observations (without noise) and the noisy observations,
which are used for the reconstruction. The artificial noisy seismograms are given by
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Fig. 3: Snapshots of the exact state y† at t = 0.12, 0.5, 0.7, 0.94

zj = Oj(y†)+oj where oj ∈ L2(I) is the background noise. For this example we chose
a quite high noise level, in particular the relative noise level amounts to∑M

j=1 ‖oj‖L2(I)∑M
j=1 ‖Oj(y†)‖L2(I)

≈ 0.4.

Figure 5 shows the results of the reconstruction process. In Figure 5a we can see
that the total variation measure |ū| of the reconstruction ū consists of two point
sources which are close to the exact ones. Figure 5b shows that these positions
correlate with the positions where the function ‖p̄(x)‖L2(I) attains its maximum on
Ωc. The reconstructions of the time-dependent intensities fi(t) are depicted in Figure
5c and Figure 5d. Their shapes are captured well, but their magnitudes are too small
compared to the original ones. This is caused by the structure of our regularization
term which regularizes simultaneously in space and time with the same weight α. The
regularization parameter had to be chosen sufficiently large in order to avoid spurious
reconstructions in space caused by the noise. A possible remedy is a post-processing
step consisting of solving problem (9.2) where the positions of the point sources are
fixed at the reconstructed values and (9.5) is chosen as the regularization term for the
optimization variables ui ∈ L2(I). In summary, our numerical results give evidence
that the proposed formulation produces reconstructions with the desired features.
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Fig. 4: Exact and noisy observation (green: exact, blue:noisy)
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(a) Support of |ū|

Ωc

(b) ‖p̄(x)‖L2(I) on Ω
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(c) Reconstruction of f1 and x1
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(d) Reconstruction of f2 and x2

Fig. 5: Results of the reconstruction process
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