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Abstract

The bang-bang property of time optimal controls for Burgers equations in dimension up
to three, with homogeneous Dirichlet boundary conditions and distributed controls acting
on an open subset of the domain is established. This relies on an observability estimate from
a measurable set in time for linear parabolic equations, with potentials depending on both
space and time variables. The proof of the bang-bang property relies on a Kakutani fixed
point argument.
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1 Introduction

While significant progress was made over the last years giving sufficient conditions for the bang-
bang property of time optimal control problems of linear control systems, see e.g. [8] and [14],
the bang-bang nature of controls for non-linear infinite dimensional control systems is much less
understood, see, however [1], [17] and [22] . The purpose of this work is to analyze the bang-bang
property of time optimal controls for a system which is not of global Lipschitzian nature.

Unless stated otherwise  is a bounded, convex domain in RY, if d = 2,3, with boundary
09 of class C?, and it is a bounded interval if d = 1. Further w is a non-trivial subdomain of
Q. We write x,, for the characteristic function of the set w. For ¢ > 2 and py > 0, to be made
precise later, we define the constraint set of controls to be

U ={i:0,400) = (L4(Q))? is measurable : [4(- )|l (La(ayye < po for almost all t > 0}.
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The controlled Burgers equation under consideration is as follows:

Gi = AJ+ (7 V)i = xwil i Q% (0, +0),
y=0 on 0N x (0,400), (1.1)
y(-,0) = 4o(") in €.

This equation was developed by J.M.Burgers as a simplified fluid low model, which describes the
propagation of diffusive waves of finite amplitude (see. e.g. [5], [6] and [18]). While for d = 1 the
function space setting for (1.1) is well-established this does not appear to be the case for higher
dimensions. Therefore we consider well-posedness for (1.1) in a function space that is convenient
for our analysis. Specifically for 7(-) € Wq2_2/q(ﬂ) N Wol’q(ﬂ) and 4 € L>°(0,T; L1(2)) we prove
that (1.1) has a unique solution §(-, -; @) € W2 (Qr), see Proposition 2.1. Here for s > 0 and
T > 0 fixed, the set

{y € L5(Q % (0,T)) : gy € L3(Q x (0,7)) and y € L*(0, T; W(Q) N WE*(Q))}

endowed with the usual W2 (Q x (0,T))-norm is denoted by W2'(Qr). For simplicity of
notation we do not distinguish in notation between the space X and the vector-valued space
x4,

The set of admissible controls contains those which are bounded and which steer the state
to the origin in finite time:

Ug={del: §-,T;a@) =0 over Q, (-, ) e WqZ’l(QT) for some T > 0}.

In Proposition 2.4 it will be proved that U4 is not empty.
The time optimal control problem under consideration can now be stated as follows:

(P)  inf{T: @ €Uy} =T"

i.e., the minimal time needed to steer the system to 0 with controls in U,g. In this problem, the
number T* is called the optimal time; a control @* € Uyq, with 7(-, T*; @) = 0 over €, is called
a time optimal control (or optimal control for simplicity). In Proposition 2.4 it will be proved
that (P) allows optimal controls.

We can now state the main result of this paper:

Theorem 1.1. Assume that ¢ > 2 for d = 2, and q € (3,6] for d = 3. Then there exists a
nontrivial interval Z of bounds pg such that the bang-bang property holds for (P): for po € Z any
optimal control W* satisfies that ||0*(-,t)||ra) = po for a.e. t € (0,T%). For d =1 the assertion
holds with ¢ = 2 and all pg > 0.

The bang-bang property is one of the most important and interesting properties of time
optimal control problems. For abstract linear problems in Banach spaces, to the best of our
best knowledge, this property was first established, via a smart construction manner, by H. O.



Fattorini (see. e.g. [7]). But in the context of the distributed control of the heat equation,
for example, these techniques only apply for the special case where the control is distributed
everywhere in the domain, i.e. w = €. Since then, bang-bang controls with w =  for time
optimal problems related to linear and semilinear parabolic differential equations, were investi-
gated in many papers, see e.g. [1], [2], [8], [13], [22] and the references therein. More recently
the case w C Q was treated successfully for parabolic equations. In [20], after establishing null-
controllability of the internally controlled heat equation with controls restricted to a product set
of an open nonempty subset in {2 and a subset of positive measure in time, the author proved the
bang-bang property of time optimal controls. Partially motivated by these results the authors
in [17] realized that the bang-bang property can be obtained by combining a strategy based on
null controllability of the system, where the control functions act on a measurable set, and a
fixed point argument. When the target set is a ball, the bang-bang properties for time optimal
control problems of differential equations can be also derived from the Pontryagin maximum
principle and unique continuation properties for the corresponding equations. We mention [21],
[10], and [11] in this respect.

Controllability and numerical methods for optimal control of the Burgers equation were
investigated in e.g. [9] and [19]. However, the bang-bang property for time optimal control
problems of Burgers equation, with controls restricted over a proper subset of {2 was not yet
studied. To prove Theorem 1.1, we first establish an observability estimate from a measurable
set in time for parabolic equations, and then use the Kakutani’s fixed point theorem. It should
be pointed out that compared with (1.1), the semilinear equation considered in [17] has good
properties, such as global existence and uniqueness of the strong solution, and good regularity of
potential in the linearized system. However, the Burgers equation (1.1) lacks these properties,
see Proposition 2.1 and (2.34).

The observability estimate mentioned above, can be obtained in arbitrary dimension. For
this purpose let Q) be a bounded connected domain in R?, d > 1, with boundary O of class C?,
let T' > 0 and m be a positive integer. We introduce the following parabolic equation:

G —AG+AG+af+ (b-V)g=0 in Qx(0,T),
7=10 on 0 x (0,7, (1.2)
(',0 = _’0 € LQ(Q),
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where @ = (1, ,om) ", A = (aij)i<ij<m € (L0, T; LQ(Q))Z K
b-V)g = (b-Vq,-- Vgom)T.

G>2ford=1,and § > dford >2,be (L®°(Qx(0,T)))% and (
Then we have the following result.

Theorem 1.2. Let E C (0,7) be a measurable set with a positive measure and let & be a
nonempty subdomain of 2. Then any solution of (1.2) satisfies the estimate

6 Ty < eCOBdmaE) (13)

o 4 2 2 712 4/(2—-p) 4/(2—-p) 5
.eC(2,0,d;m, @) [1+([All 5 +HlallS +HIBIIE) (TH+1D)+[[Alloe™™ ™ +llallo ]/ |@(x,t)| dx dt,
wxE



where [|Alloo = 1Al oo 07130y [lloo = lall oo o710y 1olloo = 18]l oo 0,7y @

%d if d<§<2d,
1 if 2d<q.

p= (1.4)
Here and throughout Section 3, C(---) denotes a generic positive constant that only depends on
what is enclosed in the brackets.

Estimate (1.3) is an observability inequality from a measurable set in time. It was established
for the case m = 1 and assuming that  is convex in [16], where the essential step consisted
in a quantitative unique continuation at one point in time. Later, in [17], still for m = 1 the
convexity assumption on Q was successfully dropped, but the potentials were assumed to be
bounded. In our Theorem 1.2, the potentials still have the same regularity as in [16]. We prove
(1.3) by using similar arguments as [17]. But compared with [17] and [16], the method of the
present paper has the following merit: In [17] and [16], as ¢o(-) # 0, the facts that o(-,¢) # 0
in a small open subset of ) and o(+,t) # 0 in ) are the basis of the proofs, respectively. These
properties can be guaranteed by the strong unique continuation property of parabolic equations
with homogeneous boundary conditions and Théoréme II.1 in [4], respectively. In this paper,
the property ¢(-,t) # 0 is unnecessary. This is a consequence of the construction of a special
frequency function, see Lemma 3.2. Moreover, the above-mentioned unique continuation prop-
erty can be deduced by the result in this paper, see Remark 3.6. Finally let us remark that
the results of this paper remain applicable if —A in (1.1) is replaced by —eA with € a positive
diffusion coefficient.

The rest of the paper is organized as follows: Section 2 contains the proof of Theorem 1.1.
In Section 3 we give the proof of Theorem 1.2.

2 Time optimal control for the Burgers equation

The ultimate goal of this section is to give the proof for Theorem 1.1. Before address existence
and uniqueness for (1.1), which is not readily available in the literature, and prove existence for
the optimal control problem (P). The restrictions on the spatial dimension and on the range of
q will be specified with each of these results. The case d = 1 will be considered at the end of this
section. For convenience we first recall the definition of the space W2 2/ 7(Q). Tt is a Banach
space consisting of the elements of W4(Q) with finite norm (see. e.g [12])

1
_ Dap(e) = Dap(@)[* ,_ \*
el = lehwragor + ([ [ 2D =220 g5 4,

Proposition 2.1. Let ¢ > 2 for d = 2, q € [2,6] for d = 3, and q € (2,4) for d = 4. Then
for any T > 0 and M > 0, there exists a positive constant p1 = pi1(M,T), such that for

(i@, o) € L=(0,T; LI(Q)) x W2 2/9(0) N WEI(Q) satisfying

HﬁHLO"(O,T;Lq(Q)) + “g0”W3_2/q(Q)ﬂW()l’q(Q) < p1,
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the equation

Oy — Ay + (7 V)J=xot in Qx(0,T),
y=0 on 09 x (0,7T), (2.1)
7(-,0) = 9o in Q

has a unique solution § € WqZ’l(QT). Moreover, \|g||W2,1(QT) <M
q

Proof. The proof is based on the Schauder fixed point theorem. We set

K= (€€ L90.T: 19(9)) : [€ll 21,y < M),

and consider for { € IC the following linear equation

O — AG+ (7-V)E = xui@ in Qx(0,T),
7=0 on 00 x (0,7, (2.2)
?j(,o) = 370 in Q.

Multiplying the first equation of (2.2) by —2A% and integrating it over Q x (0,¢) we obtain using
that d < 4

t
H_'('at)H?{é(Q) <C (\\§0|’§{3(Q) + HﬁH%%o,T;L?(Q))) + C/O H?f”?{&(Q)HfH%ﬁ(Q) ds, Vtel[0,T].

Here and below C' denotes a generic constant. Using Gronwall’s inequality we find
17, 0 < € (101330 + 13 Wlizoruean, vieo,T]
YU WlEg@) =~ \IWollag ) T 20,22 ) © o 4

By Sobolev’s embedding theorem, it can be checked that for the choice of dimensions and range
of ¢ values the following estimate holds:

1G98 de < €1ty o100 o

for a constant C' independent of i € HZ () and € € W24(Q). Here we could still use g € [2,4)
for d = 4. Combining these estimates we obtain

4 : s
| [ 9igtarar < cOLT) (1012 s gy oy + 180000

(2.3)
From (2.2), (2.3) and LP-theory for parabolic equations (see Theorem 9.1 of Chapter 4 in [12]),
it follows that

1921,y < C(M,T) (H370||W§‘2/q(9)mwg’q(ﬂ) + WHLO@(O,T;M(Q))) :

(2.4)
By (2.4) we obtain that there exists a constant p; = p1(M,T") > 0, such that if

1501l ;2270 gy rroa ) + 1ll oo 0,7 200y < 1,
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then HgHWqu(QT) S M.

Now we define the mapping ® : £ — K by CIJ(g) = §, £ € K, where 7 is the solution to (2.2)
and verify the conditions of the Schauder fixed point theorem. This consists of two steps.

Step 1. The fact that
K is a compact convex subset of LY(0,T'; LY(Q2)),

follows from Sobolev’s embedding theorems.

Step 2. @ : K — K is continuous, i.e., if En €K, & — gstrongly in L9(0,T; L9(R2)), then
O (&) — P(E) strongly in LI(0,T; LI(2)).

Proceeding by a contradiction argument, assume that there exist a constant g > 0 and a
subsequence of {®(&,,) }n>1, denoted by {® (&, ) }k>1, such that

1@ (€n,) — () Laqo.1:La(2)) = Eo- (2.5)

Since ®(&,,) € K, there exist a subsequence of {ng }x>1, still denoted by the same notation, and
7 € K, such that

D(Eny) — 2, Eny — € weakly in W2 (Qr) and strongly in L9(0,T; Wy 9(Q)),  (2.6)

and
B (Ene) — AR(En) + (B(Ene) - V)én = Xl in 2% (0,7),
® (&) =0 on 99 x (0,T), (2.7)
P (&n,,) (- 0) =170 in Q.

Now we claim that there exists a subsequence of {ny}x>1, still denoted in the same manner,
such that
(D(&n,) - V)én, — (- V)E weakly in LY(0,T; LI(Q)). (2.8)

On one hand,

(@ (Eny) - V)il La(o Loy = 10:®(Eny) — A®(Eny) — Xwilll Laorpa()) < C(M,T).  (2.9)

On the other hand, for any /i € L°(Q x (0,T)), by (2.6), we have

)// () - V)én, — (2 V)il dz
— )// B(E,,) - {nkhda:dt—l—// V) (€, — Vi da dt (2.10)

Cllo( §nk) ZHL2 0,7;L2(Q)) T+ C||V(§nk - )||L2(0,T;L2(Q)) — 0.

IN



It follows from (2.9) and (2.10) that (2.8) holds. Then, passing to the limit for & — +o0 in (2.5)
and (2.7), by (2.6) and (2.8), we obtain that

— —

12— @(&)|La(o,r;0()) = €0 and 2= (§),

which lead to a contradiction.

By Step 1 and Step 2 the Schauder fixed point theorem implies the existence of i € K such
that ®(y) = ¢.

Finally we prove uniqueness. Let i1, 12 € WqQ’l(QT) be two solutions to (2.1). Then

O — ) = AW — 42) = (B2 — 1) - V)G2 + (1 - V) (52 = 41)  in 2 x(0,T),
1 —Yo=0 on 00 x (0,7), (2.11)
(th — %2)(-,0) =0 in Q.
Multiplying the first equation of (2.11) by 2(¢1 — ¥2), and integrating over 2, we obtain by
Holder inequality and the Sobolev’s embedding theorem that

do . . -
Sl = 2)(, 1229y + 21V (@ = 72) (5 Dll72(0
< OV — 7)) 2 191 ¢ Dllwza) + 1720 Ollwza@) (@1 — 52) G D)l 2
where we use that W29(Q) embeds continuously into C(f2) if 2¢ > d. This implies that

d. .. . . L
S = 2D ) < CUGC OBy + 170D ma@) G — 72)( D20

Integrating the latter inequality over (0,t), ¢t € [0, 7], and using Gronwall’s inequality, we obtain
that ﬂi = :172.
]

The next proposition is concerned with the local null controllability of (2.1).

Proposition 2.2. Let ¢ > 2 for d =2, or q € (3,6] for d =3. Then for any T > 0, there exist

positive constants pa = p2(T') and p3 = p3(T') such that if ||Go|| 22/ < p3 then there
q

@)Wy ()
exists a control U with ||@||pe(o,m;ra(0)) < p2llYollz2(q), such that the solution of (2.1) satisfies
7(-,T) =0 in Q.

Proof. We shall use Kakutani’s fixed point theorem (see e.g. [1]) for the proof. For this purpose,
define

K =€ L0, T: () : [€lly21 g,y < 1)-

For each E € I, we consider the linear control system

—

Oy — Ay + (- V)§ = xwti in Qx(0,7),
7=0 on 90 x (0,7), (2.12)
7(-,0) = %o in Q.



Its adjoint system is
O+ AP — (V&) =0 in Qx(0,7),
$=0 on 02 x (0,7),
U(-T) € LA(9),

and hence by Theorem 1.2, and the equivalence of observability and controllability there exist
a positive constant ps = p2(T), and a control « € L>(0,T; L1(Q2)) such that

and

1%l oo (0,129 (02)) < P2llFoll L2(0)- (2.14)
Now we define a multivalued mapping ® : L — L?(0,7; L9(2)) by

®(€) = {§ : there exists a control @ such that (2.12) — (2.14) hold}, where £ € K.

From the above arguments it follows that ®(£) 0 for each € € K.
Next we shall check in three steps the conditions of Kakutani’s fixed point theorem.

Step 1. It is straightforward to verify that

K is a convex, compact subset of L4(0,T; L1(Q2)) and
®(€) is a conver subset of LI(0,T; LU(Q)) for each € € K.

Step 2. ®(K) C K.

In fact, for any € € K, there exists a control @ € L>(0,T; LI(<2)) satisfying

%]l oo 0,750 (02)) < P2llFoll L2 (2.15)
and such that § = ¢(u) satisfies
0 — AG+ (7 V)= xwii in Qx (0,7),
y=0 on 90 x (0,7),
ﬂ(,O) = _»0 in Q)
g, T)=10 in Q.

By (2.15) and the same arguments that led to (2.4), we have

1922 gy < CT) (102270 gy + 1l 202380000 ) < OO Goll g0t sy
from which, we obtain that there exists a positive constant ps = p3(7'), such that if

“50”W3—2/Q(Q)OW()1,Q(Q) S P3,
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then i € K.

Step 8. The map ® is upper semicontinuous in L4(0,T; L4(Q)), i.e., if & — é’ strongly in
L90,T; LYQ)), yn € ®(&n) and yn, — Z strongly in LI(0,T; L9(R2)), then 2 € O(§).

Since 7, € ®(&,), there exists @, € L(0,T; LI()) satisfying (2.15) and

o — AGn + (G - V)En = Xwiln i Qx (0,7),

—

Yn =0 on 00 x (0,T),

2.16
Un(-,0) = 20 in Q, (2.16)
Go(-,T) =0 in Q.

By Step 2 we have that {¢,},>1 C K. By (2.15) with @ replaced by i, there exist a subsequence
of {n},>1, still denoted in the same manner, and @ € L>(0,T; L?(2)), such that

T — Z, 5_;1 — 5 weakly in WqQ’l(QT)7

2.17
strongly in L4(0, T; W, 4(2)) N C([0, T; LY(R)), (2.17)
Uy — U weakly star in L°°(0,T; LY(Q2)) (2.18)
and
1| Lo (0,520 (02)) < P2llFoll L2(0)- (2.19)

From (2.17) and the same arguments that led to (2.8) it follows that there exists a subsequence
of {n},>1, still denoted by the same notation, such that

(T - V)én — (Z- V)€ weakly in LI(0, T; LI(Q)). (2.20)

—

Passing to the limit for n — 400 in (2.16), we obtain from (2.17)-(2.20) that 2’ € ®(¢).

Kakutani’s fixed point theorem now implies the existence of § € K such that § € ®(¢). This
completes the proof. ]

From Proposition 2.1 and Proposition 2.2 we deduce the following corollary, in which Cy
2

92— 2
denotes the embedding constant of W, ¢(£2) into L?(2), and My > 0 and T > 0 are arbitrarily
fixed constants.

Corollary 2.3. Choose 9y € WqQ_Q/q(Q) N Wol’q(Q) satisfying

pMoTo) o>}

0< ||y0||W§‘2/q(Q)mW(}’q(Q) < mln{M(TO)C’OH,pg

1 Mo, T,
CO HyOHWqQ_2/q(Q)ﬂW01’q(Q)

9
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Then for any i € L°°(0, +00; LI(82)) with ||| e (0,4-00;29(0)) < po := pllY0ll 12(q), the equation

0y — Ay + (¥ V)y=xwt in Qx(0,Tp),
y=0 on 09 x (0,Tp), (2.22)
(-, 0) = o in Q

has a unique solution i € Wi (Qr,) with ||ﬂ||W2,1(QT )y < Mo. Moreover, there exists a control
q 0
7 € L>(0,+o0; LY(Q)) with ||U]| Lo (0,4+00;L9()) < po, such that the solution y(-,;v) of (2.22)

corresponding to U satisfies §(-, To; 0) = 0 in Q.

Henceforth we fix 3o satisfying (2.21) and po = p||%o|| 12(0)-
Proposition 2.4. Problem (P) has at least one solution.

Proof. From Corollary 2.3 it follows that problem (P) has an admissible control. Let 7% =
inf(P). It is obvious that 0 < T™ < Tj.

If T* = Ty, then the proof is complete. Otherwise T* < Tp, and there exist sequences
{T}n>1 and {0, }n>1 C U such that

o
T° = lim T, (2.23)
and . . . . o
Ot jAyn + (yn : V)yn = Xwlp in £ x (Oa Tn)a
Yn =0 on 00 x (0,T},),
S 5 . 2.24
Un(+,0) = 0 in Q, ( )
Un(,Tn) = in Q,

where 7, (-, +) = (-, -1 @) € W (Qr,). By (2.23) and (2.24), we can assume that 0 < T}, < Tp.

Set
R Un, t€(0,T,), . Un, t€(0,Ty),
Un(,1) { 0, te[Tntoo) M (1) 0, tell, Ty (2.25)

From the fact that {0, },>1 C U, (2.24) and (2.25) it follows that
{17n}n21 cu (2.26)
and Z,(-,-) € W2 (Qq, ) satisfies

atgn — Agn + (5n . V)gn = Xwﬁn in Q x (O,To),

Zn =0 on 0f) x (O,Tg),
Z0(,0) = 7 in Q) (2.27)
Z.(,T,) =0 in Q.

By (2.26), (2.27) and Corollary 2.3, we obtain

HgnHWqQ’l(QTO) < Mo, Vn =1,

10



which, combined with (2.26), implies that there exist a subsequence of {n},>1, still denoted in
the same manner, Z € W' (Qr,) and 7 € U, such that

Z, — 7 weakly in W2 (Qg,) and strongly in L4(0, T; Wol’q(Q)) N C([0, To]; L9(2)),

2.2
U, — U weakly star in L*(0, +o0; LI(Q)). (2:28)

By (2.28) and the same arguments as for (2.8) we have that there exists a subsequence of {n},>1,
still denoted by the same notation, such that

(Z, - V)2, — (Z-V)Z weakly in L(0, To; L(£2)). (2.29)
Passing to the limit for n — 400 in (2.27), by (2.28), (2.29) and (2.23), we obtain

07— AZ+ (Z-V)Z=x,U in Q x (0,Tp),
7=0 on 9N x (0,Tp),
2(70) = 270 in €,
Z2(,T*) =0 in Q.
This completes the proof. ]

Now we give the proof of Theorem 1.1.

Proof. By a contradiction argument, there would exist a positive constant ey < pp and a
measurable subset E* C (0,7%) with |E*| > 0 such that

7" (-, )| ag) < po — €0, VteE" (2.30)

Take dp € (0,|E[/2) and denote Ej = {t € (0,77) : t +Jp € E*}. Then we have |E} | > 0.
Indeed, on one hand by the definition of Ej , if ¢ € Ej , then t + 99 € E* N (00, T*). On the
other hand, if t € E* N (6o, T*), then t — dy € Ej . Hence

B3| = |E* N (60, T%)| > |E*| — 60 > 271 |E*|.

Denote y*(z,t) = y(x,t;4*) and zj (v,t) = §*(z,t + do). Then we get that
(

do/t AZ:;O + (2:5((0 ) V)E}ko = Xwﬁ*('vt + 50) in 0 x (OvT* - 50)3
Z5, =0 on 90 x (0,7 — &), 531
2, (10) = 7 (-, 60) in Q, (2.31)
Zy (T =) =0 in Q.

We claim that there exists a real number 6, € (0,d0), such that as 0 € (d1,00), there exists a
couple (hg,Us) € W22,1(QT*_50) x L*°(0,T* — dp; LI(2)) satisfying

(hg)e — Ahs + ((hs + Z5) V)hs + (hs - V)z5 = waEgoﬁ(; in Q x (0,7* — &),

hs =0 on 09 x (0,T* — dy), (2.32)
@5('70) :yﬂ*('ﬁ)q—g*(',do) n Q,

hs(-,T* — 60) = 0 in Q

11



and
s || oo (0,7 —s0;a(2)) < c1llF™(+56) — 7 (-, 00) | 20 (2.33)

where ¢; > 0 is a constant independent of § and to be determined later.

We shall use the Kakutani’s fixed point theorem to prove (2.32) and (2.33). To this end we
set ¢ = min{q, 10/3} and define

’C50 = {ge L2(07T* - 507L2(Q)) : ||§_)||W22’1(QT*760) + ||§_]|L°°(O,T*—50;W()1’q(ﬁ)) S 1}

Let 6 € (0,80) be a constant which is fixed later. For any £ € K5, consider the linear control
system

he— AR+ ((E+25) - V)h+ (h- V)2 = XwXmg @ QX (0,17 = &),
h=0 on 99 x (0,T* — &), (2.34)
h(,O) :T(75)_T(350) in Q.

Its adjoint system is
b+ AP — (VZ )G + (divsy, + divE)y + (E+25) - V)i =0 in Qx (0,7 — &),
Y =0 on 9Q x (0,T* — &),

—

¥(-, T* = do) € L*(),

and hence by Theorem 1.2, and the equivalence of observability and controllability, we deduce
that there exist a positive constant ¢; = C1(Q,w, £} ,T*,00) and a control @ € L*>(0,T* —
d0; L1(€2)) such that

h(T* — 60; @) = 0, (2.35)

and
]| Lo (0,7% —550(0)) < cllg™(+,6) — (-, 00) [l L2(2)- (2.36)
Now, we define the multivalued map ®; : Ks, — L?(0,T* — do; L?(Q2)) by

®5(€) = {h : there exists a control @ such that (2.34), (2.35) and (2.36) hold}, for £ Ks,-

From the above arguments it follows that <I>5(E) # () for each fe Ks, -
Next we check in three steps the conditions of Kakutani’s fixed point theorem.

Step 1. It is straightforward to check that

Ks, is a convez, compact set in L*(0,T* — 6o; L*(Q)) and
®5(€) is a convex set in L?(0,T* — o; L?(2)) for each & € Ks, .

Step 2. (I)(g(]C(;O) C Ks,-
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To achieve this goal, we use that for every E € Ks,, there exists a control @ € L*°(0,T* —

do; L9(2)) satisfying
[l oo (0,7 —60;2a(2)) < 1lly™(+,6) — ¥ (-, 60) | L2 ()

such that the associated state h = h(x,t) satisfies

he— AR+ ((E+25) - V)h+ (h- V)2 = XwXpy @ i Qx (0,17 — &),
h=0 on 9Q x (0,T* — &),
@( 0) = 27*( 5)_‘ _'*('7(50) in Qv

h(-,T* —d9) =0 in Q.

Multiplying the first equation of (2.38) by 2h and integrating it over €, we have that

d - .
@Hh(wt)H%Z(Q) + 2| VA(, D)l 720

2(|€ + 23, ll (@) |LVH||L2(@HH”L2(Q) B
20V 2 o IPllz2@) 1Pl 29, +2HUIIL2(Q)III’LIIL2(Q)

IN

< HVE('vt)H%?(Q) +C|lh(-t )||L2(Q "’ CHU('?t)H%?(Q)? Vitel[0,T" — ol

(2.37)

(2.38)

Here and throughout Step 2, C' denotes a generic positive constant independent of §. Integrating

the latter inequality over (0,t), by Gronwall’s inequality and (2.37), we obtain

121180, o206y + /OT _60||Vﬁ||%2(9) dt < C|F*(-,8) = (-, 00) 720 -
From (2.39) it follows that
I(E+25) - Wk +(h- V)3, ||Ti2£g T —60;L2(2))
CIVRI G20, —s0312(0y) + 2/0 Hvzéo”Lq(Q)”hHQ 20 dt
ClVRIZ 0.1 —szz () < CIT (2 6) = F(580) 1320y

which, combined with (2.38) and (2.37), implies that

IN

IN

1PN 0.7+ g1 ) + Hh”z'VE’I(QT*st) < Clg*(8) = 7 (- 00) I3 -
Recalling that ¢ = min{q, 10/3}, we claim that
I(E+ Z5) - R+ (- V)25 | aor—szacy) < CIT (2 8) = 7 (-5 0) |1 )

Indeed, if § = m then
=5 - 10/3
[ [i@ sz v raase [ 1901,

13

(2.39)

(2.40)

(2.41)



which, combined with the interpolation inequality that HVHHLm/s < CHVh\|2/5 HVhHi/fQ),

implies
o 77110/3 oo mas s
This together with (2. 40) implies
I(E+ 25,) - V)l pross o, -5 10732y < ClIT(+56) = 7 (- 60) |12 - (2.42)

On the other hand, if § = g, then for any @ € L%/(4=1(Q), by Holder’s inequality, we have that

IN

HVZ_:;O||C(§)||E||L‘1(Q)||SBHL¢1/(¢1*1>(Q)

|G-V, gda
Q

ClIZ5 lw2a@ I VAl 2@ 18] Lara-1 (62

IA

where we used that ¢ < 6 as d = 3. From the latter and (2.40) it follows that

%
| U905, iy dt < I (8 =7 (o0l

which, combined with (2.42), indicates (2.41).
Now we rewrite (2.38) as

hy — Ah = f in Q x (0,7* — &),
h=0 on 99 x (0,T* — dy),
}}'(70) :T(aé)_T(750) in Qy

h(-,T* —69) =0 in €,

where f = waEgoﬁ —((&+z5) - V)b — (h - V)z;,. It follows from (2.37) and (2.41) that
11 a .2+ —so:nicy) < ClIF* (-, 8) — g (-5 00) 1 (- (2.43)

It is obvious that h = i_il + l_ig, where 51 and i_iQ satisfy

(h); — Ahy = f in Qx (0,T* — &),
hi=0 on 90 x (0, T* — &), (2.44)
hi(-,0) =0 in Q
and - = .
(hz t—AhQZO inQX(O,T*—50),
hy =0 on 9Q x (0,T* — &), (2.45)

ha(-,0) = 4*(-,0) = §*(-,d0)  in &,

14



respectively. By (2.43), (2.44) and the same arguments as for (2.4), we obtain
HhIHW[;J(QT*_éO) < CHfHLci(o,T*—ao;Lci(Q)) < CHZTK(%S) - T('ﬁO)HHg(Q)- (2-46)

By Remark 8.8 in [3] and Hille-Yosida Theorem, since Q is a bounded, convex subset of R?

with smooth boundary, A is the infinitesimal generator of a Cjy semigroup of contractions on
W,4(Q). Considering the fact that i7* € C([0, T*]; W, 9(€2)), from (2.45) we get

Hh2||W2271(QT*750) + Hh2||C([Q7T*_5O];W01"1(Q)) < CH?T(v 5) - T(a 50)”[/[/01’(1((2)’
This together with (2.46) implies that
llviz @pe sy + Mo —swiacy < CINT (5 0) =77 (o) lwpaqy-
From the latter inequality we obtain that there exists a constant d; € (0,0¢) such that
<1

IMloo.re—spwy ey T 121 @y 1 V0 € (1,00), (247)

and thus
<I>5(IC(;O) CKsyy V€ (01,90).

Step 3. The mapping ®s is upper semicontinuous in L2(0, T* —dq; L*(2)), i.e., fo_;L € ks, —
€ strongly in L*(0,T* — 5; L2(Q)) and h,, € ®5(&,) — h strongly in L?(0, T* — 6o; L?(2)), then
h e (I)(s(f).

Since hy,, € ®5(&,), there exists @, € L>(0,T* — do; LI(2)) satisfying

”ﬁnHL(’O(O,T*—ﬁO;Lq(Q)) < Cl”?fk('v 6) - g*(a 50)HLQ(Q)7 Vn>1, (248)

+(hn - V)25, = XoXp a0 Q% (0,77 = &),

h, =0 on 9Q x (0,T* — &), (2.49)
fin(-,0) = 7*(-,8) = (-, d0) in ©,
B (-, T* — 89) = 0 in Q.

From (2.48), {&,}n>1 C Ks, and {hptn>1 C Ks,, it follows that there exist a subsequence of
{n}n>1, still denoted in the same manner, and @ € L*(0,T* — d¢p; LY(2)) such that

En — & hp — I weakly in W;’l(QT*_go), weakly star in L>°(0, T Wol’q(Q)),
strongly in L2(0,T* — 6o; H3 () N C([0, T* — &p); L*(Q)), (2.50)
a.e. in Q x (0,T* — dp),

Uy, — U weakly star in L>°(0,T* — do; LI(2)) (2.51)

15



and

1]| s (0,7 —s0;20(2)) < 1l (-, 6) — (-, 00) | L2 () (2.52)
Next we claim that
((gn + Z5,) - V)ﬁn — (({+ Z5) - V)E strongly in LQ(O,T* — do; LQ(Q)) (2.53)
and . .
(hn - V)Z5, — (h-V)Z; strongly in L*(0,T* — 6o; L*(9)). (2.54)

Indeed, from (2.50) and Lebesgue’s dominated convergence theorem it follows that

H((gn + Z:sko) V)_) ((5+ Z_j;ko) : V)EH%; (0,T% —80; L2( ))
20((E + 23,)- V) — B e _gsrogeyy + 20(E ) Dl e _srocey
Clhn hHL2 0.7 —60;HE () T 2[[((&n — &) - V)AI2, (0.1 —s0;22(0)) 0

VARVA

and

(B = B) - V)25 3200 7 —s0:2(0) = O-

—

Passing to the limit for n — 400 in (2.49) we obtain from (2.50)-(2.54) that h € ®4(&).

By Step 1 - Step 3 and Kakutani’s fixed point theorem there exists a 55 € Ks, such that
hs € ®5(hs). Thus (2.32) and (2.33) follow.

Using (2.31) and (2.32), we have

%) z
= X @t + 80) + X Ts( )] in Qx (0,T* — &),

— = 60
(s +2,) =0 on 90 x (0,T* — &),  (2.55)
(@5+%k0)(.,0) = 7*(-,9) in €,
(hs + Z5,) (-, T — 0g) = 0 in Q.
Setting
o _ % — _ ﬁ*('>t+50)+ﬁ5('at) if tGE:;Oa
U(g(-,t) =u ('7t+60)+XE§0u5('at) - { ﬁ*(',t + 50) if te (O,T* _ 50) \ Ego? (256)
by (2.30), (2.33) and (2.56), we obtain that
@5 )l Lag) < po — €0 +crllg™(-,0) — (-, 00) | 22y, a-e. t € B, (2.57)
and
55 )l L) = l@* (-t + o)l La) < po, a.e.t € (0, 7% —do) \ £}, . (2.58)
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Now we choose d € (d1,d0) , with 61 determined in (2.47) such that [|57*(-,d) — 7 (-, d0) | L2(q) <
ocy ' Then from (2.56), (2.57) and (2.58) it follows that

45 (-, )l ey < po, a.e.t € (0,7 — o).
The latter inequality, together with (2.55), (2.56) and Proposition 2.1, implies that if we take
@* (-, t) t € (0,4],
U5 (t) = Uz(t=0) te€(5,T"—0d+0),
0 t € [T* — 8o + 6, +00),

then ¥§ € U and the equation

G — AF+ (§- V)i = xu¥s  in Qx (0,T* — & + 9),
7=0 on 90 x (0,T* — 6o + 9),
g(-,0) = %o in

has a unique solution (-, -;U5) € WqQ’l(QT*_(;OJr(;) satisfying
G, T* = 6o+ 6;7) =0 in Q.
This gives a contradiction and completes the proof for d € {2,3}. O

We close the section by giving the sketch for the proof of Theorem 1.1 for d = 1. In this
case, let 2 = (0,1) and w be an open and non-empty subset of Q2. For an arbitrarily fixed pg > 0
we define the constraint set of controls

U = {u:[0,4+00) — L*(0,1) is measurable : lu(-s )l z2¢0,1) < po for almost all ¢ > 0}.

We fix yo(-) € L%(0,1) \ {0} and consider the controlled Burgers equation

Yt — Yoz + YYz = Xt in (0,1) x (0, +00),
y(0,t) = y(1,t) =0 in (0, +o0), (2.59)
y(-,O) =7%Yo in (0’ 1)7

where u € U. For any T > 0, existence and uniqueness of a solution in y(-, -;u) € C([0, T]; L*(0,1))
to (2.59) can be ensured by standard arguments. The set of admissible controls is defined to be

Ug={uel:y(,T;u) =0 over (0,1), for some T > 0}.

Now carry out the proof in three stages.

Stage 1.
Problem (P) has at least one admissible control.

This will be done by four steps as follows.
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Step 1. We consider the equation

Yt — Yax + YYyz = 0 in (07 1) X (O7T0)7
y(0,t) =y(1,t) =0 in (0,Tp), (2.60)
y('a 0) = Yo, in (07 1)7
where Ty > 0 will be determined later. It is well-known that
Iy To) 20,1y < € M llyoll 22(0,1) (2.61)

where A1 > 0 is the first eigenvalue of —A with Dirichlet boundary conditions.

Step 2. Let z = z(x,t) be the solution of

2t — 2z + 22, =0 in (0,1) x (0,2),
2(0,t) = z(1,t) =0 in (0,2), (2.62)
z(+,0) = y(-, To) in (0,1).
We can check that Clly-To)|2
|’Z:E(‘72)H%2(0,1) < HZ/(HTO)H%?(OJ)E o L2,

where C' denotes a generic positive constant independent of Tp. From the latter and (2.61) it
follows that
—2X
sz('aQ)H%Z(QJ) <Ce 2MTo, (2.63)

Step 3. By standard arguments for local null controllability, Theorem 1.2 and (2.63), for
sufficiently large Ty, there exists a u € L°°(0,2; L?(0,1)) with |lu(-, 20,1 < po ace. t € (0,2),
such that w = w(x,t) satisfies

Wi — Wez + Wwy = xuu in (0,1) x (0,2),
w(0,t) =w(1,t) =0 in (0,2),
w(-,0) = 2(,2) in (0,1), (2.64)
w(-,2) =0 in (0,1)
Step 4. By (2.60), (2.62) and (2.64), we see that
0, in (0, Ty +2),
a(vt) = ’U,(',t), in [T0+27T0+4)
0, in [Ty + 4, +00).

is an admissible control for the problem (P).
Stage 2. Ezxistence of solution for (P) can be obtained by standard arguments.

Stage 3. The bang-bang property for (P) is obtained by the same arguments as for the case
d = 2,3, only that in this case Ks, is replaced with

Ky = {6 € L2(0,T" = 60; L*()) = [€llyj2 )< 1k

QT* —dp
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3 Proof of the observability estimate

In this section, for the sake of simplicity, we only give the detailed proof of Theorem 1.2 for
m =1, i.e., for any solution ¢ to the equation:

8tg0—Ag0+a<p+5~V90:0 in QX(O,T),
©=0 on 99 x (0,7T), (3.1)
90(70) =0 € L2(Q>7

the following estimate holds:

”30('7T)HL2(Q) < eo(fz,w,d,q,E)ec(Q,@,d,q)[1+(|Ia§o+||13||?>o)(T+1)+||aié(2’”]/ lp(z, )| dudt. (3.2)

wxE

As mentioned before, (3.2) is proved by using similar arguments as in [17]. We therefore
only sketch the proof below and point out the differences.

Lemma 3.1. There exists a positive constant Cy = C'O(Q, d,q) such that for any t € (0,77,

a 2 7112
[ Dl < CollalBt BRI gy 2, (33)

and , ,
1,Co(lla +15 2
196, D122, < 1 eCoalBATR g2, (3.4)

Proof.  Multiplying the first equation of (3.1) by 2¢ we obtain after some calculations that

d ) ,
e Oy + IV D 2y < CQds d)((lall + D15 D172 g

Integrating the latter inequality over (0,%), we have that

e / 1960, )12,
(3.5)
< c<ﬂdq><uau2 S / I 9)2aggy ds + IgolZaq, ¥t € [0.7)

This, together with Gronwall’s inequality, implies
® A 2 72
H(p(.7t)|’12(0) < eC(Q7d7Q)(”a”oo—‘r”bHoc)t”@0”%2(@)' (3.6)
Moreover, it follows from (3.5) and (3.6) that
/ ||V<,0 ||L2(Q ds < HSDOHiQ(Q)eC(Q,d,ﬁ)(Ha”go-‘erHgo)t7 Ve [O,T]. (37)
Multiplying the first equation of (3.1) by —2tA¢, we have that

t0 |V (-, < C(9,d,9)(lallZ + IIEIVR( )2

01200
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Integrating the latter over (0,¢), we obtain by (3.7) and Gronwall’s inequality that
® A4 2 712
V()2 ) < 2C@ADIAEHFN g 2, (35)

From (3.6) and (3.8) the inequalities (3.3) and (3.4) follow.

Let zg € Q) and denote by Br = B(zg, R) the open ball with center zy and radius R.
Lemma 3.2. Let Ry > 0 and A > 0. Introduce for t € [0,T] and xo € Q,

_ lz—aq?
A(T—t+N)

GA(.T, t) = m@

Define for u € W42(0,T; L*(Q2N Bg,)) N L2(0, T; H*(Y N Br,) N HY(Q N Bg,)), t € (0,T] and
e>0,

/ |Vu(z, t)*Ga(z, t) de
QOBRO

NX(t) = ,
/A lu(x, t)|? G (x,t) dx + ¢
ONBp,

The following two properties hold:
i)
1d

—— lu(z, t)|>?Gx(z, 1) dx—i—/ \Vu(z,t)|*G(z, t) do

QﬁBRO

(3.9)
_ / (@, £) (0 — Au(z, )G (x, t) de.
QﬁBRO

1) When QQBRO is star-shaped with respect to xg, i.e., vz, (To—x0) > 0 for a.e. T € 8QHBRO,

p . /me |00 — Aul*Gy(x,t) dx
R ey R Ay

(3.10)
/ |u(w,t)\2G,\(aJ,t) dr +¢
QﬂBRO

Proof. Equality (3.9) follows from direct computations. The proof of (3.10) is the same as that
in [15]. O

Lemma 3.3. Let R > 0 and § € (0,1]. Then there are constants C1 = C1(6,R) > 0,C2 =
Cy(2,0,R,d,q) > 0,C3 = C3(Q,6,R,d,§) > 0 and Cy = Cy(6,R) > 0, such that for any

©o € L2(Q) with po # 0 and € € (0, HchHiQ(Q)), the quantity

ho = G

3.11
leoll22 g, I (3:-11)
_ellallZ7 +lallZ 5],

2427 (C2+2C0) (a2 +B)12)T
In| (14 C3)e T elC24+2C0 Tonp, P@T? dote

satisfies the following two properties:
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2C - = -
0< 1+Tl+<co+cz><uauio+||buzo>T+\a||§op+uauio+||bu§o} ho < C1. (3.12)

i) For any t € [T — hg, T, it holds
- C
eCo(IlallioJrllbio)T/ lpo|? da < e o </ oz, t)|* do + é) . (3.13)
Q QQB(1+5)R

Proof. Inequality (3.12) follows from (3.11), (3.3) and the fact that £ € (0, H‘POHiz(Q))- To verify
(3.13) let h > 0,p(x) = |z — zo|* and x € C5°(B(+s)r) be such that 0 < x < 1, x = 1 on

{z: |z — 20| < (1+38/4)R}. Multiplying the first equation of (3.1) by 2¢~ % x2p and integrating
over N B(144)r, We get

d
— e Ry 2p? dw—i—Q/ e h|xVe| da
dt QOB(H&)R QHBUH)R
4 3 _»
< [t (Gl le il - A9l ) ds (3
QOB(1+6)R
-2/ ae 2 p? da — 2[ (b- Vgp)e*%x% dzx.
QNB(11+s)r QNBats)r
Considering the following estimate:
_pP
2||a||Ld(QmB(1+5>R)He n(xe)?|| _a for d > 2,

-2 ae_%xchZ dx < LTT(QNB(115)R)
$ ]2 . R ()| oo ford=1
QNBaior Ha”Ll(QﬂB(Hs)R)He X¥ L (QNB(146)r) orad =

~ . _r
< C(6,R,d.Q)l|allolVIe™m (x0)*I 1 (@npe, gy

we obtain that

A 1+0)R
—2/ aefﬁngfdx < C(2,0,R,d,q)|alleo (_{_h)—{—HaHOO]/ e’%X%ozda:
QNB(115)r QNBi1s)R
A . _la+3s/49) R
+C(Qa 57 Rv da Q)HVXH%OO(B(lJr(;)R)e h /QOB @2 dx
(1+8)R

—i—[ 6_%X2’Vg0|2d$.
QOB(1+5)R

This together with (3.14) and (3.3) implies

d —{Wl;ﬂwm,mdm||a||oo[%+naum1+2u5||§o}t 2 9 9
e ) e Xyt dr
QﬂB(l SR
: ATy 2 SR G a2 G e 2 (3.15)
< O(0,6, R, d, )| Vx| il 120 P

B(1+5)R)€

22 N -
{10 L @8Rl L ol 2112
€ .
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Set ¢; = 17(1 + 6)%,c2 = (1 +36/4)%,c5 = (1 +6/2)% and Cy = (=)= VR  [pteorating

Cc1
(3.15) on (¢,T), we have after some calculations that there exists a positive constant Cy =

(2,6, R, d, §) such that

co—c 2 7
/ e T)de < e”?;f”’%602<||azo+||b||zo>T/ (@, 1) d (3.16)
ONBg QNBa+sr
Co+-C, 2 g 2\ 2 Cy — C3 (c3— 1)
+CqeC2tC0)(llallS IS HVXHLOO(B(H(;)R) he™ ||<,00H

whenever 0 < T — %h <t < T. Now we set (3 = C2HVX”%00(B<1+5)R)CI and choose
h = 02610 . From (3.12) it follows that for any 0 < T — %h <t<T,

Ccy —C3, _(c3—1R? 1 g
he S il < ¢ [ el P deel
NBr

(C2+Co) (|lal|2+1b]|2,)T 2
026 o o ||VX||L°°(B(1+5)R) c1

This, together with (3.16), (3.11) and (3.12), implies

bl c
(e — 1)eco<||auzo+||b||go)TH@OH;(Q) L </
Q

AﬁB(1+5)R

©*(x,t) dz + é)

for Cy = 3C; + (62_63“2562_63)1%2, and (3.13) follows. O

Lemma 3.4. Let 0 < r < R. Suppose that B, C Q and QN B(1426)r 1s star-shaped with respect
to xqg for some 6 € (0,1]. Then there exists a constant 5 = B(Q,é, R,r,d,q) > 0, such that for
any £ € (0,602,

/ (o2, ) 2da + &
QQBR
4 B8

(1+ C3)e*t Tl (C2+2C0) (JlallZ +18113,) 7|00 ||2 Halloo 7 +lallZ+151%

[2 (/Bryap(x,T)2dx+é>]l_ﬁ.

Proof. Let 0 < r < R and Ry = (1 + 20)R. Let x € C§°(Bpr,),0 < x < 1,x =1 on
{z:|x — 29| < (1+36/2)R}. We will apply Lemma 3.2 with u = xp. It is obvious that

<

(0 —Au=—au—b-Vu+g

with g = —2VxVy — Axp + 5(90V><). We shall divide the proof into the following three steps.
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Step 1. Noticing that g is supported on {z : (1+3/2)R < |z — z9| < Ro}, and recalling the
fact that x =1 on {x : |x — zg| < (1 + 0)R}, we have

/ u(x,t)g(z, t)Gx(z,t) dx
QN Bg,

/i lu(x, t)|*Gr(x,t) dz + &
QﬂBRO

Yo (3.17)
C(6,R) [ el - [Vl + @ ([[bllo + 1)] dee
QN{z:(1+36/2) R<|z—z0|<Ro} efT—iterx
- 9 (1+6)%R d
[ lo(z,t)|” dx + gedT- t+*>(T—t+)\)2
QNB14s)R
(1+6)2R2

with C5 = —(1”4)2}%2 + (1+35£2)2R2 > 0. Since edT—tH3) (T — ¢ + )\)% > C(d,R,d) > 0, we have

from (3.17) and Lemma 3.1 that

Gyd > 1 o 5
/QQBRO“*" N OO R, d) (1 + Bl + ¢ E )0l g 2,

e T-trx . (3.18)
/ |ul?Gydx + & / lp(z, b)) de + &
QNBRg, QNB(146)R

Similarly, we obtain

/ g(x s)| Gi(z,s)dx
/ QﬂBRO
/ :L‘3|G,\(x s)dr + &
QmBRO

- /Tcw,R,d)(HHbuio+s—1>600(”“'3°+”b§°’s”¢0”ia<fz> o
I

e T—stx ds.
/ ]cp(x,s)|2d:c+é
QOB(1+5)R

By (3.12) we have that ho < C1 and hg € (0,7/2). Now, for any ¢t € [T'—&,T), with € € (0, h]
to be determined later, we get by (3.13), (3.18) and (3.19) that

/ ugGydx / ]g] G(z,s) dx
QﬂBRO + 3/ QNB Rg ds
/ u(x, t)* G dx + & / lu|?G\(z, ) dx + & (3.20)
QmBRO QHBRO

< CORd) (14 B2 +T7) e e 2 Qi

ds

(3.19)
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Step 2. In this step we obtain a bound for AN5(T'). Firstly, by (3.10), we have

/ lau>Gy\(z,t) d
QHBRO

d . - 1 -
—N5(t) < N5(t) +3
dt T—1+A / W2G (2, ) da + &
ONBr, (3.21)
[ viGena [ gPGintds
+3H5Hgo QHBRO + 3 QﬂBRO

/ W2G (2, ) da + & / u2G (2, ) da + &
QQBRO srAlmBRO

Now we deal with the second term on the right hand side of (3.21). Recalling (1.4), we see

J PO < el g G|
QN B, L? (ONBg LT5 P (NBr,)

< lal? 2 II(UQGA) PP

L7 (QNBrg Ld P(QOBRO)

< C(.8,R,d,q)|al? Hv( W2G )%)\p for d > 2

- q Li QﬂB A LP(QQBR ) -7
and

2 2
aul“*Grdx < |la WGy oore
/meOr | 101 g 15N
2 _
< C(Q,6,R,d, q)||aHLq ONBr,) |V (u GA)HLl(QmBRO) for d = 1.

Hence

/ lau|*Gy da
QQBRO

< C(Q,é,R,d,g)HaH’ﬁO/ (|u*7P|VulPGy 4+ u*(G)"P|VGAP) dz
QﬂBRO
2
< Vul’Gydz + C(,6,R, d, § [a +”a”°°]/ ul?>G dz,
fos, 7 ( 10127+ 75555 Sy,

which, combined with (3.21), implies

d _ 72 g
ST =+ X)e S HFIRING 1)

o 4 2
< o o= 3HIBIZ) | 5, llalll
< C(,6,R,d,q)e (T —t+Nals +(T_t+A)H

/ 912G (2, 1) da
BT 1 4 Ay SHIBIR I 0By

\u2Gy(z,t) dx + &
QQBRO
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Integrating the latter inequality from ¢ to T'; we obtain after some calculations that

e—30HIBIZ): A NE ) / lu(z, )G da + &
€+ )\ QQBRO

< / lu(x, t)|* Gy dx + &
QNBg,
4

{N§<t> +C(Q,6,R, d,§) [enanéoﬁ + llal|% (e + A)lﬁ] (3.22)

@} VO<T —e<t<T.
/ \ul?Gy(z,s)dx + &
QQBRO

Secondly, by (3.9), we have that

1d )
—— /1 lu(z,t)|>?Gydr + & | + N5 (t) /) lu(x, t)|* Gy dx + &
2dt QHBRO QQBRO

= —/ au?Gy dx —/ u(b - Vu)Gy dx
QOBRO QQBRO

(3.23)
R ugG)y dz
A — ( / |u<w,t>12akdx+g>.
[ 0Pz +2 oo,
QNBg,
Since )
? ford > 2
—/ au’Gydz < ’aHLd(QmBRo)mQG”\‘Ldil(QmBRO) rE==
QOBRO HGJHLI(QQBRO)HU G)\”LOO(QHBRO) f()]:‘ d g 17
we have that
—/ au’Gy dz
&:)mBRO
S C(Q’é’ R’ d’ qA)HaHLQ(QI"IBRO)HV(U2G>\)”L1(QHBRO)
1 -
< MO ([ juwoPGidrt: (3.24)
4 QNBE,

A ~ ||a||oo > / 2 ~
+C(,6, R, d, 2 = AFGadr + 8.
( ) <uau Tt 1) gy, 1 DFCrdo 2
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From (3.23), (3.24) and (3.22) it follows that

d oA
4 / ()G da + & | + e 30 IFR) A nE () / lu(z, )2Go da + &
dt QNBgr, e+ A QNBg,

< e A (at2 o el T lall? (e + A 2llbI12
< |C@o R ) (ol F1 o el + ale + )7 + 2pl
(/ lu(z, £)[2G dx+€> (3.25)
ONBp,
/ ugG dx / 192G (z, s) dz
9 QQBRO +3/ QNB RO ds
| G,\dl"Fé

/ |u(z, t) / [ul2G(z,8) dx + &
QOBRO QHBRO

. / lu(z,t)?Grde +&), VO<T—-e<t<T.
QNBg,

Forte [T —e, T —¢/2], (T—t+ A~ <2(e+ AL, from (3.25) and (3.20) it follows that

(HIBIZ)ey
(& -
[ (mNi(T) —2blI3, — Qho,m)t
e

_4 .
—C(,6,R,d,qg) <||aEo+§+'§°+allallc?o‘p+allio<s+x)lP)t
e <0.
Q

ONBRg,

lu(z, t)[>?Gxdz + 5)

Integrating the latter inequality over (T — e, T — £/2) and after some calculations, we obtain

that

—3(1+1511%,)e
6% 61{)\ /\NE(T)

+elbllZ+ 5 Qng e

cm,a,R,dms[an? +llalee +eua||oo 2P HlalZ (e+2)1 P

< e
3.26
/ lu(z, T — &)[>?Ga(z, T — ) dx + £ (3:26)
QOBRO
/ ulz, T — & /2) G, T — £/2) d + &
QNBg,
Thirdly, we claim that
/ lu(z, T — &)|>Gx(z, T — &) dx + & aeo)?

. ) ’ 1 1

ONBr, < MR i et (3.27)

/ ulz, T — £/2)2Cr (2, T — £/2) d + &
QQBRO
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Indeed, on the one hand, by the definition of Gy, (3.3) and (3.13), we have

/ luz, T — &)2Cr(x, T — £) da + &
QNBg,

[ lu(z, T —e/2)|*Gr(2, T — £/2) dx + &
QNBg,

[SI[oH

1ot = e do+ stez+ 0

IN

(3.28)

(1+6)2R2 d
2

/ (e, T — /2)[2dx - e TR 4+ 2(/2 4 A)
QﬁB(l_’_&)R

(146)2 R? (146)2R?

e 42X 61+W (/ ‘QO(JU,T . 8/2)|2 dr + é) + 5(5/2 + )\)%6 4(e/2+N)
QNB148)R

(146)2 R?

/ |‘P(337T—8/2)|2dx+5(6/2+)\)%6m
QQB(H_(;)R

On the other hand,

d
2,2 c, In M_;'_l 2,2
R e {“*‘”“R“ [ / (2, T — £/2)? dx + £(2/2 + \) e T
QNB(146)r
(1+6)%R? 14 Ca 9 ~ 4 (1+6)%R?
> eiE2 Ve Tho | lo(x, T —e/2)|"dx + £(e/2 + ) 2e 4E2HN (3.29)
QQB(1+5)R

252 d/2
+e%el+% 261 E.
e/2+ A

Now we choose A = ue with p € (0,1) to be determined later. Recalling that 0 < ¢ < hg < C}
from (3.12), we obtain from (3.29) and (3.28) that (3.27) holds.

Next we set ¢ = z(%icr)ho- It follows from (3.26) and (3.27) that

3 ) 4 A
EANS(T) < S0+ 0(Q, 0, R, d, q)(?|lallZ +ellalloo + £7llall5c” + & Pllall%)
+e3(1+“b||g°)5[4€2\\b“<2>o +262Qpg.en + 4(1 + 6)2R? + de + 4eCyhy ) (3.30)

1430 )e [ di(201) %

Recalling (3.12) and the definition of @, < in (3.20), we have by (3.30) that
EANS(T) < C(, 0, R, d, §).

From this estimate and the fact that € < hg < C1, we get
16X [ d : 4d 16 :
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for some positive constant Cg = CG(Q, 5, R,r,d,q).
Step 3. Now, by the same arguments as in Lemma 4 of [17] and (3.31), we have

lz—2q|?

/ lu(z, T)|?e” 2  dx
QNBg,

|lz—a|? lz—zq|? (3.32)
< / lo(x, T)2e™ 2 dax + pu(l + Cs) / lu(z, T)|*e” 2» dx+¢€ .
By QﬂBRO

Then we choose pu = m This, together with (3.32), implies
|z —aq|? |z —xq|2
/ lu(z, T)Pe™ & dz+&<2 (/ lp(z, T)?e™ an — da + 5) :
QNBE, B,
Using the fact that A = mho and (3.11), we obtain that Lemma 3.4 holds with
2
B = (1+(01J3(CCG)S%JS%TC Cs* H
6 4 5 1%5

Lemma 3.5. Let w be a non-empty open subset of Q. Then thez“e are C = C(Q, w,d,q) >0 and
B = B(,&,d,q) € (0,1) such that for any T > 0 and @y € L*(Q2),

-1 all? 712 all4/2=D) 3 2(1-3
/Q e, TP da < O IRl 0 122 o, T) o) -

Proof. Indeed, by Lemma 3.4 and the same arguments as Lemma 5 in [17], we have

- —1 2 712 4/(2—p) 23 i
/Q|cp(x,T)]2 dr + & < CFT ™ H(llalZ +IBlIZ) (T+1) +lalle ]HSOOHLBQ(Q)(HSD('?T)H%ma) t&)L-b

for some constants C' = C(Q,@,d,§) > 0 and 8 = 3(Q,@,d, §) € (0,1), where & € (0, HapoHiQ(Q)).

Passing to the limit for € — 0 in the above inequality completes the proof of this lemma. ]

By the same arguments as Theorem 4 in [17] and Lemma 3.5, we arrive at (3.2).

Remark 3.6. By Lemma 3.5, if p(-,T) = 0 in a non-empty open set of Q, then o(-,T)=0in
Q. This together with Théoréme I1.1 in [4] implies that p(-,t) =0 in Q x (0,7T).

Remark 3.7. Ifm > 1, for each @ € W"2(0,T; L*(2N Br,)) N L2(0,T; H*(QN Bg,) N H (2N
Br,)), t € (0,T] and € > 0, we define the frequency function as

/ \Vﬁ(x,t)PG)\(:c,t) dx
N () =

/ |ii(x, t)|*Gr(x,t) dx + ¢
QﬂBRO

Then by the same arguments as above the estimate in Theorem 1.2 can be obtained.
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