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HIGH PRECISION IDENTIFICATION OF AN OBJECT:
OPTIMALITY-CONDITIONS-BASED CONCEPT OF IMAGING*
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Abstract. A class of inverse problems for the identification of an unknown geometric object
from given measurements is considered. A concept for object imaging based on optimality conditions
and level sets is introduced which provides high resolution properties of the identification problem
and stability to discretization and noise errors. As a specific case, the identification of the center of
a test object of arbitrary shape and unknown boundary conditions from d boundary measurements
in d spatial dimensions in the context of the Helmholtz equation is described in detail. For analysis
and numerical realization, methods from topology optimization, generalized singular perturbations
endowed with variational techniques, and a Petrov—Galerkin enrichment within generalized FEM are
used.
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1. Introduction. The problem of identification of a geometric object (the de-
fect, obstacle, scatterer) and reconstruction of its geometric and physical parameters
from given measurements has numerous applications in the engineering and biomed-
ical sciences, in the context of nondestructive testing with acoustic, elastic, and elec-
tromagnetic waves. From a mathematical point of view, object identification is an
inverse problem, which belongs to the field of shape and topology optimization, sys-
tem identification, and parameter estimation. For general approaches to inverse and
ill-posed problems we refer, e.g., to [26, 37, 40, 52, 54], and the references given there.

Shape optimization approaches to the identification problem were developed in,
e.g., [4, 5, 6, 19, 23, 41, 45]. Recently, the concept of topological derivatives was
adapted to this field in [7, 11, 16, 32, 51]. Methods of topological analysis are inher-
ently connected with singular perturbations; see [34, 48, 49]. In fact, for the task of
identification, a trial geometric object put in a test domain is examined by reducing
the trial object from a finite to an infinitesimal one, thus changing the topology of
the test domain.

Classic methods, however, are frequently restricted to simple shapes of the test
object given in parametrized form and to prescribed boundary conditions. Commonly,
either Dirichlet (the sound soft) or Neumann (the sound hard) conditions are assumed
a priori. Evidently, this assumption is inconsistent from a physical point of view. In
[11] transmission problems are considered. Moreover, in [12, 14] high resolved imaging
functionals are derived. Motivated by physical consistency we aim at a priori unknown
geometric and scattering properties of a test object.
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For identifying arbitrary geometric and physical variables, we utilize asymptotic
methods of singular perturbation theory and combine them with variational tech-
niques. Our generalized variational approach to singular perturbations allows us to
treat arbitrary shapes as well as unknown boundary conditions of the test object in
a unified way. In fact, we use a Robin type (the surface impedance) condition with
unknown parameter; see [25, 53]. To be of broad scope we allow it to be spatially
dependent. From a mathematical point of view, the impedance parameter is useful
for the purpose of regularization as described in [27]. Moreover, as we will show,
Robin conditions will play a crucial role for obtaining optimality conditions which are
suitable for high resolution reconstruction.

For reconstruction of an object either iterative or noniterative approaches can be
used. In the former, a geometric test object is reconstructed iteratively in the descent
direction of an objective function. This method is used often for computing, and
it is incorporated usually in the level set framework as described in [2, 18, 20, 36].
However, iterative methods have large computational costs.

Within noniterative approaches, a test object is to be reconstructed directly from
a single (one shot) or a multiple measurement. The theoretical background is that a so-
called far field pattern is uniquely determined by the object; see [1, 29]. To reconstruct
the test object from the far field asymptotic pattern, there are well-known sampling
and probe techniques such as linear sampling (in particular, factorization), orthogonal
sampling, singular and point sources, and other relevant methods; see [21, 26, 35, 40].
The sampling technique in bounded domains results in asymptotic factorization of
the Neumann-to-Dirichlet operator as described in [8]. The inverse methods use tests
under a single measurement by one harmonic wave (see [47, 50]), as well as multiple
measurements by several incident waves either with one or several frequencies (see [31,
46]). In engineering practice, there are well-established multiple signal classification
(MUSIC)-type algorithms, which utilize asymptotic approximations obtained from
multiple sources; see [9, 10, 13, 22, 28]. In [9, 10] the effect of noise on the imaging
functional is considered.

In spite of the evident benefit of the direct approaches, the main difficulty concerns
instability and low resolution of imaging of the test object. In this respect, many
refined studies for imaging with noisy data were carried out in [7].

To improve stability and resolution properties of object imaging we suggest in the
present paper a novel direct approach based on optimality conditions and level sets.
Our approach is an optimization theoretic one. We utilize the necessary optimality
conditions for finding extrema of an objective function with respect to trial geometric
variables (which admit, generally, multiple extrema). Henceforth we can reconstruct
the test object directly from the extremal values which associate an imaging function
with respect to input data and measured output data. For geometric realization
of the imaging function deduced from proper measurements, we relate the respective
(multiple) images to level set functions. Hence, the test object can be imaged precisely
from its zero sets. As result we obtain a robust and highly accurate numerical method
for object identification.

In section 2 we describe the general framework of the procedure that we propose
for high precision object identification. The proposed concept is applied to the specific
problem of center identification of obstacles in the Helmholtz equation in section 3.
The practical strength is demonstrated by means of numerical tests.

2. The optimality-conditions-based concept of object imaging. We start
with a geometric description.
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Let Q ¢ R% d € N, be a test domain, which can be bounded or unbounded.
Although the degenerate case of d = 0 implying a discrete set 2 of points can be
accounted for, we henceforth refer to continuous geometries € in R?, d = 1,2,3. Let
a test object be given by the compact set wr. (v*) = {z € R¢ : r;—f* € w*} C 2 which
is parametrized by an admissible triple of the shape w* € ©,,, the center * € O,
and the size ¢* € ©.. The shape w* is called admissible if is a compact subset in
R? which is contained in the minimum enclosing ball B;(0) of radius one centered at
the origin 0. Thus, the admissible shapes are invariant to translations and isotropic
scaling. The set of admissible geometries © = (0, 0.,0,) C R? x Ry x R? consists
of those for which wZ. (z*) C Q.

In the ideal case, the task of identification consists in determining the complete
set of geometric parameters (w*,e*, 2*), which is unrealizable practically except in
special cases of simple predetermined shapes. In practice, a reasonable goal is to
identify a particular geometry x* deduced from (w*,e*, 2*). For example, the center
x*, the equivalent ball B..(z*) of radius of €* centered at z*, an equivalent ellipse
(see [11, 42]) or superellipses, and the like. Since the latter geometric objects are
predetermined by the test object, we refer to w2, (z*) as the parent object, and to x*
as its child object. In particular, x* = wZ (z*) and x* = 0w}, (z*) are allowed. In the
example configurations we focus on the case x* = x* implying the task of identifying
the center of the object. In comparison with wX. (z*), the child object x* C Q is
assumed to be a “regular” geometric set of Hausdorff dimension d — m, where the
index 0 < m < d specifies the codimension of x* in R?. Thus, x* can be a subdomain
of 2 for m = 0, a point for m = d, and a manifold for 0 < m < d.

With the above geometric notation we are now in position to formulate the notion
of imaging of x* on the basis of input and measured output data.

Let D"Put denote fixed input data (inputs) of the underlying problem, in par-
ticular, DPU may include the test domain €2 itself. A measurement (which can be
done in the test domain, at its boundary, in points of receivers, and alike) provides
output data (outputs) DOUWPUt .= A (DPUt % (2*)) measured with respect to the
inputs and the test object wX (z*). Because the test object is generally unknown a
priori, the measurement function M is not available directly, but only the input and
output data are at hand. Since the class of physical and topological properties of test
objects w*. (z*) is predetermined, the combined data (D™mPut, DoutPut) .— 1) serve to
image some deduced characteristics of the mapping M : (D"PU w2, (2*)) s DOUPUL,
Below we get an abstract concept of the deduced imaging of a child test object x* of
wk (z%).

We consider a set of data D = {D}, where D = (D"Put DOUtPut) consists of the
inputs and outputs. We assume that for every datum D € D its image I = Z(D) is
known by means of the mapping

(2.1) Z:D—1I D~ C((Q),

with a scalar continuous function I(z), x € R?, defined on Q. We note that neither
injectivity nor surjectivity is assumed for Z. We use Z in (2.1) to image (reconstruct)
the object in 2 by inversion of M at a specific D. In this respect we get the following
definition.

DEFINITION 2.1. The family of images T = {I} in (2.1) is called the imaging or
identification function.

We will derive the imaging function Z from optimality conditions for specific
objective functionals. Usually, optimality conditions of first order have the form of
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Euler-Lagrange equations I(x) = 0 for « € x*, which can be expressed equivalently
with the help of the zero set {z : I(z) = 0} D x*. In this case, we declare feasibility
of I resulting in the next definition.

DEFINITION 2.2. An image I = Z(D) in (2.1) is called feasible (with respect to

X*)s if

(2:2) X" c Z(I),

where Z(I) denotes the zero set of I, i.e.,

(2.3) Z(I):={xecQ: I(x) =0} C Q.

It is clear that fulfillment of (2.2) does not guarantee uniqueness of x*. From a
geometrical viewpoint, a set of points x* in R? can be described uniquely from at least
one and at most d implicit surfaces. We arrive at the following notion of identifiability
of test objects.

DEFINITION 2.3. A parent test object wr. (x*) is called identifiable by the imaging
function T with respect to its child object x* of codimension 0 < m < d in R, if there
erist 1 < L < d pairwise different nontrivial feasible images such that

L
(2.4) X*=()2L), L=1(D;), i=1,...L.
i=1

Those I; in (2.4) are called proper images (with respect to x* ).

By trivial images here we mean those I;(z) = 0 which result in Z(I;) = 2.

If L = 1, then Definition 2.3 corresponds to the situation where a single image
I = Z(D,) is sufficient to identify the test object as x* = Z(I;). If L > 1, then
(2.4) needs multiple images I; deduced from multiple measurements of the parent test
object as i = 1,..., L. For example, for identifying the object center x* as a spatial
point in 2 or 3 dimensions, the subsequent considerations show that exactly L = d
images are needed.

Definition 2.3 is related inherently to the geometric concept of level sets and
implicit surfaces. Indeed, under reasonable regularity assumptions, a manifold y*
of codimension 2 < m < d can be expressed, on the one hand, as the intersection
X* =N, Z(p;) of zero sets of m signed distance functions p; due to [30]. This issue
concerns also cracks as open manifolds which appear in high codimension due to the
presence of crack tips; see [38, 39]. On the other hand, a measurable geometric set x*
admits the representation as x* = Z(po) with the help of a scalar-valued nonnegative
distance function pp > 0 within the implicit surface context as described in [3, 43, 44].
In this sense, proper images are associated with level set functions.

It is difficult to get any sufficient criterion which would determine a priori an
image as proper or not. Therefore, it may be helpful to relax (2.4) with the necessary
criterion of identifiability

(2.5) X*c()2m), L=I(D),i=1,...L,

which is suitable for 1 < L < d feasible images I;.
For illustration of our concept we present the numerical result for identifica-

tion of a test point z* =: x*, which has Hausdorff dimension zero, hence, the
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(a) single measurement (b) triple measurements

Fic. 1. Identification of the spatial point from single and triple images.

codimension m = 3 in 3 dimensions in the unit cube €. In the example con-
figuration, the sound soft test point is illuminated with plane waves of the form
g(x) = eblcostrsinOzwitsinbysinbrza+c0s0>23) where k € R stands for the wave num-
ber, and 0 = (61,02) € (—m, ] x [0, 7] implies the angle of incidence. Here the inputs
yield D™Put = {Q k g}, and the output D°"PU results from the respective field
scattered by the test obstacle x* = a* which is measured at the boundary 0. Af-
ter discretization of the underlying Helmholtz problem on the computational domain
Qp = Q endowed with the uniform polyhedral mesh G}, of size h, we get the discretized
data D" = (D(minput)  phoutput))y and compute its discretized image 1" = Z"(D").
The construction of the imaging function will be described in detail in section 3.

The imaging under a single measurement with the incident angle () = (0,0),
the discrete zero set Z"(Il') of the respective image I} = Z"(D!), is represented by
a number of dots depicted in Figure 1(a). The dots lie exactly on the horizontal
plane Z(I}) in the continuous space. The test obstacle x*, marked by the solid
blue point, lives within Z"(I}). Thus, x* C Z"(I}) C Z(I!') and I} is a feasible
image. Similarly, for the incident angles § = (%Z,0) and 6® = (Z,Z) we obtain
feasible images given by I} = Z"(DI) and I} = Z"(D}). Then the test point is
determined by (2.4) as the unique point of intersection of the zero sets {Z"(I!)}3_,,
which lie on three pairwise perpendicular planes {Z(I)}?_, as depicted in Figure 1(b).
Therefore, these three images are proper. The identification according to (2.4) holds
true from the measurements under three different incident angles. This example
justifies Definition 2.3 with the number of images L = m = d = 3.

In the presented example, we obtain the identification result which is independent
of the mesh size for all fine as well as coarse meshes to be reported later. The example
configuration is confined to the ideal situation when the test point coincides with the
mesh nodes. Otherwise, we report the discretization error of the order O(h*), which
is negligible within finite elements. To the best of our knowledge, such precise results
were not available in the literature. In this respect, the choice of imaging functions
is crucial here. In fact, the reason for our high precision identification consists of the
choice of the imaging function from optimality conditions.

Now we turn to the issue of discretization which is conceived in a finite (or bound-
ary) element context with continuous elements. For a discretization parameter h € R
corresponding to a meshing of the test domain 2, we start with the discretized in-
puts D1Pu) given on the mesh GJ, over the computational domain Q. This leads
to the discretized outputs determined by the mapping M : (DPut) (ox (%)) 1
D(-input) - Dyiscretization of the imaging function Z in (2.1) associates the mapping
TIh . D+ C(Q4) of the discretized data D" = (Dmput) plhoutput)) ¢ D with an
image I" which is continuous over €,.
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In contrast to our reference example, discretization of an underlying state problem
results, generally, in infeasible images. Indeed, for the conventional discretization I/ of
proper images I;, i = 1,..., L, from (2.4), if I # I, then, generally, Z(I) # Z(I;)
and x* ¢ Z(I!). We note that Z(I;) # () does not guarantee even nonemptiness
Z(IM) # 0. Therefore, we adapt the criterion of identifiability (2.4) to infeasible
images caused by discretization as follows.

DEFINITION 2.4. Let wr. (x*) in R? be a parent object with associated child x* of
codimension m which is identifiable according to (2.4). Then the approzimation x" is
called proper, if there exist 1 < L < d nonempty pairwise different nontrivial images
I =1M(DF), i=1,..., L, with a nonempty intersection of its zero sets

L
(2.6) Nzl =x" 1=1"D}), i=1,..L,

=1

and Xh has codimension 0 < m < d in R<.

We note that, if the discretization is confirming that Z(I}) = Z(I;) for i =
1,...,L in (2.4) and (2.6), then from Definitions 2.3 and 2.4 it follows that x" = x*.
Otherwise we can introduce a quality of approximation of x* by x" with the help of a
suitable measure satisfying the Hausdorff distance of x* — x* which can be bounded
by an h-dependent error function.

In the stochastic case, the (discrete) data D»“) are subject to noise with the
standard deviation o. Following Definition 2.4 we look for a nonempty approximation
x"™9) of the child test object x* of codimension 0 < m < d in R? deduced from
1 < L < d pairwise different nontrivial images as

L
(2.7) =z, 17 =1 (D), i =1, L.
i=1

For the example problem of center identification, thus x* := z*, a detailed nu-
merical analysis of the error will be reported in section 3.5. For comparison, various
identification algorithms reported in [7] for o = 30% Gaussian noise level have the
error ranging from 1 to 25% with respect to the diameter of the test domain. In our
numerical tests we observed typically less than 1% error on reasonable meshes. This
fact demonstrates high stability with respect to the noise and discretization errors of
our identification algorithm, which will be introduced in section 3 based on optimality
conditions and zero sets of multiple images.

Our concept here has a broad scope, nevertheless, its particular realizations are
different depending on the underlying problem. In the following we specify our con-
cept in detail for the model Helmholtz problem. From optimality conditions of the
respective objective functional we derive the imaging function which is suitable for
high precision identification of the center of an arbitrary geometric object under un-
known boundary conditions. For its numerical implementation we suggest an original
Petrov—Galerkin-based enrichment method within generalized FEM, which will be the
subject of a forthcoming paper. We observe that it improves significantly the accuracy
of discretization in comparison with the standard solvers of the Helmholtz equation;
see [55].

3. The Helmholtz problem for identification of the object center from
boundary measurements. Here we identify the center of a test object. This task
is of primary importance for applications. While the general formulation of the di-
rect and inverse problems is carried out in arbitrary spatial dimensions, a rigorous
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asymptotic analysis will be given in 2 dimensions. The 3 dimensional (3d) and one
dimensional (1d) cases are considered when analyzing well posedness and numerical
stability of the resulting identification algorithm.

3.1. The direct Helmholtz problem. We start with a geometric description
of the trial objects (inclusion, obstacle).

Let w C R, d = 1,2, 3, be a generic geometric shape. We assume that w C B (0)
and the unit ball By(0) is the minimum enclosing ball centered at 0. Moreover, for
the asymptotic analysis below we require that 0 € w. We assume that the boundaries
Ow and 0 are piecewise Lipschitz, which is common in variational formulations.
Rescaling w by a size parameter ¢ > 0, it produces admissible inclusions w.(xo) =
{x eRe: =T € w} C Q posed at a trial center xg in the reference domain Q. The
geometric variables (w,e,z0) € © = (0,0.,0,) C R? x Ry x R? should satisfy the
comnsistency condition w.(xzp) C Q. Such admissible geometries (w,e,zp) € © will be
used further for the sake of variation of topology of the reference domain. For the
direct problem, we fix w.(zg) in €.

As a reference model we consider the scalar, complex-valued Helmholtz equation

(3.1) —(A+EHu=0 in Q\ w(zo),

with Neumann condition at the external boundary

(3.2) % =g on 09,

and Robin condition at the (internal) boundary of the inclusion
ou

(3.3) o +ou=0 on dw(xg).

Here the Neumann data g € L?(9Q;C), the wave number k¥ € R, and the surface
impedance a € L (0w; C) are given, and n denotes the normal vector at the bound-
ary. Since the function a(y) is given for y € dw, after stretching y = =2, the value
of a in (3.3) means a(2=22) for z € dw-(z¢). In the following = € R? refers to the
reference domain €, and y € R to the stretched domain w.

We note that, on the one hand, a Robin boundary condition (3.3) implies ap-
proximation of the Neumann condition g—z = 0 (the sound hard obstacle) in the case
of small |a| — 0 (see [27]). On the other hand, in the case |a| — oo relation (3.3)
corresponds to a penalized version of the Dirichlet condition v = 0 (the sound soft
obstacle). In this way problem (3.1)—(3.3) accounts for arbitrary boundary conditions
depending on the parameter a.

The weak formulation of (3.1)-(3.3) reads: Find u(“®0:®) € HY(Q\ w.(z0); C)
such that

/ (Vu(w’57w°7°‘) -V1 — k2u(“7€’m°7o‘)ﬁ) dx + / au @ty 48
(34) QN\we (zo) Owe (zo)

:/ gudS, forallve H(Q\ w.(x); C),
o9

where we mark the dependence of the geometric and physical variables (w, e, zg, @).
Problem (3.4) can be expressed equivalently with the help of the Cherkaev—Gibiansky
variational principle:

(3.5) mi}rili]([n)ize me}xi(m)ize L(v) overve H'(Q\ w-(xp);C)
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with the Lagrangian L : H*(Q \ w:(z0); C) — R of the form

(3.6)
L(v) := Re {% Jow. (agy (VU - VU — k?v?) dx + 1 Jow. (z0) oaw?dSy — [0 9v dSm} :

The optimality system (3.4) is a necessary condition for the minimax problem (3.5).
Under reasonable assumptions on k and « (see [17, 24]), there exists a (unique)
solution of the variational equation (3.4). Summarizing these assumptions, k should
not be too large, and « should be either not too large or it should have a definite
sign such that Re(a) > 0 and Im(«) > 0 or Im(a) < 0 uniformly at dw. The latter
case allows the Dirichlet boundary condition in the limit of || — oco. For fixed k, we
define the admissible set O, C L>®(dw; C) of such o which allow solvability of (3.4).

3.2. The inverse problem of object identification. In the inverse setting of
the problem, the shape w*, size €*, and position z* for an unknown geometric object,
and the surface impedance a* are to be identified and reconstructed from the known
boundary measurement(s) u* = u@ =5 2he") at 9. For this purpose, a trial object
we (o) is put in Q such that (w,e,z9) € © = (O, O, 0,) are admissible. Using an
admissible trial surface impedance parameter a € ©, we find a family of solutions
u(@5:%0,2) of problem (3.4). The admissible set © := (0,,, 0., O,,0,) was discussed
before. For the trial variables (w, e, zg, ) € © we consider the usual square function
of the misfit at 9

(3.7) J(w, e, x0, ) := %/ [u(@e0:0) _4*|2 48,
o0

as the objective function for the topology optimization problem:
(3.8)  minimize J(w, e, 7o, ) over admissible (w, e, zo, @) € O subject to (3.4).
If the test variables satisfy (w*, e*, z*, a*) € O, then this is the argument of the trivial
minimum in (3.8).

In the following we bring (3.7) into a form which is suitable for asymptotic anal-
ysis. We start with primal-dual arguments. Since u(“%%0:%) denotes the primal state
variable, a dual state variable v(“ %% can be obtained with the help of a Fenchel-

Legendre duality corresponding to the following variational principle:

(3.9) g;ég)ﬂl‘:[{lel%ve) 113111?;3111211(25 L(u,v) over u,v € H'(Q\ w.(x0); C),

where the Lagrangian £ has the form (compare with (3.6))

(3.10)

L(u,v) ::Re{% / (Vu- Vv — k*w)dz + 3 / ouv dSy — / gudS,
Q\we (z0) Owe (zo) o0

+ %/ (u — u*)zdSr}.
oQ

The first order optimality conditions for (3.9) yield (3.4) together with the dual vari-
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ational problem: Find v(“%0:®) ¢ HY(Q\ w.(xo); C) such that

/ (Vv(w’57w°7°‘) -Vu — k2v(w’5’w°’o‘)ﬂ) dxr + / av@er0N g 48
Q\we (7o)

(3.11) Owe (@o)

= —/ (w200 _y*)udS, for all u e H'(Q\ we(x0);C),
o0

which is analogous to problem (3.4) and differs from it by the Neumann data at 5.

In the reference domain 2 without inclusion, from (3.4) and (3.11) as ¢ = 0 we
define the background solutions of the respective primal and dual problems: Find
u® € H1(Q; C) such that

(3.12) /(Vuo VT — k*u'%) dx = / gudS, for allve H'(;C),
Q o0

and v € H'(Q;C) such that

(3.13) / (Vo - Vi — k*0°7) do = —/ (u® —u*)udS, foralluc H'(Q;C).
Q o9

The background solutions u? and v° will be used for construction of the imaging
function I.
With the help of (3.12) and (3.13), subtracting and adding u° in (3.7) and using

%—f = —(u’ — u*) at 09, we rewrite the objective J equivalently as

(w,e,z0,00) 0 850
J(w,e,xp,a) = Jo — Re (u's*0%) — ) —dS,
o 871

(3.14) @

+ %/ jul@eroa) _ 0248, Jy = %/ |u® — u*|* dS,.
lo) a0

We note that Jp in the right-hand side of (3.14) is constant with respect to the trial
variables (w, &, xo, ). Relying on small geometric objects, we can apply asymptotic
arguments to (3.14) and expand J in small e. While the asymptotic expansion is
somewhat known in the literature for the specific cases of boundary conditions of
Dirichlet, Neumann, and Robin type with « constant, here we get the result for
arbitrary, constant, or distributed parameter « of the surface impedance. It allows us
to treat a priori unknown boundary conditions of the test object.

To obtain the asymptotic expansion for arbitrary shapes and unknown boundary
conditions we generalize the methods of singular perturbations with variational argu-
ments. This results in a two-scale expansion of the state problem. One asymptotic
series is given by solutions of variational problems in the reference domain 2. The
second asymptotic series can be expressed by harmonics with respect to the stretched
variable y = =" in the exterior domain R?\ @. The construction is related closely
to Green functions; see [33]. We endow it with a variational formulation using the
nontrivial kernel of exterior Laplace problems in weighted Sobolev spaces; see [15]. In
particular, we obtain the far field pattern which contains the geometric information of
the test object. In the present paper we confine ourselves to the first order asymptotic
information which suffices to identify the center of an object. We emphasize that the
rigorous justification of such expansions is itself a hard task with a huge number of
fine asymptotic calculations.
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For two spatial dimensions (d = 2), we rigorously justify in Appendix A the
following representation as € \, +0,

J(w, e, z0, @) = Jo + 2me Re{ (a)u’ (z0)v(z0) }

(3.15)
+0((+ [lall. + llallZe)??),
where u® and v? are the solutions of (3.12) and (3.13), the notation () stands for
the average of « over dw, and || - ||, stands for the L>-norm. For convenience we
represent the first order asymptotic term in (3.15) equivalently as

(3.16) Re{(a)u’(z0)v%(z0)} = Re(a) Re{u®(z0)vO(z0)} — Im(ar) Im{u’(z0)v0(z0)}.

Using the asymptotic representation (3.15), we next derive optimality conditions for
the topology optimization problem (3.8), which will be used further for high precision
imaging.

3.3. The optimality-condition-based imaging of the center. In the stan-
dard approach, the admissible set of parameters a € 0, is avoided according to
either the Neumann condition by « = 0 or the Dirichlet condition by |a| — oo,
which is predefined. In the former case, the leading first order asymptotic term in
(3.15) disappears. In the latter case, if |[Im(«)| — oo and the real part is chosen as
Re(a) = _Eln(slcap(w)) —l—O(E‘ h}s|2 ), then (3.15) tends to the expression for the Dirichlet
case (when d = 2)

J(w’ €, xo) = JO —+ WRQ{UOCCQ)WCEO)} + O (_I lnlg‘z) .

We note that in both cases when boundary conditions of the trial objects (and,
respectively, of the test object) are set a priori, the complementary term Im(a) -
Im{u®(z0)v°(x0)} in (3.16) does not appear in the subsequent optimization.

Differently from the above consideration, we assume the trial coefficient a € ©,
to be unknown a priori. For the test variables (w*,e*,z*, a*) € © chosen arbitrarily,
definition (3.7) suggests the optimality

J(w* e 2" ,a") =0 < J(w,e,20,) for all (w,e,1p,) € o.
In particular, for all admissible constants a* and small €, it holds due to (3.15) that

J(w* e 2", a") =0 < J(w*, e,z a") = Jo + 2me{Re(a”) Re{u®(z*)v0(x*)}

(3.17) _
— Im(a*) Im{uo(gc*)vo(x*)}} +O((1+ |a*| + |a*|25)252).
For the Dirichlet case, when w*, e*, z* are fixed and Im(a*) — +o0 or Im(a*) — —o0,
the complementary terms to Im(a*) by arbitrary ¢ in (3.17) should be zero. Thus we
arrive at the optimality condition of the form

(3.18) Im{u®(z*)00(z*)} =0,

which is necessary for the Dirichlet case. We therefore argue the following result.

THEOREM 3.1. The center z* of a sound soft test object wr. (z*) C R? of arbitrary
shape w* and size €* satisfies the necessary optimality condition (3.18), where u®
and v° are the primal and dual background solutions of problems (3.12) and (3.13),
respectively.
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The assertion of Theorem 3.1 is validated also numerically in section 3.4. We
emphasize that, in spite of the asymptotic arguments of the small trial sizes ¢ which
were used, the size €* of the test object does not need to be small.

Now we relate the specific result of center identification obtained for the Helmholtz
problem to the abstract concept of object imaging from section 2. For the input
Dmput — £ k g}, the synthetic output DOMPU — [y* : o = y(@5e270 ) on 9O
is obtained by solving the direct Helmholtz problem (3.4) for the known test object
wZ (z*) with the known surface impedance a*. This solution synthesizes the mea-
surement M : (DPUt %, (2%)) s DOUPUt Based on (3.18) we define the imaging
function Z : D = {D : D = (D™"Put, poutput)} .y () through the following image

(3.19) I=17(D), I(z):=Im{u’(x)(x)} forzeQ.

From Theorem 3.1 and (3.18) we infer the following result.

PROPOSITION 3.2. FEwvery image of T in (3.19) is feasible with respect to the
center x* of a sound soft test object w*. (x*) C R? according to Definition 2.2, that is,
a* € Z(I) for the zero set Z of the imaging function I in (3.19).

Using Proposition 3.2, the necessary criterion (2.5) from section 2 can be applied
in the continuous setting to identify the center z* from the intersection of 1 < L < d
feasible images I; of pairwise different data D;, i = 1,..., L, in (3.19). Nevertheless,
our aim is to construct a numerical algorithm for the efficient solution of the identi-
fication problem after discretization. Therefore, we next discuss the capability of the
optimality condition (3.18) and the respective imaging function (3.19) to identify the
center of a test object in discrete spaces. In the following we will verify numerically
that criterion (3.18) in its discrete version holds true in all spatial dimensions (< 3)
and for all boundary conditions of the test object providing us with either the exact
center z* or its close approximation.

The principal difficulty of discretization here concerns singular perturbations.
The asymptotic analysis passing the object size € \, +0, which was argued here in
a continuous setting, is less evident in finite dimensions. Indeed, after discretization
of the underlying problem on a finite element mesh we cannot pass the object size
€ ¢ +0 within a sole element. This difficulty is connected closely with the spatial
dimensionality. Let us first consider the 1d case and let the test domain Q2 = (A, B),
A < B. The test object is represented by a point z* € (A4, B). We prove the following
result.

THEOREM 3.3. Consider the test point 2* € (A, B) C R! subject to homogeneous
either Dirichlet or Neumann boundary conditions, which is illuminated with the wave

g(x) = ek Then x* coincides with a zero point xo such that I(xg) = 0 for the
iin
imaging function I defined in (3.19) and for the wave numbers k = FE;jA), n € N.

The zero point xg = x* is unique only if n = 0.
Proof. First, we construct analytically the exact solutions u*. For the Dirichlet
condition u*(z*) = 0, the Helmholtz problem

(3.20)  wl,(x) + k*u*(z) = 0for x € (A, B)\ {z*}, wul(x)=ike’™™ for x = A, B,

admits the following (unique) solution
u*(z) = —ieikA%‘T::i)) for x € [A,z*], u*(z) = ieikB% for x € [z*, B].
Similarly, for the Neumann condition u}(z*) = 0, the solution of (3.20) has the form

u*(x) = iethA 7:3?:((5::3 for z € [A, 2], u*(z) = —ie'™P 75&85((2:21)) for x € [z*, B].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/10/14 to 143.50.47.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

784 VICTOR A. KOVTUNENKO AND KARL KUNISCH

Second, for the background solution (the wave) u®(z) = e** z € [A, B], of (3.12),
its dual can be calculated from (3.13) as

’Uo(it) _ _(u*(A)—uO(A))cosk(fs—isgg-z-gi‘i‘?)—uo(B))cosk(z—A) for z € [A,B]
Substituting the expressions of u” and v” into (3.19), we calculate the image I(z)
for x € (A4, B). In both cases of the Dirichlet and Neumann conditions we find that
I(xg) = 0 for cos2k(xg — z*) = 1, sin2k(xg — 2*) = 0, and cosk(B — A) = 0.
m(i4n)
B4 >
x* + %, l € N. This proves the assertion. d
The above analysis of the 1d identification problem will hint at numerical issues
of the imaging with Z from (3.19) in 2 and 3 dimensions.

Henceforth, with the wave numbers k = n € N, the zero points are zg =

3.4. The identification algorithm and numerical issues. We start by ex-
plaining the discretization.

The data of the problem are discretized on a mesh G}, over the computational
domain Qj, associated with Q. A uniform quadrilateral mesh in 2 dimensions (respec-
tively, polyhedral in 3 dimensions) of the mesh size h is used. Discrete solutions of
the Helmholtz problems (3.4), (3.12), and (3.13) in €2}, are indicated by a subscript h.
It is known that generalized finite element methods (GFEM) are well suited for the
numerical solution of Helmholtz problems. We refer to [55] for an overview. Within
GFEM, we utilize a particular realization, which here is bilinear in 2 dimensions and
trilinear in 3 dimensions, based on a Petrov—Galerkin enrichment (PGE). The usual
linear basis is used for trial functions, while test functions are enriched with hierarchi-
cal shape functions based on Gegenbauer polynomials. The respective quadratic basis
of the test functions is obtained from a dispersion analysis. We note that the system
matrix is symmetric in this case which is numerically advantageous. From our a priori
and a posteriori numerical analysis we report that the PGE approximates the linear
interpolate of the exact solution with order o((kh)7). This implies highly accurate
approximation in comparison with the standard Galerkin least-squares (GLS) method
which has order O((kh)?).

We formulate an identification algorithm for the specific case of illumination with
plane waves, which can be adapted to other physical situations, too. For the Helmholtz
problem (3.4) in R¢, d = 1,2, 3, we specify the inputs D™Put = {Q k, g} with specific
Neumann data g given at 02 by

g(x) _ ezkm for d = 1’ g(w) _ ezk(zl cos 01+x2sin 1) for d = 2’

(321) 1k(x1 cos 0y sin O2+x5 sin 01 sin O2+x3 cos 02) for d =3 (12 _ _1)
=3, = .

glx) =e
Here 6 denotes the incident angle. Itis@ =1 ford =1, and § = (04,...,04-1) for d >
1. The associated output D°"PU' = {4* on dQ} of g is “measured” due to scattering
by the test obstacle w?, (z*) in Q. Henceforth, for fixed domain © and wave number
k, the data D = (D™Put, DoutPut) are determined by the parameter § € R™ax(1d=1) jp
(3.21). After discretization of the problem in the computational domain €y, for the
discrete Neumann data g, and measurement uj at d€); we formulate the following
algorithm.

ALGORITHM 3.4. Fiz the wave number k and the computational domain QU
endowed with a mesh of size h. Set pairwise different incident angles 0V, ... 0D ¢
R4 if d > 1. Otherwise, set 61 =1 in 1 dimension.

Step 1. Fori = 1,...,d, set § = 0% and determine the respective g, at 0Q,
according to (3.21). Repeat Steps 2—6.
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Step 2. Determine the (measured) output data uj, at 9y, on the basis of gn and 6.

Step 3. Calculate the background solution uy of (3.12) with the Neumann data gy,

Step 4. Calculate the adjoint solution v\ of (3.13) with the Neumann data u} —ul
at OQy,.

Step 5. Calculate the (discretized) imaging function from (3.19) as

(3.22) IM(z) = Im{ud ()00 (2)}  for z € Q.
Step 6. Find the zero set
(3.23) Z(IM ={zeQy: I'z)=0}.

Save Z(IM). Ifi < d, then seti =i+ 1 and go to Step 1.
Step 7. Determine the approxzimate center ™ of the test object as the intersection
of d zero sets:

d

(3.24) ot = () Z(I}).
i=1

We stress that (3.23) in Step 6 and (3.24) in Step 7 are given in accordance with
Definition 2.4 of the proper approximation of the test object from section 2. Below
we discuss the numerical realization of Algorithm 3.4.

For numerical tests, in Step 2 we use the synthetic data u(ﬁw*’g*’w*’a*) to get

the measurement u} at 9. We obtain u%w*’a*’w*7a*) by solving numerically the
Helmholtz problem (3.4) in the computational domain €5 \ wZ. (*) with the test
object wZ. (2*), surface impedance o*, and Neumann data g; given at 9$2; by (3.21)
with @ = 0@ for i = 1,...,d. The meshes for computing in () and in 2, are,
generally, not the same. Typically, we used hierarchical meshes with h < h.

Zero sets in (3.23) and (3.24) are realized by the narrow band technique; see,
for instance, [44] and the references therein. In a narrow band of nodes near Z(I")
we utilize the quadratic approximation of the imaging function I" due to its specific
structure (3.22) as the product of two functions, which are discretized by linear finite
elements. A linear approximation of I over the quadrilateral elements can be applied,
too, but it is slightly less accurate. As a result we find the discrete zero set Z"(I")
on a local grid which is, generally, different from the computational grid G} in .

In the following we report on our numerical findings. We realize the example
configuration of 2, = Q given by the unit square in 2 dimensions and the unit cube
in 3 dimensions.

For 2 dimensions, the numerical result of Algorithm 3.4 for a sound soft obstacle
is depicted in Figure 2. The dotted lines present discrete zero sets Z"(I") due to
the narrow band realization of Z(I"). In the plots of Figures 2(a) and (b), the point
obstacle w’ (z*) = «* = (0.25,0.375), which is marked with the blue solid point,
is illuminated by the plane waves of the form (3.21) with various incident angles 6.
The single image for § = 0 is depicted in the plot (a). The point x* lies exactly in
the segment Z(I") yielding the zero set in (3.23). Multiple images corresponding to
6 € {0, T 5 5 %’T, %’T} are presented in the plot (b). We observe clearly that the test
point z* is identified exactly as the intersection x” of any two segments Z(I!), i =
1,2. This corresponds to the imaging under double measurements with two different
incident angles ) and #?) according to Step 7 in the identification algorithm.

The result of Algorithm 3.4 for a fish-shaped junk of geometric objects of different
dimensions wZ. (z*) is depicted in Figure 2(c). The two plane waves with (1) = 5
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(a) 6=0 (b) 6=0,1/6,1/3,/2,27/3,51/6 (c) 6=n/8,n/4

0.375

0.25

Fia. 2. Identification of sound soft obstacles from multiple images in 2 dimensions.

and 0 = 7 determine uniquely the intersection point z" as shown here. This point
corresponds to the center of the union of mesh points representing the test object
wie(a*r).

From our numerical tests we can report that the identification of the object center
holds true for a variety of test objects of arbitrary geometry and size. This is in
accordance with Theorem 3.1.

In 3 dimensions, the result of Algorithm 3.4 for a point shaped sound soft obstacle
was presented earlier in Figure 1 in section 2.

We emphasize that the identification 2" = x* is exact (!) in the ideal situation
when the test point x* coincides with nodes of the mesh 0}, which was tested for
mesh sizes in the range of h € {278 ...,273}. Otherwise, we report the numerical
error |z — 2*| = O(h*). To the best of our knowledge, such precise results were not
available in the literature.

It is important to report on the uniqueness of identification, which depends on the
wave number k. Theorem 3.3 suggests that k should be low enough. In the presented
examples of ) we have fixed k = 7. In fact, our numerical results do not depend on
k in the range k € (0,5 + ), where § depends on the geometry. Otherwise, for large
k there appear nonunique intersection points x” in (3.24) due to eigenfrequencies,
which produce false results. Theorem 3.3 for the 1d case and our 2 dimensions and
3d numerical tests suggest that k € (0, 52— ) is sufficient for identifiability.

When the state problem is perturbed, for example, with noisy data, the straight
(planar) structure of zero sets observed in the figures can be destroyed. To restore this
geometric property of zero sets, and hence, the accuracy of the algorithm for perturbed
data, it is helpful to average the zero set Z(I") across the direction of the incident
wave. For this purpose we suggest updating Z(I") after Step 6 in Algorithm 3.4 in
the following way. Let @ € R%*? be an orthogonal matrix of rotation of the reference
coordinate system to the local coordinates corresponding to the wavefront in (3.21).

For instance, QQ = ( cosf —sinfy ) in R2.

sin 61 cos 04

Step 6. Let z; € R?, j =1,...,N, be the points contained in the discrete zero set
Zh(1h) =: {zj}ﬁ\/:1 For j = 1,...,N, after rotation Qz; = ((Qzj)1,...,(Qz)a)",
average the first coordinate as ((Qz)1) = = E;-V:l(sz)l and reset the zero set with
the averaged points as Z"(I") :={Q T ({((Q2)1), (Qzj)2, - - -, (sz)d)T}é-Vzl.

The selected results for h = 2% after application of Step 6’ are depicted in
Figures 3(a)—(c) for 10, 25, and 50% noise. The restored zero sets are drawn here
with the solid lines in comparison with the dotted lines of the perturbed zero sets
which exhibit wavelike distortions. We clearly observe in Figure 3 the improvement,
namely, that the restored sets Z”(I") become closer to the test point z*.
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(a) noise 10 (%) (b) noise 25 (%) (c) noise 50 (%)

F1G. 3. Restoration of perturbed zero sets with the help of averaging across incident direction.

(a) a=1 (b) 0=0.1 (c) a=0

Fic. 4. Imaging under double measurements of a fish-shaped object with the impedance a*.

Further we apply the restoration procedure also for a test object under impedance
and sound hard boundary conditions. In fact, the identification algorithm is applicable
numerically as well to finite a* € R corresponding to the impedance boundary condi-
tion, in particular, to o = 0 for the Neumann condition (the sound hard obstacle).
The selected numerical results of imaging a fish-shaped junk under double measure-
ments with o* = {1,0.1,0} is depicted in Figures 4(a)—(c), respectively, for h =277,
We observe that the accuracy of Algorithm 3.4 measured in terms of |2 — 2*| is very
good for large a* (here, for a* > 1), and it becomes less accurate when o N\ 0. The
worst case of a* = 0, depicted in Figure 4(c), corresponds to the Neumann condition.
This result still gives an acceptable approximation. We note that to improve the
accuracy of the identification of the sound hard obstacle, this case needs to use the
second order asymptotic approximation in € of the objective function in (3.15) which
shall allow us to derive a high order imaging function well suitable for the Neumann
boundary condition of a test object.

We also test the case of multiple objects posed in the test domain and report
the following. The identification algorithm in the outlined frame of illumination by a
single plane wave of low frequency does not distinguish between separate objects, but
rather it finds the unique point 2" approximating the center (a geometric mean) of
the union of mesh points representing these objects. To separate multiple test objects
we shall suggest another setting for identification. It must allow high frequencies, for
example, based on illumination from multiple point sources.

In the next section we investigate in detail the stability of Algorithm 3.4 with
respect to discretization and noisy data.

3.5. Stability of the identification algorithm. For the stability analysis we
fix in this section the spatial dimension to be 2 dimensions and rely on the Dirichlet
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(a) input noise (b) output noise (c) input and output noise

0.035| —+— h=2"?

00| h=2" 0.02
—%— h=2""
0.025
—d—h=2" 0.015

2 0.02| —o— h=2®

0.01
0.005
0.005 /
—;

10
0 10 20 30 40 50 0 10 20 30 40 50 output noise (%) 0 0 input noise (%)
noise (%) noise (%)

Fic. 5. Error st|:c(h*‘7) — x*| in dependence of noise o for various mesh sizes h.

boundary condition of a point-shaped object. We start with the stochastic case of
noisy data which is of primary interest in practical applications.

We mask data with a Gaussian noise with the standard deviation o measured in
percent with respect to the max-norm of the respective data function. We compute
N = 100 realizations subject to noise level o and evaluate the standard deviation (sd)
of the distance between the proper approximation z("?) obtained from Algorithm 3.4
and the test center x*. We distinguish the input noise oi,py and the output noise
Ooutput- For the underlying problem, oinpy is caused by the stochastic Neumann data
I(h,ompr) Siven at 0y, according to (3.21). The input noise is applied when solving
the Helmholtz problems in Steps 2 and 3. The output noise ooutput i & consequence
of the stochastic measurements of “?h,ooutput) at 0y, which are the Neumann data
for the Helmholtz problem to be solved in Step 4.

In Figures 5(a)(c) we depict the error sdy|z®) — 2*| in the presence of o =
Tinput; 0 = Ooutpus, and both ¢ = (Finput, Toutpur) simultaneously, in the range of
1-50% for various mesh sizes h = {276,275 274 273 2721 From these plots we
conclude that the error is of order O(h) + O(c¢). This can be explained by the linear
dependence of the right-hand side on o and by the O(h) approximation order of the
Helmholtz equation. We note that growth of the error is rather low. Indeed, while
we also depicted the result for coarse meshes, for reasonably fine meshes the error is
much less than 1%. This result is very accurate in comparison with other methods
known to us from the literature on identification problems.

Now we consider the error |#" — z*| due to discretization with mesh size h in
the absence of noise. As we noted before, the error is zero when z* coincides with
mesh nodes, independently of h. Otherwise, the error has order O(h?) as depicted
in Figure 6(a) with the solid line. For comparison, we depict in plots (b) and (c)
with the solid lines the respective errors sdy|z("?) — 2*| in the presence of input and
output noises. In comparison with the latter ones, the discretization error is four(!)
orders less, and hence negligible.

We note that the discretization error is rather sensitive to solvers which are applied
to the underlying Helmholtz problem. Thus, we compared our solver based on the
PGE with the standard GLS method, whose result is depicted in Figure 6 with the
dashed lines. We report that the discretization error of GLS is four orders higher
than PGE and comparable with the error due to noise. In the plots (b) and (c) we
observe a moderate advantage of PGE over GLS with respect to noisy data, which is
viewable for large noise levels o.

The presented results allow us to declare the high precision and stability properties
of the optimality-condition-based algorithm for identification of the object center in
R? from the intersection of d images.
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x 107" (a) discretization error X 10'3 (b) input noise X 1()'3 (c) output noise
8
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Fic. 6. Comparison between errors due to discretization and noise for PGE and GLS solvers.

4. Conclusion. We introduced a level set concept of imaging from multiple
measurements for the inverse problem of identification of objects described in the
abstract form. The concept has a broad scope. We specified our approach for the
inverse Helmholtz problem identifying the center of a test object of arbitrary shape
and unknown boundary conditions from a boundary measurement with the help of the
imaging function deduced from optimality conditions. We justified that the respective
identification algorithm obeys the high precision and stability properties with respect
to discretization and noise. Further applications of our approach to more unknown
geometric and physical variables to be identified are under development.

Appendix A. The asymptotic expansion in 2 dimensions. Here we justify
rigorously the asymptotic expansion (3.15) of the objective function J which is defined
in (3.14) for the case d = 2. For this purpose we construct asymptotic expansions of
the Helmholtz problems (3.4), (3.12), and (3.13). The estimation needs the following
uniform infsup condition: There exists 3y € RT such that

‘fmwe(wo)(Vu VT — k*um) dw + fawe(%) ouv dS,

(A1) 0 < By < infsup

HuHHlm\m;C) HU”HUQ\W;@

for all u,v € H(Q\ we (x0); C), fixed k € R, and (w, &, z9, ) € O. By (A.1) existence
of a unique solution to (3.4) follows.

We start with a local asymptotic representation of the background solutions u
and v° of (3.12) and (3.13). A local coordinate system associated with a trial center
zo € Q C R? with the polar coordinates p := |z — x¢| and § € (—m, 7] for € Br(zo)
with such R > 0 that Br(z¢) C Q is introduced. Here Br(x) denotes a ball of radius
R and center xg. Using Bessel functions of the first kind J,,(¢), n = 0,1, ..., we prove
the following Fourier series.

LEMMA A.1. The background solution u® € H(;C) of (3.12) admits the near
field representation

0

(A.2) u®(x) = u’(x0)Jo(kp) + U%(p,0) in Br(zo) C Q
with the residual U° € HY(Bgr(xo); C) such that

(A.3) / U0 = 0,
where
(A4) U%(-,0) = O(kp) forpc|0,R], 0 € (—n,xl
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Proof. In the ball Bs(xg) with & € [0, R] we define the radial function u3(p) :=
= |"_u%(p,0)db for p € (0,6), and set U° := u® —uf). Therefore, the residual satisfies
U° € HY(Br(x0);C) and it fulfills (A.3). The substitution of a smooth cutoff function
n(p) supported in Bs(xp) as the test function v = 7 into (3.12) leads to the relation

5
0= / (Vu® - Vi — E*u'7) do = —27r/ ((p(ug);); + kzpug)ﬁdp for all 7,
Bg(zo) 0

which results in the Bessel equation (ug)g + % (ug); +k?ud = 0. Tts general solution has

the form ud(p) = K§Jo(kp)+S3Yo(kp), KO, Sy € C, with the Neumann function Yy(2).
But Y5(t) = 2 In £+ O(1) contradicts the fact u§ € H'(Bg(wo);C), hence S§ = 0 and
ud(p) = KJJo(kp). By continuing the expansion of the residual in the Fourier series
U =350 Ju(kp)((KY)1 cosnd + (KQ)2 sinnf) with coefficients K € C?, we derive
(A.4). Passing p N\, +0 in the representation u°(z) = K§Jo(kp) + U°(x) and due to
the asymptotic property Jo(t) = 1+ O(t?) and (A.4), we obtain KJ = u%(z¢), and
hence (A.2). This completes the proof. O

An assertion similar to Lemma A.1 holds for v".

LEMMA A.2. The adjoint background solution v € HY(;C) of (3.13) admits
the near field representation

(A.5) 00 (x) = v¥(20)Jo(kp) + V°(p,0) in Br(xo) C Q,

with the residual V° € HY(Br(z0); C) such that

(A.6) /ﬂ V0do =0,
where
(A.7) VO(-,0) = O(kp) for p€|0,R], 0 € (—n, .

Next we expand the solution u(<#20:®) of the Helmholtz problem (3.4) as € \, +0.
This needs an auxiliary Laplace problem stated in the exterior domain R? \ @ with
respect to the stretched variable y = #=*¢. For this reason we introduce the weighted
Sobolev spaces

WiP(R*\@;C) = {v: £,Vve LP(R*\w;C)}, p e (1,00),
with the weight u(y) ~ |y/In|y| in R? \ B1(0) suggested by the weighted Poincaré
inequality in exterior domains; see [15]. In these spaces we state the following auxiliary
result.
LEMMA A.3. For given a(y) € L™ (0w;C) and arbitrary p > 2, 1—:5 + 1% =1,
there exists the variational solution of the following exterior Neumann problem: Find
w®(y) € WP(R*\ @; C) such that

(A.8) Vw® - Vody = / avdS, forallve Wj’p/ (R?\ @; C),
R2\w ow

which admits, after rescaling y = =", the far field representation in the Fourier
series as

(A9) w*(£=20) = —(a)Inp + W*(p,0) for all x € R*\ B.(z0)

€
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with (o) = 5= Jo, @(y) dSy and the residual W (z) € W;*(R*\ B:(x0); C) such that

(A.10) Wedg =0, W(-,0)=0(all.5) forp>e, 0€ (—m

Proof. The existence of a solution to (A.8) up to a free constant ¢ € C follows
from the results of [15].
We take R > 1 such that w C B;(0) C Br(0) and split further R? \ @ in the near

field Br(0) \ @ and the far field R? \ Bg(0). In Br(0) \ @, a Green formula can be
used, which leads to the following relation

(A.11) / Vw® - Vudy :/ omdSy+/ vdSy,
Br(0)\w Ow OBR(0) on

which holds for all v € H'(Bg(0) \ @; C) due to Aw® =0 in Br(0) \ @ and %L: =a

at Ow. In R?\ Br(0), we can apply the Fourier series to the harmonic function w® as

(A.12) w*(y) =c+cglnly| + Z ly| " ((cp)1 cosnb + (¢ )2 sinnd)

n=1

with unknown coefficients ¢ € C, ¢ € C?, n = 1,2,.... Substituting (A.12) as
lyl = R into (A.11) and plugging in the test function v = 1, it follows that 0 =
J5., a(y) dSy + 2mcf. Hence we find ¢f = —(«). We take the free constant ¢ = ¢f Ine
so that, after rescaling y = £=%2, the decomposition (A.12) implies (A.9) and follows
the properties (A.10). The estimation O(]|c||_.) here is due to the linearity of problem
(A.8) in . The proof is completed. O

With the help of Lemma A.1 and Lemma A.3 we expand the perturbed solution
u(#5:%0:%) in small €.

LEMMA A.4. The solution u(@ =70 ¢ HY(Q\ we(20);C) of (3.4) admits the
representation

(A13) @m0 (3) = O(z) — 6u0(x0)wa(w;f()) +Q(x) forx e Q\ w:(x0),

with the residual term Q € HY(Q\ w:(z0); C) satisfying

(A.14) =0((1+ [lefl. + [lee]l* €)e).

Il H1(9\we (0)50)

Proof. Applying Green’s formula in Q \ w.(zo) we derive from (3.12)

/ (Vu® - V7 — k*u'7) dz + / au’s dS,
QN\we (zo) Owe (z0)

0
:/ gEdS’m—i—/ <8L+au0) 7dS;.
80 dw. (zo) \ ON

Again by the Green formula we compute from (A.8)

(A.15)

/ (Vw® - VT — k*w®) dx + / awT dS,
QN\we (zo) Owe (xo)

(A.16) e
= / TdS, — kz/ wv dx —l—/ a(w® + 1)vdS,.
o0 on Q\we (x0) Owe(x0)
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Subtracting (A.15) from (3.4) and adding (A.16) multiplied by eu®(zg), we obtain
the following equation for the residual Q = u(“=%0:®) — 40 4 cy0(z0)w® and for all
ve HYQ\ we(m); C):

(A.17) /Q\w . )(VQ VT — k*Q) dr + / aQudS, = F(v),

Owe (xo)
with the linear right-hand side
ow®

F(v) == eu®(xo) vdSy — suo(xo)kg/ wvdx
aq On Q\we (zo)

o
0 0y YU 0 o\
+/aw€(r0)(a(u (o) —u”) = - + eu’(z0)aw )vdSm.

To evaluate F(v), in the far field Q \ B:(zg) we use (A.9) and (A.10). In the near
field B:(xo) \ we(zo) we apply (A.2), (A.4), and homogeneity arguments yielding

Hu”#(Be(monwE(mo):C) = clEHVUHL?(Be(zo)\wf(zm;c)’

lall o o < c2VENVl

Since ||Vw®||

for u € H'(B.(w0) \ we(z0); C).

L2(Be (wg)\we (20);C)

IO O(]|||..) these inequalities imply the following estimates:

a

’LLO w
”O‘(uo(xO) - uO) - %_n”C(@ws(mo):C) = O(”aHocE + 1)7 Haa—an(an;C) = O(Ha”oo)?
=O(llell. (1 +2)),

= O(llodl.. v%).

Applying the Cauchy—Schwarz inequality to the expression defining F' we arrive at
|[F(v)] < es((1+ ||l + HO‘”is)‘?)””Hmm\m@' With the help of the infsup con-
dition (A.1), and from (A.17) we infer (A.14). The proof is completed. O

From Lemmas A.1-A.4 we finish with the main result of this section.

THEOREM A.5. The objective function J from (3.14) admits the asymptotic
representation (3.15) due to the following expansion in small € N\ +0:

«
10l 2 0 mmme5ic)

[l
L2(dwe (20):C)

—Re u(@ez,a) _ 0080 dSz} = 27e Red (a)u® (20 )00 (x
wry R ) {0 () )}
+O((1+ flall. + ol e)%e?).
Proof. Indeed, from (A.13) and (A.14) it follows that

/8Q =02 _ 402 45, = O((1 + lafl_ | Ine| + a2 2)%<).

Thus, once (A.18) was proved, then (3.15) follows from (3.14).
To prove (A.18) we apply the second Green formula in \ Be (o) and rewrite the
integral over 9 on the left-hand side of (A.18) equivalently over the circle B¢ (xo)

(A.19)
_/ (u(w,s,xma) _ uo)%—f dSy =1, + 1o,
a0

a(u(w,e,mo,a)

1 = / (U(w’s’m?a) - UO)%_T dSy, Ip:= —/ T_UO)EO dSs.
dBc(z0) 9Bz (x0)
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Now we can calculate analytically Z; and Zy on the right-hand side of (A.19) by
substituting here the asymptotic representations (A.2), (A.5), (A.9), and (A.13). We
apply homogeneity arguments and conclude from the trace theorem that

HuHLz(BBE(mO):C) S C4\/EHVU|| for u € Hl(BR(xO) \ BE(‘TO);C)

L2(BR(20)\Be (x0);C)

With this inequality we derive

7, = / (eu®(20)w® + Q) (P (w0) 2L + 27°) dS,
aBE(xo)

= eu(z0) / w (e, 0) (00 (o) kJy (ke) — B2 (e,0)) edt — / Q2 ds,
—T aBE(Io)

and estimate its absolute value using (A.6), (A.7), and (A.10):

9
71| < esllall .e* + csVEIIQ x Vel Gy

v
(A 20) H1(BR(20)\Be (x();C) P HHl(BR(mo)\Bs(mo)iC)
' — O((1+ [|ol. + llal%.2)e?).

For the calculation of Z in (A.19), the zero mean property of W< from (A.10) is
useful. With its help we infer that

o / (u” (o) () = £%55) = 52) (00 (o) Jo + VO) dS,
9Bc(wo)

— (a0 (@) / (0(0)Jo (ke) + TO(e, 8)) edf + eu® (o) / oW e g
—/ 9 30 45, = 2me (a)u® (20)00(z0) + O(l|a]_<2) —/ 99 70 4, .
aBE(Io) aBE(Ig)

Next applying the Green formula in B.(z¢) \ we(zo) we have from (A.17)

—/ %U_Odsrz—/ (VQ - V0 — E2Qu0) dx
9Bc(z0) Be (z0)\we (

zo)

+ / (—aQ + a(u®(z0) — u®) + eu’ (zo)aw™ — %—f)v_o dSy.
Owe (

zo)

Estimating its terms and using the representation

- / 94’ 30 45,
Owe (zo)

- / (w0 (w0 b 22 — Tu(z) - n — 22) x (D (wo) o + VI) dS, = O(?)
Owe (

zo)

with the residual term U! = O((kp)?) in the second order asymptotic expansion
ul(z) = ul(x0)Jo(kp) + 2J1(kp)Vul (z0) - 4+ Ul(z) (compare with (A.2)), we derive

/ e 00 dSy| < er(1+[laf )1+ [l + lalZe)e
8B5($0)
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Therefore, the following relation holds

(A.21)

I = 2me (a)u’ (20)v0 (20) + O((1 + [Jaf| . + [l e)%e?).

From (A.19),(A.20), and (A.21) we infer (A.18) and the assertion of the
theorem. O

Finally, we note that Z; and Z, in (A.19) can be rewritten over arbitrary closed

contours in Q\ we () thus implying the invariant integral.

o & = = =

M.

M.
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