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Abstract

Optimal control techniques are investigated with the goal of terminating reentry
waves in cardiac tissue models. In this computational study the Luo-Rudy phase
I ventricular action potential model is adopted which accounts for more biophys-
ical details of cellular dynamics as compared to previously used phenomenolog-
ical models. The parabolic and ordinary differential equations are solved as a
coupled system and an AMG preconditioner is used to solve the discretized el-
liptic equation The numerical results demonstrate that defibrillation is possible
by delivering a single strong shock. The optimal control approach also leads to
successful defibrillation and demands less total current. The present study moti-
vates us to further investigate optimal control techniques on realistic geometries
by incorporating the structural heterogeneity in the cardiac tissue.

Keywords: bidomain model, Luo-Rudy model, defibrillation, Neumann
boundary stimulation, optimal control, parallel FEM.

1. Introduction

Cardiac rhythm disorders are among the leading causes of death in the indus-
trialized world. The heart is an electrically controlled mechanical pump whose
vital function is to drive blood through the circulatory system to supply or-
gans with oxygen and metabolites. Under healthy conditions the heart fulfills
this duty with remarkable efficiency by synchronizing mechanical contraction via
fast, highly organized electrical activation of the ventricles, i.e. the main pumping
chambers of the heart. Under pathological conditions electrical activation pat-
terns becomes less regular and may, ultimately, transition to highly disorganized
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reentrant activation patterns, referred to as ventricular fibrillation. Under such
conditions mechanical pumping function is severely impaired and sudden cardiac
death ensues within minutes without appropriate interventions. The only reliable
therapy to restore a normal heart rhythm is the timely application of a strong
electrical shock, a procedure referred to as electrical defibrillation therapy, which
terminates reentrant activations.

In this study, we explore the use of electrical defibrillation shocks to terminate
reentrant activation and the implications of employing optimal control techniques
to obtain optimal shock waveforms. In particular, we focus on the termination of
reentrant spiral waves, a scenario which would be classified as monomorphic ven-
tricular tachycardia in a clinical context. While non-lethal, spiral waves are often
a precursor of more severe rhythm disturbances such as ventricular fibrillation.

In literature, one of the most accurate models of cardiac bioelectricity is the
bidomain model, which describes both the extracellular and the intracellular
potentials. Mathematically, the bidomain model consists of partial differential
equations coupled with ordinary differential equations which model the associ-
ated ionic currents traversing the membranes of cardiac cells [14, 22, 29]. The
bidomain model can be cast into an elliptic partial differential equation (PDE)
that links the distribution of the transmembrane voltage, within the tissue to
the extracellular potential, and a parabolic PDE that describes the cellular ac-
tivation and recovery processes and the diffusive effect onto the adjacent tissue.
Ordinary differential equations (ODEs) are employed to model the dynamical
behavior of electricity in the myocardial cells. The dimension of the system of
ODEs depends on the chosen membrane model. The present work focuses on
the Luo-Rudy phase-I [17] ionic model which is a widely used computational
model for the guinea pig ventricular action potentials. This model extends the
BeelerReuter model [2] to enhance the representation of depolarization and re-
polarization phases and their interaction, its state space of the model consists of
6 gating variables and calcium concentration.

The optimal control approach to defibrillation seeks to determine an applied
electrical field in such a way that a given design objective, which is, in our case,
the restoration of a tissue state where the propagation of spiral waves is termi-
nated, is minimized. For this purpose most of the tissue is driven to an excited
state, such that the excitable gap, i.e. the portion of the tissue sufficiently close
to the resting state to be excitable, is small, thus minimizing the space for the
movement of reentrant waves. Achieving these objectives is challenging since,
on biophysical grounds, defibrillation shocks always induced changes in polariza-
tion of both polarities [25, 21]. That is, the application of shocks always induces
hyperpolarization in different regions of the heart, even regions which were re-
fractory prior to shock administration may recover excitability, a phenomenon
referred to as shock-induced deexcitation [11]. The optimal extracellular current
density, injected through a set of electrodes, establishes an extracellular potential
distribution which can dampen the voltage gradients in the tissue during the post
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shock simulations.
The optimal control approach is based on minimizing a properly chosen cost

functional
J(v, Ie) (1)

depending on the extracellular current Ie as input and on the transmembrane
potential v as one of the state variables. In previous work [7, 8, 6] the controller
action representing the current delivered by electrodes was modeled as distributed
force. Recently, we modeled the injected current via Neumann boundary condi-
tions in the bidomain equations [9] using the simplified FitzHugh-Nagumo ionic
model [23].

Turning to numerical aspects, it is well known that solving the bidomain
equations is an inherently expensive procedure. The fast upstroke of the car-
diac action potential translates into steep wave fronts in space, thus necessitating
very fine spatio-temporal discretizations [32, 18]. In our study, we have chosen
the piecewise linear finite element method for the spatial discretization and higher
order linearly implicit Runge-Kutta time stepping methods for the temporal dis-
cretization. There are numerous efforts to solve the linear algebraic system of
the bidomain models efficiently [20]. Here we have chosen the algebraic multigrid
method [27, 15, 3] as preconditioner to solve the elliptic system, since it has been
demonstrated that AMG is a highly efficient preconditioner for this particular
problem [20]. It is well know that the building the matrix hierarchy on coarser
level demands a lot of computational time for AMG. In this regard, we built the
matrix hierarchy at the first iteration of the temporal loop and reused it for the
subsequent time steps in the AMG solver. To solve the coupled parabolic and
ODEs we used the ROS3PL [16] method which has 4 internal stages and is third
order accurate. We stress that the system matrix is same during all internal
stages at each time step. Therefore, we use the standard BiCGSTAB method
with ILU preconditioner at each stage. Here as well, we compute the LU decom-
position only once at each time step and reuse it while solving each internal stage
of the ROS3PL method. In this way we could save the computational time for
the matrix decomposition at each internal stage of the Rosenbrock method.

The organization of the remaining article is as follows: The bidomain model
equations along with the Luo-Rudy ionic model is explained in the next section.
The optimal control formulation and the derivation of the optimality system is
given in Section 3. In Section 4, the numerical discretization of the primal and
dual equations to solve the optimality conditions is explained. Furthermore, the
solution procedure to solve the decoupled elliptic and parabolic part, as well the
optimization algorithm is explained. Numerical results showing optimal defibril-
lation are given in Section 5. A short Conclusion section ends the paper.
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2. Bidomain model equations

We denote by Ω ⊂ R2 a bounded connected domain with Lipschitz continuous
boundary ∂Ω. For brevity, the space-time domain and its lateral boundary are
denoted by Q = Ω × (0, T ] and Σ = ∂Ω × (0, T ], respectively. The dynamical
behavior of the cardiac tissue is described as a two-phase medium, one phase
represents the intracellular space, the other one the extracellular space. The two
phases are connected by a network of resistors, representing the ion channels,
and capacitors, representing a capacitative current driven across the membranes
by the potential difference, see e.g. [14, 22, 29]. Mathematically, the complete
description of cardiac electricity is given by the following well known bidomain
equations which consist of a linear elliptic partial differential equation and a non-
linear parabolic partial differential equation of reaction-diffusion type, where the
reaction term is described by a set of ordinary differential equations:

0 = ∇ · (σ̄i + σ̄e)∇u+∇ · σ̄i∇v in Q (2)

∂v

∂t
= ∇ · σ̄i∇v +∇ · σ̄i∇u− Iion(v, w̄) + Istim in Q (3)

∂w̄

∂t
= G(v, w̄) in Q . (4)

Here v : Q→ R is the transmembrane voltage, w̄ : Q→ Rn represents the n ionic
current variables, σ̄e, σ̄i : Ω → Rd×d are respectively the extra and intracellular
conductivity tensors, Iion is the ionic current, and Istim is the stimulus current
which is key to exciting the system. Eq. (3) is a parabolic equation and Eq. (4)
is a set of ordinary differential equations which can be solved independently for
each node. The transmembrane potential is defined by v = ui − u, where ui
and u : Q → R are the intracellular and extracellular potentials. Moreover, the
dimension of the ODE system is a consequence of the ionic model.

In our computations we considered the Luo-Rudy phase-I model (LR1) [17]
which extends the Beeler-Reuter model to enhance the representation of depolar-
ization and repolarization phases and their interaction. The time course of the
action potential is governed by a set of ionic currents

Iion = INa + Isi + IK + IK1 + IKp + Ib.

which are fast sodium current (INa), slow inward calcium current (Isi), time
dependent potassium current (IK), time independent potassium current (IK1),
plateau potassium current (IKp) and background current (Ib). The time depen-
dent currents, INa, Isi and IK , depend on six activation and inactivation gates m,
h, j, d, f , X, which are governed by ordinary differential equations of the form

dg

dt
= αg(v)(1− g)− βg(v)g, where g = m,h, j, d, f,X. (5)
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The α’s and β’s, taking values between 0 and 1, are given by explicit formulas
as functions of transmembrane voltage v. For further discussion on formula-
tion of those functions and the parameters used in our computations we refer
to the original paper of Luo-Rudy phase-I (LR1) model [17]. The existence
and uniqueness for the LR1 model and more general of the classical
Hodgkin-Huxley model can be found in Veneroni [31].

Cardiac tissue is known to be an anisotropic material, its eigenaxes are a
function of space. The principal axis is aligned with the prevailing orientation
of myocytes and is referred to as “fiber orientation”. Spatial variation of fiber
orientation in space is referred to as fiber curvature. In the transmural direc-
tion, the helix angle of fibers changes linearly with space, which is referred to
as fiber rotation. Both fiber rotation and curvature are known to be important
for mediating shock-induced changes in membrane polarization in the far-field,
i.e. several space constants away from tissue surface and electrode location. In
absence of spatial heterogeneity in fiber orientation tissue in the far-field such as
in the depth of the myocardial walls would remain unaffected by an applied elec-
tric field, thus preventing electrical defibrillation shocks to terminate reentrant
activity there[26, 28]. In our computations, the conductivity tensors are used in
the following form,

σc =

(
σcl 0
0 σct

)
, where c = i, e , (6)

where σcl and σct are longitudinal and transverse conductivities, respectively.
Moreover, in our numerical simulations the spatial heterogeneity of the tensor is
derived from a short axis histological image of a ventricular wall. The procedure
for estimating fiber orientation from images is explained later in Section 5.

The initial and boundary conditions are prescribed as

η · (σi∇v + σi∇u) = 0 on Σ (7)

η · σe∇u = Ie(t) on ∂Ω12 × (0, T ] (8)

η · σe∇u = 0 on ∂Ω3 × (0, T ] (9)

v(x, 0) = v0 , w̄(x, 0) = w̄0 on Ω , (10)

where η denotes the outwards normal to the boundary of Ω. Here Ie(t) is the
extracellular current density stimulus which acts as control along the boundary
∂Ω12 = ∂Ω1 ∪ ∂Ω2, where ∂Ωi, i = 1, 2, 3 are mutually disjoint and satisfy ∂Ω1 ∪
∂Ω2 ∪ ∂Ω3 = ∂Ω. For compatibility reasons it is assumed throughout that∫

s

Ie(t, ·) d s = 0, where s = ∂Ω12 (11)

for almost every t ∈ (0, T ). In the numerical experiments Ie will be only tempo-
rally dependent and will be of the form

Ie(t, ·) = Îe(t)(χ∂Ω1 − χ∂Ω2) ,
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where χ∂Ωi
is the characteristic function of the set ∂Ωi, i = 1, 2. Then condition

(11) is satisfied if |∂Ω1| = |∂Ω2|. The support regions ∂Ω1 and ∂Ω2 can be
considered to represent an anode and a cathode respectively.

3. Optimal control

We explain the optimal control formulation and the derivation of optimality
conditions in this section. First, we describe the cost function which is used in
our computations that determine the controlled trajectory of the transmembrane
voltage to a given desired state vd and accomplish the characteristic pattern of
polarization in the cardiac tissue. The final pattern of polarization may lead to
successful defibrillation during the post shock simulations. Here we consider that
the extracellular current Ie(t) serves as a control in the cost functional J(v, Ie) and
has an averse effect on the tissue. In computations, the following cost functional
of tracking type is considered. min J(v, Ie) =

1

2

∫ T

0

(
α1

∫
Ωobs

|v − vd|2 dx+ α2

∫
∂Ω12

Ie(t)
2 ds

)
dt

subject to (2)-(4),(7)-(10) and Ie ∈ U,
(12)

where α1 > 0, α2 > 0 is the regularization parameter for the control cost, Ωobs ⊂ Ω
is the observation domain, vd ∈ L2(0, T ;L2(Ωobs)), and

U = {Ie −
1

|∂Ω12|

∫
∂Ω12

Ie ds : Ie ∈ L2(0, T ;L2(∂Ω12)), |Ie(t, x)| ≤ R

for a.e. (t, x) ∈ (0, T )× ∂Ω12},

where ∂Ω12 = ∂Ω1∪∂Ω2. The set of admissible controls U is a closed, convex and
weakly∗ sequentially compact subset of L∞(0, T ;L2(∂Ω12)). For computational
purposes the first order necessary conditions are of paramount importance. We
give a formal derivation of these conditions here. To compute the gradient of
reduced cost functional we introduce the following Lagrangian which is related
to the optimal control problem for the current problem.

L(u, v, f, s, Ie, p, q, r, o) = J(v, Ie)

+

∫ T

0

∫
Ω

(∇ · (σ̄i + σ̄e)∇u+∇ · σ̄i∇v) p dΩ dt

+

∫ T

0

∫
Ω

(
∇ · σ̄i∇v +∇ · σ̄i∇u−

∂v

∂t
− Iion(v, w̄)

)
q dΩ dt

+

∫ T

0

∫
Ω

(
G(v, w̄)− ∂w̄

∂t

)
r̄ dΩ dt

+

∫ T

0

∫
∂Ω12

(η · σ̄e∇u− Ie) p dΩ dt (13)

6



where the initial and boundary conditions are kept as explicit constraints. The
first order optimality system is obtained by formally setting the partial derivatives
of L equal to 0. After taking the derivative of L w.r.t. the state variables u, v
and w̄ the following adjoint equations for p, q and r̄ are obtained.

Adjoint equations

0 = ∇ · (σ̄i + σ̄e)∇p+∇ · σ̄i∇q in Q (14)

∂q

∂t
= −∇ · σ̄i∇p−∇ · σ̄i∇q + Iv(v, w̄)q +Gv(v, w̄)r̄ in Q (15)

∂r

∂t
= −Gw̄(v, w̄)r̄ + Iw̄(v, w̄)q in Q , (16)

where the subscripts v, w̄ denote partial derivatives. Moreover, the terminal
conditions are defined as follows.

q(T ) = 0, r̄(T ) = 0

The boundary conditions for the adjoint states are

η · (σ̄i∇q + σ̄i∇p) = 0 on Σ, (17)

η · σ̄e∇p = 0 on Σ, (18)

and the compatibility condition for the adjoint variable
∫

Ω
p(t) d x = 0, for a.e. t ∈

(0, T ). Moreover, for any optimal control I∗e the following variational inequality
must be satisfied:∫ T

0

∫
∂Ω12

(αI∗e +Qp)(Ie − I∗e ) ds dt ≥ 0, for all Ie ∈ U, (19)

(20)

where (Qp)(t) = p(t) − 1
|∂Ω12|

∫
∂Ω12

p(t, s) ds on ∂Ω12. Here one needs a special

numerical treatment to solve the Eq. (14) along with the boundary conditions
Eqs. (17) and (18). In this regard, we adopted the stabilized finite element
method to resolve this issue which is explained in Section 4.

4. Numerical discretization

The space and time discretizations to solve the partial differential equations
in the optimality system is briefly explained. A piecewise linear finite element
method is used for the spatial discretization of the primal and dual equations
and their temporal discretization is done by using linearly implicit Runge-Kutta
methods.
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Semi-discretization in space

Here we give an overview of the spatial discretization of the primal problem
by a finite element method based on the weak formulation. A weak solution triple
(u, v, w̄) satisfies for a.e. t ∈ (0, T ) and for all ϕ ∈ H1(Ω)

0 = 〈∇ · (σi + σe)∇u+∇ · σi∇v, ϕ〉 , (21)〈
∂v

∂t
, ϕ

〉
= 〈∇ · σi∇v +∇ · σi∇u− Iion(v, w̄) + Itr, ϕ〉 , (22)〈

∂w̄

∂t
, ϕ

〉
= 〈G(v, w̄), ϕ〉 , (23)

together with initial and boundary conditions (7)-(10). Let Vh ⊂ H1(Ω) be the
finite dimensional subspace of piecewise linear basis functions. The approximate
solutions u,v and w are expressed in the form u(t) =

∑N
i=1 u i(t)ωi, v(t) =∑N

i=1 v i(t)ωi, and w(t) =
∑N

i=1 w̄ i(t)ω
T
i , respectively, where {ωi}Ni=1 denote the

basis functions. The semi-discretization of the primal equations in space results
in the differential algebraic system as follows:

Aieu + Aiv = Ie , (24)

M
∂v

∂t
= −Aiv −Aiu− Iion(v,w) + Itr , (25)

M
∂w

∂t
= G(v,w), (26)

(27)

along with initial conditions for v and w, where Aie = {〈(σi + σe)∇ωi,∇ωj〉}Ni,j=1

and Ai = {〈σi∇ωi,∇ωj〉}Ni,j=1 are the stiffness matrices, M = {〈ωi, ωj〉}Ni,j=1 is the

mass matrix. The vectors Ie, Iitr are defined by Ie = {〈(χ∂Ω1Ie − χ∂Ω2Ie) , ωj〉}N∂Ω
j=1

and Itr = {〈Itr, ωj〉}Nj=1, respectively. The expression for Ifi(v,w) is defined by

Iion(v,w) = (Iion)

(
N∑
i=0

v iωi,
N∑
i=0

w̄ iω
T
i

)
,

In our computations we approached the linear system of Eqs. (25) and (26)
is solved as coupled system. Then the discretized system is set up as follows:(

M 0
0 M

)(
∂v
∂t
∂w
∂t

)
=

(
V (u,v,w)
G(v,w)

)
(28)

where V (u,v,w) represents the right hand side of Eq. (25). A consistent spatial
discretization is used for the dual equations.
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Time discretization

The semi-discretization of the Eq. (28) and also the adjoint equation after
space discretization can be expressed in the following general form,

M∂x

∂t
= F(x), x(t0) = x0. (29)

To solve (29), we introduce discrete steps:

0 = t0, t1, . . . , tn = T ,

which are not necessarily equidistant. For the time discretization we employ lin-
early implicit Runge-Kutta, Rosenbrock, methods to solve the Eq. (29). These
belong to a large class of methods which try to avoid the nonlinear system and re-
place it by a sequence of linear ones. Here we applied a second order Rosenbrock
method called ROS3PL [16]. The construction of the Jacobian of the system is
based on the exact derivatives of the right hand side vector F(x). We do not
give the details here since they are well explained in [7, Section 3.2]. After the
full discretization of the Eq (28) we obtain a system of linear algebraic equations.
To solve this linear system we employed a BiCGSTAB method with ILU precon-
ditioning. It is clear that the left hand side matrix of the algebraic system in
all stages of the ROS3PL method is the same for each time step. In our com-
putations, a LU decomposition is done once at the beginning of each time step
and reused as ILU preconditioner in all internal stages at that time step. In this
way, we can avoid some computational overhead during the linear solver phase.
The solution of the discretized adjoint system, backward in time, is realized in a
similar manner.

Solution procedure

Here we describe the solution procedure to solve the primal system in two
steps. First, by utilizing the computed solutions ui at time ti solve the discretized
parabolic equation and the ODEs for vi+1 and wi+1 at time ti+1 by applying the
linearly implicit Runge-Kutta method. In the second step, using the available
solution vi+1 at time ti+1, solve the discretized elliptic system (24) for ui+1 by
using a stabilized saddle point approach. The solution of the singular linear
systems which arise after the full discretization of Eqs (2) and (14) are defined
up to an additive constant. We mentioned earlier that we impose a zero mean
condition to fix this constant. For the numerical realization of this condition
we adopted a stabilized saddle point formulation from the work of Bochev and
Lehoucq [4]. The discussion and implementation details of this technique for
the current problem we refer to [7]. To solve this linear system we employed a
BiCGSTAB [30] method with AMG preconditioner [3]. We can clearly observe
that the left hand side matrix which arises from Eqs (2) and (14) is the same
throughout the solution procedure. Only the right hand side vector changes at
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each time step during the primal or dual problem. It is well known that matrix
hierarchy construction on coarser levels of AMG from a system matrix is as costly
as solving the system [3, 24]. In this regard, the constructed levels of the AMG
hierarchy can be stored and this stored matrix hierarchy is re-used to solve the
system for a given right-hand side throughout the primal and dual solve.

The complete optimality system is solved by the non-linear conjugate gradient
(NCG) [19] using the Hager-Zhang [13] variant update. It is well known that
gradient based algorithms exhibit slow convergence. In spite of that, due to their
simple implementation they are the method of choice to numerically verify that
the proposed optimal control approach is feasible. A line search procedure based
on the Armijo rule with backtracking is used to determine the next update of the
solution during the optimization iterations.

Parallelization can be used for numerical speeding. In fact, in our simulations
we used the software package DUNE [1], which is a C++ template based pro-
gramming environment for solving a general class of PDE’s. The internal parallel
Cartesian (called Yasp) grid in DUNE is used for parallel grid constructions. It
was combined with non overlapping domain decomposition of the computational
grid, see our previous article for more details [7].

5. Numerical Results

The computational domain is Ω = [0, 5] × [0, 5] ⊂ R2 of size 5 ? 5 cm2 and
a 256 × 256 uniform quadrilateral spatial grid is used which consists of 65,536
elements and 66,049 nodes. Thus the spatial computation involved 264,196 dofs
for one PDE solve. The computational domain setup with different components
where the control acts on the left and right boundary is shown in Figure 1.
On the discretized level, Ωobs is chosen as the domain which arises by
removing the elements of the computational domain which are inter-
secting with the boundary Γ12. The left boundary Γ1 acts as a Anode and
right boundary Γ2 acts as a Cathode. Moreover, in this way the compatibility
condition is satisfied for the elliptic solve in the primal equations which assure
the existence of the solution. The parameters for characterization of cellular
dynamics were taken from the original model in [17].

To obtain successful defibrillation the structural heterogeneity of the tissue
plays a crucial role [28]. This can interfere with the spread of cardiac activation
and contribute to initiation of spiral waves and wave break [10, 12]. In our compu-
tational study, information on tissue heterogeneity is derived from a histological
image, see left panel of Figure 2. First we converted the histological image to
gray scale image, right panel of Figure 2. Subsequently, the generated gray scale
image information was projected on to the computational mesh accordingly. We
multiplied the conductivity tensor value by 10−3 where the white spots appear,
so that the excitation wave front speed could have been reduced dramatically
in those regions and the same conductivity tensor value was maintained at the
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Γ3

Γ3

Figure 1: The computational domain setup with stimulation boundaries.

rest of the domain. In the presence of structural heterogeneity, the conduction
velocities were 0.52 and 0.41 m/s in the longitudinal and transverse direction,
respectively.

In our computations, the stopping criteria for the optimization algorithm is
based on the following conditions. Firstly,∥∥∇J(Ike)

∥∥
L2 ≤ 10−5 ·

∣∣J(Ike)
∣∣ or

∣∣J(Ike)− J(Ik−1
e )

∣∣ ≤ 10−6 (30)

Moreover, the algorithm was terminated if this condition was not satisfied within
a prescribed number of 150 iterations.

To induce the reentry wave we followed the standard S1 − S2 stimulation
protocol and the stimulus strength of Itr = 50 µA/cm3 applied for the duration
of 1 msec. The solution at t = 285 msec was then chosen as the initial state for
simulating the delivery of electrical shocks and the post-shock evolution following
at the end of the shock. To create spiral wave phenotypes in the Luo-Rudy phase 1
membrane model, we altered the maximal conductance of the slow inward current
(Gsi = 0.015). Apart from that, we changed the following two parameters in our
simulations to gNa= 16.0 and gK = 0.705. The rest of the model parameters
are taken directly from the original model [17]. The three temporal horizons
are illustrated in Figure 3. During the shock, which constitutes the time period
within which optimization takes place, the size of the time step was kept constant
at ∆t = 0.04 msec. During the pre- and post-shock phases adaptive time stepping
features of the ROS3PL method were used to speed up computation.

The presented numerical results are done on a Linux cluster consisting of
ten nodes where each node consists of 8 quad-core AMD Opteron processors
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Figure 2: Histological image of the cardiac tissue at left panel. The selected region at the
histological image converted to gray scale image at right panel for numerical computations [5].

|
induce reentry

|| shock

optimization
||

post shock
|

t = 0 msec 285 289 400

Figure 3: Different time horizons considered in the computations.

8356 clocked at 2.3 GHz and equipped with 1TB RAM. All the presented results
are based on the parallel NCG algorithm using 64 cores. The solution of the
transmembrane voltage and the extracellular potential at time t = 285 msec
are depicted in Figure 4. We feed this solution as a initial solution for the
optimization algorithm.

Figure 4: The solution of v and u at time t = 285 msec.

The solution for the transmembrane voltage v in absence of any control is
shown in Figure 5 at different instances of time to verify that the reentry is
sustained for a sufficiently long time.
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(a) t=289.0 msec (b) t=294.5 msec (c) t=318.5 msec (d) t=380.5 msec

Figure 5: 2D visualization of uncontrolled solution (v) at different times of simulation.

5.1. Termination of reentrant waves

In the computational domain, the anode is modeled as a Neumann boundary
along the surface Γ1 and the cathode along the surface Γ2 of the computational
domain as shown Figure 1. The desired trajectory of the transmembrane po-
tential (vd) plays a crucial role to achieve successful defibrillation in post shock
simulations. Indeed, choosing the right desired trajectory is not a trivial task.
In our computations, this is obtained by solving once the primal problem using
a prescribed time course of a stimulation current, Ie(t) = 10 mA/cm3. The pre-
sented numerical results are based on fixing α1 = 0.0005 and varying the weight
of the control parameter value α2 in the computations. The optimization algo-
rithm constructs the best optimal control trajectory of the extracellular current
while keeping the total current low, due to the appearance of term

∫
I2
e (t) dt in

cost functional.

(a) t=285.2 msec (b) t=287.0 msec (c) t=289.0 msec

Figure 6: 2D visualization of optimal state solution (v) at different times of simulation.

The 2D spatial representation of the optimized transmembrane voltage is
shown in Figure 6 at different time instances. We can observe that during the
shock period, at time t = 289 msec, a sufficiently large portion of the compu-
tational domain is depolarized. The applied external stimulus produces a large
number of virtual electrodes at the microscopic size scale. After the break of
the shock the virtual cathodes depolarize the virtual anodes quickly. Thus the
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entire domain is depolarized quickly which effectively blocks any further wave
propagation or re-initiation of reentry, see the first panel in Figure 7, and even-
tually returns to the resting state at 381.43 msec, see the last panel of Figure 7.
Compared to the optimal control of phenomenological FHN model [7] the opti-
mal control of Luo-Rudy model is more complex in terms of gating dynamics and
computational cost. We observed that the computational cost increases approx-
imately a factor of 10 for the solution of the primal system. The primal solve
during the first iteration of the optimization algorithm took 182.64 seconds on
64 cores. Here 6% of the CPU time is used for the solution of elliptic system,
15% for the left hand side matrix assembly of the coupled system and 70% for
solving it. Solving the adjoint system took approximately the same CPU time.
The CPU time for the complete optimization algorithm is 25.11 hours, while the
post shock simulation took 31.60 minutes.

(a) t=293.65 msec (b) t=297.43 msec (c) t=317.43 msec (d) t=381.43 msec

Figure 7: 2D visualization of controlled solution (v) at different times of post shock simulation.

The norm of the gradient as a function of the NCG iterations for different
regularization parameter values is shown in the left panel of Figure 8. For all
parameter values the norm of the gradient decreases much more rapidly at the
beginning than towards the end and they all approach to zero. In all cases, the
optimization algorithm is terminated after 150 iterations due to not much progress
in the gradient and the minimizational value. In middle panel of Figure 8 the
cost functional value is shown. Here we can observe that the minimizational value
at the end of the optimization is different for different regularization parameter
values. The corresponding optimal value of the extracellular current is shown
in the right panel of the Figure 8 where we can observe that the regularization
parameter value α2 = 0.05 attained better optimal current compare to other
parameter values. In all cases we observed that a successful defibrillation is
achieved. Moreover, we observed that for value α2 ≥ 0.05 the termination of
reentry wave is not possible. The total current required to construct the desired
trajectory is 40 mA ms/cm3. The total current obtained using the optimization is
35.5239 mA ms/cm3 for α2 = 0.05, 38.3731 mA ms/cm3 for α2 = 0.01 and 38.7905
mA ms/cm3 for α2 = 0.001. Thus the optimal control approach automatically
constructs a current stimulus which leads to a successful defibrillation utilizing
less total current.
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Figure 8: The gradient and minimum value of the cost functional and the optimal control values
are shown on the left, middle and right respectively for different regularization parameter values
α2.

6. Conclusion

The optimal control approach for the termination of reentrant waves in cardiac
electrophysiology based on the bidomain model was discussed. The Luo-Rudy
phase 1 membrane model was considered which represents excitability and refrac-
toriness in a bio-physically more detailed as compared to the Fitz-Hugh-Nagumo
model used in our previous studies [9]. Here the parabolic equation and the ODEs
were solved on as a coupled system. This allowed us to use a fixed time step for
primal and adjoint throughout the iteration of the optimization algorithm. This
was not the case when decoupling the system.

The numerical results show that the optimal control strategy leads to suc-
cessful defibrillation by designing optimal pulse waveforms which drive fibril-
lating cardiac tissue into a desired state with lower energy requirements when
compared to ad-hoc strategies. Many important questions remain, including,
for example, the problem of optimal actuator placement, and robustness of the
control schemes. Furthermore, it is important to study the applicability of such
optimal control techniques on cardiac tissue surrounded by a bath volume where
the control acts on the surface of bath domain in order to be comparable with
available experimental results.
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