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Abstract

The bidomain equations with Neumann boundary stimulation and optimal control
of these stimuli are investigated. First an analytical framework for boundary control is
provided. Then a parallel finite element based algorithm is devised and its efficiency is
demonstrated not only for the direct problem but also for the optimal control problem.
The computations realize a model configuration corresponding to optimal boundary
defibrillation of a reentry phenomenon by applying current density stimuli.

1 Introduction

The heart is an electrically-controlled mechanical pump which drives blood through the
circulatory system with remarkable efficiency. Under healthy conditions its electrical ac-
tivation is highly organized, in disease, however, disturbances in the formation and/or
propagation of electrical impulses may induce reentrant activation patterns which pre-
cipitate its rhythm significantly. Ultimately, such fast rhythms may transition to highly
disorganized almost chaotic activation patterns, an electrical state referred to as fibril-
lation. Under such conditions the heart looses its capacity to pump a sufficiently large
mass of blood through the circulatory system. Without therapy, death would ensue within
minutes. The only reliable therapy to terminate this otherwise lethal condition is the de-
livery of a strong electrical shock. This therapy, referred to as electrical defibrillation, is
nowadays reliably achieved in a large patient population via the implantation of devices,
so-called implantable cardioverters defibrillators (ICD), which monitor the heart rate and,
if needed, deliver a discharge to restore a normal rhythm.

Although ICD therapy has proved to be efficient and reliable in preventing sudden
cardiac death [2], it is far from ideal. There are several known adverse effects secondary to
the administration of strong electrical shocks which are caused by the high field strengths
required to terminate fibrillation with a sufficiently high probability. Moreover, psycho-
logical effects play an important role as well since shock delivery is perceived as extremely
painful by conscious patients, leading to traumatization and a reduced quality of life. The
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link between the high shock strengths required and adverse effects provides the motiva-
tion for posing the defibrillation process as an optimization problem, where one aims to
achieve defibrillation with minimal energy and, consequently, with minimal detrimental
side effects.

The optimal control approach to defibrillation is to determine an applied electrical
field in such a way that it optimizes a given design objective, which is, in our case, the
restoration of a tissue state in which fibrillatory propagation cannot be maintained. This
can be achieved by driving the whole tissue to a resting state, or equivalently, to an
excited state. In both cases the main ingredients for maintaining fibrillation, namely the
presence of both propagating wavefronts and a sufficient mass of excitable tissue at rest,
referred to as “excitable gap”, in which these wavefronts can travel, are missing. Achieving
these objectives is challenging since, on biophysical grounds, shock-induced changes in
polarization of both polarities are always present during shock delivery [23, 19].

In previous work [13, 14, 12] we addressed these points by modeling the controller
action representing the current delivered by the electrodes as distributed forces. One of
the main objectives of the current work consists in analyzing the case when the action of
the electrodes is modeled as Neumann boundary conditions.

From a methodological point of view, in most, if not all, recent finite element modeling
studies the effect of extracellularly applied electric fields has been accounted for either by
imposing inhomogeneous Dirichlet boundary conditions to model extracellular potential
stimuli, or, by using current volume sources to model current stimuli.

The use of inhomogeneous Neumann boundary conditions for modeling current stimuli
has been the method of choice in early pioneering monodomain modeling work where the
finite difference method was employed to model impulse propagation in 1D strands or 2D
sheets [24]. Surprisingly, to the best of our knowledge, in the bidomain literature Neumann
boundary conditions for modeling current injection via electrodes have not been rigorously
stated yet, neither in bidomain forward models nor in the context of optimal control. While
equivalence between both formulations, i.e. Neumann boundary conditions and volume
sources, can be achieved for any given setup, in the latter case where currents are injected
via shape functions into 2D or 3D elements, the total injected current depends on spatial
discretization and choice of weighting function. Thus, in the present work we aim to
investigate the suitability of of using inhomogeneous Neumann boundary conditions in a
bidomain model, specifically, the feasibility of optimal boundary control for the bidomain
equations.

A second important issue of the current work consists in comparing the nonlinear conju-
gate gradient and the Newton method as iterative solution processes to solve the resulting
optimization problems. Here we point out that due to the complicated dynamical systems
behavior of the bidomain equations and the scale differences between its components it is
prima vista not evident that the Newton method is applicable.

Finally any numerical optimization approach requires repeated solution of the bido-
main equations and the associated adjoint equations. While an efficient solution strategy
is already of paramount importance for the direct numerical simulation of bidomain equa-
tion it is indispensable in the context of optimal control. For this reason our numerical
realization relies on parallelization. We report on the parallel efficiency both for the direct
simulation and for the optimization algorithms.

The optimal pacing of the cardiac tissue is expressed by optimal control with partial
differential equations as constraints. Let Ω ⊂ Rd, d ∈ {2, 3}, denote a bounded connected
domain with Lipschitz continuous boundary ∂Ω. The space-time domain and its lateral
boundary are denoted by Q = Ω×(0, T ] and Σ = ∂Ω×(0, T ], respectively. Also we denote
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the observation domain by Ωobs ⊂ Ω. The standard form control problem is expressed as:

(P)


min J(v, Ie) ,

e(u, v, w, Ie) = 0,
(1.1)

where u, v and w are the state variables, and Ie is the extracellular current which is
utilized as a control variable in the optimal control problem and e = 0 stands formally for
the dynamical system constraint. The dynamical behavior of the intra- and extracellular
potentials is described by the coupled system of reaction-diffusion equations which can be
expressed as follows

0 = ∇ · (σi + σe)∇u+∇ · σi∇v in Q (1.2)

∂v

∂t
= ∇ · σi∇v +∇ · σi∇u− Iion(v, w) + Itr(x, t) in Q (1.3)

∂w

∂t
= G(v, w) in Q, (1.4)

where u : Q → R is the extracellular potential, v : Q → R is the transmembrane voltage,
w : Q → Rn represents the ionic current variables, σi : Ω → Rd×d and σe : Ω → Rd×d are
respectively the intracellular and extracellular conductivity tensors. The term Itr(x, t)
is the transmembrane current density stimulus as delivered by an intracellular electrode.
The Iion(v, w) is the current density flowing through the ionic channels and the function
G(v, w) determines the evolution of the gating variables, which is determined by an electro-
physiological cell model, see e.g. [1] for more description on these models. Eq. (1.2) above
is an elliptic type equation, Eq. (1.3) is a parabolic type equation and Eq. (1.4) is a set
of ordinary differential equations which can be solved independently for each node. Typi-
cally, the conductivity tensors, which were considered in our computations, are expressed
in the following form,

σc =

(
σcl 0
0 σct

)
, where c = i, e , (1.5)

where σcl and σct are longitudinal and transverse fiber conductivities, respectively.
The membrane model for the ionic activity is described by a set of ordinary differential

equations. The dimension of the ODE system is a consequence of the ionic model. In
our numerical computations, we used a modified FitzHugh-Nagumo (FHN) model, called
Rogers-McCulloch model [21], which consists of only two state variables and has a cubic
non-linearity in the transmembrane potential

Iion(v, w) = gv(1− v

vth
)(1− v

vp
) + η1vw . (1.6)

G(v, w) = η2(
v

vp
− η3w) (1.7)

where g, η1, η2, η3 are prescribed positive real coefficients, vth > 0 is the threshold potential
and vp > vth is the peak potential.

In the absence of a conductive bath both intracellular and extracellular domains are
electrically isolated along the tissue boundaries and homogeneous Neumann boundary
conditions are appropriate to reflect this fact, except for those parts of the boundary
where extracellular stimuli are applied. The initial values of the transmembrane voltage
and state variables are prescribed by given values v0 ∈ L2(Ω) and w0 ∈ L2(Ω). The initial
and boundary conditions are therefore prescribed as

η · (σi∇v + σi∇u) = 0 on Σ (1.8)

η · σe∇u = Ie on Γ12 × (0, T ] (1.9)

η · σe∇u = 0 on Γ3 × (0, T ] (1.10)

v(x, 0) = v0 and w(x, 0) = w0 on Ω , (1.11)
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where η denotes the outwards normal to the boundary of Ω. Here Ie is the extracellular
current density stimulus which acts as control along the boundary Γ12 = Γ1 ∪ Γ2, where
Γi, I = 1, 2, 3 are mutually disjoint and satisfy Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω. For compatibility
reasons it is assumed throughout that∫

∂Ω
Ie(t, ·) d s = 0 (1.12)

for almost every t ∈ (0, T ). In the numerical experiments Ie will be only temporally
dependent and will be of the form

Ie = Îe(t)(χΓ1 − χΓ2) ,

where χΓi is the characteristic function of the set Γi, i = 1, 2. Then condition (1.12) is
satisfied if |Γ1| = |Γ2|. The support regions Γ1 and Γ2 can be considered to represent a
cathode and an anode, respectively.

In terms of optimal control we recall that the optimality system involves the primal
as well as the adjoint equations. Each of these two systems has similar complexity and
must be solved within an iterative solution process. Also, the linearized primal and dual
equations need to be resolved frequently in each iteration of Newton-Krylov methods. The
computational costs involved in this solution process are significant, rendering the use of
efficient numerical approaches a key ingredient to obtain results within reasonable time
frames. Parallelization techniques, as they are routinely used in virtually any bidomain
modeling study, suggest themselves quite naturally also as a means to speed up the solution
process of the optimal control problem. In this regard, we parallelized our optimization
codes based on the public domain package DUNE [4]. In the numerical section we compare
the improvements in terms of computational cost that can be offered by Newton-Krylov
optimization algorithm over gradient type algorithms.

The remainder of the paper is organized as follows. In the next section we will show the
well-posedness of the bidomain boundary value problem. In Section 3, the boundary con-
trol formulation of the bidomain model is presented. There we discuss the necessary first
order optimality for the boundary control problem. Also, we lay out the necessary steps
to implement Newton’s method in our numerical realization. The numerical discretization
of the optimality system is described in Section 4. At the end of that section a brief
overview of parallelization results is given. In Section 5 numerical results are presented
for the different test cases. A summary is given then in the last section.

2 Existence for the bidomain system

Here we provide a brief analytical setting for well-posedness of the state equation (1.2)-(1.4)
together with initial and boundary conditions (1.8)-(1.11). For the most part we can rely
on the analysis in [8] where a related problem with distributed forcing and homogenous
boundary conditions was treated. In the variational setting we only need to replace a
distributed by a boundary forcing term. For the sake of consistency we provide the main
steps here. Throughout we assume that the conductivity tensors satisfy σi ∈ L∞(Ω), σe ∈
L∞(Ω) and that they are uniformly elliptic, i.e. there exist 0 < m < M <∞ such that

m|ξ|2Rd ≤ ξTσi,eξ ≤M |ξ|2Rd for ξ ∈ Rd. (2.1)

Definition 2.1. A triple (u, v, w) with u ∈ L2(0, T ;H1(Ω)), v ∈ C([0, T ], L2(Ω))∩L2(0, T ;H1(Ω))∩
L4(Q), w ∈ C([0, T ], L2(Ω)) is called a weak solution to (1.2)-(1.4), (1.8)-(1.11), if it sat-
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isfies for a.e. t ∈ (0, T ) the equations∫
Ω

(σi∇v(t)∇ϕ+ (σi + σe)∇u(t)∇ϕ) dx =

∫
Γ12

Ie(t)ϕds,∫
Ω

(vt(t)ψ + σi(∇u(t) +∇v(t))∇ψ) dx+

∫
Ω
Iion(v(t), w(t))ψ dx =

∫
Ω
Itr(t)ψ dx,∫

Ω
(vt(t) +G(v(t), w(t)))w dx = 0,

for all (ϕ,ψ,w) ∈ H1(Ω)/R ×H1(Ω)× L2(Ω), and (v(0), w(0)) = (v0, w0).

For the following result we need to introduce the space

X = L2(0, T,H1(Ω))× (C([0, T ], L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩ L4(Q) ∩W 1, 4
3 (0, T ;H1(Ω)∗)

× (C([0, T ), L2(Ω))×W 1,2(0, T ;H1(Ω)∗)),

which is endowed with the natural norm.

Theorem 2.1. Assume that Itr ∈ L2(0, T ;H1(Ω)∗), Ie ∈ L2(0, T ; Γ12) and that (1.12),
(2.1) hold. Then (1.2)-(1.4), (1.8)-(1.11) admits a unique weak solution and there exists
a constant K > 0 such that the following a-priori bound holds:

|(u, v, w)|X ≤ K(1 + |v0|L2(Ω) + |w0|L2(Ω) + |Itr|L2(0,T ;H1(Ω)∗) + |Ie|L2(0,T ;L2(Γ12))).

For the proof we can follow the verification of Theorems 2.5 and 2.6 in [8] noting that
ψ →

∫
Γ12

Ie(t, s)ψ(t, s) ds dt defines a continuous functional on L2(0, T ;H1(Ω)).
For the following stability estimate, which in particular implies uniqueness of the so-

lutions to (1.2)-(1.4),(1.8)-(1.11), we use X̃ = {(u, v, w) ∈ X : w ∈ W 1,2(0, T ;L2(Ω))},
endowed with the natural norm.

Theorem 2.2. If in addition to the assumptions of Theorem 2.1 we have w0 ∈ L4(Ω),
then for any R there exists a constant C2 such that for any two pairs (I ′tr, I

′
e) and (Ĩtr, Ĩe)

in L∞(0, T ;H1(Ω)∗)× L∞(0, T ;L2(Γ12)) whose norms are bounded by R we have

|(u′, v′, w′)− (ũ, ṽ, w̃)|X̃ ≤ CR(|I ′tr − Ĩtr|L∞(0,T ;H1(Ω)∗) + |I ′tr − Ĩtr|2L∞(0,T ;H1(Ω)∗)

+ |I ′e − Ĩe|L∞(0,T ;L2(Γ12)) + |I ′e − Ĩe|2L∞(0,T ;L2(Γ12))),

where (u′, v′, w′) and (ũ, ṽ, w̃) denote the solutions corresponding to (I ′tr, I
′
e) and (Ĩtr, Ĩe)

respectively.

3 The optimal control problem

We return to the optimal control problem (P). The cost functional J will be chosen in
such a manner that the controlled trajectory of the transmembrane voltage is driven to a
desired state vd by applying extracellular current Ie. Application of Ie has an averse effect
on the tissue and hence it enters into the cost functional as penalization term.

We consider min J(v, Ie) =
1

2

∫ T

0
(

∫
Ωobs

|v − vd|2 dx+ α

∫
Γ12

I2
e ds) dt

subject to (1.2)-(1.4),(1.8)-(1.11) and Ie ∈ U,
(3.1)

where α > 0 is the weight for the control cost, Ωobs ⊂ Ω is the observation domain,
vd ∈ L2(0, T ;L2(Ωobs)) and

U = {Ie −
1

|Γ12|

∫
Γ12

Ie ds : Ie ∈ L2(0, T ;L2(Γ12)), |Ie(t, x)| < R for a.e. (t, x) ∈ (0, T )× Γ12}.
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The set U is a closed, convex and weakly∗ sequentially compact subset of L∞(0, T ;L2(Γ12)).
This fact together with the well-posedness results of section 2 allow to deduce the existence
of a solution (u∗, v∗, v∗, I∗e ) to (3.1) by standard arguments. For the case of distributed
control action the details are provided in [9]. For computational purposes the first order
necessary conditions are of paramount importance. We give a formal derivation of these
conditions here. They can be made rigorous by rather minor modifications of the proofs
given in [9].

To obtain these first order conditions we introduce the Lagrangian associate to (3.1)
by defining

L(u, v, w, Ie, p, q, r) = J(v, Ie)

−
∫ T

0

∫
Ω

(σi∇v∇p+ (σi + σe)∇u∇p) dx dt+

∫ T

0

∫
Γ12

Iep ds dt

−
∫ T

0

∫
Ω

(vtq + σi(∇u+∇v)∇q + Iion(v, w)q − Itrq) dx dt

−
∫ T

0

∫
Ω

(wt −G(v, w))r dx dt,

where p, q, r are the Lagrange multipliers associated to the equations (1.2)-(1.4). Taking
variations with respect to the state variables, invoking integration by parts with respect
to the temporal variable and Green’s formula with respect to the spatial variable, and
keeping in mind the initial- and boundary conditions we obtain the first order optimality
system which we express in operator form:

∇ ((σi + σe)∇p) +∇(σi∇q) = 0 in Q , (3.2)

(v − vd)|Ωobs
+
∂

∂t
q +∇(σi∇p) +∇(σi∇q)− (Iion(v, w))vq +Gv(v, w)r = 0 in Q , (3.3)

− (Iion(v, w))wq +
∂

∂t
r +Gw(v, w)T r = 0 in Q , (3.4)

together with the terminal conditions

q(T ) = 0, r(T ) = 0,

and the boundary conditions for the adjoint states

(σi∇q + σi∇p)η = 0 on Σ,

σe∇p n = 0 on Σ,

and
∫

Ω p(t) d x = 0, for a.e. t ∈ (0, T ). Furthermore for any optimal control I∗e the following
variational inequality must be satisfied:∫ T

0

∫
Γ12

(αI∗e +Qp)(Ie − I∗e ) ds dt ≥ 0, for all Ie ∈ U, (3.5)

(3.6)

where (Qp)(t) = p(t) − 1
|Γ12|

∫
Γ12

p(t, s) ds on Γ12. The pointwise formulation of (3.5) is
found to imply a.e. in Q

αI∗e (t, x) +Qp(t, x) > 0⇒ Ĩ∗e (t, x) = −R
αI∗e (t, x) +Qp(t, x) < 0⇒ Ĩ∗e (t, x) = R

−R < Ĩ∗e (t, x) < R⇒ αI∗e (t, x) +Qp(t, x) = 0,
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where Ĩ∗e is such that QĨ∗e = I∗e .
For the numerical realization of (3.1) we shall require the reduced cost functional

Ĵ(Ie) = J((v(Ie), Ie)),

where v(Ie) is the solution component to (1.2)-(1.4). From (3.5) the gradient of Ĵ at some
Ie is given by

Ĵ(Ie)
′ = αI∗e +Qp. (3.7)

In the numerical experiments we consider the practically relevant case that Ie is only
spatially dependent and Ie(t) is of the form Ie(t, x) = Îe(t)(χΓ1 − χΓ2) where Γ12 =
Γ1 ∪ Γ2, |Γ1| = |Γ2|, and

Îe ∈ U = {Îe ∈ L2(0, T ) : |Îe(t)| ≤ R for a.e. T ∈ (0, T )}.

For this case the optimality condition (3.5) turns out to be

(2αÎ∗e (t)|Γ1|+
∫

Γ1

p(t, s) ds−
∫

Γ2

p(t, s) ds ) (Îe−Î∗e (t)) ≥ 0, for all |Îe| ≤ R, and a.e. t ∈ (0, T ).

From the point of view of numerical optimization we shall not only consider a nonlinear
conjugate gradient, but also a Newton method, which, without considering line-search
steps, is based on the iteration procedure Ik+1

e = Ike + δIe where δIe is the solution to

Ĵ ′′(Ike )δIe = −Ĵ ′(Ike ), (3.8)

and k denotes the iteration level. Here Ĵ ′′(Ie) denotes the Hessian of the reduced cost
functional. It is numerically infeasible to set up Ĵ ′′(Ie) as a (discretized) matrix operator,
rather one needs to resort to an iterative procedure to solve (3.8) approximately for δIe,
e.g. by a Krylov solver. Below we summarize the necessary steps to realize the Newton
step (3.8) by an iterative procedure:

1. Compute the first derivative Ĵ
′
(Ike ) according to (3.7), which requires one primal

and one adjoint solve.

2. In each iteration step for solving (3.8), evaluate the action of Ĵ
′′
(Ine ) on δI by means

of the following sequence of computation:

(a) solve the linearized primal equation for (δu, δv, δw) using δI ∇ · (σi + σe)∇δu+∇ · (σi∇δv)
∇ · (σi∇δv)− (δvt + [Iion]v δv + [Iion]w δw)

δwt − η2

vp
δv + η2η3δw

 =

 0
0
0


with the following initial and boundary conditions

η · (σi∇δv + σi∇δu) = 0 on Σ

η · σe∇δu =
(
χcΓ1

− χcΓ2

)
δI(t) on Γ1 ∪ Γ2

η · σe∇δu = 0 on Γ3

δv(x, 0) = δv0 and δw(x, 0) = δw0 on Ω ,

(b) evaluate (ξ1, ξ2, ξ3, ξ4) := Lyy(yk, zk)(δu, δv, δw, δIe) from (3.9),

(c) solve the adjoint equation with (ξ1, ξ2, ξ3) as r.h.s., i.e. ∇ · (σi + σe)∇w1 +∇ · σi∇w2

∇ · σi∇w2 + w2t − [Iion]vw2 − η2

vp
w3

−[Iion]ww3 − w3t + η2η3w3

 =

 ξ1

ξ2

ξ3


by using homogenous initial and boundary conditions,
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(d) compute the action Ĵ
′′
(Ike )δI = α δI|(Γ1 ∪ Γ2) + w1|Γ1 − w1|Γ2.

Above we use that the second derivative of the operator L at yk = (uk, vk, wk, Ike ),
zk = (pk, qk, rk), with k denoting the iteration level, applied to the vector (δu, δv, δw, δIe)
can be expressed as

Lyy(yk, zk)(δu, δv, δw, δIe) =


 0

δv|Ωobs − [Iion]vv q
k δv − η1q

k δw
−η1q

k δv


α δIe

 (3.9)

where [Iion]vv =
2g

vpvth

(
3vk − vp − vth

)
.

4 Numerical approach

In this section we describe the numerical treatment of the complete optimality system.
For the spatial discretization of the primal and dual equations we used a piecewise lin-
ear finite element method and linearly implicit Runge-Kutta methods for the temporal
discretization.

4.1 Semi-discretization in space

Here we give an overview of the spatial discretization of the primal problem by a finite
element method based on the weak formulation. An analogous discretization is used for
the dual equations, we refer to our previous paper [13, Section 3.1.2] in this respect.

A weak solution triple (u, v, w) satisfies for a.e. t ∈ (0, T ) and for all ϕ ∈ H1(Ω)

0 = 〈∇ · (σi + σe)∇u+∇ · σi∇v, ϕ〉 , (4.1)〈
∂v

∂t
, ϕ

〉
= 〈∇ · σi∇v +∇ · σi∇u− Iion(v, w) + Itr(x, t), ϕ〉 , (4.2)〈

∂w

∂t
, ϕ

〉
= 〈G(v, w), ϕ〉 , (4.3)

together with initial and boundary conditions (1.8)-(1.11). Let Vh ⊂ H1(Ω) be the finite
dimensional subspace of piecewise linear basis functions with respect to the spatial grid.
The approximate solutions u,v and w are expressed in the form u(t) =

∑N
i=1 u i(t)ωi,

v(t) =
∑N

i=1 v i(t)ωi and w(t) =
∑N

i=1w i(t)ωi, respectively, where {ωi}Ni=1 denote the basis
functions. The semi-discretization of primal equations in space results in the differential
algebraic system as follows:

Aieu + Aiv = Ie (4.4)

M
∂v

∂t
= −Aiv −Aiu− Iion(v,w) + Itr (4.5)

∂w

∂t
= G(v,w), (4.6)

together with initial conditions for v and w, where Aie = {〈(σi + σe)∇ωi,∇ωj〉}Ni,j=1

and Ai = {〈σi∇ωi,∇ωj〉}Ni,j=1 are the stiffness matrices, M = {〈ωi, ωj〉}Ni,j=1 is the mass

matrix, and the vectors Ie, Iitr are defined by Ie = {〈(χΓ1Ie − χΓ2Ie) , ωj〉}
NΓ
j=1 and Itr =

{〈Itr, ωj〉}Nj=1, respectively. The expression (Iion)(v,w) is defined by

(Iion)(v,w) = (Iion)

(
N∑
i=0

v iωi,
N∑
i=0

w iωi

)
.
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The same spatial discretization technique is applied for the linearized primal and dual
equations.

4.2 Full discretization and solution procedure

After the semi discretization of primal and dual equations one has to apply a time dis-
cretization technique to get a fully discretized system. For this purpose we applied a third
order Rosenbrock method called ROS3PL [10]. Here we avoid the time discretization
details for this problem which was explained in [13, Section 3.2].

The solution of the singular linear systems which arise after the full discretization of
Eqs (1.2) and (3.2) are defined up to an additive constant. We mentioned earlier that to
fix this constant we impose a zero mean condition. For the numerical realization of this
condition we adopted a stabilized saddle point formulation from the work of Bochev and
Lehoucq [5]. See [13] for the discussion and implementation details of this technique for
the current problem. After the full discretization of the PDEs we obtain a system of linear
algebraic equations. To solve this linear system we employed a BiCGSTAB [26] method
with Jacobi preconditioning.

To solve the complete optimality system the Hager-Zhang variant of the non-linear
conjugate gradient (NCG) [16], and the Newton method as explained in the previous
section, were developed. Their performances will be compared in the following section.

4.3 Parallel implementation

To solve the optimality system numerically, many PDE solves are required to obtain
an approximate solution to the optimal control problem. The solution of the bidomain
equation system itself, due different time-scales that are present in the dynamical system,
as well as the wave formation and the resulting necessity for fine scale spatio-temporal
simulations, puts substantial demands on the computation see eg. [18, 17, 15, 25, 20].
This suggests to apply parallelization techniques. For this purpose, the public domain
FEM package DUNE [4] is used and the internal parallel Yasp grid in DUNE is employed
for parallel grid constructions. It supports different levels of overlapping grids for parallel
simulations. We used zero level overlapping, i.e. non overlapping, grids. The Yasp grid
uses the simple coordinate bisection method for the domain decomposition of the spatial
grid. The finite element discretization module dune-pdelab in the DUNE package [4] was
used.

Let us recall the number of PDE solves that are need for optimization. One iteration
of the NCG algorithm needs the solution of the primal and of dual equations, plus one
additional primal evaluation for the line search method. The Newton method, moreover
requires evaluation of the Hessian of the reduced cost functional in direction of the in-
crement of the control δIe which is required for the iterative Krylov solver. Each inner
iteration is achieved by one linearized primal, see 2(a) at the end of Section 3, and a dual
equation solver 2(c), which together achieve the matrix-vector product of the Hessian on
δIe. The solution of these linearized equations in parallel was done similarly to the solution
procedure for primal and dual equations.

To achieve overall parallel scalability in the optimization problem we require first and
foremost efficient realization of the communication in the finite element context of the
solution of the direct problem in every iteration of the linear solver at each time step. For
optimization this communication must also be considered for the adjoint equations, the
computation of the Jacobian update and for the efficient parallel implementation of the
Newton-Krylov method. Finally communication is required for the evaluation of the norm
of the gradient of the cost functional, and for the cost itself.
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5 Numerical results

Numerical results on the basis of two different test cases are discussed in this section. First
numerical results based on boundary control of the bidomain equations are presented where
the control acts on the left and right boundary of the computational domain, as shown
in Figure 1. The second test case deals with a similar situation but now there are four
smaller electrodes placed on either side of the domain, as shown in right hand side of
Figure 1. In all cases the computational domain Ω = [0, 2]× [0, 2] ⊂ R2 of size 2 ? 2 cm2

is fixed and a 256×256 uniform quadrilateral spatial grid is used which consists of 65, 536
elements and 66, 049 nodes. Thus the computation involved 198, 147 dofs for one PDE
solve.

Now we turn to the stopping criteria for the optimization algorithm. The termination
of the optimization algorithm is based on the following condition:∥∥∥∇J(Ike)

∥∥∥
L2
≤ 10−3 ·

∣∣∣J(Ike)
∣∣∣ or

∣∣∣J(Ike)− J(Ik−1
e )

∣∣∣ ≤ 10−4 (5.1)

If this condition was not satisfied within a prescribed number of 300 iterations, the algo-
rithm was terminated. An Armijo type condition is imposed in the line search algorithm.

The presented numerical results as well as the parallel efficiency of the optimization
algorithms are done on a Linux cluster (GHOST) with two nodes, where each node consists
of 8 quad-core AMD Opteron processors 8356 clocked at 2.3 GHz and equipped with 256
GB RAM. For our computations we used only one node (overall 32 cpus).

Ω

Anode

CathodeΓ1 Γ2

Γ3

Γ3

Ω

Γ1 (Anode)

Γ2 (Cathode)

Γ3 Γ3

Γ3

Γ3

Figure 1: Computational domain with two and four stimulation boundaries.

As presented previously [13], the conductivity tensors were chosen, on one hand, to ar-
rive at a good match with physiological conduction velocities with the simplified FitzHugh-
Nagumo model, and, on the other hand, to keep anisotropy ratios within the range of
values reported in experimental studies [22]. This led to the following choice of simula-
tion parameters, σil = 2.0 · 10−3 S/cm, σit = 3.1 · 10−4 S/cm, σel = 2.0 · 10−3 S/cm,
σet = 1.3 · 10−3 S/cm g = 1.5 S/cm2, vth = 13 mV , vp = 100 mV , η1 = 4.4 S/cm2,
η2 = 0.012, η3 = 1. To account for the statistical discontinuous variation of conductivities
which are omnipresent in cardiac tissue due to the discrete micro-structure, the intracellu-
lar conductivity tensors were modified by multiplying with random numbers in the range
(0, 1). Moreover, those random numbers which were below a threshold of 0.34 were set
equal to 10−12, for details of the underlying rationale see [6, 13].

A standard S1− S2 stimulation protocol was applied to induce a reentrant activation
pattern. An initial S1 stimulus of Itr = 100 µA/cm2 and 5 msec duration was applied
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at time t = 0 msec along the bottom edge of the tissue sheet. At time t = 183 msec,
when the critical recovery isoline crossed the center of the sheet, a second S2 stimulus of
Itr = 100 µA/cm2 and 5 msec duration was applied in a small region of 0.3 cm radius
at the center of the domain. This S2 stimulus generated two phase singularities at the
intersections between critical recovery isoline and the boundary of the S2 stimulus region,
leading to a so-called Figure of Eight reentrant pattern. The solution at t = 435 msec
was then chosen as the initial state for simulating the delivery of electrical shocks and the
post-shock evolution following at the end of the shock.

The three temporal horizons are illustrated in Figure 2. The solution for the trans-
membrane voltage v in absence of any control is shown in Figure 3 at different instances of
time to verify that the reentry is sustained for a sufficiently long time. During the shock,
which constitutes the time period within which optimization takes place, the size of the
time step was kept constant at ∆t = 0.04 msec, while during the pre- and post-shock
phases adaptive time stepping features of the ROS3PL method were used to speed up
computation.

|
induce reentry

|| shock

optimization
||

post shock
|

t = 0 msec 435 439 590

Figure 2: Different time horizons considered in the computations.

(a) t= 437 msec (b) t= 507 msec (c) t= 590 msec

Figure 3: 2D visualization of uncontrolled solution (v) at different times of simulation.

5.1 Boundary control with two stimulation boundaries

Here we present the numerical results for the bidomain model with Neumann boundary
control. The anode is modeled as a Neumann boundary along the surface Γ1 and the
cathode along the surface Γ2 of the computational domain, as shown in Figure 1. The
desired trajectory of the transmembrane potential (vd) is obtained by solving once the
primal problem using a prescribed time course of a stimulation current, Ie(t) = 200mA/s2.
Here the desired trajectory ensures that optimized states attain a steady state during the
post shock period. The optimization algorithm constructs the best optimal control while
keeping the energy low, due to the term

∫
I2
e dt in cost functional.

The phase plane analysis of the modified FHN model, see for instance [11, 13], explains
that if a sufficient perturbation is given to the excitable state, then it tends rapidly to
a maximal value and subsequently gradually goes to a stable resting point. In optimal
control we influence a sufficient portion of the cardiac tissue to reach the maximal value
by providing the optimum extracellular current. Then the excitable gap over the cardiac
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tissue is sufficiently small so that no further excitation wave fronts can arise. After turning
off the external stimulus in the post shock simulation the cardiac tissue goes to a resting
state. This post shock simulation time takes approximately 150 msec.

The 2D spatial representation of the optimized transmembrane voltage is shown in
Figure 4 at different time instances. Observe that during the shock period, at time t =

(a) t=438.00 msec (b) t=439.30 msec (c) t=440.46 msec (d) t=447.86 msec

(e) t=469.89 msec (f) t=489.79 msec (g) t=508.12 msec (h) t=590.00 msec

Figure 4: 2D visualization of controlled solution (v) at different times of simulation.

438msec, most of the computational domain is depolarized. Due to the applied external
stimulus strength the cardiac tissue responds strongly and produces a large number of
virtual electrodes at the microscopic size scale during the shock period. Eventually, these
virtual electrodes over the tissue effectively block further wave propagation of the reentry
wave and this leads to a successful defibrillation if the optimum external stimulus. The
results depicted in Figure 4 were obtained by the Newton method, and those obtained
by NCG are graphically indistinguishable. But algorithmically these methods behave
differently as we discuss next.

The norm of the gradients of the cost functionals and the values of the cost functionals
for the NCG and Newton methods are shown in the leftmost and middle panel of Figure 5,
over the optimization iterations. We observe that both algorithms achieve approximately
at same minimization values. The corresponding optimal controls are shown on the right
hand side of Figure 5. The optimal controls are graphically indistinguishable.

Turning to the computational cost, we report that the Newton method takes 12 outer
iterations to achieve converge. Per outer iteration an average of 9 inner CG iterations were
taken. The accepted step length is 0.5 for the first three optimization iterations and full
step lengths for subsequent ones. Overall, the complete Newton optimization algorithm
needed 240 PDE solves and additionally 15 PDE solves for the line search method to
converge the optimal solution. The NCG method took 300 iterations. It accepted the step
length 1.0 right from beginning. Thus the NCG required 600 PDE solves and additionally
300 PDE solves for the line search algorithm. In conclusion the Newton method was
significantly more effective than the NCG algorithm for this configuration.

Let us finally discuss the total extracellular current that is required for defibrillation.
It is computed by the following expression:∫ T

0

∫
Γ

((σ∇u) · η)2 ds dt = |Γ|
∫ T

0
Ie(t)

2 ds dt.
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Figure 5: The gradient, minimum value of the cost functional and the optimal control
values are shown on the left, middle and right figures respectively.

The extracellular current for desired trajectory vd on the basis of a constant value for
the stimulus required 3.2 A/cm3. The total extracellular current required to drive the
system from arrhythmia pattern to steady state pattern by the optimized control based
on Newton’s algorithm is 2.6788 A/cm3 and that for NCG is 2.6844 A/cm3 . Thus both
methods give comparable results and both require less total current to obtain the successful
defibrillation than that chosen on heuristic consideration to compute vd. In Section 5.2
below we shall consider the effect of reducing the control domain of the electrodes on the
total current required for defibrillation.

Parallel scalability for direct problem

Owing to the fact that the solution of the direct problem dominates overall computational
cost in an optimal control solver, it is key to optimize solvers in terms of strong scalability
to achieve significant reduction in execution time. To assess the strong scaling properties
of the solvers used in this study benchmark simulations were performed using a high
resolution mesh (h = 3.9063 µm) of a square 2D domain of size 2× 2 cm which consisted
of 26,214,400 elements and 26,224,641 nodes (5120×5120). In this benchmarks the bottom
edge of the 2D tissue sheet was stimulated to initiate a planar propagating wavefront. In
the benchmark runs execution times were recorded then for the first 5ms of wavefront
propagation, which is, typically, most expensive in terms of solver time since the fastest
transients in the solution arise there. To be able to cover a wide range of number of
cores benchmarks were performed at the UK national supercomputer HECToR phase 2b
service, where strong scalability was tested up to 8192 cores, measuring parallel efficiency
against the run using 64 cores, i.e. the smallest setup which provided enough memory to
accommodate the whole model. Parallel efficiency was computed as

e =
Nr

N

Tr
TN

where Nr and Tr are number of cores and total cpu time of a reference simulation, respec-
tively, and N and TN are number of cores and total cpu time in the scalability experiments
where N is increased in multiples of Nr. Typically, Nr = 1 is chosen, however, in our case
Nr = 64 was chosen since the model could not be fitted into memory otherwise.

Benchmark results are illustrated in Fig. 6. Up to 4096 cores adequate parallel effi-
ciency of e = 0.89 could be achieved. Increasing N beyond 4096 cores e dropped signifi-
cantly, for instance, with N = 8192 efficiency was quite poor with e = 0.61. This can be
attributed to the unfavorable surface-to-volume ratio of local domains. With increasing
N , the relation between local compute work performed on inner nodes of the domain and
the data communication which are proportional to the size of shared domain interfaces,
deteriorates, thus impeding any further efficient scaling. The domain sizes with 4096 and
8192 cores in terms of nodes were 6,561 and 3321 only.
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Figure 6: Parallel efficiency for the direct simulation.

Parallel scalability for optimization

For benchmarking parallel scalability of the optimization algorithm the computational
setup which is demonstrated in Section 5.1 is used. In this case the mesh size is h = 7.8 µm
and consists of 65, 536 elements and 66, 049 nodes. Compared to the direct simulation
benchmarks this setup was smaller to keep computations tractable. Strong scalability
experiments were performed on the 32 core GHOST cluster where also the boundary con-
trol simulations were performed. Parallel efficiency e of the first primal solve during the
optimization with NCG and Newton optimization algorithms are shown in Figure 7. The
parallel efficiency e is calculated as before with the reference simulation against which
we compare is a run on a single core, i.e. Nr = 1. We achieved 82% of cpu gain on 32
processors for the first primal solve which is a crucial step in the optimization algorithms.
For the overall optimization by the NCG algorithm 75% cpu time gain and by the Newton
algorithm 73% cpu time gain were achieved. Absolute execution times on a single core for
one primal solve was 8 min, while the execution of NCG and Newton algorithm lasted ap-
proximately 84 hours and 41 hours, respectively. Evidently, Newton’s method performed
better, being roughly twice as fast as NCG. These numbers highlight the pivotal impor-
tance of using scalable parallel algorithms for the optimization of the application under
consideration.

Figure 7: Parallel efficiency for different optimization algorithms.
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5.2 Numerical results for multiple boundary stimulations

Here we discuss the numerical results for the set up of multiple stimulation electrodes
which are placed at the left and right boundary of the computational domain, see right
hand side of Figure 1. The smaller support patches of the control domains for the anode
region are chosen to be Ωc1 = [0, 0]× [0, 0.5] and Ωc2 = [0, 1.5]× [0, 2.0] of size 1 cm as well
as for the cathode region to be Ωc3 = [2, 0]× [2, 0.5] and Ωc3 = [2, 1.5]× [2, 2] of size 1 cm.
From the view of applications, the main goal is to consider the control domains as small
as possible. For this case the desired transmembrane solution trajectory is constructed
using the stimulus strength Ie = 400 mA/cm3.

We again conducted the numerical experiments based on the NCG and Newton’s op-
timization algorithms and both led to a successful defibrillation. Since the images for the
optimized transmembrane voltage at different time instances are quite similar to those in
Figure 4 we do not depict them here.

The gradient value of the cost functionals, the values of the cost themselves as well
as the optimal controls are depicted in Figure 8. Again the NCG does not reach the
stopping criterion within the first 300 iterations, and it is terminated there. At this point
the algorithm decreases only very slowly. Comparable numbers as in the case of two
electrodes are required as in the case of two electrodes. Here we only report that the
overall computational time for (parallelized) NCG algorithm is 8174 seconds and that for
the Newton method takes about 68% of the NCG CPU time. Thus clearly for this set-up
the Newton optimization outperforms the NCG method.

The computed total optimum extracellular current for NCG is 2.0146 A/cm3 and that
for Newton is quite close with value 2.0134 A/cm3. This optimized applied current is
distinctly less than that which is used to design the desired trajectory which uses 2.4
A/cm3.

Figure 8: The gradient, minimum value of the cost functional and the optimal control
values are shown on the left, middle and right respectively.

6 Discussion

In practice, defibrillation is achieved either externally by two large paddle electrodes placed
on the chest, or, internally, via ICDs. In the latter scenario, both the size of shock
electrodes as well as their number are small. Typically, in concurrent transvenous ICDs
the shocking coil through which current is injected, is placed in the right ventricular
apex, and the case of the ICD serves as reference electrode. Very recent devices offer
more flexibility in terms of number of electrodes and placement options. Alternative
subcutaneous placement strategies have been proposed recently [3], which allow a much
wider range of feasible lead placements. However, the rationalization of lead placements
is challenging [7]. In all scenarios which are currently considered, currents are injected
via a sparse set of small electrodes. Hence, the control regions are sparse and have local
support. This is well in line with the boundary formulation underlying this study. To be
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of practical relevance for optimal control approaches to the cardiac defibrillation problem,
it has to be demonstrated first that reductions in required energy can be achieved by
finding optimal pulses as well as to enable the investigation of various electrode sizes and
placements. In this study two electrode configurations were considered where for the setup
with 4 smaller electrodes it could be shown that defibrillation could be achieved with less
energy.

We use Neumann boundary conditions for modeling current injection. This is advan-
tageous over the standard approaches typically used in bidomain modeling where currents
are injected via nodes weighted with the corresponding nodal hat functions. The total
injected current is then readily computed as the total length/area of the Neumann bound-
ary multiplied by the imposed current density and does not depend on discretization and
choice of weighting function.

The optimization of the applied current problem was achieved by the NCG and Newton
algorithms, and it was found that the latter is advantageous in terms of computational
efficiency as well as achieving local minima.

The optimization algorithm rely on frequent calls to the primal and adjoint equations
and hence parallel efficiency is essential. In our computations we observed good parallel
efficiency up to 4096 CPU cores for the primal solve. We also demonstrate good parallel
efficiency of the NCG and Newtons optimization algorithms.

Acknowledgment

The authors gratefully acknowledge the Austrian Science Foundation (FWF) for financial
support under SFB 032, ”Mathematical Optimization and Applications in Biomedical
Sciences”.

References

[1] CellML Model Repository. http://models.cellml.org/cellml.

[2] G. H. Bardy, B. Hofer, G. Johnson, P. J. Kudenchuk, J. E. Poole, G. L. Dolack, M. Gl-
eva, R. Mitchell, and D. Kelso. Implantable transvenous cardioverter-defibrillators.
Circulation, 87(4):1152–68, 1993.

[3] G. H. Bardy, W. M. Smith, M. A. Hood, I. G. Crozier, I. C. Melton, L. Jordaens,
D. Theuns, R. E. Park, D. J. Wright, D. T. Connelly, S. P. Fynn, F. D. Murga-
troyd, J. Sperzel, J. Neuzner, S. G. Spitzer, A. V. Ardashev, A. Oduro, L. Boersma,
A. H. Maass, I. C. Van Gelder, A. A. Wilde, P. F. van Dessel, R. E. Knops, C. S.
Barr, P. Lupo, R. Cappato, and A. A. Grace. An entirely subcutaneous implantable
cardioverter-defibrillator. N Engl J Med, 363(1):36–44, 2010.

[4] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber,
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