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Abstract. LP optimal control with p € [0,1) is investigated. The difficulty of natural lack
of convexity and thus of weak lower semicontinuity is addressed by introducing appropriately cho-
sen regularization terms. Existence results and necessary optimality conditions are obtained, and
convergence of a monotone scheme is proved. Special attention is given to the particular case of
optimal control problems with quadratic tracking and regularized L° control costs are given. A
maximum principle is derived and existence of controls, in some cases relaxed controls, is proved,
and an estimate on the consequences of relaxation are estimated.
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1. Introduction. Quadratic expressions of Hilbert space norms have been com-
monly used to model control costs in optimal control or to regularize ill-posed inverse
problems. The reasons for this choice include their statistical interpretation and the
ease of differentiation and subsequent numerical treatment. The use of higher order
polynomial powers, corresponding to LP-norms, p > 1, were motivated, for instance,
in optimal control of semilinear partial differential equations to guarantee appropriate
a priori bounds. More recently the use of the ¢!- and L'-norms has been recognized
as a useful tool for enhancing sparsity in data-management problems and in optimal
control. Since there is already a vast literature on these topics, we can only quote
selected papers [4, 10, 9, 17] and the references there for imaging and [6, 8, 13] for
optimal control. In robust statistics the use L'-type functionals has a long-standing
history.

The question naturally arises of choosing the exponent p < 1 and letting it attain
the value 0. It will be addressed for LP, p € [0,1), in this paper. It continues our
research from [16], where we treated sequence spaces ¢? with p € [0,1). The case of
sequence spaces P with p € (0, 1) was also considered in [3, 12, 14, 19, 22], for example.
As we shall see the use of LP, p € [0, 1), norms offers interesting applications for sparse
controls and controls of bang-bang-bang type.

Let us describe the contents of the paper. In section 2 we briefly recall some
properties of the vector space L°(Q). It will then be obvious that the use of the
L functional calls for special techniques to overcome the lack of convexity and weak
lower semicontinuity. This also applies for L? with p € [0,1). In our work we endow
L° with the Ekeland metric. Its use in the cost functional implies a volume constraint.
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It is thus different from the commonly chosen metric of convergence in measure. Our
choice of metric for L corresponds to Donoho’s counting norm introduced for £° [10].

As mentioned above, to establish existence for variational problems involving
LP-functionals with p € [0,1), one cannot rely on convexity and weak lower semi-
continuity properties. In the case of /P an appropriately chosen transformation can
be applied, and the fact that the duality mapping from (7 — ¢#', with L + & =1,
is weakly sequentially continuous [16, 22] can be used to ascertain existence. We
propose to meet the difficulties involved in the LP-case, p € [0, 1), by appropriately
chosen regularization terms or norm bounds. The choice of the regularization terms
depends on the structure of the problem under consideration. We shall distinguish
between optimal control problems which themselves depend on the state and control
variables, and where the adjoint state determines the structure of the optimal control,
and “general” problems which do not necessarily allow such a splitting. The first
case is treated by regularization with L2-functionals in section 2 and alternatively by
bilateral pointwise bounds in section 3. For the latter case regularization in H' is used
and analyzed in sections 4 and 5. For L? regularization or pointwise norm bounds,
the solutions are possibly only relaxed controls, where the effect of relaxation can
be quantified. In the case of H' regularization, existence can be guaranteed for cost
functionals which contain nonconvex L? terms without the need for relaxation. The
use of regularization or relaxation for nonconvex problems to guarantee existence of
the variational problem itself and/or the associated optimality condition is classical.
From the vast literature we mention [11, 18, 21]. While starting from a different
perspective, our approach is closely related to that described for a general class of
nonconvex problems in [11]; see Remark 2.10.

Sections 2 and 3 are dedicated to optimal control problems with L%-sparsity en-
hancing functions. The approach we take is that we first assume existence of optimum
controls and derive a maximum principle that they must satisfy. In a second step,
existence is addressed for a restricted class of problems with a linear state equation.
For this purpose we analyze the optimality system by monotone operator theory tech-
niques. Under a condition to be specified below, existence is obtained. If this condition
is not fulfilled one has to pass to the maximal monotone extension of the negative
feedback operator that describes the optimal control as a function of the adjoint state.
This process leads to a relaxed control. We will derive an estimate on the error in
the cost corresponding to the relaxed control and the infimum of the optimal control
problem. This approach is first carried out for problems without constraints on the
controls in section 2, where also the first step toward numerical realization on the
basis of a primal dual active set strategy is proposed. In section 3 the case of bilateral
constraints on the controls is investigated. This is of particular interest since the op-
timal controls, except at two critical values of the adjoint variable, assume only three
values: the upper and lower bounds, and zero; they are therefore bang-bang-bang
type.

In section 4 we consider the existence of a general class of optimization problems
involving L%-type regularization terms. It includes the optimal control problems but
it is a wider class since it does not require the regularizing effect that is present in
the control-to-solution mapping of optimal control problems.

In section 5 we first consider a general class of problems with L?, p € (0,1),
regularization. The case p = % is of special importance, since it provides the best
fit to the heavy-tailed shape of the true probability density function in image denois-
ing [15]. Subsequently we analyze convergence of a monotone scheme to solve the
LP-problems iteratively. A brief outlook concludes the paper.
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2. L°(2) optimal control. This section is devoted to optimal control problems
involving the functional

No(f) = /Q (@) de,

where we set 0° = 0. It is related to L°((2), the space of measurable function with
Ekeland distance

do(f,g) = meas{z € Q: f(z) # g(a)}.

This makes L°() a complete metric space, and we have No(f) = meas{z € Q :
f(x) #£ 0} = do(f,0). We note that f — No(f) is subadditive, but it is not positive
homogeneous. Further, if f and g are different from 0 a.e., then for any A € [0, 1] we
have

No(Af+ (1 —=XN)g) < ANo(f)+ (1 —=X)No(9),

but this inequality is not true for f # 0 and g = 0 and hence f — Ny(f) is not convex.

2.1. Necessary optimality. From the above considerations it is obvious that
standard existence results are not applicable for variational problems posed in L°.
Here we proceed differently and start by deriving necessary optimality conditions for
a general purpose functional with respect to the cost u, assuming the existence of
a solution. These results in particular are applicable for Ny(u). Subsequently these
necessary conditions are investigated with respect to existence and the correspondence
of these solutions to the original variational problem. This analysis focuses on the
Ny-functional combined with a quadratic one.

We start by considering a class of optimal control problems with cost functionals
which are not necessarily convex and in particular will be applicable to functionals
involving Ny as introduced in the previous section.

Let X be a real Hilbert space that is densely and compactly embedded in to
L?(Q) such that X C L?*(Q) C X* are a Gelfand triple. Here € is a bounded domain
in R™ which describes the (time-) space domain of the control system and is endowed
with the Lebesgue measure. The state variable and the control variable are denoted
by x and u, respectively.

We consider the constrained minimization problem

(2.1) min /Q (U(w, z(w)) + h(u(w))) dw

subject to the equality constraint

(2.2) Exz+ f(,z,u)=0 in X~
over
(2.3) € Upg ={u € L*(Q) :u(w) €U a.e}.

Here U is a closed convex subset of R and E € £(X, X*) with X™* the dual space to
X. Further, f € CY(Q xR2 R), £ : QxR — R is measurable and C! with respect to
the second variable, and h : R — R is measurable. The mappings f, /¢, h give rise
to substitution operators which are denoted by the same symbols and are supposed
to satisfy
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(w,u) € X X Upg — f(-,z,u) € L2(£),
(2.4) r€X —{(,x)€ LYQ),
u € Uyg — h(u) € LY(Q).

Throughout it is assumed that (2.2) admits a solution x = x(u) € X for any u €
L2(Q).

Unless otherwise specified we also assume the existence of a solution u for
(2.1)—(2.3) with associated state T = z(u).

To derive a necessary condition for this class of (nonconvex) problems we use a
maximum principle approach and define the Hamiltonian H : R* — R by

H(w, z,u,p) =L(w,z) + h(uw) +p- flw,z,u).
We require in addition that the following substitution operators are well-defined:
(z,u) € X X Ugg = fo(-,m,u) € L(X, X*),
@5) {éz(-,a:)ELl(Q)ﬂX* for x € X.

With (2.5) holding the following adjoint equation is well-defined:
(2.6) (E+ fo(,z,u) p+Ly(-,T) = 0.

It is assumed that (2.6) admits a unique solution p € X.
For arbitrary s € 2, we shall utilize needle perturbations of the optimal control
defined by

u on B(s,0) ={w:|w—s| <},
(2.7) v(w) =
(w) otherwise,

where u € U is constant and 6 > 0 is sufficiently small so that B(s,d) C Q. With
our choice of needle perturbations we do not aim for the widest possible generality.
In this respect we refer to more elaborate needle perturbation techniques as used, for
example, in [2, 7].

We denote by © = z(v) the corresponding solution of (2.2). The following addi-
tional properties for the optimal state  and each perturbed state v will be needed:

|z(v) — £|%2(Q) = o (meas(B(s,0))),
Jo (L6, 2(0) = 1(,7) = Lo (-, 7)(2(v) — 7)) dw = O(Jz(v) — 7[7.),

<f(-,$(’l}),’l}) - f(',{f,’l}) - fm(-,{f,’l})(i(’l}) - j)7p>X*7X = O(|$(’U) - "E|2)7

(fo(,2,u) — fu(-,2,0))p € L%() for each u € U.

Remark 2.1. The first assumption in (2.8) is well-established in the context of
ordinary differential equations. In the case of elliptic systems the following consider-
ations can be used to establish this condition. We assume that f(-,z,u) = Bu with
B e L(U,X*N LY(Q)) and that there exists w > 0 such that

wlzy — z2|% < (B(xy — 22), 21 — 22)x+ X
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for all x1, x5 € X. Then for every v € L?(f2) there exists a unique solution z = x(v)
to Ex 4+ Bu = 0 and we have

(E(x — ), — Z)x+x = |[(B(v —u),z = Z)| < |Blgrry e — Z|p=@)lv — Ul o).
Let us further assume that
|2(vs) — Z|peo(o) — 0 as § — 0T,
where vs is defined according to (2.7). Then by the above estimates
|z(vs) — Z|% < o(meas(B(s,d))),

which implies the first estimate in (2.8). For E an elliptic operator with sufficiently
smooth coefficients we have

|z — Z|g2(q) < M [v —1lpe(q) ~ O(v/meas(B(s,d)) ),
and hence | — Z[1~(q) ~ O(y/meas(B(s,d)) ) in dimension 2 or 3.
THEOREM 2.2. Suppose (Z,u) € X X Uyq is optimal for problem (2.1), that p € X

satisfies the adjoint equation (2.6), and that (2.4), (2.5), and (2.8) hold. Then we
have the necessary optimality condition: for each u € U

(2.9) H(w, T(w),u, p(w)) — H(w, Z(w), @(w), p(w)) >0 for a.e. we Q.

Proof. By the second property in (2.8) we have

0< Jw)—J(u)= /Q (0(-,z(v)) = £(-,z(@)) + h(v) — h(a)) dw

:A}&(@Xmﬂﬂ+mm—h@DwH%Mx—ﬂ%

where v is defined in (2.7) and = = x(v). Utilizing the adjoint equation (2.6) we find
that

(2.10) 0 < J(v) — J(a)

=B+ fo(-,2,0) (2 = 2),p)x- x + /Q (h(v) = h(@)) dw + O(lz — 7[*).

By the third property in (2.8) we have

+ <f$(-,f,’l))(x - j) - fw(vfﬂﬂ)(x - ;f),p> + O(|£C - jlg)
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By (2.4), (2.10), and the fourth property in (2.8) we find
0<J(u)—J(u)

- / (- 2,0) = f(.2,8))pdu + / (h(v) — h(@)) dw
Q

Q

+ [ (ls,0) = fulom, )@~ ) pdo + O — 2P)
Q

< / (F(-2,0) = £, 7, 8))pdu + / (h(v) — h(a)) dw

([ 1ttaon= ftamp? ds) o= alis + 0o - o)
Now we restrict s to be a Lebesgue point of the mapping
w = (M@ W), (F3(w), 1) — Fw, 5(w), 8()pw),
(o0, (), 0) — fo(, ), 8))) p() 7).

Let S = S(u) denote the set of these Lebesgue points and note that meas(S(u)) =
meas({2). Dividing the above string of inequalities by |B(s,d)| > 0 for arbitrary
s € S(u), letting 6 — 0, and using the first property in (2.8) we obtain

(2.12) H(s,z(s),u,p(s)) — H(s,z(s),u,p(s)) >0 for s € S(u),

and the claim follows. O

COROLLARY 2.3. If, under the assumption of Theorem 2.2, in addition there
exists a Lebesgue measurable set Qo with meas(Qo) = meas(Q) such that for all w € U
the set of Lebesgue points of

w = (fw,2W), wpW), |(fo(w, 2(w), u) = folw, 7(w), a(w))) p(w)[?)

contains g, then

(2.13) H(w,Z(w),u,p(w))—H(w, Z(w), @(w), p(w)) > 0 for a.e. w e Q and all u € U.

(2.11)

Proof. We have meas(€2; N €y) = meas(Q2), where €2 is the set of all Lebesgue
points of w — (h(a)(w), f(w,Z(w),@(w))p(w)). The assertion now follows with (2.11)
and (2.12). O

If f(-,x,u) is of the form f(-,z,u) = f(-,z) + Bu with B € £(U, L*(Q), then for
constant functions u € U we have B(u) = B(ul) = uB(1), where 1 is the constant
function with value 1 and hence (2.13) is automatically satisfied.

Remark 2.4. Let us observe that the condition involving the Lebesgue points in
the previous corollary is satisfied if for every € > 0 there exists p > 0 such that for
almost all w € Q and all u,v € U

|fo(w,Z(w),u) — fo(w, T(w),v)] <eif lu—v| <p

holds. Indeed, since U C R there exists a sequence {u;};2; which is dense in U. Let
Q; be the set of Lebesgue points of

w = (fw, (W), ui)p(W), [(fo(w, 2(W), w) = folw, T(w), u(w))) pw)/?).

Then Qg = N2, €); satisfies the assumption of the corollary.
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2.2. Existence of a minimizer. After having derived a necessary optimality
condition in the previous section, let us turn to the discussion of existence of solu-
tions to (2.1)—(2.3) and the necessary condition (2.9) in the case that h involves the
Ny-functional.

More specifically we consider the case of (2.1) when h: R — R is given by

(2.14) h(u) = 22 + Blulo,

where

and « and f are positive constants. The resulting optimal control problem is then
given by

(2.15) { min [ (0(,2) + $[uf> + Blulo) dw,

subject to Ez + f(z) + Bu=0, u¢€ L?(Q),

where E € L(X,X*), B € L(L*(Q)), and ¢, f satisfy (2.4) and (2.5). The case of
control constraints will be considered separately in section 3 below.

The maximum principle established in Theorem 2.2 suggests considering
argmin, cp (h(u) + qu). A short computation then shows that

-4 for |q| > /2ap,
(2.16) ®(q) := argmin (h(u) + qu) =
uck 0 for |¢| < v2aB.

Evaluating h at the minimum we obtain
—=]q*+ 8 for |q| > v2a8,
0 for |¢| < v2aB.

Clearly —® : R — R is monotone, but it is not maximal monotone. For this reason
we define

h(®(q)) +q®(q) =

s for |q| > vZaP,
o for |q| < /ZaP,
YO0 g = vae

[0, Z] for g = —v/2ap.

The mapping —® : R — 2% is maximal monotone. We also note that

(2.17) h®(q)) +q®(q) = [0, ) for ¢ = [\/2a8],

whereas h(®(q))+q ®(q) = 0 for ¢ = [\/2a3|. Hence the effect of the extension of ® to
® on the u-part of the Hamiltonian along candidates of optimal solutions is bounded
by B. This issue will be further addressed in section 2.3.
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In a natural way ® defines an operator from L?(2) to itself, which is also maximal
monotone. It will be denoted by the same symbol.
We further define

Plu) = /Q 0w, 7) dw,

where z = x(u) € X for u € L*(Q) is the unique solution to Fx + f(x) + B(u) = 0.
THEOREM 2.5. Suppose that there exists a solution (x*,p) € X x X to

Ex + f(z)+ B®(B*p) =0,
(2.18)
(E+ f'(x)p+l(,z)=0,

and set u* = ©(B*p). If further
(2.19) F(u) — F(u*) > (B*p,u—u*)12(q) for all u € L*(Q),

then u* is a solution to (2.15).
Proof. For q = B*p we have pointwise almost everywhere

Slu—u*|? for |q| > v2apB,u # 0,
aala® =8 for |q| > v/2aB,u =0,
() = h(u") + glu = ") = y
Slu+ L2+ 512 for |q] < v/2aB,u # 0,
0 for |q| < v2aB,u = 0.
We note that the expressions on the right-hand side of the above identity are nonneg-
ative. Together with (2.19) this gives the desired result. O

We next turn to discuss conditions (2.18) and (2.19). For this purpose we consider
the special case of a linear state equation

(2.20) Ex+Bu=g (i.e., f(z,u) = Bu — g)
with ¢ € X and assume that
(2.21) x — l(w,x) is convex.
From the adjoint equation and
E(z(u) —z(u*)) + Blu—u") =0,
it follows that

(2.22) F(u)— F(u*) = (B*p,u—u*)L2(Q)—|—/Q(£(.7x)—Z(.7x*)—£'(x*)(x—x*)) dw,

and hence the convexity assumption (2.21) for £ implies (2.19). If in addition to (2.20)
we assume that {, = x —a with a € X, then (2.18) reduces to

Ex + B®(B*p) =g,

E'p+x=a.
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This saddle point problem may not have a solution, in general. We therefore intro-
duce a relaxation by replacing the monotone operator —® by its maximal monotone
extension —®. This results in the system

Ez + B®(B*p) > g,
(2.23)
E'p+z=a.

PROPOSITION 2.6. If E € L(X,X™) is an isomorphism, then (2.23) admits a
unique solution (x,p) € X x X and there exists a constant K such that

|(z,p)lxxx < K|(g,0)|12xr2 for every (g,a) € L*(Q) x L*(Q).

Proof. Since E is an isomorphism it follows that E* € £(X, X*) is an isomorphism
as well. Let

DE)={p€ X :Bpec L*(Q)} and D(E*) ={p € X : E*p € L*(Q)}.
Endowed with the graph norm they are Hilbert spaces. Moreover D(E) and D(E*) are
dense in L?(Q) and E € L(D(E), L?(Q2)) and E* € L(D(E*), L*(Q)) are isomorphism
as well; see, e.g., [20, p. 19]. Further define

D(EE*)={p€e X : E*p € D(E)}.
EFE* is a closed monotone operator in L?(Q) satisfying
(EE*¢,¢)12(0) > Klp|x for all ¢ € D(EE™).
It follows that EE* is maximal monotone in L?*(Q). We define ¥ : R — R by

0 for |q| < v2a8,

V(g =4 .
- for |q| > v2ap

and note that ¥ is a proper convex function with 9(¥) = —®. Hence —® is maximal
monotone [5, p. 24] and the associated substitution operator (denoted by the same
symbol) from L?(Q2) to L?(€2) is maximal monotone as well [5, p. 25]. Since the
domain of B* is all of L?(2) it follows that —B®B*- is maximal monotone from
L2(Q) to L*(R2) as well [1, Theorem 24.5]. Finally, since the domain of B®B* is all
of L?(Q) it follows that EE* — B®B* is a maximal monotone in L?(f); see, e.g., [5,
Corollary 2.7].

For a € D(E) consider the equation in L*(Q)

(2.24) EE*p— B®B*p> Ea—g.
Since
(EE*p — BéB*(p, ©)re > /<a|<p|§( — oo for ||z = o0, € D(EE™),

it follows that EE* — B®B* is coercive and hence (2.24) admits a solution p €
D(EE*); see, e.g., [5, p. 31]. It satisfies |E*p|2L2(Q) < (Ea+ g,p)r2(0) and hence

|E*plr2q) < lalzz@) + B glr2) < lalrz) + Klglr2@)-
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Here and below K denotes a constant independent of (a,g). With p determined,
define = by © = a — E*p € D(E). The pair (x,p) satisfies (2.23). By (2.24) we have
Ex = Fa — EE*p € g — B®B*p and hence K can be chosen such that |Ex|r20) <
K(la|r2() + |9]12()) and, since E € L(E, E*) is an isomorphism, we have

(2.25) [(,p)lxxx < K(la|r2o) + |9lz2(0))-
Now consider the case a € L?(Q2). Since D(E) is dense in L2(f2), there exists a
sequence {a,} in D(E) such that a,, — a in L?(Q). Let (z,,, p,) satisfy

FEzx, +y, =g with y, € B<i>B*pm
(2.26)

E*pn + 20 = ay.

By (2.25) there exists a subsequence, denoted by the same expression such that
(Tny Prsyn) — (2,p,y) weakly in X x X x L*(Q) and (z,,pn) — (z,p) strongly
in L2(Q) x L?(£2). Hence lim,,_, o (yn, pn) > exists, and by, the closedness property of
the graph of the operator —B®B* in L?(Q) x L?(Q) endowed with the strong-weak
topology [5, p. 27], it follows that y € B&)B*p and we can pass to the limit in (2.26)
to obtain that (z,p) satisfies (2.23) and also (2.25).

To guarantee uniqueness of the solution, let (z,p) and (Z,p) denote two possibly

different solutions and set dz = = — T and dp = p — p. Then we have
E dx 4+ B®(B*p) — B®(B*p) 3 0,
E*dp+ bz = a.
Taking the inner product with (dp, —dx) in the above equations and adding them up

we obtain |§x|%2(9) > 0. This implies that d2 = 0 and further op = 0. O
We summarize the above developments for the problem

minJ(z,u) = |z — z|? + 2|ul? + BNo(u),
(2.27) { 2 2 12Uz

Ex+ Bu=g, wue€L*Q),

where z € L2(Q), a > 0,9 € X*. While we consider here the case that the observation
takes place on the whole domain, this is not essential for the results which will be
presented. The tracking-type functional could equally well be replaced by %|x—z|%2 ()
with Q, & Q.

THEOREM 2.7. Consider problem (2.27) with E € L(X, X™) an isomorphism. Let
(z*,p) be the unique solution to (2.23) and set u* = ®(B*p). If meas{w : |B*p(w)| =
V2aB} =0, then (u*,x*) is a solution to (2.27) which satisfies the optimality system

FEx+ Bu* =g,
E'p+z—2=0,

=B2 for |B*p| > v/2a5B,
{0 for |B*p| < V20,

with the last equality holding pointwise a.e.
Remark 2.8. If meas{w : [p(w)| = v2aB} > 0, then (2.27) may not admit a
solution, but we refer to u* € ®(B*p) as relaxed control. The effect of the Ny term on

(2.28)

ut =
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this relaxed control as a function of 8 can be seen from (2.17) and will be considered
further in Theorem 2.12 below. The fact that the optimal control is identically equal
to zero for p sufficiently small justifies calling Ny a sparsity enhancing functional.

Remark 2.9. Introducing A = au + B*p the complementarity system in (2.28)
can equivalently be expressed as

{)\:0 it |A — au| > v/2ap0,

(2.29)
u=0 if |]A — aul] <+/2ap.

This form should be compared to the optimality system that was obtained in [16] for
the discrete (° problem min (|Az —al3+ a||3) + B|z|o, where A € L(£?), |- |2 denotes
the norm in ¢2, and |x|o stands for the number of nonzero elements of x € ¢?. Here
we add the a|x|3 part to the cost in the discrete formulation to match the continuous
problem. It is not required for the analysis. Then, setting \; = (A;, A;z* — a) + ax},
the optimality system in the case of strict complementarity is given by

(2.30)

where A; = Ae;, with e; the element in 2 which has 1 in the ith element and is 0
otherwise. Comparing to (2.29) we note that in the discrete formulation the tracking
part of the cost sustains in the optimality condition, whereas in (2.29) it does not.
Thus for this class of problems, the order of discretization and optimization makes a
significant difference.

Remark 2.10. Proceeding formally we show that the relaxation that we used
by passing from ® to P involving the Hamiltonian can equivalently be obtained by
applying the I'-regularization for separable cost functionals as investigated in [11,
Chapter 9.3], for example. This involves the bi-conjugate h** of h defined in (2.14).

It is given by
2
a4+ B8 for || > /2,

V2aglr]  for |r| < 1/%.

Note that h** is convex and it is C! except at the origin. The relaxed problem
corresponding to (2.15) using I'-regularization results from replacing h by h** and is
given by

(2.31) { min fﬂ(f(,x) + h*(u)) dw,

subject to Ez + f(z) + Bu=0, u¢€ L?(Q).

Note that
ar for |r|21/%,
V2aB Sgn(r) for |r| < 1/%,

where Sgn(r) =1 for r > 0, Sgn(r) = —1 for r <0, and Sgn(0) = [-1,1]. It can be
checked that that Oh** is maximal monotone with inverse given by (9h**)~! by —®.

Oh** (r) =
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The necessary optimality condition for problem (2.15) is then found to be

{Ex + f(x) — B@W) " (B'p) 3 g.
(B + f(2))p+ (- 2) = 0.

which coincides with (2.18) after replacing ® by its relaxation —®.

2.3. Uniqueness.

THEOREM 2.11. If E € L(X,X*) is an isomorphism and u* is a solution to
(2.27), then it is unique.

Proof. Let u* be an optimal solution with associated state x* = z(u*) and let u
be another control with state = x(u). Then we have

T ) = I %) = e = 2P — 5k 2P
+ S lulfao) = 50 sy + BNo(u) = No(u"))
=@ —zx—a%)2 + %|9C — 2" [f2(q) +a(u”, u—u") 2
+ 5 lu = [Faa) + B(No(w) — Nou"))
= (B*p+au,u — u*) 2oy + %|u -

+ 3l = 2o + BNo(w) — No(u?)).

Let us set ¢ = B*p and define the sets
SO ={x:|q| < v/2a8} and ST ={x:|q| > \/2a3}.
With respect to these sets we have, using that au* +¢ =0 on ST,

J(@,u) = J(@*,u*) = B fou (Xjul20 — Xjur|20)de
(2.32)
+ Jo(qu + Bxuzo)dw + Flu — u*lZ2 ) + 3l — 27 [1a(g)-

We further set
Sf ={z eS8t :u=0}, and S = {z € 5°: u #0}.

Then we have using |¢| > v2af8 on ST
(2.33)
o

J(gc,u)—J(x*,u*)z—/ lu — u*[Pdw
2 S+\S&

1 a 1 N
0 0
«a %2 1 q 2 1|q|2 1 %12
> — — - — - B “lx— ,
> 2/S+\Sg+|u u’| dw+/58 <2|\/Eu+\/a| + 3 5 o dw+2|x (7200

If meas(Sy) # 0, then J(z,u) — J(z*,u*) > 0, since |q| < 2aB a.e. on SJ.
Otherwise u = u* a.e. on S° and

* ok o * 1 *
J(x,u) — J(a u*) > §/s+\s+ lu—u |2dw+§|ff—x |%2(Q)sti'
0
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If meas(Sg) = 0 and J(z,u) = J(z*,u*), then u = u* a.e. on ST and hence u = u*
a.e. in Q. Otherwise meas(S;) > 0 and u = 0 on Sg, u* # 0 on S;". Consequently
x # z* and again J(z,u) > J(z*,u*). This implies that u* is the unique global
minimum of (2.27). O

In the following result we quantify the quality of the relaxed optimal control that
is obtained from the optimality system (2.23) as a suboptimal solution to (2.27).

THEOREM 2.12. Under the assumptions of Theorem 2.7, if u* € <i>(B*p) with
(z*,p) the solution to (2.23), then

(2.34) J(x(u),u) > J(z(u*),u*) — B measS

for every u € L*(Q) with u # u*, where S = {w : |B*p| = \/2a5}.
Proof. From the adjoint equation we have

J(x(u),u) = J(z(u”),u)
= (q,’u — u*)LQ(Q) + /Q(h(u) - h(u*)) dw + %|$ - {E*|%2(Q)
= (q,u—u")r2(s) + /S(h(u) —h(u"))dw + (q,u — u")2(\s)

* 1 *
O\S

> (q,u)p2(s) +/ h(u) dw — (q,u*)r2(s) — / h(u”) dw,
S S

where for the last estimate we can proceed as in the proof of Theorem 2.11. A simple
computation and (2.17) imply that

J(z(u),u) — J(z(u*),u*) > —(V2aB,u*)2(s) — [ h(u*) dw > —Bmeas S,

and the inequality is strict, if measS > 0. This implies (2.34) with > replaced by
>. Strict inequality holds since it was already obtained in Theorem 2.11 that if
meas S = 0 and if measS > 0, then it follows from (2.17). O

Example 2.13. We close this section with an example which illustrates the spar-
sity enhancing property of the functional & given in (2.14). It also provides an example
for which the set S of Theorem 2.12 is empty.

Consider the optimal control problem (2.27) with X = H}(Q), @ = (0,1), E =
—A€LHFQ),HYQ), B=1,a=1,8=1, and set z = (1 + n?)sin(rw), and

2

(72 — 4)sin(mw)  for w € Oy,
72 sin(7w) for w € Qy,

where Q) = [1,3], O = Q\ Q. A direct computation shows that z(w

)
sin(mw) is a solution to (2.23). Moreover the set {w : sin(rw) = \/g =0} = {33}
has measure 0. We find that (x, p,u*) with
. —4 sin(mw)  for w € Oy,
0

u =
for w € Qs

is a solution of (2.28). By Theorem 2.12, (x(u*),u*) is the unique solution to the
optimal control problem. We point out its sparsity property and recall that for g = 0,
with the other specifications unchanged the optimal control would be in H*((2).
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2.4. Primal-dual active set methods. The complementary condition (2.29)
suggests a primal-dual active set strategy to solve (2.27). It does not realize the set-
valued nature of (2.23), but it converges within a few iterations for moderate values
of g

PRIMAL-DUAL ACTIVE SET METHOD.

e Initialize p® and set n = 0.
e Solve for (z"+! untt prtl)

E!,Cn+1 + Bun+1 =g, E*pn+1 +£/(xn+1) _ 0
and
ur = 1B on {|Bp"| > Va3aB),

u"t =0 on {|B*p"| < v/2af}.

e The stopping criterion satisfied and Stop, or
Set n = n + 1, and return to the second step.
The stopping criterion we chose utilizes the critical set

C1 = {\/2aB — h? < |B*p"| < /2a8 + h?},

where h denotes the mesh-size of the discretization of the continuous operators, and
the algorithm is stopped as soon as the discretized versions of

|Ex™ + Bu™ — g|L°°(Q\C1) < tol; and |B*pn|Loc(Cl) < (1 + tolg)4/ %

for a given tolerances tol; are satisfied.

We briefly report on a numerical example with £ = —A, with Dirichlet boundary
conditions, B = I, g = 0, and X = HZ(2), Q the unit square, and discretization
based on finite differences with respect to a uniform mesh h = 1/N to solve (2.27).

Ezample 2.14. We choose a = 10w, sin(bwy) cos(7ws) and give results for N =
128, o = .01, and a sequence of 3 values with tol; = 107!, toly = +.

Here and below the algorithms are always initialized by solving the optimal control
problem with g = 0.

In Table 1, Ny denotes the number of interior nodes which are different from zero
and |Cy| stands for the number of nodes in C;. For N = 128 the number of interior
nodes is 16129. For g = .5 we obtain Ny = 0, i.e., we have maximal sparsity.

It is consistent with our expectation that Ny increases as [ decreases. If the
iteration is continued after the stopping criterion is reached, then the iterates stay
constant except for the case § = .1. If the iterates stay constant, then an exact
solution of the discretized problem is found. In case 8 = .1 the algorithm is periodic
with two states, each of which satisfies the stopping criterion.

TABLE 1
B 5 1 .05 .01 .005 .001
No. of iterates 1 5 4 4 2 2
No 0 | 1135 | 2852 | 7296 | 8853 | 12090
|C1] 0 11 15 47 57 89
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The situation in which the algorithm enters into a periodic behavior also typically
arises for cases when the fraction 3 is smaller than those used in Table 1. This comes
as no surprise, because in the primal-dual active set method proposed above we have
not yet accounted for the fact that the graph ® must be extended to be maximal
monotone to guarantee existence.

To compute approximate solutions to (2.27) if g is large, we utilize a regularized
form of the operator ® which appears in the optimality condition. It is given by

- for |q| > V2a08 + ¢,
P(q) =<0 for |¢| < V2apB — ¢,

—(7‘235:6)‘1 + sign(q)% for \/2a8 — e < |q| < V2af +e.

We observe that —®¢ is maximal monotone. Accordingly the active set strategy is
modified and we arrive at the following algorithm.

REGULARIZED PRIMAL-DUAL ACTIVE SET METHOD.

Here the second bullet of the primal-dual active set method is replaced by
the following;:

e Solve for (z"H1, u"+t pntl)

Eanrl + BunJrl =g, E*anrl _’_él(anrl) — 07

and
g on {|B*p"| > VIaB + e},
0 on {|B*p"| < V2af — €},
un+1 —

_ (v 2"‘5+5)B*Pn+1 4 sign(B*p”) 2008*52

2ce 2ae

on {\2a8 — e < |B*p"| < 2a8 + €}.

Example 2.15. This and the following example are computed with the regularized
algorithm. The algorithm is stopped as soon as two consecutive iterates coincide and
the exact discretized solution is obtained.

First we consider exactly the same specifications as in Example 3.1. The re-
sults that are obtained with the regularized algorithm with € = 1076 are depicted in
Table 2. We note that Ny is very similar to the results obtained with the unregular-
ized algorithm in spite of the fact that the procedure for obtaining the critical set,
where |p| ~ v2a0, is different. In Table 2, |Cs| stands for the number of nodes in

C2 = {V2aB — € < |B*p"| < vZaB + c}.

TABLE 2
B 5 1 .05 .01 .005 .001
No. of iterates 2 5 4 5 3 3
No 0 | 1134 | 2852 | 7295 | 8852 | 12089
|Ca| 0 1 0 1 3 1
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TABLE 3
B 5 1 5 1 .01
No. of iterates 32 10 6 6 4
No 1115 | 4505 | 6370 | 10098 | 13404
|Ca] 3 20 16 21 33
TABLE 4
B .05 | .01 .001 .0001
No. of iterates 2 2 3 3
No 0 535 | 2267 | 3780
|Cal 0 2 9 17

Subsequently we made tests with o = 10~* and e = 107°. The results for a series
of 3-values are given in Table 3. Concerning the dependence of the solution on €, we
tested with o = 1073 and found that for € in the range 10~° to 10~3 the number of zero
nodes ranges between 15,148 and 15,013. We also confirmed that in the final iteration,
the control satisfies |u| < @ over the region where {\/2a8 —e < |p| < v2af+¢€}
which accounts for closing the graph of ® at \/2a0.

Ezxample 2.16. In this example the control and observation occupy only part of
the domain and they are nonoverlapping. We choose Q. = (0,1) x (0,4) and the
observation is restricted to Q, = (0,1) x (2,1). The choice for a and n = 128 are as
in the previous examples and o = 1074, € = 1075. The number of nodes that lie in
the control domain is 5534. The numbers for Ny and |Cz| in Table 4 refer only to this
set.

It should be noted that for the examples presented here, the corresponding optimal
controls are zero on sets which contain interior points. Thus these types of sparse
controls differ from those obtained by with L*(£2) (or more precisely, measure valued
costfunctionals). The latter are more rough, and in the case that the desired states
contain, e.g., objects with edges, they are of co-dimension one type. This is not the
case for controls computed with L°(€2) combined with L?(£2) cost functionals.

3. L°: Optimal control with control constraints. We return to problem
(2.27) but this time, rather than involving an L?(Q)-regularization term, we utilize
pointwise constraints on the controls:

min fQ(Z(-, z) + Blulo) dw,
(3.1) subject to FEz + f(x) + B(u) =0,
u € Uyg={ueL?Q):a<uw) <bael,
where a < 0 < b.
We shall demonstrate that, except possibly at switching points, the optimal con-

trol can only achieve the values a, b, or 0.

As in section 2.2 we start with preliminaries involving the Hamiltonian. We define
h:R — R by

(3.2) h(u) = Blulo + X{a,b);
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where x[q4,5 denotes the indicator function of the closed interval [a, b]. We find

0 for—%<q<—ﬁ

‘a?

(3.3) D(q) == argnﬂq@in (h(u) +qu) =< b for ¢ < -2,
"~ a for ¢ > —g,
and
0 for — % <q< —g,
h(®(q)) +a®(a)) =4 B+gb  forg<—7,

=

B+ qa forg > —£.

a

Again —® : R — R is monotone, but not maximal monotone. The maximal
monotone extension is given by

0 for — 5 <g< -2
b forq<—%,
(3.4) d(g)={a forq>—§,
[0,0] for ¢ = —%,
[a, 0] for ¢ = —g.
We also have
(3.5) B®(9) + 4 () = [0, ) for g € {—%—5}

In passing let us mention that for the case that U = [0, b] the resulting feedback
operator has the form

0 for — 2 <gq,
d(g)exd forq<—%,
[0, 0] for g = —2.

Thus, according to the maximum principle (2.9), the optimal controls, aside from the
switching points {_TB, _TB}, can assume only three, respectively, two states.
THEOREM 3.1. Consider problem (3.1) with E € L(X, X™) an isomorphism. Let
(z*,p) be the unique solution to (2.23), with ® given in (3.4), and set u* = ®(B*p).
If measS = 0 with S = {w : B*p(w) € {—%,—g}}, then (3.1) admits a solution

(u*, 2*) which satisfies the optimality system
FEx + Bu =g,
E'p+xz—2=0,
0 f0r—%<B*p<—§,

uwr=qb forB*pg—%,

ISy

a for B*p > —

a?
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with the last equality holding pointwise a.e. If measS # 0, then u* is a relaved
control.

Proof. The arguments of the proof of Proposition 2.6 guarantee the existence of
a solution to (2.23) with ® given in (3.4).

It suffices to argue that (*,v*) is indeed a solution to (3.1). For this purpose we
estimate

h(u) — h(u*) + B*'p(u —u*) > 0 for u € [a,b].

Using (2.19) and (2.22) the claim follows. O

Concerning the relaxed solution, we again have an estimate analogous to that in
Theorem 2.12.

THEOREM 3.2. Under the assumptions of Theorem 3.1, if u* € @(B*p) with
(z*,p) the solution to (2.23), then

(3.6) J(x(uw),u) > J(x(u*),u") —  measS

for every u € Uyq with u # u*, where S = {w : B*p(w) € {—%, —g}}
Proof. Let ¢ = B*pand § = §1USs = {¢ = —%} U{q = —g} Following the
proof of Theorem 2.12 we find for u € Uyq

J(@(u),u) = J(z(u*), u*) = (¢, u—u)r\s) + B Jo\s([ulo — [uo) dw
+ (g, u —u*)p2s) + B [g(|ulo — [u*]o) dw

Y

(_gau)L2(51) + ﬁfL2(S1) |U|Q dw + (_gau)L2(52) + ﬁfL2(32) |U|0 dw
+ (50" r2es) + (5.0 12(s) = B frags) 1"l dov,

and the inequality is strict, unless meas & = meas (). The first four summands of the
last expression combined are nonnegative, the fifth and sixth summands as well are
nonnegative, and therefore we have

J(x(u),u) — J(x(u"),u*) > —BmeasS.

For v # u* and meas S < meas () this inequality is strict, as already noted above. For
measS > 0 we have (%,u*)Lz(Sl) + (g,u*)Lz(&) - ﬁng(S) [u*|o dw > —BmeasS by
(3.5). This concludes the proof. O

Remark 3.3. Analogously to Remark 2.10 the relaxation & defined in (3.3) by
the maximal monotone extension ® as in (3.4) can be obtained by replacing & of (3.2)
by means of its bi-conjugate, which is given by

S for r € [0,0],
h*(r) = gr for r € [a,0),
oo forr e (—oo,a)U(b,o00).
Note that h** is convex and a short computation shows that (9h**)~! = ~ .

4. L°: General case with regularization. In section 2 we considered opti-
mization problems involving Ny with the specific structure of optimal control prob-
lems. Here we turn to a general class of problems. To guarantee existence we utilize
an H'(Q)-regularization term. Here and in the following section © denotes a bounded
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domain with Lipschitz continuous boundary. We also employ a smoothing of the |- |o
function given by

1, 2| > e,
|lz[5 =
N

)

with € > 0. For a > 0, § > 0 we consider the problem

(4.1) min  j(u)+ % |Vul|22 + 5/9 lul§ dw over u € X = H'(Q),

where j € C1(X,R) is bounded from below, weakly lower semi-continuous and
(4.2) u— j(u) + %|Vu|2 is radially unbounded,

Le., [un|x — oo implies that j(u,) + £[Vun|* = oo.

In Remark 4.4 below we discuss how (2.27) relates to (4.2).
The sets of directional derivatives of | - |§ is given by

0, |z| > e,

Sgnsﬁ, 0<|z| <e,
(algy =4 =

{Ov %}7 T = :l:E,

{+1}, r=0.

THEOREM 4.1. Problem (4.1) admits a solution u.. It satisfies the optimality
condition

j/(UE) + )\5 - OZA’U,;.; = 07 AE € B (|U|8)/

Proof. Since j is bounded below there exists a minimizing sequence, which is
bounded in X due to (4.2). We recall that H'(Q) is compactly embedded in L?().
Together with Lebesgue’s bounded convergence theorem the existence proof follows
with standard arguments. Computing directional derivatives, the necessary optimality
condition follows. O

THEOREM 4.2. Every weak subsequential limit u € X of {us} as € — 0% is a
solution to

(4.3) min  j(u) + % |Vu|2L2(Q) + ﬁ/ lulp dw over u € X = HY(Q).
Q

If moreover u — j'(u) is continuous from the weak topology in X to the weak topology
in X*, then A\ — \ weakly in X* and

§'(@) + XA — alAu =0 in X*,
(4.4) A(w) = A =0 a.e. on {|u| >0},

(N pu)x+ x >0 for all ¢ € CH(w) with ¢ > 0.
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Proof. Choose a subsequence of {uc}e~0 and @ € X such that u. — @ weakly in
X, strongly in L?(Q), and pointwise almost everywhere. Then by Fatou’s lemma

liminf,_ o+ (](ua) + %|VUE %2(9) +8 fQ |u€|8 dw)
> j(u) + %|Vﬂ|iz(m + liminf, o+ B [, |uf|§ dw

On the other hand, for every u € X we have by Lebesgue’s bounded convergence
theorem

limsup, o+ (1) + 3V |2 g + B Jiy [u7l5 o)
< j(u) + %|Vu|%2(9) + limsup,_ g+ B [q |ul§ dw
< () + $IV Uy + B fo lulo do,
and thus @ is a solution to (4.3). -

By the regularity assumption on u — j'(u) we have that \. — X\ weakly in X
and the first equation in (4.4) follows. Since u. — % we have the second equation in
(4.4). Finally, taking the limit in (\;, ¢ u:)x+ x > 0 we obtain the last statement of
(4.4). O

Remark 4.3. From Tchebycheft’s inequality we have

meas{w : [uc(w) — @(w)| > 0} < 37|uc — ﬂ|2L2(Q)
for every § > 0. In particular, this implies that
meas{w : U(w) = 0, [uc(w)| > 0} < 55 |ue — ﬁ|%2(9) — 0.
Remark 4.4. The results of this section as well as of the following are directly
applicable to optimal control problems of the form (2.27). In fact, in this case
_ 1 a
ju) = §|$ - Z|2L2(Q) + §|U|2L2(Q)a
where Ex + Bu = g, with E, B, g, z as in (2.27), and & > 0. Then
1 -
§|E (g — Bu) — 2|72,
and j'(u) = B*p, where E*p = —(z — 2).

J(u) =

5. LP: Local regularization and monotone scheme. In this section we turn
to minimization problems involving N,-functionals with p € (0, 1), where

N(f) = [ @) da.
Q
We note that by Lebesgue’s monotone convergence theorem one can argue that

lim Ny, (f) = No(f)-

p—0+

Throughout we restrict ourselves from the beginning to a class of problems for
which we shall prove the convergence of a monotone scheme, and we consider

(P,)  min J(u) = j(u) + %|Vu|2L2(Q) + BN, (u) over ue HY(Q)NC,
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where j : H1(Q) — R¥ is weakly lower semicontinuous, a > 0,3 > 0, and C C L?(Q2)
is closed but not necessarily bounded.

To cope with the singularity N, p € (0,1), at the origin we consider a family of
regularized problems. For this purpose we introduce the concave functions 1), : RT —
R* by

B+ (1—5)er  fortel0,e?,
(5.1) %@z{“ G=per forreled

t8 for t € (2, 0),

where € > 0, and we note that

5—— fort >0,

1

max(e27P,t72 )

v(t) =

[Nl

in particular ¢¥. € C'. We note that while v, is concave, this is not the case for
t — (%)
The family of regularized problems that we consider is then defined by

(Pe)  minJe(u) = j(u) + 5 [Vultagq) + B Npe(u) overue H'(Q)NC,
where
Nyolw) = [ () do.
We can check that for any € > 0
(5.2) Np(u) < Npo(u) < Ny(u) + P19,

where for the first inequality we used that t? < 1. (¢?) on [0, 00). The following lemma
will be useful.
LEMMA 5.1. If u, — u in L1(S2), then

Np(un) = Np(u) and Npe(un) — Npe(u)

for any p € (0,1) and £ > 0.
Proof. Let u, — uin L'(Q2) and p € (0,1). Then

u(@)]” < fu(@) — un(2)]” + [un(2)]",
and analogously with u(z) and u,(z) reversed. Consequently
(@) = Jun (2)[7] < Ju(@) = un (@)

and thus
1Ny = Ny)| < [ [fula)l? = )7 do < [ Juta) = o)

By Hoélder’s inequality

/Q () — un(2)|P da < (/Q () — un(2)] dx)p Q[P 5 0 for 1 — o0,
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and thus the first assertion follows. To verify the second we define the sets
Q1 =A{Jul| > ¢ and |u,| >e}, Qs ={|u] <eand |u,| < e},
Qo ={Jul| > ¢ and |u,| <e}U{|u| <e, and |u,| > e}.

Then, using that [1.(t?) > tP| on [0, ] we find

2
|Np,6(u) - Np,a(“n)| < le | — up|P dw + fQ2 |u — un|p dw + agip an |u — up| dw,

which tends to 0 for n — oo and verifies the second claim. a )
Moreover, using Lemma 5.1 and the fact that f{z:|u5\<a2} |5 ‘;é%lp +(1-5)eP|dz —
0 for ¢ — 0, we show that

(5.3) ue —u € L'(Q) implies that N, . (uz) — Np(u).

PROPOSITION 5.2. For any p € (0,1), problem (Ps.) admits a solution u..

Proof. For completeness we provide a proof which relies on standard techniques.
Let {uy} denote a minimizing sequence. Then {|Vug|r2} and N, .(uy) are bounded
sequences. Decompose any u € L%(Q) as u = u" + u', where u® = ||T1H fﬂudw is a
constant function, and [, u' dz = 0.

Since {Vuy} = {Vugi} is bounded in L*(2) it follows that {u}} is bounded in
L*(Q). This implies that {N, -(u})} is bounded. Using (5.2) we have

(5.4) Np(“%) = Np(uk — ullc) < Np(ug) + Np(u}c) < Npe(ug) + NP75(ullc)7

and hence {N,(u)} is bounded as well. Hence {u*} is bounded in H*(f2). Thus there
exists a subsequence for which no new notation is introduced, and u. € H'(Q2) such
that up — u. weakly in H'(Q) and uy — u. strongly in L?(Q2). As a consequence
ue € C and there exists a further subsequence, again denoted by uy, such that uy — u.
almost everywhere.

By the second claim in Lemma 5.1 and using weak lower semicontinuity of norms,
it follows that u. is a solution. 0

PROPOSITION 5.3. Any weak accumulation point u* in H'(Q) of solutions {uc}c=o
to (Ps,e) as € = 0 is a solution to (Ps).

Proof. Since {Vu,}e~o is bounded in L?(Q2), and {N, - (u:)}e>0 is bounded, one
can argue as in the previous proof that {u.}.~¢ is bounded in H'(f2), and hence there
exists a subsequential weak limit u* in H'(Q2). Using (5.3) and weak lower semi-
continuity one can pass to the limit in J:(u:) < J-(u) to obtain that J(u*) < J(u)
for all u € C, as desired. O

Henceforth we shall use the special choice for j given by

(55) () = 51w~ 7

where Y is a Hilbert space, f € Y, and K € L(H'(Q),Y). Referring back to (2.27)
the choice K = —E~ 1B, f = 2— E~'g,and Y = L?() can be considered as a special
case in (5.5).

In the case that no constraints are present, i.e., C = L?(Q2), the necessary opti-
mality condition for (Ps ) is given by

Bp

— al K*K
asu AR (@@ P )

u=K"f in Q,
(5.6)

ou
% =0 on 89,
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where |u| = |u(x)]. To solve (5.6) we can use an iterative scheme and, given uy,
determine ug4q from

Bp

T —aA K*'K
(5:7) ¥AUR+1 + U1t max (2P, |uy|2~P)

upy1 = K*f.

By the Lax-Milgram theorem (5.7) admits a unique solution.

THEOREM 5.4. The sequence {J:(ur)} generated by (5.7) is strictly decreasing
and

(@] V (ursr = we) |72 + [ K (urr — ur)l3)
k=0

N | =

(5.8)

Bp < / 1 ,
o> — dx < J, .
+ 2 ICZZO Q maX(EQ—P, |uk|2_l7) |Uk+1 Uk| L= S(U’O)

Moreover there exists a subsequence of {ur} and some u. € H'(Q) such that
(Wky s gy y ) = (ue,ue) in HY(Q) x HY(Q) and u. is a solution to (5.6).
Proof. Taking the inner product of (5.7) with w41 —ug, for k =0,1,..., we have

oc(VukH, V(ugy1 — uk))LQ(Q) + (Kuk+1, K(ugy1 — uk))y

Bp
+ u , U — U — K* ;U —u N ,
(max(az—l’, |Uk|2_p) k41, Uk+1 k Lo < f k+1 k>(H1) JH1

and hence

a(Vuggr, V(g — uk))Lz(Q) + (Kugy1 — [, K (upg1 — ug)),

+ < 5 bp 5oy Ukt-1; Wkt 1 — Uk) =0.
max(e277, lug|*~P) L2(9)

Using c(c — d) = 1(c* — d*> + (d — ¢)?) we obtain
04|Vuk+1|2L2(Q) - Of|vuk|2L2 + a|Vugyr — Vuk|2L2(Q) + | Kupyr = [ — | Kug — Iy

1

2
u —ug|de+G =0
T g ke T A 6 =0

K o 2
L e

where

_ 1 2 2
050 [, e ey ok = bl

= 26/ DL (ul®) (ursr |* = Jurl?) da > 25/ (Ve (lurs1?) — Ve (Juxl?)) da.
Q Q
Combining these estimates we arrive at
alVugi|fe + ol Viuper —uk)lfz + [ Kugpr = fI5 + [K (e —up) [y

1

o 2
e ED

20N, () + 8 [

< a|VuglFzig) + [Kuk — fI3 + 28 Np e (upp1),
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and thus

« 1
Je(upt1) + §|V(w~e+1 —ug)® + §|K(Uk+1 — ug)ly
(5.9)

ﬂp/ 1 ,
o - de < i
+ 2 Jo max(e2P, [uy |2 P) [upg1 — up|” de < Je(uk)

This implies that for every k

Je(ups1) +

N =

K3

k
(alV (i1 —ui)|7e + K (uig1 — w)l3)
=0

(5.10)

k

Bp / 1 .
2 i+1 — | dr <

i 2 ; o max (277, |u;|2-P) [wip1 — ui|” de < Je(uo)

and estimate (5.8) follows. From (5.9) it follows that & — J-(uy) is strictly decaying,
unless two consecutive elements of the sequence coincide. In this case uy is a solution
to (5.6).

From (5.10) we deduce that {|Vug|r2} and {N, -(|ux|)} are bounded sequences.
Since Np(uk) < Npe(ux) by (5.2), it follows that {N,(ux)} is bounded as well. De-
composing uj = uY 4+ u}, as in the proof of Proposition 5.2, we find that the constant
parts {u?} are bounded (compare (5.4)), and hence {u} is bounded in H*(Q2).

Hence there exists a subsequence {ug,} and u. in H*(Q) such that uy, — u. in
H(Q) and ug, — u. strongly in L?(Q2). Then by (5.8) we have that ug, 11 — ue in
L?(2) as well. There exists a further subsequence, denoted by the same symbol, such
that (uk,, uk,+1) — (e, ue) a.e. in Q. Passing to the limit in (5.7) we find that . is
a solution to (5.6). O
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