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Abstract Sufficient conditions for the existence of a solution to an abstract optimiza-
tion problem in Banach spaces are given, which do not rely on convexity, regularity
properties or a straightforward coerciveness assumption. Applications to sparsity-
constrained optimization and to problems from mechanics are provided.
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1 Introduction

The existence of solutions to abstract minimization problems is typically based on
assumption involving convexity properties and/or coercivity properties of the cost
functional. This allows considering minimizing sequences. Under appropriate com-
pactness assumptions, depending on the fact whether the problem is posed in finite- or
infinite-dimensional spaces, and in case of the latter, whether the space is reflexive or
not, a convergent subsequence can be extracted. Depending on closedness properties
of the cost functional, accumulation points provide a desired minimizer for the opti-
mization problem. The purpose of this note is to present a class of problems which
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does not allow guaranteeing the existence along this line of arguments, since the cost is
neither convex nor coercive. Examples are given to illustrate that such problems appear
quite commonly in practice. The conditions that we provide guarantee existence of
minimizers for these problems.

2 The Existence Result and Applications

We consider the problem

min
x∈X

G(x), (P)

where G is an extended, real-valued functional on a Banach space X . The mapping
G is not necessarily convex or smooth. There is no explicit assumption on G to be
bounded from below. We provide sufficient condition for (P) to have a solution and
give some inherently infinite dimensional examples to demonstrate their applicability.

Problem (P) has been addressed in several contributions before. In [1], the authors
also consider the infinite-dimensional case and provide examples from linear and
nonlinear elasticity theory. Our condition is somewhat weaker than the condition in
[1] and we provide different s. In [2] the finite-dimensional cases are studied in much
detail. In [3] necessary and sufficient conditions for existence to (P) are obtained in
terms of asymptotic behavior of G along sequences, which are candidates for being
minimizing sequences. While this is an elegant asymptotic analysis, for verifying
existence in concrete applications, the conditions given below are more direct and
remain to be of independent importance.

Existence of solutions to (P) will be obtained by considering the family of problems

min
x∈X

Gε(x) = G(x)+ ε

2
|x |2, (Pε)

for ε tending to zero from above. While G itself is not assumed to be coercive, this
will be required for the functionals Gε, ε > 0. We first consider the case where X
is reflexive. The nonreflexive case will be addressed in Remark 2.1 (a) below. Recall
that G is called proper, iff its value is not equal to ∞ everywhere.

The term ε
2 |x |2 that is added to the cost here serves the purpose that, together with

other structural properties of the problem data, but without assumption on coercivity on
G, existence of a solution to the original, unregularized problem (P) can be guaranteed.
Once existence is obtained different, problem dependent, regularisation terms can be
used to analyze properties, like regularity and stability, of the minimizers. This will
not be the aim of this note.

Theorem 2.1 (Existence) Let G be an extended real-valued functional on a reflexive
Banach space X satisfying the following properties:

(i) G is proper and weakly lower semi-continuous,
(ii) Gε is coercive, i.e., Gε(x) → ∞ for |x | → ∞, for each ε > 0,

(iii) for any sequence {xn} in X with |xn| → ∞, xn|xn | ⇀ x̄ weakly in X, and {G(xn)}
bounded from above, we have
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(iiia) xn|xn | → x̄ strongly in X, and
(iiib) there exist ρn ∈]0, |xn|[ and n0 = n0({ρn}, {xn}) such that

G(xn − ρn x̄) ≤ G(xn), for all n ≥ n0.

Then, (P) admits a global solution.

Proof Let {εn} be a sequence satisfying εn ↓ 0. For n fixed, let {xk} be a minimizing
sequence for (Pεn ). By (i i) this sequence is bounded. Extracting a weakly convergent
subsequence from {xk} and using (i), existence of a solution xn ∈ X for (Pεn ) can be
argued in a standard manner.

Below we shall prove that {xn} is bounded. Then, there exists a weakly convergent
subsequence, denoted by the same symbols, and x∗ such that xn ⇀ x∗. Passing to the
limit, as εn ↓ 0, in

G(xn)+ εn

2
|xn|2 ≤ G(x)+ εn

2
|x |2 for all x ∈ X

and using again (i) we have

G(x∗) ≤ G(x) for all x ∈ X

and thus x∗ is a minimizer for G.
We now argue that {xn} is bounded, and assume to the contrary that
limn→∞ |xn| = ∞. Then, a weakly convergent subsequence can be extracted from

xn|xn | such that, again dropping indices, xn|xn | ⇀ x̄ , for some x̄ ∈ X . Moreover by (i i ia)

xn

|xn| → x̄ strongly. (1)

Choose ρn > 0 and k0 according to (i i ib). Then for all n ≥ n0

G(xn)+ ε

2
|xn|2 ≤ G(xn − ρn x̄)+ ε

2
|xn − ρn x̄ |2 ≤ G(xn)+ ε

2
|xn − ρn x̄ |2.

It follows that

|xn| ≤ |xn − ρn x̄ | = |xn − ρn
xn

|xn| + ρn

(
xn

|xn| − x̄

)
| ≤ |xn|

(
1 − ρn

|xn|
)

+ρn| xn

|xn| − x̄ |

This implies that

1 ≤ | xn

|xn| − x̄ |,

which contradicts to (1), and concludes the proof. 	
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In the literature, sufficient conditions for the existence for (P) are typically expressed
in term of the recession functional G∞ associated to G. This is the extended real-valued
functional defined by

G∞(x) := inf
xn⇀x,tn→∞ lim inf

n→∞
1

tn
G(tn xn).

The condition that G∞ ≥ 0 is used in [2,1].

Corollary 2.1 The conclusion of the Theorem 2.1 remains correct, iff (ii) is replaced
by

(ii’) G∞(x) > −∞ for each x.
It remains also valid, iff (i i ib) is replaced by
(iiib’) G∞(x) ≤ 0 implies that |x | �= 1.

Proof Condition (i i) was used to guarantee boundedness of minimizing sequences
for (Pεn ). Suppose that (i i ′) holds and that {xk} be a minimizing sequence for (Pεn )

which is not bounded. Then, there exists a subsequence for which liml→∞ |xkl | = ∞.
We have the estimate

∞ = lim
l→∞

εn

2
|xkl | ≤ lim inf

l→∞
1

|xkl |
G

(
|xkl |

xkl

|xkl |
)

+ lim
l→∞

εn

2
|xkl |

≤ lim inf
l→∞

1

|xkl |
(

G(xkl )+ εn

2
|xkl |2

)
≤ 0,

which gives a contradiction, and hence {xk} is bounded. Turning to the second claim
let {xn} be such that G(xn) is bounded from above and xn|xn | → x̄ strongly. We find that

G∞(x̄) ≤ lim inf
n→∞

1

|xn|G

(
xn

|xn| |xn|
)

= lim inf
n→∞

1

|xn|G(xn) ≤ 0. (2)

By (i i i ′) therefore |x̄ | �= 1, which gives a contradiction to strong convergence of
xn|xn | → x̄ . 	


Remark 2.1 (a) The assumption that X be reflexive can be replaced by assuming that
it is the dual space of a separable space X̃ , i.e., X = X̃∗, if simultaneously weak
lower semicontinuity is replaced by weak∗ lower semicontinuity. In fact, in this
case, the Banach-Alaoglu-Bourbaki theorem and the metrizability of the unit ball
in the weak∗ topology of X̃∗ imply that bounded sequences in X contain weakly∗
convergent subsequences. The proof can then be conduced as before. This situation
applies in particular to the case when X = L∞(Ω) and X̃ = L1(Ω).

(b) In [1] it is assumed that G∞ ≥ 0 and

G(x − ρ x̄) ≤ G(x),

for all x ∈ X and G∞(x̄) = 0. Thus, in view of (2) condition (i i ib) is weaker.
In [2] we find a more general version of the second part of (i i ib): there exists a
ρn ∈]0, |xn|[ and zn ∈ X such that for all n sufficiently large
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G(xn − ρn zn) ≤ G(xn), |zn − z| → 0 and |z − x̄ | < 1.

Our proof can easily be adapted to this condition.
(c) Inspection of the proof shows that the quadratic penalty in the definition of Gε can

be replaced by a general functional ϕ(|x |), where ϕ : R
+ → R

+ is coercive and
strictly monotonically increasing.

(d) We have also proved that a sequence {xn} minimizes the regularized problems
(Pεn ) has a subsequence that converges weakly to a minimizer of G(x).

Example 2.1 (�0 minimization) We consider the following minimization problem in
the sequence space X = �2 with sparsity constraints:

min
x∈�2

G(x) = 1

2
|Ax − b|22 + β |x |0, (3)

where A is a bounded linear operator in the �2, | · |2 denotes the norm in �2, and

|x |0 = the number of nonzero elements ofx ∈ �2.

It is assumed the the nullspace N (A) of A is finite and that its range R(A) is closed.
It is straightforward to check that conditions (i) and (ii) are satisfied. To verify (iii)
suppose that |xn|2 → ∞,G(xn) is bounded from above and xn

|xn | ⇀ z in X . First, we

show that z ∈ N (A) and xn

|xn | → z. Since {G(xn)} is bounded from above, there exists
M such that

G(xn) = 1

2
|Axn − b|22 + β |xn|0 ≤ M, for all n. (4)

Since R(A) closed, by the closed range theorem implies every element in X can be
uniquely decomposed as xn = x1

n + x2
n ∈ R(A)+ N (A).

Consequently, 0 ≤ |Ax1
n |22 − 2(b, Ax1

n )2 + |b|22 ≤ M and the sequence {|Ax1
n |} is

bounded. This implies that

0 ≤ ∣∣ A

(
x1

n

|xn|2
) ∣∣2

2 − 2
1

|xn|2
(

A∗b,
xn

|xn|2
)

2
+ |b|22

|xn|22
→ 0,

and consequently A x1
n|xn |2 → 0 in X .

By the closed range theorem this implies that x1
n|xn |2 → x̄1 = 0 in �2. Since x2

n|xn |2 ⇀
x̄2 and by assumption dim N (A) < ∞ it follows that xn|xn |2 → z = x̄2 strongly in �2

and thus (i i ia) holds.
To verify (i i ib) first note that |xn|0 = | xn|xn |2 |0 and since {|xn|0} is bounded it follows

that |z|0 < ∞. Since x̄ ∈ N (A) condition (i i ib) will follow from

|(x1
n + x2

n − ρ z)i |0 ≤ |(x1
n + x2

n )i |0 for all i, (5)

and for all n sufficiently large. Only the coordinates for which (x1
n + x2

n )i = 0 with
zi �= 0 require our attention. Since |z|0 < ∞ there exists ĩ such that zi = 0 for all i > ĩ .
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For i ∈ {1, . . . , ĩ} we define Ii = {n : (x1
n + x2

n )i = 0, zi �= 0}. These sets are finite.
In fact, if Ii is infinite for some i ∈ {1, . . . , ĩ}, then limn→∞,n∈Ii

1
|xn |2 (x

1
n + x2

n )i = 0.

Since limn→∞ 1
|xn |2 (x

1
n)i = 0 this implies that zi = 0, which is a contradiction. Taking

ñ as the maximal index in
{Ii : i ∈ {1, . . . ĩ}} we have (x1

n + x2
n )i �= 0 for all i ∈ {1, . . . , ĩ} and n ≥ ñ.

Summarizing we showed that (5) holds for any ρ > 0 and n ≥ ñ, as desired, and thus
(3) admits a solution.

Example 2.2 (Obstacle problem) Consider

min
∫
Ω

(
1

2
|∇u|2 − f u

)
dx subject to u(x) ≤ ψ for a.e. x ∈ Γ. (6)

Here ψ ∈ L1(Γ ), f ∈ L2(Ω),� is a bounded domain in R
n with Lipschitzean

boundary ∂Ω , and Γ is a codimension 1 manifold in Ω with the property that u
restricted to Γ satisfies uΓ ∈ L1(Γ ) for each u ∈ H1(Ω). In case n = 1 and
Ω =]0, 1[ the condition can be u( 1

2 ) ≤ ψ . Note that u is not fixed in any part of the
domain.

This problem can be cast in the framework of (P) by defining

G(u) =
∫
Ω

(
1

2
|∇u|2 − f u

)
dx + I{uΓ ≤ψ}(u),

where IS denotes the indicator function of the set S. We choose X = H1(Ω) and
assume that ∫

Ω

f dx ≥ 0. (7)

Condition (i) is clearly satisfied. For u ∈ X we have the estimate

Gε(u) ≥
∫
Ω

(
1

2
|∇u|2 − f u − 1

2
|u|2

)
dx ≥ ε

4
|u|2 − C

ε
| f |2L2 ,

where the constant C is independent of u and results from the continuous injection of
H1(Ω) in L2(Ω). This implies (i i).

Since constant functions are in the nullspace of the gradient operator condition
(i i i) requires some attention. We decompose any function u ∈ L2(Ω) as u = u1 +u2
where u2 = 1

|Ω|
∫
Ω

u dx is the projection of u onto the space of constant functions and

u1 lies in the orthogonal complement. Next choose |un|X → ∞, vn = un|un |X
⇀ v,

with {G(un)} be bounded from above. Then I{uΓ ≤ψ}(un) = 0 for all n and

1

2

∫
Ω

|∇v|2 dx ≤ lim inf
n→∞

1

2

∫
Ω

|∇vn|2 dx ≤ lim sup
n→∞

1

|un|X

1∫
0

f vn dx + G(un)

|un|2X
= 0.
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Thus ∇vn → 0 and vn → v = v2 strongly for some constant v2, which implies
(i i ia). Since vn(x) ≤ ψ(x)

|un |X
→ 0, we have v2 ≤ 0 for a.e. x ∈ Γ . Consequently for

any ρ > 0

G(un − ρ v) = G(un)+ v2

1∫
0

ρ f (x) dx ≤ G(un),

where we use (7). Thus (i i ib) holds for all n, and (6) has a minimizer.

Example 2.3 (Friction problem) Consider

min
u∈H1(Ω)

G(u) =
∫
Ω

(
1

2
|∇u|2 − f u

)
dx +

∫
Γ

|u(s)| ds, (8)

where Ω and f are as in Example 2 above and Γ is part of the boundary, sufficiently
regular such that the trace operation from X = H1(Ω) to L1(Γ ) is continuous. We
assume that

|
∫
Ω

f dx | < |Γ |. (9)

Turning to (iii) again we choose {un} in X such that |un|X → ∞, vn = un|un |X
⇀ v,

for some v in X , with {G(un)} bounded. With vn = vn,1 + vn,2 we have

∫
Ω

|∇vn,1|2 dx =
∫
Ω

|∇vn|2 dx ≤ 1

|un|X

∫
Ω

f vn dx + 1

|un|X
G(un) → 0

for n → ∞. Hence vn,1 → 0 and vn → v = v2 = 1
|Ω|

∫
Ω

v dx strongly in X . For any

ρn > 0 we have

G(un − ρnv)− G(un) = ρnv2

∫
Ω

f dx +
∫
Γ

(|un(s)− ρnv2| − |un(s)|) ds.

Now we choose ρn = 1
2 |un| and obtain

lim
n→∞

1

|un|X

(
G(un − ρnv)− G(un)

) = 1

2
v2

∫
Ω

f dx − 1

2
|v2| |Γ | < 0,

by (9). This implies that lim supn→∞ G(un − ρnv)− G(un) ≤ 0 and (i i ib) follows.

Example 2.4 (L∞ Laplacian) To consider

min
∫
Ω

|u − f | dx subject to |∇u(x)| ≤ 1, a.e. in Ω
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as a special case of the abstract result we set X = H1(Ω) and

G(u) =
∫
Ω

|u − f | dx + I{|∇u(·)|≤1}(u)

The set {u : |∇(u)| ≤ 1} is closed and convex in X , and hence weakly sequentially
closed and (i) follows. Condition (ii) is clearly satisfied.

Next let {un} in H1(Ω) be such that |un|X → ∞, vn = un|un |X
⇀ v, for some

v in H1(Ω), with {G(un)} bounded. This implies that |∇vn|L2 ≤ 1
|un |X

→ 0 and
vn → v = v2 strongly, so that (i i ia) holds. To verify (iiib) consider

1

|un|X
(G(un − ρnv)− G(un))=

∫
Ω

|vn − ρn

|un|X
− f

|un|X
| dx−

∫
Ω

|vn − f

|un|X
| dx .

Choosing ρn = 1
2 |un|X we find

1

|un|X
(G(un − ρnv)− G(un)) → 1

2
|v2| |Ω| − |v2| |Ω| = −1

2
|v2| |Ω|.

Hence G(un − ρnv)− G(un) ≤ 0 for all n sufficiently large, and hence (i i ib) holds.

Example 2.5 (Elastic contact problem) Consider the elastic contact problem for the
deformation field u ∈ X = H1(Ω)2 and boundary body force g:

min
1

2

∫
Ω

ε(u) : σ(u) dx+
∫
Γ1

g·u dsx +
∫
Γ2

|τ ·u| dsx , subject to n·u ≤ ψ on Γ1∪Γ2,

(10)
where we assume linear strain:

ε(u)i, j = 1

2
(
∂ui

∂x j
+ ∂u j

∂xi
)

and Hooke’s law:

σ = 2με + λ tr(ε) I

with positive Lame constants μ and λ.
Here we assume the caseΩ =]0, 1[2 with Γ1 = {x2 = 1} (top) and Γ2 = {x2 = 0}

(bottom), and g = (0, g2)with g2 ≤ 0 and g2 ∈ L2(Γ1). We associate to this problem
the mapping

G(u) = 1

2

∫
Ω

ε(u) : σ(u) dx +
∫
Γ1

g · u dsx +
∫
Γ2

|τ · u| dsx + I{n·u|Γ1∪Γ2 ≤ψ}(u).
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Condition (i) is satisfied and (ii) follows from the Korn inequality. Turning to (i i i) let
|un|X → ∞ vn = un|un | ⇀ v, in X , with {G(un)} is bounded. We have

ε(vn) → 0.

This follows from

0≤ 1

2

∫
Ω

ε(vn) : σ(vn) dx ≤ G(un)

|un|2X
− 1

|un|X

∫
Γ1

gvn dsx − 1

|un|X

∫
Γ2

|τ · vn| dsx →0,

for n → ∞.
Therefore, as in the case of the obstacle problem, we can decompose v in an element

of the kernel of ε, which is 0, and another one in the orthogonal complement (w.r.t.
L2(Ω)2), given by the space of affine functions {(−Ax2+C1, Ax1+C2) : A ∈ R,C1 ∈
R,C2 ∈ R}.Thus, we have that vn → v = (v1, v2) ∈ {(−Ax2 + C1, Ax1 + C2)}
strongly in X , for constants A,C1,C2. Further, we find that v2 = limn→∞ v2,n =
limn→∞ u2,n

|un |X
≤ 0 on Γ1 ∪ Γ2 and v1 = C1 on Γ2.

Consequently with ρn = 1
2 |un|X we have

G(un − ρ v)− G(un)

|un| = −
∫
Γ1

ρng2 v2 dsx +
∫
Γ2

(|vn,1 − 1

2
v1| − |vn,1|) dsx

Since g2 ≤ 0, v2 ≤ 0 and v1 = C1 we obtain

lim sup
n→∞

G(un − ρn v)− G(un)

|un| ≤ −1

2
|Γ2|C1

and hence (i i ib) follows and (10) has a minimizer.

3 Conclusions

A theorem providing sufficient conditions for nonsmooth, nonconvex optimization
problems reflexive Banach spaces are given. Its applicability to �0 optimization and
to friction and contact problems is demonstrated. Generalization in several directions
can be of interest. These include the study of regularization terms different from
the quadratic one that was used in this paper. The introduction of additional explicit
constraints is of relevance for applications. Applications to fracture mechanics, and
to newly emerging nonsmooth, nonconvex problems in mathematical image analysis
should also be considered in future work.
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