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1 Introduction The present work aims at investigating the Hamilton-
Jacobi-Bellman (HJB) approach for a minimal time problem with impulsive controls.
The problem is based on the set of trajectories which are solutions to the following
impulsive controlled dynamical system:
(1.1) ẏ(t) = f0(y(t), u(t), α(t)) +

m∑
k=1

fk(y(t), u(t), α(t))u̇k(t) for a.e. t ∈ (0,+∞),

y(0) = x, u(0) = u0,

where (fk)k=0,...,m are continuous functions, y ∈ Rn is the state variable and two
inputs are involved in this controlled system: the input u is a function of bounded
variation (BV) taking values in a compact subset U of Rm and the input α is a
measurable function taking values in a compact subset A of Rp.

Given a closed target set C ⊂ Rn, for any initial data (x, u0) ∈ Rn × U , consider
the minimal time for the trajectories satisfying (1.1) to reach the target C, i.e. let us
introduce the function

(1.2) T (x, u0) := inf{t : y(t+) ∈ C, y satisfies (1.1)}.

This definition of T is still formal since the solutions of (1.1) are not yet properly
defined. They will be defined rigorously in Section 3.

To motivate this study, let us consider the following example to show the potential
of impulsive controls.

Example 1. For the following system without impulsive controls:

ẏ(t) = −y(t) + u(t),

where the control u takes value in [−1, 1], we have

y(t) = y(0)e−t + e−t
∫ t

0

u(s)ds,
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and the following estimate holds:

|y(t)| ≤ (|y(0)|+ t)e−t.

If we take the target C = {2}, then for the initial data y(0) = 1, the target is not
reachable.

Now if we replace the control u by an impulsive control and consider

ẏ(t) = −y(t) + u̇(t),

then

y(t) = e−ty(0) + u(t)−
∫ t

0

es−tu(s)ds.

In this case with the same target C = {2} and the same initial data y(0) = 1, the
target can be reached at finite time. For example, by taking τ > 0, u : [0, τ ]→ R such
that

u(t) = −1 for t ∈ [0, τ) and u(τ) = 1,

the target is reached at τ .

The dynamics of the system (1.1) depend not only on the value of the controls u
and α, but also on the derivative of u. It is known that if u is absolutely continuous,
its derivative is integrable and therefore an absolutely continuous solution of (2.1)
can be defined in the sense of Carathéodory. However, here u is a BV function, which
is discontinuous, and its derivative is interpreted as a distribution. According to the
decomposition properties of BV functions, u can only have countably many disconti-
nuities of jump type ([1, Corollary 3.33]) and the derivative of u gives an impulsive
character to the dynamical system (1.1) whose solution has jump discontinuities as
well. The main difficulty to define the solution of (1.1) lies in the fact that fk depends
on y and u which implies that the magnitudes of the jumps of the trajectories are
determined implicitly.

Impulsive dynamical systems arise in the modeling of problems in various do-
mains such as Lagrangian mechanical system see [8, 17], neuroscience [10], resource
management [13] and the reference therein. Several studies have been devoted to the
definition of a solution concept for impulsive systems. The technique of graph comple-
tion was firstly used in [19] and formalized later in [7, 12, 8] to define the jumps of the
trajectories driven by the multiplication of the derivative of a discontinuous function
with a state-dependent function. This graph completion concept has also been gener-
alized to measure driven differential inclusions in [20, 22]. Roughly speaking, a change
of time scale W : [0,+∞) → [0,+∞) is introduced such that at each moment t of a
jump of u, a fictive time interval is created in the new time scale. Subsequently an
arc that connects the left and right limits of u at t is specified. This graph completion
process leads to the following reparametrized system:

(1.3)

 Ż(s) =
m∑
k=0

Fk(Z(s), α(γ0(s)))γ̇k(s), a.e. s ∈ (0,+∞),

Z(0) = (x, u0),
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where Z(·) := (y(·), u(·)) and (γ0, . . . , γm)(·) is the graph completion of u. For this
system, no jumps occur in the dynamics and (γ0, . . . , γm)(·) is absolutely contin-
uous. Then the solution to the reparametrized system can be understood in the
Carathéodory sense, and the trajectory y of (1.1) is defined by the following equality:

(y(·), u(·)) = Z(W(·)).

We point out that the definition depends on the family of arcs that are chosen to
complete the graph of u in the new time scale, as studied in [12, 8]. Different choices
of graph completion may lead to different discontinuous trajectories. Only in some
special cases (commutative cases), the definition is independent of this choice. In the
present work, we consider only the graph completion with linear arcs, which are called
canonical graph completions.

Once a precise definition of discontinuous trajectories is obtained, the minimal
time problem can be rigorously defined. The impulse control problem has been widely
studied, see [4, 3] and the references therein. Optimality conditions for such problems
have been studied in [16, 21] by applying the graph completion method, and recently
in [2] with a more general class of impulsive controls. In [4, 3], the magnitudes of
the jumps are considered as input controls, and this gives rise to quasi-variational
inequalities which are analyzed by the theory of viscosity solutions. The problem
with impulsive controls as the derivatives of absolutely continuous functions has been
studied in [15] via a dynamical programming approach. The HJB approach for the
minimal time problem that is studied in this paper has not been investigated in
previous publications. Concerning the numerical results, this may be the first work
which realizes impulsive controls. Earlier numerical results for impulsive systems with
continuous controls can be found in [9, 18].

The minimal time function satisfies a classical Dynamic Programming Principle
(DPP), but it is quite delicate to derive the HJB equation from the DPP due to
the presence of the derivatives of u. Thanks to the reparametrization process, the
original problem (1.2) can be turned into an equivalent control problem based on the
reparametrized dynamical system: for any x ∈ Rn, u0 ∈ U , consider

(1.4) S(x, u0) := inf{s : Z(s) ∈ C × U, Z satisfies (1.3), Z(·) ⊂ Rn × U}.

This is a standard minimal time problem with state constraints. Once this problem
is solved with uop an optimal control, the minimal time T can be recovered by

T (x, u0) = γop0 (S(x, u0)),

where γop is the canonical graph completion of uop.
Finally, to solve the reparametrized control problem (1.4) we consider a level set

approach introduced in [5] for reachability problems under state constraints. This
approach solves the problem by computing a HJB equation which does not rely on a
controllability assumption.

The paper is organized as follows. The framework of problem is introduced in
Section 2. Section 3 gives the precise definition of solutions of the impulsive systems
based on the graph completions. In Section 4, the reparametrized control problem
is discussed. Section 5 is devoted to the level set approach for the reparametrized
control problem and the characterization of the backward reachable sets is obtained.
An application on pumping of swing is given in Section 6.

Notations. Throughout the paper, for any function f : [0,+∞) → Rd, f(t−)
stands for the left limit of f at t > 0 and f(t+) stands for the right limit of f at t ≥ 0.
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2 Setting of the problem Let U be a compact subset of Rm and A be
a compact subset of Rp. For any x ∈ Rn, u0 ∈ U , consider the following controlled
dynamical system:
(2.1) ẏ(t) = f0(y(t), u(t), α(t)) +

m∑
k=1

fk(y(t), u(t), α(t))u̇k(t) for a.e. t ∈ (0,+∞),

y(0) = x, u(0) = u0.

Here y is the state variable, and u = (u1, . . . , uk) and α are the control variables.
Given a constant C1 > 0, let us define the sets

A := L∞(0,∞;A)

and

U :=
{
u ∈ BV (0,∞;U) : V∞0 (uk) ≤ C1, k = 1, . . . ,m

}
,

where BV (0,+∞;U) denotes the set of functions from [0,+∞) into U with bounded
total variations, and V∞0 (uk) denotes the total variation of the function uk on the
interval [0,+∞).

For i = 0, . . . ,m, we make the following assumptions for fi:
(H1) fi : Rn×U×A→ Rn is continuous in all variables and bounded by a positive

constant M . Moreover, there exists a constant L > 0 such that

|fi(x, u, a)− fi(z, u, a)| ≤ L|x− z|, ∀x, z ∈ Rn, u ∈ U, a ∈ A.

3 Impulsive control system At first the concept of solution to the
impulsive control system (2.1) is specified. The idea is to add an extra state variable
z ∈ Rm and the additional equation

ż(t) = u̇(t) for a.e. t ∈ (0,+∞).

Then by introducing the variable Y =

(
y
z

)
and the initial data X =

(
x
u0

)
, the

system (2.1) is turned into

(3.1)

 Ẏ (t) =

(
ẏ(t)
ż(t)

)
=

(
f0(Y (t), α(t))

0

)
+
∑m
k=1

(
fk(Y (t), α(t))

ek

)
u̇k(t),

Y (0) = X,

where (ek)k=1,...,m is the Euclidean basis of Rm.
Following [6, 12], the definition of solutions to (3.1) is based on the concept of

graph completion. For any u ∈ U , let T be the set of all the discontinuity points of u
which is at most countable. We define

(3.2) W(t) := t+

m∑
k=1

V t0 (uk), for t ∈ [0,+∞),

where V t0 (uk) denotes the total variation of uk on [0, t] which is right continuous. Then
W is strictly increasing and continuous on [0,+∞)\T . We define the canonical graph
completion of u as a continuous path γ = (γ0; γ1, . . . , γm) : [0,+∞) → [0,∞) × Rm
such that
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• for s =W(t−) with t ∈ [0,+∞)\T ,

γ(s) = (t;u(t));

• for s ∈ [W(t−),W(t+)], t ∈ T ,

γ(s) =

(
t;u(t−) +

u(t+)− u(t−)

W(t+)−W(t−)
(s−W(t−))

)
.

The path γ leads to a reparametrization of the graph of u, and to the following
reparametrized dynamical system
(3.3) Ż(s) = F0(Z(s), α(γ0(s)))γ̇0(s) +

m∑
k=1

Fk(Z(s), α(γ0(s)))γ̇k(s), a.e. s ∈ (0,+∞),

Z(0) = X,

which has a unique absolutely continuous Carathéodory solution.
Now we are prepared to give the definition of the solution to (3.1).
Definition 3.1. For given u ∈ U , α ∈ A, the solution to (3.1) is defined as

Y (t) := Z(W(t)), ∀ t ∈ [0,+∞),

where Z is the solution to (3.3) and W is defined as in (3.2).
Remark 3.2. We mention that any BV function u ∈ U can be decomposed as

u = uac + uj + uc where uac is absolutely continuous, uj is a jump function and uc
is a cantor function (see [1] for more details). The graph completion technique turns
the jump part uj and the cantor part uc into absolutely continuous functions.

Given a closed target set C ⊂ Rn, the minimal time function T can now be defined
as follows: for any X ∈ Rn × U ,

(3.4) T (X) = inf{t : Y (t+) ∈ C × U, (Y, u, α) satisfies (3.1), u ∈ U , α ∈ A}.

Remark 3.3. Remark that if u is right continuous then W is right continuous,
which implies that Y is right continuous. We point out that for any u ∈ U , u can be
replaced by its right continuous good representative without changing the definition of
the minimal time function T . See [1] for more details on the good representatives of
BV functions.

The following result concerns the existence of optimal controls.
Theorem 3.4. Assume (H1). If Fk, k = 0, . . . ,m are independent of a, then

for any X ∈ Rn × U such that T (X) < +∞ the minimal time problem (3.4) has an
optimal solution. To prove this theorem, we need the following result ([12, Theorem
4.2]).

Lemma 3.5. Under the assumptions of Theorem 3.4, let (un) be a sequence in U
and let u ∈ U . Assume that for some T > 0,
(i) limn→∞ un(t) = u(t), for a.e. t ∈ [0, T ];
(ii) limn→∞ V T0 (ukn) = V T0 (uk), ∀ k = 1, . . . ,m.
Let Yn and Y be the solutions to (3.1) on [0, T ] corresponding to the controls un and
u respectively. Then

lim
n→+∞

Yn(t) = Y (t),

for each t ∈ [0, T ] where u is continuous. The proof of theorem 3.4 is given next.
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Proof. For any X ∈ Rn × U with T (X) < +∞, there exist un ∈ U , tn ≥ 0 such
that (Yn, un) satisfies (3.1) with

Yn(tn) ∈ C × U, tn → T (X).

For any T̃ > T (X), we have un ∈ BV (0, T̃ ;U). Since un is bounded in BV (0, T̃ ;U),
using the fact that the embedding BV (0, T̃ ;U) ↪→ Lp(0, T̃ ;U) is compact for 1 ≤ p <
∞ ([1, Corollary 3.49]), there exists u ∈ L1(0, T̃ ;U) such that

un → u in L1(0, T̃ ;U),

up to a subsequence. Then we obtain that

un → u a.e. in [0, T̃ ].

Moreover, since BV (0, T̃ ;U) is a Banach space and a subspace of L1(0, T̃ ;U), we
deduce that un → u in BV (0, T̃ ;U). Thus,

lim
n→∞

V T0 (ukn) = V T0 (uk), ∀ k = 1, . . . ,m.

Let Y be the solution to (3.1) corresponding to the control u, then by lemma 3.5

lim
n→+∞

Yn(t) = Y (t),

for each t ∈ [0, T̃ ] where u is continuous.
Due to remark 3.3, without loss of generality, suppose that un and u are right

continuous. Then Yn and Y are right continuous. We construct the new trajectories
Ỹn as follows:

Ỹn(t) = Yn(t), for 0 ≤ t ≤ tn,

and Ỹn satisfies

˙̃Yn(t) = f0(Ỹn(t), un(tn)), for t > tn.

Since f0 is bounded by M , we have

|Ỹn(t)− Ỹn(tn)| ≤M |t− tn|, for t ≥ tn.

Let τ > T (X) such that Y is continuous at τ and

|τ − T (X)| < ε, |Y (τ)− Y (T (X))| < ε.

Since Ỹn(τ)→ Y (τ), then let n be big enough such that

|Ỹn(τ)− Y (τ)| < ε, |tn − T (X)| < ε, tn < τ.

Finally we have

|Ỹn(tn)− Y (T (X))| ≤ |Ỹn(tn)− Ỹn(τ)|+ |Ỹn(τ)− Y (τ)|+ |Y (τ)− Y (T (X))|
≤ 2(M + 1)ε,

for any ε > 0. Then we deduce that Y (T (X)) ∈ C since C is closed.
The above result guarantees existence of optimal controls if the control system

is independent of α. In case the dynamics depend on α one has to cope with lack
convexity due to the nonlinearity of fk, k = 0, . . . ,m. In the following sections, we
nevertheless allow the appearance of α for the derivation of the HJB theory.
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4 Reparametrized control problem Let Γ be the set of all the graph
completions:

Γ = {γ : [0,∞)→ [0,∞)× U : γ is the canonical graph completion of u, u ∈ U}.

We define the set of state constraints K = Rn × U and the set of admissible
trajectories

Φ[X] := {Z : [0,+∞)→ K, (Z, γ, α) satisfies (3.3), γ ∈ Γ, α ∈ A}.

The reparametrized control problem is the following: given X ∈ K,

(4.1) S(X) := inf {s : Z(s) ∈ C , Z(·) ∈ Φ[X]} .

We now discuss the relation between the original problem and the reparametrized
problem.

Theorem 4.1. Assume (H1) and assume in addition that U is convex. Then
for any X ∈ K, one of the following holds.

• T (X) = S(X) = +∞.
• If T (X) < +∞ and uop ∈ U and αop ∈ A are optimal controls for problem

(3.4) at X, then one has

T (X) = γop0 (S(X)),

where γop is the corresponding graph completion of uop.
Proof. For any X ∈ K, we consider two cases: T (X) = +∞ and T (X) < +∞.
Case 1: T (X) = +∞.
If S(X) 6= +∞, then for any ε > 0, there exists some Zε ∈ Φ[X] with the

associated control αε ∈ A, γε ∈ Γ such that

Zε(S(X) + ε) ∈ C.

Let uε ∈ U and let γε be the graph completion of uε. Then Y ε(·) = Zε(W(·)) satisfies
(3.1) with the control uε and αε and

Y ε(γε0(S(X) + ε)) ∈ C.

Thus, T (X) ≤ γε0(S(X) + ε) < +∞ which is a contradiction. We then deduce that

S(X) = +∞.

Case 2: T (X) < +∞.
Let yop be the optimal trajectory satisfying (2.1) associated with the controls uop

and αop, Y op := (yop, uop) and Zop be the solution to (3.3) associated with γop and
αop. Then it holds

Zop(W(t−)) = Y op(t), ∀ t ∈ [0,+∞).

Moreover, since uop(t) ∈ U for all t ∈ [0,+∞) and U is convex, it follows that

γopk (s) ∈ U, ∀ s ∈ [0,+∞).
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We then deduce that

Zop(s) ∈ K, ∀ s ∈ [0,+∞).

Thus,

S(X) ≤ W(T (X)−),

i.e.

γop0 (S(X)) ≤ T (X).

If γop0 (S(X)) < T (X), let Z̃ be the optimal trajectory for the problem (4.1) at X with
the controls γ̃ and α̃, then (ỹ(·), ũ(·)) := Z̃(W(·−)) satisfies (2.1) and ỹ reaches the
target C at time γop0 (S(X)). It is a contradiction to the definition of T (X). We then
conclude that

γop0 (S(X)) = T (X).

Thanks to the above result, the problem of computing T turns into the problem of
computing S.

5 Characterization of the capture basin In the absence of con-
trollability conditions, S can be discontinuous on some regions which are not reachable
for any of the admissible trajectories. To get the characterization result of S, some
extra conditions are needed on the boundary of the reachable sets. In [5], a level
set approach has been studied for the minimal time problem without jumps in the
controls which leads to a characterization of the backward reachable sets. We shall
follow this idea to transfer the problem (4.1) into the characterization of the capture
basin of the target.

For any s ≥ 0, let us define the capture basin of the target C at time s:

CapC(s) := {X ∈ Rn+m : ∃Z(·) ∈ Φ[X] such that Z(s) ∈ C}.

Consider a Lipschitz continuous function ϕ : Rn+m → R satisfying

X ∈ C ⇔ ϕ(X) ≤ 0.

The level set approach leads to introduce the following function: for any s ∈ [0,+∞),
X ∈ Rn+m,

(5.1) v(s,X) := inf{ϕ(Z(s)) : Z(·) ∈ Φ[X]},

with the convention inf ∅ = +∞. Then the capture basin CapC(·) is characterized by

CapC(s) = {X : v(s,X) ≤ 0}, for s ≥ 0.

Note that v is the value function of a Mayer’s optimal control problem, and hence
it can be characterized by a Hamilton-Jacobi-Bellman equation. But in presence of
state constraints and in the absence of controllability conditions, it is not evident
to characterize v directly. Following [5, 14], we take a Lipschitz continuous function
g : Rn+m → R such that

g(X) ≤ 0 ⇔ X ∈ K, whereX ∈ Rn+m.
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The function g can be taken as the signed distance function for example. Consider
the new control problem

w(s,X) := inf
γ∈Γ, α∈A

{
max

(
ϕ(Z(s)), max

θ∈[0,s]
g(Z(θ))

)
: (Z, γ, α) satisfies (3.3)

}
,

where compared to (5.1) the constraints on the control are made explicit.
Then we have the following result.
Theorem 5.1. For any s ≥ 0, the capture basin is given by

(5.2) CapC(s) = {X : v(s,X) ≤ 0} = {X : w(s,X) ≤ 0}.

Further,

(5.3) S∗(X) = inf{s ≥ 0 : w(s,X) ≤ 0},

where S∗ is the lower semi-continuous envelop of S.
Proof. We refer to [5] for the proof of (5.2).
Turning to the verification of (5.3), let X ∈ Rd, we set s̃ = inf{s ≥ 0 : w(s,X) ≤

0}. If s̃ = +∞, then S∗(X) ≤ s̃. Otherwise, if s̃ < +∞, the continuity of w implies
that for any ε > 0 there exists ε′ ∈ [0, ε] such that

w(s̃+ ε′, X) ≤ 0.

Thus, X ∈ CapC(s̃+ ε′) which implies that

S(X) ≤ s̃+ ε′ ≤ s̃+ ε.

The arbitrary choice of ε implies that S(X) ≤ s̃. We then deduce that S∗(X) ≤ s̃.
We proceed to prove that s̃ ≤ S∗(X). Without loss of generality, suppose that

S∗(X) < +∞. Let Xn ∈ Rd, Xn → X such that

S∗(X) = lim
Xn→X

S(Xn), S(Xn) < +∞.

For any ε > 0, there exists εn ∈ [0, ε] such that Xn ∈ CapC(S(Xn) + εn), i.e.

w(S(Xn) + εn, Xn) ≤ 0.

Using the fact that εn → ε′ up to a subsequence where ε′ ∈ [0, ε] and w is continuous,
we obtain

w(S∗(X) + ε′, X) ≤ 0,

which implies that

s̃ ≤ S∗(X) + ε′ ≤ S∗(X) + ε.

The arbitrary choice of ε then implies that s̃ ≤ S∗(X).
Finally, we conclude that S∗(X) = s̃.
Remark 5.2. In general, the minimal time function S is not lower semi-continuous.

However, if the set of dynamics is convex everywhere, then lower semi-continuity is
guaranteed.
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Remark 5.3. The continuity of w, which is proved later in Proposition 5.7, is
used in the above proof of Theorem 5.1. We point out that the proof of Proposition
5.7 is independent of Theorem 5.1.

In (3.3), it suffices that γ is almost everywhere differentiable for the control system
to be well defined. However, in the Hamiltonian which will be introduced later we
need that γ̇ is well defined everywhere. We set

Θ := {lim(γ̇0(sn), . . . , γ̇m(sn)) : sn → s, s ∈ (0,+∞), sn 6∈ Ωγ},

where Ωγ is the set of points in (0,+∞) at which γ fails to be differentiable. The
closed convex hull of Θ follows the concept of Clark’s derivation.

Proposition 5.4. Θ = {(η0, . . . , ηm) ∈ Rm+1 : η0 ≥ 0,
∑m
k=0 |ηk| = 1}.

Proof. Let us set Ψ := {(η0, . . . , ηm) ∈ Rm+1 : η0 ≥ 0,
∑m
k=0 |ηk| = 1}.

At first, we prove that Θ ⊂ Ψ. For any u ∈ U , let γ ∈ Γ be the graph completion
of u. For each s ∈ Ωγ , if s =W(t) for some t ∈ (0,+∞), it holds that

γ̇0(s) =
1

Ẇ(t)
=

1

1 +
∑m
k=1 |u̇k(t)|

, γ̇k(s) = γ̇0(s)u̇k(t), for k = 1, . . . ,m,

which implies that

0 < γ̇0(s) ≤ 1,

m∑
k=0

|γ̇k| = 1.

If, on the other hand, s ∈ (W(t−),W(t+)) for some t ∈ (0,+∞) where u jumps
at time t, we have

γ̇0(s) = 0, |γ̇k(s)| = |uk(t+)− uk(t−)|∑m
i=1 |V t

+

0 (ui)− V t−0 (ui)|
≤ 1, for k = 1, . . . ,m,

which implies that

m∑
k=0

|γ̇k| = 1.

Finally, by the definition of Θ and the density of Ωγ in [0,∞), we conclude that
Θ ⊂ Ψ.

We proceed to prove that Ψ ⊂ Θ. Given any (η0, . . . , ηm) ∈ Ψ, we claim that
there exists u ∈ U such that its graph completion γ satisfies γ̇k(s0) = ηk, k = 0, . . . ,m
for some s0 > 0. If η0 > 0, let δ > 0, t0 > δ and

uk(t) :=

{ ηk
η0
t if t ∈ [t0 − δ, t0 + δ],

0 otherwise,

for k = 1, . . . ,m. Then u = (u1, . . . , uk) satisfies

γ̇0(s0) =
1

1 +
∑m
k=1 |u̇k(t0)|

= η0, γ̇k(s0) = γ̇0(s0)u̇k(t0) = γk, for k = 1, . . . ,m,

where s0 =W(t0).
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Otherwise η0 = 0. Let t0 > 0 and

uk(t) :=

{
ηk for t ≥ t0,
0 for t < t0,

for k = 1, . . . ,m. Then for any s0 ∈ (W(t−0 ),W(t+0 )), u = (u1, . . . , uk) satisfies

γ̇0(s0) = 0, γ̇k(s0) =
ηk∑m
i=1 |ηi|

= ηk, for k = 1, . . . ,m.

It is then deduced that Ψ ⊂ Θ, which ends the proof.
We introduce the Hamiltonian H : Rn+m × Rn+m → R

H(X, p) := sup
a∈A, η∈Θ

{
−p ·

(
F0(X, a)η0 +

m∑
k=1

Fk(X, a)ηk

)}
.

The following result gives the characterization of w.
Theorem 5.5. Assume that (H1) holds. Then w is locally Lipschitz continuous

and it is the unique viscosity solution to
(5.4){

min {∂sw(s,X) +H(X,Dw(s,X)), w(s,X)− g(X)} = 0 in (0,+∞)× Rn+m,
w(0, X) = max{ϕ(X), g(X)} in Rn+m.

Before giving the proof for Theorem 5.5, we need the following dynamical program-
ming principle (DPP) for w.

Proposition 5.6 (DPP). Assume (H1). For all s ≥ 0, X ∈ Rn+m, h ≥ 0, w
satisfies

w(s,X) = inf

{
max

(
w(s− h, Z(h)), max

θ∈[0,h]
g(Z(θ))

)
: Z satisfies (3.3)

}
.

The first consequence of the DPP is the local Lipschitz continuity of w.
Proposition 5.7. If (H1) holds, then w is locally Lipschitz continuous.
Proof. For any s ≥ 0, we start by proving the Lipschitz continuity of w(s, ·). Let

X1, X2 ∈ Rn+m, and denote for any α ∈ A, γ ∈ Γ, by Zα,γXi
the solution to (3.3) with

the control α, γ and the initial position Xi for i = 1, 2. By the Lipschitz continuity of
the dynamics and Gronwall’s lemma, we have

|Zα,γX1
(s)− Zα,γX2

(s)| ≤ eLs|X1 −X2|.

By the definition of w and the inequalities

inf Aα − inf Bα ≤ sup(Aα −Bα),

max{A,B} −max{C,D} ≤ max{A− C,B −D},

we obtain

|w(s,X1)− w(s,X2)|

≤ sup
α∈A,γ∈Γ

max

(
|ϕ(Zα,γX1

(s))− Zα,γX2
(s)|, max

θ∈[0,s]
|g(Zα,γX1

(θ))− g(Zα,γX2
(θ))|

)
≤ max{Lϕ, Lg}eLs|X1 −X2|,
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where Lϕ and Lg are the Lipschitz constants of ϕ and g respectively.
Now for any X ∈ Rn+m, we proceed to show the local Lipschitz continuity of

w(·, X). Let s1, s2 ≥ 0, assume without loss of generality that s1 ≥ s2. By the DPP,
we obtain

|w(s1, X)− w(s2, X)|

=

∣∣∣∣ inf
α∈A,γ∈Γ

max

(
w(s2, Z(s1 − s2)), max

θ∈[0,s1−s2]
g(Z(θ))

)
−max (w(s2, X), g(X))

∣∣∣∣
≤ sup
α∈A,γ∈Γ

max

(
|w(s2, Z(s1 − s2))− w(s2, X)|, max

θ∈[0,s1−s2]
|g(Z(θ))− g(X)|

)
≤ max{max{Lϕ, Lg}eLs2 , Lg}(M +mMC1)|s1 − s2|,

which completes the proof. Now we recall the definition of viscosity solution to
(5.4).

Definition 5.8. Let u : [0,+∞)× Rn+m → R.
• u is a supersolution to (5.4) if u is lower semi-continuous and for any (s,X) ∈

(0,+∞) × Rn+m, φ ∈ C1((0,+∞) × Rn+m) such that u − φ attains a local
minimum at (s,X), it holds that

min {∂sφ(s,X) +H(X,Dφ(s,X)), u(s,X)− g(X)} ≥ 0.

• u is a subsolution to (5.4) if u is upper semi-continuous and for any (s,X) ∈
(0,+∞) × Rn+m, φ ∈ C1((0,+∞) × Rn+m) such that u − φ attains a local
maximum at (s,X), it holds that

min {∂sφ(s,X) +H(X,Dφ(s,X)), u(s,X)− g(X)} ≤ 0.

• u is a viscosity solution to (5.4) if u is both a supersolution and a subsolution
and u satisfies the initial conditions

u(0, X) = max{ϕ(X), g(X)}.

We now give the proof of Theorem 5.5.
Proof. At first, we will check the supersolution property of w. For any (s,X) ∈

(0,+∞)× Rn+m, by the DPP

w(s,X) ≥ inf
α∈A,γ∈Γ

w(s− h, Z(h)), ∀h ≥ 0,

and

w(s,X) ≥ max
θ∈[0,h]

g(Z(θ)) ≥ g(X).

For each ε > 0, there exists Zε with the associated control (αε, γε) such that

w(s,X) ≥ w(s− h, Zε(h))− hε, ∀h ≥ 0.

Then for any φ ∈ C1((0,+∞) × Rn+m) such that w − φ attains a local minimum at
(s,X), we have

φ(s,X)− φ(s− h, Zε(h)) ≥ −hε, ∀h ≥ 0.
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Thus,

1

h

∫ h

0

[
∂sφ(s− h+ τ, Zε(τ))−Dφ(s− h+ τ, Zε(h)) · Żε(τ)

]
dτ ≥ −ε, ∀h > 0,

i.e. ∀h > 0

1

h

∫ h

0

[
∂sφ(s− h+ τ, Zε(τ))−Dφ(s− h+ τ, Zε(h)) ·

m∑
k=0

Fk(Zε(τ), αε(τ))γ̇εk(τ)

]
dτ

≥ −ε.

Using the fact that αε(τ) ∈ A where A is compact, we deduce by letting h→ 0+ that

∂sφ(s,X)−Dφ(s,X) ·
m∑
k=0

Fk(X, aε)ηεk ≥ −ε,

where aε ∈ A and (ηε0, . . . , η
ε
m) ∈ co Θ. The above inequality implies that

∂sφ(s,X) + sup
a∈A,η∈co Θ

{−Dφ(s,X)) ·
m∑
k=0

Fk(X, a)ηk} ≥ −ε, ∀ ε > 0,

which is equivalent to

∂sφ(s,X) +H(X,Dφ(s,X)) ≥ −ε, ∀ ε > 0.

The arbitrary choice of ε implies that

∂sφ(s,X) +H(X,Dφ(s,X)) ≥ 0,

which concludes the supersolution property.
We proceed to check the subsolution property of w. For any (s,X) ∈ (0,+∞)×

Rn+m, if w(s,X) ≤ g(X), then the property is trivial to prove. Otherwise, there
exists some small enough h > 0 such that for all Z(·) satisfying (3.3)

(5.5) w(s,X) > max
θ∈[0,h]

g(Z(θ)).

Then by the DPP,

w(s,X) ≤ max

(
w(s− h, Z(h)), max

θ∈[0,h]
g(Z(θ))

)
,

for all all Z(·) satisfying (3.3). Together with (5.5), it follows that

(5.6) w(s,X) ≤ w(s− h, Z(h)).

For each a ∈ A, η ∈ Θ, we set α(·) ≡ a. The aim is to find u ∈ U and γ ∈ Θ such that

lim
h→0+

γ(h)− γ(0)

h
= η.

Consider the following two cases.
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Case 1: η0 = 0. In this case, 0 ∈ T , then we can take any u ∈ U with

uk(0+)− uk(0−) =
ηk∑m
i=1 |ηi|

= ηk, ∀ k = 1, . . . ,m.

Thus, γ̇k(0+) = ηk for all k = 0, . . . ,m.
Case 2: η0 > 0. In this case, no jump occurs at time 0. We then take any u ∈ U

with

u̇k(0+) =
ηk
η0
, ∀ k = 1, . . . ,m,

which ensures γ̇k(0+) = ηk for all k = 0, . . . ,m.
Now let Zα,γ be the solution to (3.3) with the controls α, γ constructed as above.

For any φ ∈ C1((0,+∞)×Rn+m) such that w−φ attains a local maximum at (s,X),
together with (5.6) we have

φ(s,X) ≤ φ(s− h, Zα,γ(h)), ∀h ≥ 0,

i.e. ∀h > 0

1

h

∫ h

0

[
∂sφ(s− h+ τ, Zα,γ(τ))

−Dφ(s− h+ τ, Zα,γ(h)) ·
m∑
k=0

Fk(Zα,γ(τ), a)γ̇k(τ)
]
dτ ≤ 0.

Up to a subsequence, it holds that γ̇k(hn)→ ηk for any k = 0, . . . ,m. Then we have

∂sφ(s,X)−Dφ(s,X) ·
m∑
k=0

Fk(x, a)ηk ≤ 0,

for all a ∈ A, η ∈ Θ. Hence,

∂sφ(s,X) +H(X,Dw(s,X)) ≤ 0,

which concludes the subsolution property.
The definition of w implies that w satisfies the initial condition. The uniqueness

of v is a direct result of the following comparison principle. This completes the proof.

Theorem 5.9 (Comparison principle). Assume (H1). Let w1, w2 : [0,∞) ×
Rn+m be respectively a subsolution and a supersolution to (5.5) and w1(0, X) ≤
w2(0, X) for all X ∈ Rn+m. Then

w1 ≤ w2 in [0,∞)× Rn+m.

Proof. The definition of supersolution gives that

∂sφ(s,X) +H(X,Dw2(s,X)) ≥ 0 and w2(s,X) ≥ g(X) in [0,∞)× Rn+m.

The definition of subsolution leads to

∂sφ(s,X) +H(X,Dw1(s,X)) ≤ 0 or w1(s,X) ≤ g(X) in [0,∞)× Rn+m.

If w1(s,X) ≤ g(X), then w1(s,X) ≤ g(X) ≤ w2(s,X). Otherwise, we conclude that
w1 ≤ w2 by [3, Theorem III.3.7].
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6 Applications We consider the following time optimal control of a rider-
and-swing system discussed in [17]. This system is modeled as a pendulum with a
massless rope. The state variable is the angle θ of the pendulum with the vertical,
and the control variable is the length of the pendulum `. Then the state equation is

(6.1) θ̈(t) +
2 ˙̀(t)θ̇(t)

`(t)
+
g sin(θ(t))

`(t)
= 0, for t ∈ (0,∞),

where `(t) ∈ [L−, L+]. Given a target C as a closed subset of R, the minimal time
problem is the following:

(6.2) T (θ0, `0) := inf {t : θ(t) ∈ C, (θ, `) satisfies (6.1), (θ, `)(0) = (θ0, `0)}.

By introducing Y = (y1, y2, y3) = (θ, θ̇, `), the equation (6.1) is reformulated as
ẏ1 = y2

ẏ2 = − g sin(y1)
y3

− 2y2
y3

˙̀

ẏ3 = ˙̀.

Then the reparametrized system is the following

(6.3)


ż1(s) = z2(s)γ̇0(s)

ż2(s) = − g sin(z1(s))
z3(s) γ̇0(s)− 2z2(s)

z3(s) γ̇1(s)

ż3(s) = γ̇1(s),

where (γ0, γ1) is the canonical graph completion of `. As defined in (4.1), for any
X ∈ R3 the reparametrized control problem is

S(X) := inf{s ≥ 0 : Z(0) = X, z1(s) ∈ C, z3(τ) ∈ [L−, L+], ∀ τ ∈ [0, s]}.

Let ϕ, g : R3 → R be the signed distance function to C × R2 and R2 × [L−, L+]
respectively. Then w is defined as

w(s,X) := inf

{
max

(
ϕ(Z(s)), max

θ∈[0,s]
g(Z(θ))

)
: Z satisfies (6.3)

}
.

We solve the following HJB equation to obtain the 0-sublevel set of w:{
min {∂sw(s,X) +H(X,Dw(s,X)), w(s,X)− g(X)} = 0 for s ∈ (0,+∞), X ∈ R3,
w(0, X) = max{ϕ(X), g(X)} for X ∈ R3,

where the Hamiltonian H : R3 × R3 → R is defined by

H(X, p) := sup
η=(η0,η1)∈Θ

{
−p ·

(
x2η0,−

g sin(x1)

x3
η0 −

2x2

x3
η1, η1

)}
.

In the first simulation, we take L− = 9, L+ = 11 and the target set

C × R2 = {(x1, x2, x3) : x1 ≥ π/3}.

Let ϕ and g be the following:

ϕ(x) = min{π
3
− x1, 0.4}, g(x) = max{9− x3, x3 − 11} for any x = (x1, x2, x3) ∈ R3.
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Evolution of the boundaries of the reachable sets
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Fig. 6.1. Evolution of the boundaries of the capture basin for the target set.

The computing domain is [−1.6, 1.6]× [−4, 4]× [8, 12] with 503 mesh points. The nu-
merical test uses the software ROC-HJ solver developed by Bokanowski, Desilles and
Zidani (http://itn-sadco.inria.fr/software/ROC-HJ). Figure 6.1 shows the evolution
of the capture basin for the target C on the surface {(x1, x2, x3) ∈ R3 : x3 = 10}, and
figure 6.2 illustrates the graphs of w at different time. We remark that after a long
time, the complement set of the capture basin becomes a neighborhood of the origin
(0, 0) which can not be reached in finite time.
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Fig. 6.2. Graph of w(s, θ, θ̇, 10) at time s = 0, 1, 3, 5, 7, 10.

Finally, we give a comparison between the above problem with the impulsive
control ˙̀ and the problem without this type of control, i.e. consider the following
state equation

θ̈(t) +
g sin(θ(t))

`(t)
= 0, for t ∈ (0,∞).
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Figure 6.3 gives the boundaries of the capture basin in both cases at the same final
time S = 10. We remark that the unreachable set in the case with impulsive controls
is smaller than the one without impulsive controls.

Comparison at time S=10
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Fig. 6.3. Reachable sets with/without impulsive controls.
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