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Abstract
A bilevel shape optimization problem with the exterior Bernoulli free boundary problem

as lower-level problem and the control of the free boundary as the upper-level problem is con-
sidered. Using the shape of the inner boundary as the control, we aim at reaching a specific
shape for the free boundary. A rigorous sensitivity analysis of the bilevel shape optimization in
the infinite-dimensional setting is performed. The numerical realization using two different cost
functionals presented in this paper demonstrate the efficiency of the approach.
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1 Introduction

Let ω ⊂ E with ω a smooth and bounded domain in R2. Further E is a bounded domain in R2 which
is supposed to contain all admissible shapes and is referred to as the hold-all domain. We define the
set of admissible shapes as

Oad = {Ω⊂ R2 a bounded domain : ω ⊂Ω, Ω⊂ E }.

For given µ ∈ R,µ < 0, we consider the following free boundary problem:

(Fω) : Find Ω ∈ Oad such that problem (1.1)− (1.4) has a solution,
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where

−∆u = 0 in Ω\ω, (1.1)

u = 1 on Σ := ∂ω, (1.2)

u = 0 on Γ := ∂Ω, (1.3)

∂nu = µ on Γ, (1.4)

with u in H1
Γ
(Ω \ω), the standard Sobolev space of H1-functions whose trace vanishes on Γ. This

problem is known as the exterior Bernoulli free boundary problem due to ω ⊂ Ω. Note that (1.1)-
(1.4) is over-determined since two boundary conditions are specified on Γ, and in general does not
have solutions. However for particular sets Ω, or equivalently free boundaries Γ, problem (1.1)-
(1.4) may have a solution. Problem (1.1)-(1.4) originates, for instance, from the description of free
boundaries for ideal fluids [DZ01, Pg. 138-140]. Other applications leading to similar formulations
include electrochemistry and electromagnetics [FR97].

Figure 1: The exterior Bernoulli problem

Typically, the shape of Γ is not known analytically except for some particular configurations of
the inner boundary Σ. A number of authors have analyzed and solved problem (Fω) for a given fixed
domain ω , see for instance [DZ01, Ch. 3], [FR97, IKP06, BCT05, BCT08, LP12] and references
therein. We use the notation (Fω) to emphasize the dependence of the solution Γ on ω as we will
use ω to control Γ in the problem considered in this paper.

The over-specification of conditions on Γ naturally suggests to formulate (1.1)-(1.4) as an opti-
mization problem; this approach has been used in [IKP06] for instance. Subsequently, an interesting
control problem arises when Σ is used to control the solution Γ of (Fω). This gives rise to a bilevel
shape optimization problem, where the free boundary value problem constitutes the lower-level op-
timization problem, and the upper-level consists in minimization with respect to Σ. A similar bilevel
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problem has been treated for the Bernoulli problem in [THM08] in the discrete setting, where a
sensitivity analysis was performed for the Bernoulli problem using an automatic differentiation
technique. In the present work, we carry out a rigorous sensitivity analysis of the cost functionals
with respect to the control ω (or equivalently Σ) in the infinite-dimensional setting using the tools of
shape calculus [DZ01, SZ92]. For this purpose we introduce two cost functionals to drive the free
set Ω as close as possible to a given desired set E.

Control of problems defined on unknown domains plays a crucial role in the quality assessment
of many applications such as continuous casting of steel [PTB98], welding processes [VPLG09],
thin film manufacturing processes [SGSV09], to mention but a few. In the literature on mathemat-
ical programs, these problems are referred to as multilevel optimization problems. They consist of
programs which have a subset of their variables constrained to be an optimal solution of other pro-
grams. Such problems were first considered in [BM73]; see also [CMS05] for a review. In shape
optimization only a few bilevel problems have been considered due to their inherent difficulty. In
[SZ92, Section 4.3.2] shape controllability of the free boundary of an obstacle problem is studied.
In [THM08, THM12] shape and topology optimization of Bernoulli free boundary problems are
considered. Shape optimization problems in fluid dynamics governed by free surface flows are con-
sidered in [KK12] where a sensitivity analysis of the free surface problem with the Navier-Stokes
equations as constraints is formally studied.

Turning to numerical realization of the bilevel optimization problem, a possible approach con-
sists in discarding one of the two boundary conditions on the free boundary and to append it to the
cost functional on the upper level by using a penalty or augmented Lagrangian approach. Using
this strategy, solving for the state u becomes a classical linear boundary value problem with well-
posed boundary data in the lower level problem. Unfortunately, as noted in [THM08], this approach
leads to serious convergence problems. A further disadvantage that was noted in [THM08] is that,
depending on the formulation, a locally optimal triplet (u,ω,Ω) might not represent a physical so-
lution to the free boundary problem. For this reason, we adopt a segregation approach to solve the
optimization problem, i.e., we find a solution to the free boundary problem (Fω) first and then
proceed to the upper level represented by the minimization of the cost functional. In this iterative
procedure, (Fω) has to be solved several times for varying ω . Therefore, one needs an efficient and
robust solver for this type of problem. Possible solution strategies include trial methods, lineariza-
tion methods (continuous or discrete) [CS90], and shape optimization methods [HM03]. Here we
use a regularized fixed point method, which is a trial method. The main advantage of this approach
is that it solves (Fω) using some simple updating formula based only on the solution of a state
system. Moreover this method locally converges super-linearly [FR97].

The remainder of this paper is organized as follows. Section 2 describes the setting of the free
boundary and optimization problems. The sensitivity analysis of the bilevel problems is performed
in Section 3. In Section 4, the numerical algorithm used to solve the optimization problems is given.
Numerical examples that support the theoretical results are then presented.
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2 Setting of the problem

In this section the mathematical notations, the algorithm for solving the free boundary problem, and
the setting of the optimization problems are presented.

2.1 Notations

Here we collect some notations and definitions that we need in our subsequent discussion. Through-
out the paper we restrict ourselves to the two dimensional case.

Vectors: We use bold fonts for vectors x = (x1,x2)
T ∈ R2 with norm |x|R2 = (∑2

j=1 x2
j)

1/2 and
vector-valued functions are also indicated by bold letters. Two notations for the inner product in
R2 shall be used, namely (x,y) and x · y, respectively. The latter shall be used in case of nested
inner products. The unit outward normal and tangential vectors to a domain Ω shall be denoted by
n = (n1,n2) and τ = (−n2,n1), respectively. For a given matrix A, we denote by At its transpose
and by A−t the transpose of its inverse.

Function spaces: Denote by C k
b (R

2) the spaces of k-times continuously differentiable scalar-valued
functions u with Dβ u bounded whenever 0≤ |β | ≤ k, where β is a multi-index, and equipped with
the standard C k-norm. We write C k,α

b (R2), 0 < α ≤ 1 for the space of functions u ∈ C k
b (R

2) such
that Dβ u is Hölder continuous with exponent α whenever |β | = k. The space C k,α

b (R2) equipped
with the norm

‖u‖k,α := ∑
|β |≤k

sup
S
|Dβ u|+ ∑

|β |=k
sup

x,y∈S ,x 6=y

|Dβ u(x)−Dβ u(y)|
|x− y|α

is a Banach space.
Let S ⊂R2 be a bounded domain, we also consider the Hölder spaces C k,α(S ). We denote by

W m,p(S ), m ∈ N, 1≤ p≤ ∞ the standard Lp-Sobolev space of order m:

W m,p(S ) :=
{

u ∈ Lp(S ) | Dβ u ∈ Lp(S ), for 0≤ |β | ≤ m
}
,

where Dβ is the weak (or distributional) partial derivative. The norm || · ||W m,p(S ) associated with
W m,p(S ) is given by

||u||W m,p(S ) =

(
∑
|β |≤m

∫
S
|Dβ u|p dx

)1/p

.

When p = 2 we write Hm(S ) :=W m,2(S ) for simplicity. We also denote

H1
Λ(S ) :=

{
u ∈ H1(S ) | u = 0 on Λ

}
,
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where Λ⊂ ∂S and H1
0 (S ) when Λ= ∂S . When the function is vector-valued, we write C k,α(S ,R2),

C k,α
b (R2,R2), Hm(S ,R2), etc ... for the function spaces.

Domains: The notation |Ω| denotes the Lebesgue measure of a set Ω and Ωc stands for its com-
plement. A domain Ω is said to be of class C k or C k,α if its boundary is locally the graph of a C k

or C k,α function, respectively; see [DZ01, chapter 2, def. 3.1]. We write 1Ω for the characteristic
function of a set Ω, i.e.,

1Ω(x) =
{

1 if x ∈Ω,
0 if x /∈Ω.

(2.1)

For a a domain Ω of class C 2 and a vector v ∈ C 1(R2,R2), its tangential gradient ∇Γv is defined as

∇Γv := ∇v|Γ− (∂nv)n, (2.2)

and its tangential divergence divΓ(v) is defined as

divΓ(v) := div(v)−Dvn ·n. (2.3)

If v is only defined on Γ, then the tangential gradient and tangential divergence are defined similarly
using an extension of v to R2 and they are independent of this extension. If the domain has enough
regularity, the curvature H is given by H = divΓ n.

2.2 Existence of solutions for the free boundary problem

In this paper we work with bounded domains ω ∈Uad where the admissible set of domains is

Uad := {ω ⊂ R2 | ωmin ⊂ ω ⊂ ωmax ⊂ E , ω is star-like with respect to all points

in the ball Bδ (0) and ω is of class C 2,α},
(2.4)

where ωmin,ωmax are given non-empty domains in R2, ωmin contains the origin, 0 < α < 1 and the
radius δ > 0 is a given constant; see [THM08]. This choice of Uad guarantees existence, uniqueness
as well as stability (in the sense of [AM95, Theorem 3.9]) of the solution to (Fω) with respect to
ω . Moreover, it is shown in [AM95] that if ω ∈Uad , then the boundary ∂Ω∗(ω) is of class C ∞ and
is star-like with respect to all points in Bδ (0). Here Ω∗(ω) denotes the solution to (Fω).

2.3 Fixed point approach for the free boundary problem

The free boundary problem (Fω) can be formulated as a shape optimization problem [HIK+09,
IKP06]. In this way, the numerical solution of (Fω) relies on the use of gradient information that
depends on known state and adjoint systems. On the other hand, it would be helpful to have a
method that solves (Fω) using some simple updating formula based only on the solution of some
state system. The structure of such a scheme is as follows:
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1. Choose an initial approximation of the free boundary.

2. Solve the boundary value problem (1.1)-(1.4) for u with one condition on Γ omitted.

3. Update Γ using the discrepancy left by the remaining boundary condition.

4. Iterate from step (2) until stationarity up to a specified accuracy is reached.

This scheme is simple to implement but it is not obvious how to construct the updating step in such
a manner that the method converges and that the convergence is fast. In order to obtain an optimal
updating step, Tilhonen [Tii97] derived the first and second order derivatives for the cost J (Ω) in
the following shape optimization problem:

minimize J (Ω) :=
1
2

∫
Γ

u2
Ω ds

subject to Ω ∈ Oad,uΩ ∈ H1(Ω\ω)

(2.5)

with

−∆uΩ = 0 in Ω\ω, (2.6)

uΩ = 1 on Σ, (2.7)

αuΩ +∂nuΩ = µ on Γ. (2.8)

Here the coefficient α can be chosen freely without affecting the solution of the free boundary
problem provided that the solution to (2.5) is such that uΩ|Γ = 0. However, changes in α affect the
conditioning of the Hessian of the cost functional J (Ω). It has been shown in [Tii97] that α =H ,
where H ≥ 0 is the mean curvature of Γ, is the optimal choice for an efficient resolution of the
optimization problem (2.5). Furthermore, it has been shown in [FR97], using formal asymptotic
expansions, that the optimal updating step may be approximated by

x(k+1) = x(k)− u(x(k))
µ

nε(x(k)),

where x(k) := (x(k)1 ,x(k)2 ) ∈ Γ(k) is the k-th iterate and nε ∈H1(Γ,R2) is the smoothed normal vector
field on the free boundary Γ satisfying∫

Γ

ε∇Γnε : ∇Γν+nε ·ν ds =
∫

Γ

n ·ν ds for all ν ∈ H1(Γ,R2), (2.9)

and ε is some fixed small parameter. The mean curvature H of Γ is defined as

H := divΓ(nε). (2.10)

The algorithm to update the free boundary Γ at the kth step now becomes
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Algorithm 1 Algorithm for solving (Fω)

1. Choose Γ(0) and compute H (0). Set k = 0.

2. Solve the boundary value problem (2.6)-(2.8) in Ω(k) with α = H (k).

3. Set Γ(k+1) = F(Γ(k)), where F(x) = x− u(x)
µ

nε(x) with x = (x1,x2) ∈ Γ(k).

4. If u(k+1)|Γ is small enough, then stop. Otherwise set k = k+1 and go to step 2.

Flucher and Rumpf [FR97] analyzed the convergence of Algorithm 1 in the continuous case. Their
analysis shows that the convergence suffers from the smoothing procedure so that the convergence
is less than quadratic but still super-linear. In two dimensions, one can obtain the convergence rate
of order 3/2.

2.4 Bilevel shape optimization problems

Under the assumptions in Subsection 2.2, the solution of (Fω) is unique. Thus there exists a map-
ping

Ω
∗ :Uad 3 ω 7→Ω

∗(ω) ∈ Oad, (2.11)

such that Ω∗(ω) is the solution of (Fω). We denote Γ∗(ω) := ∂Ω∗(ω).
We next turn to a shape optimization problem with respect to ω . Our control objective consists

in determining ω such that Γ∗(ω) is as close as possible to the boundary ∂E of a target Lipschitz
domain E ∈ Oad such that ω ⊂ E.

We study two functionals which allow us to achieve this goal. The first one is:

J1(Ω) := |Ω∩Ec|+ |E ∩Ω
c|. (2.12)

The term |Ω∩Ec| = 0 forces Ω to be included in E while |E ∩Ωc| = 0 forces Ω to contain E. We
may also write J1 as

J1(Ω) =
∫

Ω∩Ec
1 dx+

∫
E∩Ωc

1 dx. (2.13)

Another approach consists in minimizing the functional

J2(Ω,ω) =
1
2

∫
Ω∩Ec

u(Ω,ω)2 dx+
1
2

∫
E∩ωc

(u(Ω,ω)−ul(ω))2 dx, (2.14)

where u = u(Ω,ω) ∈ H1
0 (E ) is the extension by zero to E of the solution of

−∆u = 0 in Ω\ω,

u = 1 on Σ := ∂ω,

u = 0 on Γ := ∂Ω.
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Figure 2: “Free” set Ω and target E

Such an extension exists as soon as Ω ⊂ E is measurable and u = 0 on ∂Ω; see [HP05]. Note that
u(Ω∗(ω),ω) solves (1.1)-(1.4). The function ul = ul(ω) solves the linear problem

−∆ul = 0 in E \ω, (2.15)

ul = 1 on Σ, (2.16)

ul = 0 on ∂E, (2.17)

and is also extended by zero to a function in H1
0 (E ). The following proposition shows that minimiz-

ing J1 and J2 allows to drive Ω to E.

Proposition 2.1. Let ω be a given open bounded set with ω ⊂Ω. We have J1(Ω)= 0 and J2(Ω,ω)=

0 if and only if Ω = E almost everywhere.

Proof. We start with the case of J1. If Ω = E, then obviously J1(E) = 0. On the other hand, if
J1(Ω) = 0, then |Ω∩Ec|= |E ∩Ωc|= 0 and thus Ω = E almost everywhere.

Now we consider the case of J2. Observe that if Ω = E, then Ω∩Ec = /0, u = ul a.e on E ∩ωc

and thus J2(Ω,ω) = 0. Conversely, we show that if J2(Ω,ω) = 0, then Ω = E almost everywhere.
Since Ω = E if and only if |Ω∩Ec|+ |Ωc∩E|= 0, it suffices to show that J2(Ω,ω) = 0 implies that
|Ω∩Ec|+ |Ωc∩E|= 0. We use a contradiction argument to support the latter assertion.

To this end, suppose that |Ω∩Ec|+ |Ωc∩E| 6= 0 and J2(Ω,ω) = 0. Then we face two possibili-
ties: (i) |Ωc∩E|> 0 or (ii) |Ωc∩E|= 0 and |Ω∩Ec|> 0. In case (i), since J2(Ω,ω) = 0, we have
u−ul = 0 almost everywhere on E ∩ωc. Since Ωc∩E ⊂ ωc∩E due to ω ⊂Ω we have ul = u = 0
on Ωc ∩E which is a contradiction since ul > 0 in Ωc ∩E due to the maximum principle. Hence
case (i) cannot happen.
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We turn to case (ii). Since J2(Ω,ω) = 0 and |Ω∩Ec|> 0 we have u = 0 almost everywhere on
Ω∩Ec which is a contradiction since u > 0 in Ω∩Ec due to the maximum principle.

Hence we conclude that Ω = E almost everywhere whenever J2(Ω,ω) = 0.

Writing J1(Ω,ω) = J1(Ω) for generality, we can now formulate the bilevel shape optimization
problem as

(Bi) :
{

minimize Ji(Ω,ω)
subject to ω ∈Uad and Ω solves (Fω).

The problem of minimizing Ji(Ω,ω) over ω ∈ Uad is called the upper-level problem, while the
problem of solving (Fω) is called the lower-level problem. Similarly, Ω is the lower-level variable
while ω is the upper-level variable. Defining the associated functionals

K1(ω) := J1(Ω
∗(ω)), (2.18)

K2(ω) := J2(Ω
∗(ω),ω), (2.19)

we can rewrite the bilevel problem as

(Bi) :
{

minimize Ki(ω)
subject to ω ∈Uad.

Remark 2.2. Note that the minimum of K1(ω) and K2(ω) need not exist and need not be 0 in
general. In these cases we have Ω∗(ω) 6= E even if ω minimizes Ki(ω). Indeed we have Ki(ω) =

Ji(Ω
∗(ω),ω) but Ω∗(Uad)( Oad in general. So if E ∈ Oad \Ω∗(Uad), then we cannot find ω such

that Ki(ω) = 0. It is easily seen that Ω∗(Uad) 6= Oad in general since the domains Ω∗(ω) have C ∞

regularity due to our choice of Uad (see Section 2.2). However, if ω minimizes Ki(ω), then Ω∗(ω)

is the closest approximation of E (for Ki(ω)) which solves the free boundary problem (Fω). We
observe this phenomenon in Subsubsection 4.1.3 of the numerical results.

3 Sensitivity analysis

3.1 Perturbation of identity

In the study of the optimization problem (Bi), several issues arise including the sensitivity of Ω∗(ω)

with respect to ω . To deal with these issues, concepts of shape differential calculus, described in
detail in the monographs [DZ01, SZ92, MS76, HP05], are utilized. The inherent difficulty in dealing
with shape functionals lies in the fact that sets of shapes are not vector spaces and the notion of
differentiation cannot be used directly. Instead, one may consider perturbations of a reference shape
by means of transformations in an appropriate function space which allows differentiation of the
functional. These transformations can be constructed, for instance, by perturbation of the identity
[DZ01] or by the flow of a velocity field [DZ01, SZ92]. We will use the perturbation of identity
method in what follows. To this end let V ∈ C k,α

b (R2,R2) with k ≥ 1 and 0 < α < 1. We consider
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perturbations of identity I +V where V is in a neighborhood of 0 in C k,α
b (R2,R2) so that I +V is a

bi-Lipschitz homeomorphism. In what follows we will denote by

SV := (I +V)(S )

the transformation of a generic domain S by I +V. Let K(ω) be a real-valued functional associ-
ated with ω ⊂ R2. The functional K(ω) is Fréchet-differentiable at ω if there exists a linear and
continuous functional ∇K(ω) from C k,α

b (R2,R2) to R called shape gradient such that

K(ωV) = K(ω)+∇K(ω) ·V+ r(V),

where |r(V)|/‖V‖k,α → 0 as ‖V‖k,α → 0. In this case one defines the shape derivative as

dK(ω;V) := ∇K(ω) ·V. (3.1)

We have that
C k,α

b (R2,R2) 3 V 7→ dK(ω;V) (3.2)

is a distribution on R2 with support on Σ = ∂ω . In addition, if ω is of class C k+1,α , then for all
V ∈ C k,α

b (R2,R2) such that V · n = 0 on Σ, we have dK(ω;V) = 0. In other words, the shape
derivative in direction V depends only on the normal component of the trace of V on Σ. This is
the so-called Hadamard-Zolésio structure theorem in e.g., [DZ01, Ch. 8] or [HP05, Ch. 5]. If we
assume that the data is smooth enough, then there exists an integrable function g such that the shape
derivative can be expressed as

dK(ω;V) =
∫

Σ

gV ·n ds. (3.3)

A similar definition can be used for the shape derivative of functionals taking their values in a
Banach space. In particular, we would like to define the shape derivative of the solution of a partial
differential equation such as (1.1)-(1.4). Let uV denote the solution of a partial differential equation
on the perturbed domain ωV. Since uV lives in a function space which depends on the moving
domain ωV, one cannot compute the shape derivative directly. Instead we take the derivative of
uV ◦ (I +V), which is defined on ω , with respect to V in a direction V̂; the latter is called material
derivative and written u̇(V; V̂). Then one introduces the shape derivative by means of:

u′(V; V̂) := u̇(V; V̂)−∇u · V̂.

Since one usually considers u′(0; V̂) the notation u′(V̂) := u′(0; V̂) is used for simplicity.

3.2 Sensitivity of u with respect to ω

In order to compute (3.1), we proceed by first computing formally the derivative of the solution to
(1.1)-(1.4) with respect to ω , using the classical results of shape calculus; see for instance [SZ92,
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Section 3]. To this end, let T (V) = I +V be the transformation associated with a vector field V ∈
C k,α

b (R2,R2), and denote
ωV = T (V)(ω). (3.4)

Assume that there exists W∗ ∈C k,α
b (R2,R2) such that Ω∗(ωV) = T (W∗)(Ω∗(ω0)) for V in a neigh-

borhood of 0, where Ω∗(ωV) is the solution to (FωV) and ω0 = ω . If such a W∗ exists, then it
depends on V. In Theorem 3.3 we prove the existence of W∗ as a function of V. Here we formally
compute the first-order approximation of W∗ with respect to V. To obtain such a result, we study the
sensitivity of the solution u to (1.1)-(1.4) with respect to ω . According to [SZ92, page. 118-120],
the shape derivative u′(V̂,Ŵ∗) of u solution of (1.1)-(1.4) with respect to both transformations T (V)

and T (W∗) at V = 0 and W∗ = 0 in directions V̂ and Ŵ∗ satisfies

−∆u′(V̂,Ŵ∗) = 0 in Ω
∗(ω)\ω, (3.5)

u′(V̂,Ŵ∗) =−∂nuV̂ ·n on Σ, (3.6)

u′(V̂,Ŵ∗) =−∂nuŴ∗ ·n on Γ
∗(ω), (3.7)

∂nu′(V̂,Ŵ∗) = divΓ(∇ΓuŴ∗ ·n)+µH Ŵ∗ ·n on Γ
∗(ω), (3.8)

where V̂ and Ŵ∗ are chosen such that they have compact supports in neighborhoods of Σ and Γ∗(ω),
respectively, i.e., V̂ = 0 on Γ∗(ω) and Ŵ∗ = 0 on Σ. In view of (1.1)-(1.4) we have ∇Γu = 0 and
∂nu = µ on Γ, and we may simplify (3.5)-(3.8) as

−∆u′(V̂,Ŵ∗) = 0 in Ω
∗(ω)\ω, (3.9)

u′(V̂,Ŵ∗) =−∂nuV̂ ·n on Σ, (3.10)

u′(V̂,Ŵ∗) =−µŴ∗ ·n on Γ
∗(ω), (3.11)

∂nu′(V̂,Ŵ∗) = µH Ŵ∗ ·n on Γ
∗(ω). (3.12)

Since Ŵ∗ = Ŵ∗(V̂), we actually have u′(V̂,Ŵ∗) = u′(V̂). Indeed, gathering the boundary condi-
tions (3.11) and (3.12), we obtain the following partial differential equation with Robin boundary
conditions on Γ = Γ∗(W) for u′(V)

−∆u′(V̂) = 0 in Ω
∗(ω)\ω, (3.13)

u′(V̂) =−∂nuV̂ ·n on Σ, (3.14)

∂nu′(V̂)+H u′(V̂) = 0 on Γ
∗(ω). (3.15)

Assuming H ≥ 0, equation (3.13)-(3.15) has a unique solution u′(V̂); see Lemma 3.1. Using bound-
ary conditions (3.11), we formally obtain

Ŵ∗(V̂) =−µ
−1u′(V̂)n on Γ

∗(ω) (3.16)

and the normal component of Ŵ∗(V̂) is uniquely defined on Γ. The tangential component of Ŵ∗

can be chosen arbitrarily according to the Hadamard structure theorem [SZ92, page. 59] mentioned
in Section 3.1 and we take it equal to zero.
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In fact, since W∗ = W∗(V), we have Ŵ∗(V̂) = DVW∗(0; V̂) which is a first order approximation
of W∗(V̂). We now show the existence of W∗(V) in Theorem 3.3, for which we first require the
following preliminary lemmata. Further we prove formula (3.16) in Corollary 3.4.

Lemma 3.1. Let m ≥ 2 be an integer and 0 < α < 1. If ψ ∈ C m−1,α(Γ), Ω is bounded of class
C m+1,α , ω is bounded of class C m,α and H ≥ 0 on Γ, then the linearized system

−∆v = 0 in Ω\ω,

v = 0 on Σ,

∂nv+H v = ψ on Γ,

admits a unique solution v ∈ C m,α(Ω\ω).

Proof. If Ω is of class C m+1,α , then H = divΓ(n) is of class C m−1,α . Applying standards regularity
results for elliptic operators we obtain the result; see [Tro87, Lemma 3.19].

We introduce the functions u1,V,W and u2,V,W, solutions of

−∆u1,V,W = 0 in ΩV+W \ωV+W, (3.17)

u1,V,W = 1 on ΣV+W, (3.18)

u1,V,W = 0 on ΓV+W, (3.19)

and

−∆u2,V,W = 0 in ΩV+W \ωV+W, (3.20)

u2,V,W = 1 on ΣV+W, (3.21)

∂nu2,V,W = µ on ΓV+W, (3.22)

respectively. It is convenient to introduce the notation

C := C m,α
b (R2,R2)×C m,α

b (R2,R2).

Lemma 3.2. Let m ≥ 2, 0 < α < 1, Ω,ω be bounded of class C m,α and (V,W) ∈ C. Then the
functions

C 3 (V,W)→ u1,V,W ◦ (I +V+W) ∈ C m,α(Ω\ω)

and

C 3 (V,W)→ u2,V,W ◦ (I +V+W) ∈ C m,α(Ω\ω)

are of class C ∞ in a neighborhood of (0,0) ∈ C.
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Proof. We only prove the case of u2,V,W, the case of u1,V,W being a straightforward adaptation of
it. The function u2,V,W satisfies the following variational formulation∫

ΩV+W\ωV+W
∇u2,V,W ·∇ϕ̂ = µ

∫
ΓV+W

ϕ̂ for all ϕ̂ ∈ H1
ΣV+W

(ΩV+W \ωV+W). (3.23)

Transporting back the problem on Ω\ω by using the transformation (I +V+W)−1 we obtain∫
Ω\ω

A(V,W)∇zV,W ·∇ϕ = µ

∫
Γ

ϕJΓ,V,W for all ϕ ∈ H1
Σ(Ω\ω), (3.24)

with

zV,W :=u2,V,W ◦ (I +V+W),

ϕ :=ϕ̂ ◦ (I +V+W),

A(V,W) :=JV,W(I +DV+DW)−1(I +DVt +DWt)−1,

JV,W :=det(I +DV+DW),

JΓ,V,W :=det(I +DV+DW)‖(I +DV+DW)−tn‖,

where JV,W is the Jacobian of transformation I +V+W while JΓ,V,W is the boundary Jacobian on
Γ. The strong form of (3.24) is given by

−div(A(V,W)∇zV,W) = 0 in Ω\ω, (3.25)

zV,W = 1 on Σ, (3.26)

(A(V,W)∇zV,W) ·n = µJΓ,V,W on Γ. (3.27)

We introduce the function

G : C×C m,α(Ω\ω)→ C m−2,α(Ω\ω)×C m−1,α(Γ)×C m,α(Σ)

(V,W,z) 7→
(
−div(A(V,W)∇z),((A(V,W)∇z) ·n−µJΓ,V,W)|Γ,(z−1)|Σ

)
.

First of all, the function

C 3 (V,W) 7→ JV,W = det(I +DV+DW) ∈ C m−1,α
b (R2,R)

is of class C ∞ since I +DV+DW is linear in (V,W) and the determinant is polynomial and con-
tinuous for the C m,α -norm. Writing (I+DV+DW)−1 = ∑q≥0(−1)q(DV+DW)q, we can see that
the function

C 3 (V,W) 7→ (I +DV+DW)−1 ∈ C m−1,α
b (R2,M2)

is of class C ∞ for small (V,W), where M2 is the set of 2×2-matrices. Thus (V,W)→ A(V,W) is
C ∞ for small (V,W) since the function

C m−1,α
b (R2,M2)×C m,α(Ω\ω)→ C m−2,α(Ω\ω)×C m−1,α(Γ)×C m,α(Σ)

(A,z) 7→ (−div(A∇z),((A∇z) ·n)|Γ,z|Σ)
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is bilinear and continuous. For small (V,W) the function (V,W) 7→ JΓ,V,W is also C ∞. Gathering
the previous results we get that G is C ∞. In view of A(0,0) = I and JΓ,0,0 = I, we compute

DzG(0,0,u2,0,0; ẑ) = (−∆ẑ,∂nẑ|Γ,z|Σ) .

Since Ω and ω are of class C m,α , 0<α < 1, regularity theory of elliptic partial differential equations
implies that

DzG(0,0,u2,0,0) : C m,α(Ω\ω)→ C m−2,α(Ω\ω)×C m−1,α(Γ)×C m,α(Σ)

is an isomorphism for m≥ 2 and 0 < α < 1. Therefore, we can apply the implicit function theorem
and there exists a function

(V,W) ∈ C 7→ z̃(V,W) ∈ C m,α(Ω\ω)

of class C ∞ on a neighborhood of (0,0) ∈ C such that G(V,W, z̃(V,W))≡ 0. By uniqueness of the
solution to (3.25)-(3.27), we get z̃(V,W) = z(V,W) = u2,V,W ◦(I+V+W) and we have proved the
claim.

We now prove the existence of W∗(V). For this purpose, we introduce neighborhoods S of Σ

and G of Γ, such that S∩G= /0.

Theorem 3.3. Assume that there exist two bounded open sets Ω,ω of class C m+1,α , m ≥ 2, 0 <

α < 1 such that the over-determined system (1.1)-(1.4) is satisfied in Ω\ω . Assume in addition that
H ≥ 0 on Γ = ∂Ω. Then there exists an open neighborhood V of 0 in C m,α

b (R2,R2) and a function

V 3 V 7→W∗(V) ∈ C m,α
b (R2,R2)

of class C ∞ such that (1.1)-(1.4) has a solution in ΩW∗(V) \ωV for all V ∈ V and W∗(0)≡ 0.

Proof. The main tool to prove this result is the implicit function theorem. First of all since Ω is of
class C m+1,α we have H = divΓ(n) ∈ C m−1,α(Γ). Next, we introduce

F : C m,α(Σ)×C m,α(Γ)→ C m,α(Ω\ω),

(vn,wn) 7→ (u1,V,W−u2,V,W)◦ (I +V+W),

where

ev :
C m,α(Σ) → C m,α

b (R2,R2),
vn 7→ V.

ew :
C m,α(Γ) → C m,α

b (R2,R2),
wn 7→W.

are linear extensions along the normal of (vn,wn), i.e., V|Σ := vnnΣ and W|Γ := wnnΓ, such that V
has compact support in S and W has compact support in G. Since Ω,ω are of class C m+1,α , we
have nΓ ∈ C m,α(Γ) and nΣ ∈ C m,α(Σ) and we can find such extensions ev,ew. Since (V,W) ∈ C,
it follows that u1,V,W and u2,V,W ∈ C m,α(ΩV+W \ωV+W) = C m,α(ΩW \ωV) due to the choice of
extensions of vn and wn.
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Since we have assumed that there exist Ω and ω such that (1.1)-(1.4) has a solution, by unique-
ness of the solution to (3.17)-(3.19) we get u1,0,0 = u2,0,0 in Ω\ω and therefore F(0,0) = 0. From
now on we write u1 := u1,0,0 and u2 := u2,0,0 for simplicity.

In order to apply the implicit function theorem and obtain W∗(V), we need to prove that F is
continuously differentiable, and that its derivative is an isomorphism. According to Lemma 3.2, we
have

(V,W) ∈ C 7→ (u1,V,W−u2,V,W)◦ (I +V+W) ∈ C m,α(Ω\ω)

is of class C ∞ in a neighborhood of (0,0). Since the extensions ev and ew are linear and continuous,
we also get

(vn,wn) ∈ C m,α(Σ)×C m,α(Γ) 7→ (u1,V,W−u2,V,W)◦ (I +V+W) ∈ C m,α(Ω\ω)

is of class C ∞. The derivative of ui,0,W ◦ (I + W) in the direction Ŵ at W = 0 is the material
derivative denoted u̇i(Ŵ), i = 1,2. Recall the definition of the shape derivative:

u′i(Ŵ) := u̇i(Ŵ)−∇ui ·Ŵ.

For a given test function ŵn on Γ, we denote

Ŵ := Dwnew(0; ŵn) = ew(ŵn),

using linearity of ew. We obtain due to u1 = u2:

DwnF(0,0; ŵn) = u̇1(Ŵ)− u̇2(Ŵ) = u′1(Ŵ)−u′2(Ŵ)+∇u1 ·Ŵ−∇u2 ·Ŵ
= u′1(Ŵ)−u′2(Ŵ).

According to standard shape calculus; see [SZ92, pp. 118-120] for instance, u′1(W) and u′2(W)

satisfy the following equations:

−∆u′1(Ŵ) = 0 in Ω\ω,

u′1(Ŵ) = 0 on Σ,

u′1(Ŵ) =−∂nu1ŵn on Γ,

and

−∆u′2(Ŵ) = 0 in Ω\ω,

u′2(Ŵ) = 0 on Σ,

∂nu′2(Ŵ) = divΓ(∇Γu2ŵn)+µH ŵn on Γ,

where we have taken into account the fact that Ŵ = ew(ŵn) has compact support on G. We prove
first the injectivity of DwnF(0,0). Assume that DwnF(0,0; ŵn) = 0. This implies u′1(Ŵ) = u′2(Ŵ).
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Taking into account that u1 = u2 = 0 and ∂nu1 = µ on Γ as well, we get that ŵn =−µ−1u′1(Ŵ) on
Γ and u′2(Ŵ) solves

−∆u′2(Ŵ) = 0 in Ω\ω,

u′2(Ŵ) = 0 on Σ,

∂nu′2(Ŵ)+H u′2(Ŵ) = 0 on Γ.

Since H ∈ C m−1,α(Γ) and H ≥ 0 on Γ, this function has a unique solution u′2(Ŵ)≡ 0 in view of
Lemma 3.1. This implies ŵn = 0 and the injectivity is proved.

Next, we prove surjectivity. Let ψ ∈ C m,α(Ω\ω). We are looking for a solution of the equation

DwnF(0,0; ŵn) = u′1(Ŵ)−u′2(Ŵ) = ψ. (3.28)

In view of the previous computation, u′2(Ŵ) = u′2 is independent of Ŵ and solves

−∆u′2 = 0 in Ω\ω,

u′2 = 0 on Σ,

∂nu′2 +H u′2 =−H ψ on Γ,

and wn =−µ−1(u′2+ψ). Applying again Lemma 3.1, there exists a unique solution u′2 ∈ C m,α(Ω\
ω). Consequently, we get

ŵn =−µ
−1(u′2 +ψ) ∈ C m,α(Γ),

and this proves the surjectivity of DwnF(0,0).
We have shown that DwnF(0,0) is an isomorphism from C m,α(Γ) to C m,α(Ω\ω). Therefore, we

may apply the implicit function theorem to F , i.e., there exists a neighborhood VΓ of 0 in C m,α(Σ)

and a unique C ∞ function
C m,α(Σ) 3 vn 7→ w∗n(vn) ∈ C m,α(Γ)

such that F(vn,w∗n(vn))≡ 0 for all vn ∈ VΓ and w∗n(0) = 0.
The statement of the theorem is obtained by considering the trace

rv :
C m,α

b (R2,R2) → C m,α(Σ),
V 7→ (V ·n)|Σ,

and the linear extension ew. Note that the restriction rv is well-defined due to nΣ ∈ C m,α(Σ,R2).
Taking a neighborhood V of 0 in C m,α

b (R2,R2) such that rv(V ) ⊂ VΓ and applying the previous
result with vn := rv(V), we get a unique w∗n in C m,α(Γ). Setting W∗ := ew(w∗n) we obtain the main
statement. Since the extension ew is obviously not unique, W∗ is not unique as well, even if w∗n is.
We can also note that W∗ depends actually only on vn = (V ·n)|Γ and not on its extension V.

Finally, the trace rv and extension ew are linear and continuous. Therefore the function

V 3 V 7→W∗(V) ∈ C m,α
b (R2,R2)

is of class C ∞ by composition.
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Corollary 3.4. Under the same assumptions as in Theorem 3.3, the derivative of W∗(V) in direction
V̂ at V = 0 in C m,α

b (R2,R2) is such that

DVW∗(0; V̂) =−µ
−1ū(V̂)nΓ on Γ, (3.29)

where ū(V̂) is the solution of

−∆ū(V̂) = 0 in Ω\ω, (3.30)

ū(V̂) =−∂nuV̂ ·nΣ on Σ, (3.31)

∂nū(V̂)+H ū(V̂) = 0 on Γ, (3.32)

where Γ = Γ∗(ω) and Ω = Ω∗(ω).

Proof. By Theorem 3.3, there exists a neighborhood VΓ of 0 in C m,α(Σ) and a unique C ∞ function

C m,α(Σ) 3 vn 7→ w∗n(vn) ∈ C m,α(Γ)

such that F(vn,w∗n(vn)) ≡ 0 for all vn ∈ VΓ and w∗n(0) = 0. Differentiating F(vn,w∗n(vn)) = 0 with
respect to vn in direction v̂n one obtains

DwnF(0,0; ŵn)+DvnF(0,0; v̂n) = 0,

where ŵn := Dvnw∗n(0; v̂n). This yields

ŵn =−(DwnF(0,0))−1DvnF(0,0; v̂n) (3.33)

since DwnF(0,0) is an isomorphism. We prove that ŵn =−µ−1ū(V̂)|Γ is solution of (3.33). Indeed,
choosing ŵn =−µ−1ū(V̂)|Γ, we have

DwnF(0,0; ŵn) = u′1(Ŵ)−u′2(Ŵ),

DvnF(0,0; v̂n) = u′1(V̂)−u′2(V̂),

where u′1(Ŵ),u′2(Ŵ),u′1(V̂),u′2(V̂) are harmonic functions on Ω\ω , with the boundary conditions
u′1(Ŵ) = u′2(Ŵ) = 0 on Σ and u′1(V̂) = ∂nu′2(V̂) = 0 on Γ. Moreover, we have u′1(Ŵ) =−µŵn and
∂nu′2(Ŵ) = µH ŵn on Γ and u′1(V̂) = u′2(V̂) =−∂nuv̂n on Σ. Now define

ũ(Ŵ) :=u′1(Ŵ)−u′2(Ŵ),

ũ(V̂) :=u′1(V̂)−u′2(V̂).

We then have

−∆ũ(Ŵ) = 0 in Ω\ω,

ũ(Ŵ) = 0 on Σ, ũ(Ŵ) = ū(V̂)−u′2(Ŵ) on Γ, (3.34)
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and

−∆ũ(V̂) = 0 in Ω\ω,

ũ(V̂) = 0 on Σ, ũ(V̂) =−u′2(V̂) on Γ. (3.35)

The difference ū(V̂)−u′2(Ŵ) satisfies the equation

−∆(ū(V̂)−u′2(Ŵ)) = 0 in Ω\ω,

ū(V̂)−u′2(Ŵ) =−∂nuv̂n on Σ,

∂n(ū(V̂)−u′2(Ŵ)) =−H ū(V̂)−µH ŵn = 0 on Γ,

where we have used ŵn =−µ−1ū(V̂)|Γ. Thus we observe that ū(V̂)−u′2(Ŵ) = u′2(V̂). This yields
in view of (3.34)

−∆ũ(Ŵ) = 0 in Ω\ω,

ũ(Ŵ) = 0 on Σ, ũ(Ŵ) = u′2(V̂) on Γ. (3.36)

It follows from (3.35) and (3.36) that ũ(Ŵ)=−ũ(V̂) which means DwnF(0,0; ŵn)=−DvnF(0,0; v̂n),
and that ŵn =−µ−1ū(V̂)|Γ is indeed the solution of (3.33). Since the extension ew and the restriction
rv from the proof of Theorem 3.3 are linear, we obtain

DVW∗(0; V̂) = ew(Dvnw∗n(0;rv(V̂)))

which yields
DVW∗(0; V̂) =−µ

−1ū(V̂)nΓ on Γ.

In view of Corollary 3.4 we define Ŵ∗ := DVW∗(0; V̂). From (3.9)-(3.11) we may deduce a
local monotonicity result.

Theorem 3.5. Let Ω and ω satisfy assumptions as in Theorem 3.3 and let V̂∈C m,α
b (R2,R2), m≥ 2.

Assume µ < 0, V̂(x) ·n(x) ≤ 0 for all x ∈ Σ and there exists x ∈ Σ such that V̂(x) ·n(x) < 0, then
Ŵ∗(x) ·n(x)> 0 for all x ∈ Γ.

Proof. Since ū(V̂) is harmonic, the maximum principle states that the minimum of ū(V̂) is attained
on Γ∪Σ. The function u is also harmonic. Therefore, its maximum is attained on Σ, where u = 1
and ∂nu(x)> 0 for all x ∈ Σ. Therefore, in view of the assumption V̂ ·n≤ 0 on Σ we have ū(V̂)≥ 0
on Σ due to (3.31). Consequently, if ū(V̂) takes negative values on Γ then the minimum of ū(V̂) is
attained on Γ.

Due to (3.29) and since µ < 0 by assumption, the claim Ŵ∗(x) ·n(x)> 0 for all x ∈ Γ amounts
to proving that ū(V̂)> 0 on Γ. By contradiction, we assume that there exists a point z ∈ Γ such that
ū(V̂)(z) ≤ 0. In this case, we have shown that the minimum of ū(V̂) is attained on Γ so we may
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assume that z ∈ Γ is precisely the minimizer, and we assume in addition that ū(V̂)(z)< ū(V̂)(x) for
all x ∈Ω. Since Ω is convex, we have H (z)≥ 0 for all z ∈ Γ. Therefore, due to (3.32), we have

∂nū(V̂)(z) =−H (z)ū(V̂)(z)≥ 0. (3.37)

Since Ω is at least of class C 3,α , it satisfies the interior ball condition and we may apply Hopf’s
lemma (see [PW67] for details), implying that ∂nū(V̂)(z)< 0 in contradiction with (3.37). Thus the
initial assumption cannot be satisfied and either ū(V̂)(z)> 0 for all z ∈ Γ or ū(V̂)(z)≤ 0 and there
exists x ∈ Ω such that ū(V̂)(z) = ū(V̂)(x). In the second case, ū(V̂) must be constant in Ω due to
the strong maximum principle and since ū(V̂)(z) ≥ 0 on Σ we get ū(V̂) ≡ 0 in Ω which leads to
V̂ ·n≡ 0 on Σ, a property excluded by assumption. Therefore, ū(V̂)> 0 on Γ and Ŵ∗(x) ·n(x)> 0
for all x ∈ Γ in view of (3.29).

Remark 3.6. The convexity of Ω in Theorem 3.5 holds whenever ω is convex (See for instance
[HP05, Theorem 6.2.2])

Remark 3.7. Under the assumptions of Theorem 3.3, Theorem 3.5 leads to the monotonicity for
the set inclusion of Ω∗(ω) with respect to a convex ω for small perturbations of ω , i.e., if ω1 ⊂ ω2

are two convex sets and ω2 is close to ω1 in the sense that there exists a V ∈ V with V ·n ≤ 0 on
Σ1 = ∂ω1 such that ω2 = (I+V)(ω1) (note that n denotes here the inner normal vector to ω1), then
Ω∗(ω1) ⊂ Ω∗(ω2). Indeed, we then have Ω∗(ω2) = (I +W∗(V))(Ω∗(ω1)) and using Theorem 3.5
we get DVW∗(0;V) ·n > 0. Since for a small perturbation V we have

W∗(V) = W∗(0)+DVW∗(0;V)+o(‖V‖2
m,α)

and W∗(0) = 0, we can choose ω2 and V small enough such that W∗(V) · n ≥ 0 and Ω∗(ω1) ⊂
Ω∗(ω2) follows.

In what follows, we will need the following standard lemma.

Lemma 3.8. Let ω be of class C m,α , V ∈ C m,α
b (R2,R2), m ≥ 2 and ωV = (I +V)(ω). Let f be

such that V→ f (V)◦ (I +V) ∈ L1(ω) is differentiable at V = 0 from C m,α
b (R2,R2) to L1(ω) with

derivative f ′(0) and f (0) ∈W 1,1(R2). Consider the functional

J(V) =
∫

ωV
f (V)dx.

Then

DVJ(0; V̂) =
∫

ω

f ′(0; V̂)+div( f (0)V) dx =
∫

ω

f ′(0; V̂) dx+
∫

∂ω

f (0) V ·n ds,

where f ′(0; V̂) is the shape derivative of f (V).

Proof. The result is a straightforward consequence of, for instance, [MS76, Theorem 4.1].
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3.3 Shape derivative of the cost functional K1

We express the shape derivative of K1 as defined in (3.1) in the Hadamard-Zolésio structure form
(3.3), under appropriate smoothness conditions on the boundary of Ω.

Theorem 3.9. Let ω ⊂ R2 be a bounded domain, with a boundary of class C 2,α , and let V ∈
C 2,α

b (R2,R2) be given. Assume H ≥ 0 on Γ∗(ω). Then the shape gradient ∇K1(ω) of the cost K1

can be expressed as
∇K1(ω) = ∇p ·∇u ∈ C 1,α(Σ), (3.38)

where all expressions are evaluated on Σ, and the adjoint state p satisfies

−∆p = 0 in Ω
∗(ω)\ω, (3.39)

p = 0 on Σ, (3.40)

∂n p+H p =−µ
−11Ec +µ

−11E on Γ
∗(ω). (3.41)

Proof. Using Lemma 3.8 we obtain for W ∈ C 2,α
b (R2,R2) the shape derivative of J1(Ω) at Ω:

dJ1(Ω;W) =
∫

Γ∩Ec
W ·n ds+

∫
Γ∩E
−W ·n ds. (3.42)

Note that in (3.42), there is no contribution from the shape derivative along ∂E since E is fixed. The
minus sign in the second integral comes from the orientation of the normal vector in E ∩Ωc. Since
K1(ωV) = J1((I+W∗(V))(Ω∗(ω))) we may apply the chain rule thanks to Theorem 3.3, Corollary
3.4 and (3.42). Using (3.29) we obtain

dK1(ω; V̂) = dJ1(Ω
∗(ω);DVW∗(0; V̂))

=
∫

Γ∗∩Ec
−µ
−1u′ ds+

∫
Γ∗∩E

µ
−1u′ ds =

∫
Γ∗
(−µ

−11Ec +µ
−11E)u′ ds.

(3.43)

To simplify (3.43), we introduce the adjoint state p solution of (3.39)-(3.41), which is well-defined
due to H ≥ 0 on Γ∗(ω). Using Green’s formula in Ω\ω and utilizing (3.39)-(3.41), we obtain∫

Γ∗
(−µ

−11Ec +µ
−11E)u′ ds =

∫
Γ∗
(∂n p+H p)u′ ds

=
∫

Ω∗\ω
(∆pu′− p∆u′) dx+

∫
Γ∗

p(∂nu′+H u′) ds

+
∫

Σ

(−u′∂n p+ p∂nu′) ds.

(3.44)

Using (3.13)-(3.15) and (3.39)-(3.41) yields∫
Γ∗
(−µ

−11Ec +µ
−11E)u′ ds =

∫
Σ

(∂n p∂nu)V̂ ·n ds =
∫

Σ

∇p ·∇u V̂ ·n ds.

Since ω is of class C 2,α and Ω∗ \ω is of class C ∞ due to assumption (2.4), we have p|Σ,u|Σ ∈
C 2,α(Σ) due to standard regularity results and nΣ ∈ C 1,α(Σ,R2). Therefore, ∇K1(ω) = ∇p ·∇u ∈
C 1,α(Σ) and

dK1(ω; V̂) =
∫

Σ

∇p ·∇u V̂ ·n ds (3.45)

is well-defined.
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3.4 Shape derivative of the cost functional K2

In a similar way we express the shape derivative of K2 in the Hadamard-Zolésio structure form (3.3),
under appropriate smoothness conditions on the boundary of Ω.

Theorem 3.10. Let ω ⊂ R2 be a bounded domain, with a boundary of class C 2,α , and let V ∈
C 2,α

b (R2,R2) be given. Assume H ≥ 0 on Γ∗(ω). Then the shape derivative of K2 at ω in direction
V̂ is

dK2(ω, V̂) =
∫

Σ

[∇u ·∇p+∇pl ·∇ul]V̂ ·nds, (3.46)

and the adjoint states pl and p satisfy

−∆pl =−(u−ul) in E \ω, (3.47)

pl = 0 on Σ, (3.48)

pl = 0 on ∂E, (3.49)

and

−∆p = u1Ω∗(ω)∩Ec +(u−ul)1E∩ωc in Ω
∗(ω)\ω, (3.50)

p = 0 on Σ, (3.51)

∂n p+H p = 0 on Γ
∗(ω), (3.52)

respectively.

Proof. In view of Lemma (3.2) the conditions of Lemma 3.8 are fulfilled and we may apply the
chain rule to K2(ω) thanks to Theorem 3.3 and Corollary 3.4. Note that J2 depends on two variables
Ω and ω , therefore we obtain the shape derivative of K2(ω) with respect to ω in direction V̂ as

dK2(ω; V̂) = dJ2(Ω
∗(ω),ω;DVW∗(0; V̂), V̂)

=
∫

Ω∗∩Ec
uu′(V̂) dx+

∫
E∩ωc

(u−ul)(u′(V̂)−u′l(V̂)) dx

+
1
2

∫
Γ∗∩Ec

u2DVW∗(0; V̂) ·n ds+
1
2

∫
Σ

(u−ul)
2V̂ ·n ds,

(3.53)

where u′ = u′(V̂) is the solution of (3.13)-(3.15) and u′l = u′l(V̂) satisfies [SZ92, pp. 118]

−∆u′l = 0 in E \ω, (3.54)

u′l =−∂nulV̂ ·n on Σ, (3.55)

u′l = 0 on ∂E. (3.56)

In view of the boundary conditions for u and ul we get

dK2(ω; V̂) =
∫

Ω∗∩Ec
uu′ dx+

∫
E∩ωc

(u−ul)(u′−u′l) dx

=
∫

Ω∗∩ωc
(u1Ω∗∩Ec +(u−ul)1E∩ωc)u′ dx+

∫
E∩ωc

−(u−ul)u′l dx,
(3.57)
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using u′ ≡ 0 on (Ω∗(ω))c. Next, we simplify the second integral in (3.57) by introducing the adjoint
state pl , the solution to (3.47)-(3.49), and we obtain

∫
E∩ωc

−(u−ul)u′l dx =
∫

E∩ωc
−∆plu′l dx

=
∫

E∩ωc
−pl∆u′l dx+

∫
Σ

(−∂n plu′l + pl∂nu′l) ds

=
∫

Σ

∂n pl∂nul V̂ ·n ds =
∫

Σ

∇pl ·∇ul V̂ ·n ds.

Similarly, to simplify the first integral in (3.57), we introduce the adjoint state p solution of (3.50)-
(3.52), which leads to

∫
Ω∗∩ωc

(u1Ω∗∩Ec +(u−ul)1Ω∗∩ωc)u′ dx =
∫

Ω∗∩ωc
−∆pu′ dx

=
∫

Ω∗∩ωc
−p∆u′ dx+

∫
Γ∗∪Σ

(−∂n pu′+ p∂nu′) ds

=
∫

Σ

∂n p∂nu V̂ ·n ds+
∫

Γ∗
u′(−∂n p−H p) ds

=
∫

Σ

∂n p∂nu V̂ ·n ds =
∫

Σ

∇u ·∇p V̂ ·n ds,

where we used (3.15). Since the mapping dK2(ω; V̂) is linear and continuous, we have obtained
(3.46).

4 Numerical algorithm and examples

We solve the optimization problems using an iterative process, i.e., we find a solution to the lower-
level problem (Fω) first and then proceed to the upper-level problem consisting of the minimization
of K1 and K2. For the upper-level problem, we use the boundary variation technique [AP06]. One
may use the negative shape gradients Vi =−∇Ki(ω)n on Σ, i = 1,2 as a descent direction, which
need to be extended to the entire domain for the numerical method. In Algorithm 2 we introduce an
extension of Vi over the entire domain Ω∗ \ω such that

dKi(ω;Vi) =
∫

Σ

∇Ki(ω)Vi ·n ds =−
∫

Ω∗\ω
|DVi|2 + |Vi|2 dx < 0

which yields a descent direction for the cost functionals Ki, i = 1,2.
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Algorithm 2 Bilevel shape optimization problem
1: Choose initial shape Ω0, tol, Nmax and set k = 0;
2: while ( (errk > tol) & (k < Nmax)) do
3: Solve (F

ω(k)) using Algorithm 1.
4: Compute the mean curvature H (k) of Γ(k) using (2.10).
5: Compute the adjoint system (3.39)-(3.41) for J1 or (3.47)-(3.49) and (3.50)-(3.52) for J2.
6: Evaluate the descent direction V(k)

i for i = 1,2 by using

−∆V(k)
i +V(k)

i = 0 in Ω
∗(ω(k))\ω

(k), (4.1)

∂nV(k)
i =−∇Ki(ω

(k))n on Σ
(k), (4.2)

V(k)
i = 0 on Γ

∗(ω(k)). (4.3)

7: Compute Ŵ∗(V(k)
i ) := DVW∗(0;V(k)

i ) using (3.29).
8: Set Ω∗(ω(k+1))\ω

(k+1) = (I + t(k)V(k))(Ω∗(ω(k))\ω
(k)), where V(k) solves

−∆V(k)+V(k) = 0 in Ω
∗(ω(k))\ω

(k), (4.4)

V(k) = V(k)
i on Σ

(k), (4.5)

V(k) = Ŵ∗(V(k)
i ) on Γ

∗(ω(k)), (4.6)

and t(k) is a positive scalar.
9: Set errk = max(||V(k)||H1(Ω∗\ω), ||V(k)||C (ω)) and k = k+1.

10: end while

In step (8) of Algorithm 2, both sets ω and Ω∗(ω) are updated. However, the actual update for
the free set Ω∗(ω) occurs in step (3). The purpose of the update of Ω∗(ω) in step (8) is not to solve
the free boundary problem but to provide a good initialization for solving (Fω) later in step (3).
Alternatively, ω only could be updated on the basis of the vector field Vi obtained in step (6), hence
avoiding the computation of V and the update of Ω∗(ω), but numerical experience shows that step
(8) is advantageous as it allows to decrease the amount of iterations in step (3).

The current form of Algorithm 2 does not satisfy the inequality constraints in Uad . To achieve
these constraints, a penalty approach is used. Furthermore, the extension Vi of −∇Ki(ω)n on the
basis of (4.1)-(4.3) is also regularizing. Namely, if ω is of class C 2,α we have shown for instance
in (3.38) that ∇K1(ω) ∈ C 1,α(Σ) and the extension Vi is in C 2,α(Ω∗(ω) \ω) in view of (4.1)-
(4.3). If the Neumann boundary condition in (4.2) is replaced by a Dirichlet condition, then the
regularization is insufficient and undesired oscillations of the shapes may occur [KK11].

Note that the shape gradient in (3.46) for the reduced cost K2 involves the functions u, p and
ul, pl defined on domains Ω∗(ω) \ω and E \ω , respectively. From the numerical implementation
perspective, these domains and the associated grids must be updated separately and consequently,
some modification of Algorithm 2 is necessary. Specifically, in addition to steps (4.1)-(4.6) in Al-
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gorithm 2, the domain E \ω is updated via

E \ω
(k+1) = (I + t(k)W(k))(E \ω

(k)),

where W(k) solves

−∆W(k)+W(k) = 0 in E \ω
(k), (4.7)

∂nW
(k) =−∇K2(ω

(k))n on Σ
(k), (4.8)

W(k) = 0 on ∂E, (4.9)

and t(k) is a positive scalar whose choice is to be discussed in Subsection 4.1. For the computation
of p and pl , a data interpolation between E \ω and Ω\ω is required.

4.1 Numerical examples

The state problem is discretized using standard triangular elements generated by the anisotropic
mesh generator BAMG [Hec98]. The location of the free boundary corresponding to a given inner
boundary is not known a priori. However, when considering the situation where both ω and Γ are
concentric circles, then the location of the free boundary can be calculated analytically.

4.1.1 Example 1

We start with an example where the exact solution is known. Let µ = −1, ω = Br1(0) and Ω =

BC(0). Then it is straightforwardly seen that the function

u =−C ln(r)+1+C ln(r1)

satisfies ∆u = 0 in Ω\ω , u = 1 when r = r1, and ∇u ·n = −1 when r = C. Next, to solve the free
boundary problem (Fω), we look for the value C∗ giving u = 0 when r =C∗. For this, one needs to
solve the equation

−C ln(C)+1+C ln(r1) = 0,

for the value of C∗. In what follows, we shall take r1 = 1, in which case, C∗ is found to be C∗ ≈
1.76322.

Therefore, by setting E = BC∗(0) where µ =−1 in (1.4), we expect a circle of radius one to be
the global minimizer of both J1 and J2, i.e.,

E = ΩT := {(x,y) ∈ R2 : x2 + y2 = (C∗)2} and ωT := {(x,y) ∈ R2 : x2 + y2 = 1}.

The optimization is performed using both cost functionals K1 and K2 starting from the same
initial guess. The initial domains ω(0) and Ω(0) are given by

ω
(0) :=

{
(x,y) ∈ R2 :

x2

1
+

y2

1.22 = 1
}
, Ω

(0) := {(x,y) ∈ R2 : x2 + y2 = 4}, (4.10)
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respectively. The boundaries Γ(0), Σ(0) and ∂E, ΣT of the initial and target shapes, respectively, are
depicted in Figure 3(a). In order to compute the value of K1, the hold-all E := [−4,4]× [−4,4]
embedding all admissible domains is utilized. The indicator function of the set (Ω∩Ec)∪ (Ωc∩E)
is computed using

1(Ω∩Ec)∪(Ωc∩E)(x) = 1Ω(x)+1E(x)−1Ω(x)1E(x).

This indicator function, corresponding to the initialization in (4.10), is depicted in Figure 3(b). For
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(a) Initial and target shape (b) Area to be minimized

Figure 3: Initial shape Ω(0) and target shape E

the initial value of the cost functional we get the numerical value K1(ω
(0)) ≈ 3.455. Our aim is to

minimize the area of the dark region in Figure 3(b).

Remark 4.1. The motion of Σ is modeled explicitly using boundary nodes which are connected by
line segments. These nodes are moved using the deformation field V computed in (4.1-4.6). During
each optimization step, the step size t(k) is chosen on the basis of the Armijo-type line search and
such that there are no reversed triangles within the mesh after the update. If reversed triangles occur
or the mesh quality deteriorates, then a new mesh is generated, see, e.g., [AP06, THM08] for more
details on mesh regeneration.

The parameters in Uad are set to:

ωmin := {(x,y) ∈ R2 | x2 + y2 ≤ 0.612}, ωmax := {(x,y) ∈ R2 | x2 + y2 ≤ 1.752}.

We set the value of tol to 1×10−3. After 28 iterations and no mesh regeneration, we reach the target
shape (see Figure 4(a)) with the final value K1(ω

f inal)≈ 5.4×10−3 for the cost. In Figure 4(b), we
depict the convergence history of K1. From this figure, we observe that the cost is reduced during
the optimization in a manner typical of gradient type methods, i.e., one observes a fast decrease
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Figure 4: Final shape Ω( f inal) and target shape using K1.

in the beginning, and a slow convergence afterward. Moreover, since the target and final shapes
of the boundaries practically coincide after optimization (see Figure 4(a)), the dark region is also
minimized and tends to a set of measure zero.

Next, we perform the optimization using K2. The initial value of the cost is found to be K2(ω
(0))≈

0.036987. In Figure 5, we plot the variations of the domains Ω∗(ω)\ω and E \ω with the iteration
count. It is observed that as the iteration count increases, the boundary Σ converges to the target (see
Figure 5(b)). Similarly, the boundaries of Ω∗(ω)\ω converge to the target boundaries as well (see
Figure 5(a)). The final boundaries are depicted in Figure 6(a). As expected, the final shape coincides
with the target shape.

The convergence history of K2 is depicted in Figure 6(b). After 60 iterations and no mesh regen-
eration, the value K2(ω

f inal)≈ 2.527×10−5 for the cost is obtained.

Remark 4.2. In the numerical experiments we observe that the domains obtained using K1 tend to
have an oscillatory behaviour near the optimal shape, which is not the case with K2. Therefore, in
the subsequent examples, we use only K2 which provides a more stable convergence.

4.1.2 Example 2

In this example our aim is to investigate the effect of increasing the value of µ on ω while the target
boundary ΓT remains fixed. We set the target boundary as ΓT := {r(t)(cos2πt,sin2πt)| t ∈ [0,1]},
where

r(t) = 0.5cos(2πt)+0.8cos(4πt)+2.

It is known that for the exterior Bernoulli free boundary problems with fixed inner component of the
boundary, the respective free boundaries for µ→ 0− are asymptotic to a family of concentric circles
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Figure 5: Variations of domains Ω\ω and E \ω
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Figure 6: Final shape of the free boundary using K2 and target shape.
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with radii tending to infinity [FR97]. Therefore, one excepts the measure of the set Ω∗(ω) \ω to
increase for µ → 0−.

The initial design for Σ is a circle of radius one while that of Γ is a circle of radius C (see Figure
7(a)). We choose µ =−3 and discretize the initial domains Ω(0) \ω

(0) and E \ω
(0) with triangular

elements. The boundary nodes of the triangulations of Ω(k)\ω
(k) and E \ω

(k) are used as the control
parameters for the optimization. The free boundary problem (1.1)-(1.4) is computed and the initial
value of the cost is K2(ω

(0))≈ 0.1071. The parameters in Uad are set to:

ωmin := {(x,y) ∈ R2 | x2 + y2 ≤ 0.752} ωmax := {(x,y) ∈ R2 | x2 + y2 ≤ 3.152}.
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(b) Target and final shape

Figure 7: Target E, initial ω(0),Ω∗(ω(0)) and final shapes ω( f inal),Ω∗(ω( f inal)) using K2 with µ =
−3.

The final value of the cost K2 after 111 optimization iterations and 7 mesh regenerations is
found to be 6× 10−5. The optimal domain is depicted in Figure 7(b). We observe that the final
shape of Γ∗(ω) reaches almost perfectly the target boundary ΓT := ∂E. We compute the measure
|Ω∗(ω f inal)\ω

f inal| ≈ 4.36688.
Next, we set µ =−1.8 with an aim of checking whether the area of Ω∗(ω)\ω increases while

Γ∗(ω) still coincides with the target ΓT . We choose the same initialization as in Figure 7(a). The
parameters in Uad are now set to:

ωmin := {(x,y) ∈ R2 | x2 + y2 ≤ 0.012} ωmax := {(x,y) ∈ R2 | x2 + y2 ≤ 1.752}.

The initial value is K2(ω
(0)) ≈ 0.128. After 120 iterations one observes that the boundary Σ inter-

sects itself at the origin (see Figure 8) and a meshing error occurs. At this point the optimization
is stopped, the final value of K2(ω

f inal) ≈ 3.28× 10−4 is returned, and we compute |Ω∗(ω f inal) \
ω

f inal| ≈ 7.51295. The kind of parametrization used here does not allow topological changes to
occur during the optimization process. Therefore, we arrive at a similar conclusion as in [THM08],
i.e., that the inner boundary consists of more than one connected component, although our numerical
approach as well as the cost functionals K1 and K2 are different. Moreover, as expected, an increase
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Figure 8: Target shape E and final shapes ω( f inal),Ω∗(ω( f inal)) using K2 with µ =−1.8

in the value of µ for a fixed target, leads to an increase in the area of Ω∗(ω)\ω , in agreement with
the theory.

4.1.3 Example 3

In this example our aim is to check whether there exists a domain ω ∈ Uad such that Γ∗(ω) is as
close as possible to a target ΓT which is not of class C ∞. We minimize K2 with the boundary ∂E
of the target domain E represented by a square with rounded corners (see Figure 9). The square is
of dimension [−2,2]× [−2,2]. Each of the corners is rounded using a quarter of a circle of radius
one and centers (1,−1), (1,1), (−1,1), and (−1,−1), numbered counter-clockwise starting from
corner (2,−2). This target boundary can also be described using the parametric equations

x(t) = 2|cos(2πt)|
1
2 · sgn(cos(2πt)), t ∈ (0,1), (4.11)

y(t) = 2|sin(2πt)|
1
2 · sgn(sin(2πt)), t ∈ (0,1). (4.12)

With this parameterization, it is clear that the target is not of class C ∞. We set µ =−1. The boundary
Σ is initialized using a circle of radius one while Γ is initialized using a circle of radius C, both
centered at the origin, cf. Figure 9. The parameters in Uad are set as in the first example. The initial
value of the cost is K2(ω

(0))≈ 0.0954102. After 20 optimization steps and 5 remeshing, we obtain
the final shape depicted in Figure 10(b). We compute the final value K2(ω

( f inal))≈ 1.1067×10−3.
In Figure 10(a), a comparison between the target outer boundary and the final outer boundary is
made. We observe that the target is not reached exactly. In fact, some of the optimization variables
attained the lower and upper bounds. Since the target is not of class C ∞, it cannot be reached
using star-like boundaries Σ of class C 2 [THM08, AM95]. The non-existence of ω ∈Uad such that
Γ∗(ω) is as close as possible to the target ΓT /∈C ∞ usually manifests itself through oscillations of ω

[THM08]. However, since we use a regularized velocity field (see Algorithm 2), these oscillations
of the inner boundary do not occur in our case, cf. [THM08, Example 2].
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(a) Ω∗(ω(0))\ω
(0) (b) Target E \ω(0)
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Figure 9: Initial domains and target E
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Figure 10: Initial and final shapes of the free boundary using K2
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5 Conclusions

In this paper, we have performed the mathematical analysis for the sensitivity of a Bernoulli free
boundary problem with respect to a shape perturbation of the inner boundary using the concepts of
shape calculus. A new segregation algorithm for solving this free boundary PDE constrained shape
optimization problem has been proposed and implemented. The numerical results presented here
indicate that the derived shape gradients produce similar results as those obtained by Haslinger et al
[THM08] using an automatic differentiation technique. The results in this paper can be extended to
other bilevel problems and control of the free boundary in shape optimization.
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[SGSV09] K. Selvanayagam, T. Götz, S. Sundar, and V. Vetrivel. Optimal control of film casting
processes. Int. J. Numer. Meth. Fluids, 59:11111124, 2009.

[SZ92] J. Sokolowski and J. P. Zolésio. Introduction to Shape Optimization. Shape Sensitivity
Analysis. Springer-Verlag, 1992.

[THM08] J. I. Toivanen, J. Haslinger, and R. A. E. Mäkinen. Shape optimization of systems gov-
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