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A Bilevel Optimization Approach for Parameter Learning in Variational Models∗
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Abstract. In this work we consider the problem of parameter learning for variational image denoising models.
The learning problem is formulated as a bilevel optimization problem, where the lower-level problem
is given by the variational model and the higher-level problem is expressed by means of a loss function
that penalizes errors between the solution of the lower-level problem and the ground truth data.
We consider a class of image denoising models incorporating �p-norm–based analysis priors using
a fixed set of linear operators. We devise semismooth Newton methods for solving the resulting
nonsmooth bilevel optimization problems and show that the optimized image denoising models can
achieve state-of-the-art performance.
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1. Introduction. Variational approaches have had great success in solving inverse prob-
lems in imaging, such as image restoration, optical flow, and stereo vision. The fundamental
principle behind these approaches is to devise the solution of the inverse problem as the min-
imizer of an energy functional, which is designed such that its minimum-energy state reflects
the characteristic properties of the solution. For example, popular priors assume that the
solution is piecewise constant or piecewise smooth.

Usually, variational models incorporate a number of free parameters. These parameters
are used, for example, to trade off between regularization and data fidelity or to locally adapt
the variational model to the input data. Selecting optimal parameters is by far not trivial.
A possible procedure for determining these free parameters is to evaluate the performance
of the variational model on some test data with a known optimal solution by performing
an exhaustive search over a range of useful parameter settings. This is tedious and already
becomes infeasible for more than two or three parameters.

In this work a systematic approach for the above procedure will be provided. We cast
parameter selection as a learning problem. Given a certain variational model, the task consists
in learning the parameters such that the variational model minimizes a certain loss functional
on a training database. This naturally leads to a bilevel optimization problem of the following
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form:

(1.1)

⎧⎨⎩min
ϑ≥0

E(x(ϑ))
subject to x(ϑ) ∈ argmin

x
F(x, ϑ).

The bilevel problem consists of a lower-level optimization whose solution x(ϑ) is an argument
of the higher-level minimization problem. The aim of the bilevel problem is then to find a
parameter vector ϑ such that E(x(ϑ)) attains a minimum value.

Concerning the choice of regularization parameters the literature typically distinguishes
between a posteriori and a priori parameter rules, as well as error-free parameter choice
rules; see, e.g., [10, 12] and the references cited therein. The discrepancy principle is a
prominent example of an a posteriori rule, where the regularization parameter is determined
such that the data fidelity term at the optimum equals the size of the noise level. Here we
require knowledge of the noise level as well as the noisy data. A priori rules determine the
regularization parameter solely from knowledge of the noise level. The class of parameter-free
methods includes generalized cross validation and balancing principles between the error in
the fidelity and the regularization terms. Most of the work on parameter choice techniques
addresses the case of a single scalar parameter.

Bilevel optimization problems are an active research area in their own right; see, e.g., [2]
and the references cited therein. Here we analyze only the specific bilevel problem (1.1) to
the extent that is required to propose and investigate numerical methods for its solution. In
this work the functional E of the upper-level problem will be smooth, while for the lower-level
problem we distinguish between a smooth quadratic case and the nonsmooth �1 and � 1

2
cases.

For the application of image restoration, bilevel optimization has been used by Tappen
et al. in [29, 28, 27] to learn the parameters of different Markov random field models. In
particular, they showed that bilevel optimization provides an effective learning method, as it
overcomes the typical problems of classical probabilistic learning methods that require one
to compute the partition function of the underlying probability density function. However,
while Tappen et al. used gradient methods for learning that do not come along with any
convergence guarantees, we propose fast Newton methods that come along with locally super-
linear convergence. It will turn out that our proposed Newton algorithms not only provide
an effective learning framework but also lead to image restoration results superior to those
reported in [27]. We attribute this fact mainly to the ability of our proposed algorithms to be
more successful in finding a (local) minimizer of the bilevel optimization problems than the
gradient methods used in [27]. In [24], a bilevel learning approach was proposed for sparse
analysis prior learning using an �1 model. The approach is similar to that in [27], as it uses
implicit differentiation to compute the gradient of the higher-level problem with respect to
the learning parameters.

Let us give a brief summary of the contents of the following sections. In section 2 we
present the precise problem statement and provide some preliminaries. The smooth case with
a single prior as well as multiple priors is analyzed in section 3. We investigate aspects of
the geometry of the value functional E and develop a Newton algorithm for the solution of
the inequality constrained problem (1.1). Section 4 is devoted to the existence of (1.1) and
the derivation of an optimality condition by means of a regularization procedure for the case
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when the lower-level problem is nonsmooth. The regularized problems are semismooth, and
thus we propose a semismooth Newton algorithm for their solution. Numerical experiments
for a wide variety of priors and for images of different qualitative features are presented in
section 5.

2. Preliminaries. In this work we put our emphasis on the following class of problems:

(2.1)

⎧⎪⎪⎨⎪⎪⎩
min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

F(x, ϑ) =
1

p

q∑
k=1

ϑk‖Kkx‖pp +
1

2
‖x− f‖22.

The lower-level optimization problems F(x, ϑ) consists of a data and a regularization term.
The data term penalizes the squared �2-norm of the discrepancy between the noisy image
f ∈ R

n and the unknown image x ∈ R
n. The regularization term is a sum of q ≥ 1 so-called

analysis-based priors (see, e.g., [31]), penalizing the �pp-norms

‖Kkx‖pp =
n∑

i=1

|(Kkx)i|p

of the result of applying linear operators Kk ∈ R
m×n, 1 ≤ k ≤ q, to x. We shall consider

primarily the cases p ∈ {1, 2}, and in numerical experiments also p = 1
2 . The importance of

the priors ‖Kkx‖pp, 1 ≤ k ≤ q are weighted by parameters ϑk ≥ 0, which are assembled in a
parameter vector ϑ = (ϑ1, . . . , ϑq). Observe that (2.1) admits a unique solution, which follows
from the strict convexity of the data term. The case of a nonstrictly convex data term, for
example a data term of the form 1

2‖Ax− f‖22, where A is a singular linear operator, is left for
future work.

The higher-level optimization problem E(x(ϑ)) penalizes the discrepancy between the min-
imizer of the lower-level optimization problem x(ϑ) and given ground truth data g ∈ R

n by
means of the squared 2-norm. In some situations we will eliminate x, which leads to a re-
duced single-level optimization problem E(ϑ), as opposed to the bilevel optimization problem
E(x(ϑ)).

We frequently make use of a standard inner product on R
n denoted by 〈·, ·〉, which induces

the 2-norm ‖·‖2 = 〈·, ·〉 1
2 . We further denote by ker(K) = {x ∈ R

n : Kx = 0} the kernel of K
and by ran(K) = {Kx : x ∈ R

n} the range or column space of K. The operation max on a
vector x ∈ R

n is understood to operate elementwise, i.e.,

max(0, x) = (max(0, x1), . . . ,max(0, xn)) .

To obtain some insight into the cost functional E associated with (1.1) let us investigate
the scalar-valued case, i.e., x, f, g ∈ R, q = 1, and K1 = 1. For p = 2 and by combining the
lower-level problem with the higher-level problem, we arrive at the single level problem

min
ϑ≥0

E�2(ϑ) =
(

f

1 + ϑ
− g

)2

.
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(a) (b)

Figure 1. Shape of the reduced single-level problems for the �2 and �1 cases.

We plot its graph for the scalar-valued case in Figure 1(a) for various choices of the ratio
f/g. It is easy to show that all sublevel sets of E�2(ϑ) are convex and hence that E�2(ϑ) is
quasi-convex. In the case of p = 1 the single-level problem becomes

min
ϑ≥0

E�1(ϑ) = (max(0, |f | − ϑ) sgn(f)− g)2 ,

which is nonsmooth since the solution to the lower-level problem coincides with f for all ϑ
larger than a threshold value. Figure 1(b) shows E�1(ϑ) again for various choices of the ratio
f/g. Again, it can be shown that E�1(ϑ) is quasi-convex. The quasi convexity is of interest since
it improves the chance that optimization algorithms find the optimal regularization parameters
of the models. In the following section a sufficient condition is found that guarantees this
property also for the multidimensional, single prior case for �2 models.

Note that (2.1) does not explicitly consider the case of multiple training images. However,
as we will see in section 5, this does not put any restrictions on our formulation. Indeed, we
can always combine multiple images to form one large image and consider linear operators
that operate on the combined image.

3. The �2 model.

3.1. Single prior. Let us first consider the most simple instance of (2.1), where we set
p = 2 and q = 1, which corresponds to computing the optimal regularization parameter in a
classical Tikhonov regularization functional:

(3.1)

⎧⎪⎨⎪⎩
min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22
subject to x(ϑ) = argmin

x

ϑ

2
‖Kx‖22 +

1

2
‖x− f‖22.
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Solving the lower-level optimization problem we find that x(ϑ) = (I +ϑKTK)−1f , and hence
(3.1) is equivalent to

(3.2) min
ϑ≥0

E(ϑ) = ‖(I + ϑKTK)−1f − g‖22.

It will be convenient to introduce K = KTK ∈ R
n×n. Every element x ∈ R

n can be uniquely
decomposed as

x = xN + x⊥ ∈ ker(K) ⊕ ran(K).

In our first result, we give a condition which ensures the existence of a minimizer of (3.2).
Proposition 3.1. If ‖f⊥ − g⊥‖2 < ‖g⊥‖2, then (3.2) admits a solution ϑ∗ ≥ 0. If, moreover,

〈Kf, f − g〉 > 0, then ϑ∗ > 0.
Proof. Let {ϑn}∞n=1, with ϑn ≥ 0 being a minimizing sequence, i.e.,

(3.3) lim
n→∞ E(ϑn) = inf

ϑ≥0
E(ϑ).

We argue that limn→∞ ϑn = ∞ is impossible. In fact,

‖(I + ϑnK)−1f − g‖22 = ‖(I + ϑnK)−1f⊥ − g⊥‖22 + ‖(I + ϑnK)−1fN − gN‖22,
and hence, if limn→∞ ϑn = ∞, then

(3.4) lim
n→∞ ‖(I + ϑnK)−1f − g‖22 = ‖g⊥‖22 + ‖fN − gN‖22.

From (3.3), (3.4), and the assumptions on f⊥ and g⊥ we have

lim
n→∞ E(ϑn) = ‖g⊥‖22 + ‖fN − gN‖22 > ‖f⊥ − g⊥‖22 + ‖fN − gN‖22 = E(0),

which is a contradiction, and thus {ϑn} is bounded. It follows that there exist a convergent
subsequence and an accumulation point ϑ∗ ∈ [0,∞). Since ϑ → E(ϑ) is continuous, it follows
from (3.3) that every accumulation point is a solution to (3.2).

Now we assume that ϑ∗ = 0 and note that

(3.5) E ′(ϑ) = − 〈(I + ϑK)−2Kf, (I + ϑK)−1f − g
〉
.

We find that E ′(0) = −〈Kf, f − g〉, which by assumption is strictly negative. This contradicts
that 0 is a minimum, and hence ϑ∗ ∈ (0,∞).

Remark 3.2. If K = I and ‖f‖2 = ‖g‖2 = 1, then the condition 〈Kf, f − g〉 > 0 becomes
1 > 〈f, g〉, which is equivalent to assuming that f �= g.

We next turn to investigating some of the properties of E(ϑ). We shall use that

(3.6) E ′′(ϑ) = 3
〈
(I + ϑK)−4Kf,Kf

〉− 2
〈
(I + ϑK)−3Kf,Kg

〉
.

Since K ≥ 0 is symmetric, every element x ∈ R
n can be expressed as

x =

r∑
i=1

xiei + xN ,

where {ei} are the normalized eigenvectors of K corresponding to nontrivial eigenvalues 0 <
λ1 ≤ · · · ≤ λr, r ≤ n of K. If r = n, then ker(K) = {0}. We shall express f⊥ =

∑r
i=1 fiei and

g⊥ =
∑r

i=1 giei.
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3.1.1. The noise-free case. In this and the following subsections we investigate qualita-
tive properties of E(ϑ). We first consider the special case f⊥ = g⊥, which we refer to as the
noise-free case. While this case is less relevant in practice, it is important to understand the
properties of the function E(ϑ) also in the noise-free situation.

Proposition 3.3. Assume that f⊥ = g⊥ and f⊥ �= 0:
(a) Then ϑ∗ = 0 is the unique global solution to (3.2). Moreover, ϑ → E(ϑ) is strictly

increasing from ‖fN − gN‖22 to ‖g⊥‖22 + ‖fN − gN‖22, and it is strictly convex for ϑ ∈
[0, 1

2λr
) and concave for ϑ ∈ ( 1

2λ1
,∞).

(b) If λr ≤ 2λ1, then there exists a unique ϑ̃ ∈ [ 1
2λr

, 1
2λ1

] such that E(ϑ) is convex for

ϑ ∈ [0, ϑ̃) and concave for ϑ ∈ (ϑ̃,∞).
Proof.
(a) Note that E(0) = ‖fN − gN‖22 and

lim
ϑ→∞

‖(I + ϑK)−1f − g‖22 = lim
ϑ→∞

‖(I + ϑK)−1(fN + f⊥)− g‖22
= ‖g⊥‖22 + ‖fN − gN‖22 .

By (3.5) and since f⊥ = g⊥ we have

E ′(ϑ) = −
r∑

i=1

(
λi

(1 + λiϑ)3
− λi

(1 + λiϑ)2

)
f2
i =

r∑
i=1

λ2
iϑ

(1 + λiϑ)3
f2
i .

Therefore E ′(0) = 0 and E ′(ϑ) > 0 for ϑ > 0, where we use that f⊥ �= 0. Hence E is
strictly increasing from ‖fN − gN‖22 to ‖g⊥‖22 + ‖fN − gN‖22. Similarly we find that

E ′′(ϑ) =
r∑

i=1

(
3λ2

i

(1 + λiϑ)4
− 2λ2

i

(1 + λiϑ)3

)
f2
i =

r∑
i=1

λ2
i

(1 + λiϑ)4
(1 − 2λiϑ)f

2
i .

Hence E ′′ is strictly convex for ϑ ∈ [0, 1
2λr

) and strictly concave for ϑ ∈ ( 1
2λ1

,∞).
(b) We express E ′′(ϑ) =

∑r
i=1 hi, where

hi =
λ2
i

(1 + λiϑ)4
(1− 2λiϑ)f

2
i and h′i =

−6λ3
i

(1 + λiϑ)5
(1− λiϑ)f

2
i .

We note that hi is strictly monotonically decreasing on [0, 1
λi
) for i = 1, . . . , r, and

hence E ′′ is strictly decreasing on [0, 1
λr
). We have that

E ′′(ϑ) > 0 for ϑ ∈
[
0,

1

2λr

)
and E ′′(ϑ) < 0 for ϑ ∈

(
1

2λ1
,∞
)
.

Together with λr ≤ 2λ1 these observations imply the claim.
Example 3.4. Let g = (g1, . . . , gn) be a discrete cosine defined by gi = cos(8πi/n), 1 ≤ i ≤

n, and let f = (f1, . . . , fn) be a shifted version computed as fi = gi+c, c ∈ R. Figure 2(a) plots
the signal g for n = 100 together with its shifted version f , where c = 1/2. Furthermore, let
K be a finite difference approximation of a one-dimensional gradient operator; i.e., (Kx)(i) =
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(a) (b)

Figure 2. The noise-free case. (a) shows the discrete cosine signals g and f , where we used an offset value
of c = 1/2. (b) shows the function values of E(ϑ) depending on the parameter ϑ.

x(i+ 1)− x(i) if 1 ≤ i < n and (Kx)(n) = 0. Note that since (c, . . . , c)T ∈ ker(K), c ∈ R, we
have that g⊥ = f⊥. The nontrivial eigenvalues of K are given in ascending order by

λi = 4 sin2((iπ)/(2n)) , i = 1, . . . , n− 1.

According to Proposition 3.3 we find that E is strictly convex for ϑ ∈ [0, 0.125) and strictly
concave for ϑ ∈ (506.648,∞). See also Figure 2.

3.1.2. The noisy case. The following result provides sufficient conditions for convexity
and concavity of E , for the case where f⊥ may differ from g⊥.

Proposition 3.5 (convexity/concavity).
(a) If ‖Kg‖2 < 3

2‖Kf‖2, then E is strictly convex on(
0,

1

‖K‖2

(√
3

2

‖Kf‖2
‖Kg‖2 − 1

))
.

(b) If f⊥ �= 0, then E is strictly convex on (0, ϑ), where ϑ = minfigi>0
1
λi
(

3f2
i

2figi
− 1). If

figi ≤ 0 for i = 1, . . . ,m, then ϑ = ∞.
(c) If

∑r
i=1

1
λ2
i
figi > 0, then there exists ϑ̃ such that E is strictly concave on (ϑ̃,∞).

Proof.
(a) We have

1 = ‖(I + ϑK)−1(I + ϑK)‖2 ≤ ‖(I + ϑK)−1‖2‖(I + ϑK)‖2,
from which together with ‖(I + ϑK)‖2 ≤ 1 + ϑ‖K‖2 it follows that

1

1 + ϑ‖K‖2 ≤ 1

‖(I + ϑK)‖2 ≤ ‖(I + ϑK)−1‖2 ≤ 1 ,
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(a) (b)

Figure 3. The noisy case. (a) shows the discrete cosine signal g and its noisy version f with additive
Gaussian noise with a standard deviation of σ = 1/4. (b) shows the function values of E(ϑ) depending on the
parameter ϑ together with the bound of strict convexity which is computed according to Proposition 3.5(a).

where the upper bound follows from the fact that K is positive definite. From (3.6)
we have

E ′′(ϑ) ≥ ‖(I + ϑK)−2Kf‖2
(
3‖(I + ϑK)−2Kf‖2 − 2‖(I + ϑK)−1Kg‖2

)
≥ ‖(I + ϑK)−2Kf‖2

(
3

(1 + ϑ‖K‖2)2 ‖Kf‖2 − 2‖Kg‖2
)

> 0,

provided that ϑ ∈ (0, 1
‖K‖2 (

√
3
2
‖Kf‖2
‖Kg‖2 − 1)).

(b) Let P = {i ∈ {1, . . . ,m} : figi > 0}. Utilizing (3.6) we find that

(3.7)

E ′′(ϑ) = 3
m∑
i=1

λ2
i

(1 + ϑλi)4
f2
i − 2

m∑
i=1

λ2
i

(1 + ϑλi)3
figi

≥ 3

m∑
i=1,i/∈P

λ2
i

(1 + ϑλi)4
f2
i +

m∑
i∈P

λ2
i

(1 + ϑλi)4
(3f2

i − 2figi(1 + ϑλi)) > 0

for ϑ ∈ (0, ϑ). Here we also use that f⊥ �= 0.
(c) For ϑ ≥ 1

λ1
we have

E ′′(ϑ) ≤ 3

ϑ4

r∑
i=1

1

λ2
i

f2
i − 2

ϑ3

r∑
i=1

λi

( 1ϑ + λi)3
figi ≤ 3

ϑ4

1

λ2
1

‖f‖22 −
1

4ϑ3

r∑
i=1

1

λ2
i

figi,

and the claim follows.
Example 3.6. Let g and K be as defined in Example 3.4, but now let f be a noisy version

of g, where we add zero-mean Gaussian noise with σ = 1/4. Figure 3(a) plots the cosine
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signal g for n = 100 together with its noisy version f . According to Proposition 3.5(a), we

get that E is strictly convex on ϑ ∈ (0, ϑ̃), where ϑ̃ = 1
‖K‖2 (

√
3
2
‖Kf‖2
‖Kg‖2 − 1) is computed as

ϑ̃ = 0.8932. See Figure 3, where the typical quasi-convex behavior of the learning functional
E can be observed.

3.1.3. A remark on the infinite-dimensional case. Let K be a closed densely defined
linear operator between Hilbert spaces H and Y , with H separable. Then K = K∗K is a
self-adjoint nonnegative operator in H with dense domain that we denote by dom(K); see,
e.g., [18, page 326]. Moreover, for every λ with Reλ > 0, the resolvent (K + λI)−1 exists as
a bounded linear operator on H; see, e.g., [18, page 279]. Within this setting we consider for
g ∈ H, f ∈ H, and ϑ ≥ 0

(3.8)

⎧⎪⎨⎪⎩
min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖2H
subject to x(ϑ) = argmin

x

ϑ

2
‖Kx‖2Y +

1

2
‖x− f‖2H .

The necessary and sufficient optimality condition for the lower-level problem is given by

(3.9) (I + ϑK)x = f.

It has a unique solution x(ϑ) ∈ H for each ϑ ≥ 0. If ϑ > 0, then x(ϑ) ∈ dom(K). Again, we
have an equivalent reduced problem

(3.10) min
ϑ≥0

E(ϑ) = ‖(I + ϑK)−1f − g‖2H

and the orthogonal decomposition

x = xN + x⊥ ∈ ker(K) ⊕ ran(K),

where the closure is taken in H. We assume that (I + ϑK)−1 is compact for some (or,
equivalently, all) ϑ > 0. Then the spectrum of K consists entirely of isolated eigenvalues
0 < λ1 ≤ λ2 . . . of finite multiplicity plus possibly the eigenvalue 0, and every x ∈ H can be
expressed as x =

∑∞
i=1 xiei + xN , with xN ∈ ker(K) and ei eigenvectors of K associated with

the eigenvalues �= 0. We have the analogue of Proposition 3.1.
Proposition 3.7. If ‖f⊥ − g⊥‖H < ‖g⊥‖H , then (3.10) admits a solution ϑ∗ ≥ 0. If, more-

over, f ∈ domK and 〈Kf, f − g〉H > 0, then ϑ∗ > 0.
Proof. Using the fact that (I+ϑK)−1 leaves ker(K) and (ker(K)⊥ invariant we can proceed

as in the proof of Proposition 3.1 to get the first part of the result. Note that limϑ→0+(I +
ϑK)v = v for all v ∈ H. Consequently E ′(ϑ) is continuous on [0,∞) if f ∈ dom(K). The proof
of the second part now follows as in that of Proposition 3.1.

3.2. Multiple priors. In this section we study the �2 model with multiple priors, i.e., p = 2
and q ≥ 1. It is defined as

(3.11) min
x∈Rn

1

2

q∑
k=1

ϑk‖Kkx‖22 +
1

2
‖x− f‖22,
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with the parameter vector ϑ = (ϑ1, . . . , ϑq) ≥ 0. The minimum of the above problems is
characterized by

x+

q∑
k=1

ϑkKkx = f,

or, equivalently, x = (I +
∑q

k=1 ϑkKk)
−1f . The reduced quadratic learning functional is then

given by

(3.12) min
ϑ≥0

E(ϑ) = 1

2

∥∥∥∥∥∥
(
I +

q∑
k=1

ϑkKk

)−1

f − g

∥∥∥∥∥∥
2

.

For convenience we introduce the symmetric positive definite matrix

R =

(
I +

q∑
k=1

ϑkKk

)−1

.

To guarantee existence the following condition will be used:

inf{‖x̃− g‖2 : x̃ ∈ ker(Kk) for some k = 1, . . . , q} > ‖f − g‖2.(3.13)

We observe that in case ker(Kk) = {0} for all k, condition (3.13) amounts to ‖g‖2 > ‖f − g‖2.
If q = 1, then (3.13) is equivalent to assuming that ‖g⊥‖2 > ‖f⊥ − g⊥‖2. This condition was
already used for the single-parameter case in Proposition 3.1.

Proposition 3.8. If (3.13) holds and kerKk ∩ kerKl = {0} for all k �= l, then (3.12) admits
a solution.

Proof. Let {ϑn}∞n=1 denote a minimizing sequence, and suppose that limn→∞ ‖ϑn‖2 = ∞.
Then there exist index sets J ⊆ {1, . . . , q}, J = {1, . . . , q} \ J and a constant κ1 such that

(3.14) lim
n→∞ϑn

k = ∞ for k ∈ J and |ϑn
k | ≤ κ1 for k ∈ J and all n.

We set

(3.15) xn =

(
I +

q∑
k=1

ϑn
kKk

)−1

f.

Clearly {xn} is bounded and hence, on a subsequence, denoted by the same index, limn→∞ xn =
x̂ for some x̂ ∈ R

n. From (3.15)

∑
k∈J

ϑn
kKkx

n = f −
⎛⎝xn +

∑
k∈J

ϑn
kKkx

n

⎞⎠ .

Taking the inner product with xn and observing that the right-hand side is bounded,

min
k∈J

ϑn
k

∑
k∈J

‖Kkx
n‖22 ≤ κ2
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for a constant κ2 independent of n. Since mink∈J ϑn
k → ∞ for n → ∞, we find that

limn→∞Kkx
n = Kkx̂ = 0 for all, meaning that x̂ ∈ ker(Kk) for all k ∈ J . Since {ϑn}

was chosen as the minimizing sequence, we obtain

inf
ϑ≥0

E(ϑ) = lim
n→∞ ‖xn − g‖22 = ‖x̂− g‖22 > ‖f − g‖22 = E(0),

where we used (3.13). This is a contradiction, and hence every minimizing sequence is
bounded. Since ϑ → E(ϑ) is continuous, the claim follows.

The partial derivatives of E with respect to ϑk are given by

(∇E(ϑ))k = −〈Rf − g,RKkRf〉 for k = 1, . . . , q,

where R is evaluated at ϑ. Taking into account the inequality constraint ϑ ≥ 0 in (3.12), the
first-order necessary condition is given by

(3.16) ∇E(ϑ∗)− μ = 0, μ ≥ 0, ϑ∗ ≥ 0, 〈μ, ϑ∗〉 = 0,

where μ ∈ R
q is the Lagrange multiplier associated with the constraint ϑ ≥ 0. It can be

checked that the three last conditions can be equivalently expressed as

μ−max(0, μ − ϑ∗) = 0.

For the Hessian of E we obtain for k = 1, . . . , q and l = 1, . . . , q the expression

∇2E(ϑ) = M1 +M2,

where

(M1)k,l = 〈RKkRf,RKlRf〉 and (M2)k,l = 〈Rf − g,RKkRKlRf +RKlRKkRf〉
are symmetric matrices.

Let A = {k ∈ {1, . . . , q} : (ϑ∗)k = 0} denote the set of active constraints for some local
solution ϑ∗ of (3.11). Then, the second-order necessary optimality condition implies that

(3.17) ∇2E(ϑ∗) is semidefinite on T,

where T is the tangent space of the active constraints T = {ϑ ∈ R
q : ϑk = 0 for all k ∈ A}.

Note that M1 is a Gram matrix corresponding to the vectors {RKkRf}qk=1. We assume that

(3.18) {KkRf}qk=1 is linearly independent.

Since R is positive definite, {RKkRf}mk=1 is linearly independent and M1 is nonsingular.
If ‖Rf − g‖2 is sufficiently small, then M1 + M2 is nonsingular as well. This implies that
∇2E(ϑ∗) > 0 on R

q. We summarize our discussion in a theorem.
Theorem 3.9. Assume that (3.18) is satisfied, and let ϑ∗ be a local solution of (3.11). Then,

if

(3.19)

∥∥∥∥(I + q∑
k=1

ϑ∗
kKk

)−1

f − g

∥∥∥∥ is sufficiently small,

the second-order sufficient optimality condition is satisfied at ϑ∗; in particular, ϑ∗ is a locally
unique minimum.

Note that for f = g we have ϑ∗ = 0 as global solution. Therefore (3.19) can be interpreted
as a smallness condition on the error in the data.
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Algorithm 3.1. Newton Learning for �2 (NL-�2).

(i) Choose (ϑ0, μ0) ∈ R
r × R

q, and set n = 0.
(ii) Determine An = {k : μn

k − ϑn
k ≥ 0}, In = {k : μn

k − ϑn
k < 0}.

(iii) Assign M = ∇2E(ϑn), P = diag(pk), Q = diag(qk), where

pk =

{
1 if k ∈ An,

0 if k ∈ In,
qk =

{
0 if k ∈ An,

1 if k ∈ In.

(iv) Solve for (δϑ, δμ):

(3.20)

(
M −I
P Q

)(
δϑ
δμ

)
= −

( ∇E(ϑn)− μn

μn −max(0, μn − ϑn)

)
.

(v) Update (ϑn+1, μn+1) = (ϑn, μn) + (δϑ, δμ), set n = n+ 1, and goto (ii).

3.3. Newton algorithm. We propose and analyze a semismooth Newton scheme for solv-
ing (3.12). For this purpose we express the necessary optimality condition (3.16) in the form

(3.21)

{
∇E(ϑ∗)− μ = 0,

μ−max(0, μ− ϑ) = 0.

To solve (3.21) we utilize a semismooth Newton algorithm which is outlined in Algorithm 3.1.
To analyze this algorithm the vectors δϑ and δμ are decomposed into inactive and active

components (δϑ)I , (δϑ)A and (δμ)I , (δμ)A, respectively, and M is partitioned accordingly:

M =

(
MII MIA
MAI MAA

)
.

Here, for notational convenience the unknowns are ordered in such a manner that the inactive
coordinates appear first and the active ones last, and the iteration index for the sets An and
In is dropped. From the second equation in (3.20) we obtain

(3.22) (δϑ)A = −ϑn
A, (δμ)I = −μn

I , ϑn+1
A = 0, μn+1

I = 0.

Turning to the first equation in (3.20) we first solve for the inactive components of δϑ by

(3.23) MII(δϑ)I = −MIA(δϑ)A − (∇E(ϑn))I

and then assign

(δμ)A = MAI(δϑ)I +MAA(δϑ)A + (∇E(ϑn))A − μn
A.

Note that while (3.20) is asymmetric, system (3.23), which is of the dimension of the inactive
set, is symmetric.
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Theorem 3.10. Let ϑ∗ be a local solution of (3.12) with associated Lagrange multiplier μ∗,
and suppose that (3.18) and (3.19) hold. Then, if ‖(ϑ0, μ0)− (ϑ∗, μ∗)‖2 is sufficiently small,
the iterations of Algorithm 3.1 converge superlinearly to (ϑ∗, μ∗).

Proof. We verify here the requirements for superlinear convergence of the semismooth
Newton method as given in, e.g., [17, page 238]. The max-operation is well known to be
semismooth (see, e.g., [17, 30] and the references cited therein), and Dmax(0, x) = χ{x≥0} is
a generalized or Newton derivative. Here (χ{x≥0})i = 1 if xi ≥ 0 and (χ{x≥0})i = 0 otherwise.
This choice of generalized derivative determines step (iii) of Algorithm 3.1. The proof will be
complete if we argue that the system matrices

H(ϑ, μ) =

(
M(ϑ) −I
P (ϑ, μ) Q(ϑ, μ)

)
are invertible with uniformly bounded inverses in a neighborhood Bρ(ϑ

∗, μ∗) of (ϑ∗, μ∗) for
some radius ρ > 0. The notation H(ϑ, μ) emphasizes the dependence of M,P, and Q on ϑ and
μ. The discussion before Theorem 3.10 implies that ∇2E(ϑ∗) = M(ϑ∗) > 0. Hence there exists
a neighborhood Bρ(ϑ

∗), with ρ > 0, and κ > 0 such that ‖M−1(ϑ)‖2 ≤ κ for all ϑ ∈ Bρ(ϑ
∗).

In particular, this implies that ‖M(ϑ)−1
II‖2 ≤ κ for all ϑ ∈ Bρ(ϑ

∗) and any combination of
I ∈ {1, . . . , q}. Now consider for ϑ ∈ Bρ(ϑ

∗), μ ∈ R
q, and (y, z) ∈ R

2q

(3.24) H(ϑ, μ)

(
δϑ
δμ

)
=

(
y
z

)
.

As in the computation before the statement of the theorem we find that

(δϑ)A =
1

c
zA, (δμ)I = zI .

From the first equation in (3.24) we find that

MII(ϑ)(δϑ)I = −1

c
MIA(ϑ)zA + zI + yI ,

(δμ)A = MAI(δϑ)I +MAA(δϑ)A − yA.

Combining these equalities, the invertibility of H(ϑ, μ) with uniformly bounded inverses for
(ϑ, μ) in a neighborhood of (ϑ∗, μ∗) follows.

4. The �1 model. In this section we analyze variational models with �1 and hence nondif-
ferentiable regularization terms. This type of model has great impact in signal processing, in
particular in imaging and compressed sensing. First, we investigate the existence of a solution
of the bilevel optimization problems. Then, we derive the optimality conditions by using a
regularization approach and passing the regularization parameter to zero. Finally, we will
develop superlinearly converging semismooth Newton algorithms that solve the regularized
problems.

4.1. Problem formulation and existence.

(4.1)

⎧⎪⎪⎨⎪⎪⎩
min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

q∑
k=1

ϑk‖Kkx‖1 + 1

2
‖x− f‖22 .



14 KARL KUNISCH AND THOMAS POCK

The lower-level problem (4.1) admits a unique solution x = x(ϑ). Its optimality condition
is given by

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q∑
k=1

ϑkK
∗
kλ

k + x = f,

λk
i ∈

{
sgn(Kkx)i if (Kkx)i �= 0,

[−1, 1] if (Kkx)i = 0.

We have the following existence result analogous to Proposition 3.1.
Proposition 4.1. If (3.13) holds, then (4.1) admits a solution ϑ∗ ≥ 0.
Proof. We first argue that ϑ → x(ϑ), with x(ϑ) the solution to the lower-level problem, is

continuous. Let ϑn → ϑ and xn = x(ϑn). Since

q∑
k=1

ϑn
k‖Kkxn‖1 + 1

2
‖xn − f‖22 ≤

1

2
‖f‖22,

the sequence {xn} is bounded, and hence it admits a convergent subsequence xnk
→ x. We

need to argue that x = x(ϑ). For this purpose we note that

q∑
k=1

ϑn
k‖Kkxn‖1 + 1

2
‖xn − f‖22 ≤

q∑
k=1

ϑn
k‖Kkx‖1 + 1

2
‖x− f‖22 for all x ∈ R

n

implies that

q∑
k=1

ϑk‖Kkx‖1 + 1

2
‖x− f‖22 ≤

q∑
k=1

ϑk‖Kkx‖1 + 1

2
‖x− f‖22 for all x ∈ R

n,

and hence x = x(ϑ), since the solution to the lower-level problem is unique.
Next, let {ϑn}∞n=1 be a minimizing sequence, and abbreviate xn = x(ϑn). If limn→∞ ‖ϑn‖2 =

∞, determine J as in (3.14). Since

q∑
k=1

ϑn
k‖Kkxn‖1 + 1

2
‖xn − f‖22 ≤

1

2
‖f‖22,

we deduce that {xn}∞n=1 is bounded and that limn→∞ ‖Kixn‖1 = 0 for all i ∈ J . Hence
there exist a subsequence, denoted by the same symbol, and x̂ such that limn→∞ xn = x̂ and
Kix̂ = 0 for all i ∈ J . In particular, x̂ is contained in the kernel of at least one operator Ki,
and thus by (3.13)

inf
ϑ≥0

E(x(ϑ)) = lim
n→∞ E(xn) = lim

n→∞ ‖xn − g‖22 = ‖x̂− g‖22 > ‖f − g‖22 = E(x(0)),

which contradicts the choice of {ϑn}∞n=1 as the minimizing sequence. Hence {ϑn}∞n=1is bounded
in R

q. Consequently there exist another subsequence, denoted by the same symbol, and
ϑ∗ ∈ [0,∞) such that limn→∞ ϑn = ϑ∗. Since ϑ → x(ϑ), and hence ϑ → E(x(ϑ)) are
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continuous, it follows that every accumulation point ϑ∗ of {ϑn} is a solution to (4.1), and
x∗ = x(ϑ∗).

Remark 4.2. In case of only one prior, we can give a sufficient condition to exclude the
case that ϑ∗ = 0. For this purpose we assume that

(4.3) (Kg)i = 0 if (Kf)i = 0 and

〈
Kf − g,

Kf

|Kf |
〉

> 0,

where Kf
|Kf | is interpreted componentwise as (Kf)i

|(Kf)i| if (Kf)i �= 0 and (Kf)i
|(Kf)i| is interpreted as

some element in [−1, 1] if (Kf)i = 0. We now exclude that ϑ∗ = 0 is the minimum. For this
purpose we argue that d

dϑE(x(ϑ))|ϑ=0+ exists and is negative. We have

E(x(ϑ))− E(x(0)) = 〈x(ϑ) + x(0) − 2g, x(ϑ) − x(0)〉

= −ϑ 〈x(ϑ) + f − 2g,K∗λ(ϑ)〉 = −ϑ 〈K(x(ϑ) + f − 2g), λ(ϑ)〉 ,

where we use that x(0) = f.
Let I = {i : (Kx(0))i �= 0}. Then (Kx(ϑ))i �= 0 for all i ∈ I and all ϑ > 0 sufficiently

small. For these i and ϑ we have

λi(ϑ) =
(Kx(ϑ))i
|(Kx(ϑ))i| →

(Kx(0))i
|(Kx(0))i|

as ϑ → 0+. For i /∈ I we have λi(ϑ) ∈ [−1, 1] and (K(x(ϑ) + f − 2g))i → 0 for ϑ → 0+, where
we use that limϑ→0+ x(ϑ)i = fi and (4.3). Therefore

lim
ϑ→0+

1

ϑ
(E(x(ϑ)) − E(x(0))) = −2

〈
K(f − g),

Kf

|Kf |
〉
,

and ϑ → E(x(ϑ)) is differentiable at ϑ = 0+. By (4.3) we have d
dtE(x(ϑ))|ϑ=0+ < 0, and hence

ϑ = 0 cannot be a solution to (4.1). We note that the condition 〈K(f − g), Kf
|Kf |〉 > 0 can

be expressed equally well as 〈K(f − g), λ(0)〉 > 0 for any Lagrange multiplier λ(0) associated
with ϑ = 0.

4.2. Optimality system. To derive an optimality system for (4.1) we use a regularization
approach and consider

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
ϑ≥0

E(x(ϑ)) = ‖x(ϑ)− g‖22

subject to x(ϑ) = argmin
x

q∑
k=1

ϑk

m∑
j=1

nε((Kkx)j) +
1

2
‖x− f‖22,

where, for ε > 0,

(4.5) nε(t) =

⎧⎨⎩− 1

8ε3
t4 +

3

4ε
t2 +

3ε

8
if |t| < ε,

|t| else.
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The following properties of nε will be used repeatedly:

(4.6)

⎧⎪⎨⎪⎩
nε ∈ C2(R,R), nε(ε) = ±ε, n′

ε(±ε) = ±1, n′′
ε(±ε) = 0, n′

ε(t) ∈ [−1, 1],

n′′
ε(t) ∈

[
0,

3

2ε

]
, nε(t) ≥ t, for all t ∈ R.

Furthermore, we have

n′
ε(t) =

{
− 1

2ε3
t3 + 3

2ε t if |t| < ε,

sgn(t) else

n′′
ε(t) =

{
− 3

2ε3
t2 + 3

2ε if |t| < ε,

0 else

n′′′
ε (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− 3

ε3
t if |t| < ε,{

0, 3
ε2

}
if t = −ε,{− 3

ε2
, 0
}

if t = ε,
0 else.

At t = ±ε we consider, for the time being, the third derivative to be multivalued, consisting
of the right and left directional derivatives. It is simple to argue the existence of a unique
lower-level solution xε(ϑ) for each ε > 0. It is characterized as the solution x = x(ϑ) to

(4.7) x+

q∑
k=1

ϑkK
T
k N

′
ε(Kkx) = f,

where

N ′
ε(Kkx) = (n′

ε((Kkx)1), . . . , n
′
ε((Kkx)m))T ∈ R

m.

Since t → n′
ε(t) is monotone, the operator x → x+

∑q
k=1 ϑkK

T
k N

′
ε(Kkx) is strictly monotone,

and hence the solution to (4.7) is unique. Using (4.7) it follows that ϑ → xε(ϑ) is differentiable
on [0,∞)q for each ε > 0, with the sensitivity equation given by

(4.8) Dϑx+ [KT
k N

′
ε(Kkx)] +

q∑
k=1

ϑkK
T
k N

′′
ε (Kkx)KkDϑx = 0,

where

Dϑx ∈ R
n×q, [KT

k N
′
ε(Kkx)] = (KT

1 N
′
ε(K1x), . . . ,K

T
q N

′
ε(Kqx)) ∈ R

n×q

and

N ′′
ε (Kkx) = diag(n′′

ε((Kkx)1), . . . , n
′′
ε((Kkx)m)) ∈ R

m×m.

Let ϑε denote a solution to (4.4), which exists under the assumption of Proposition 4.1. Then,
the first-order optimality condition for (4.4) is given by

(4.9) DϑE(xε(ϑε))(ϑ − ϑε) = 2 〈xε(ϑε)− g,Dϑxε(ϑε)(ϑ − ϑε)〉 ≥ 0 for all ϑ ≥ 0.
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To eliminate Dϑxε from the first-order condition (4.9) we introduce the adjoint equation

(4.10) p+

q∑
k=1

ϑkK
T
k N

′′
ε (Kkx)Kkp = −(xε(ϑε)− g).

Since n′′
ε ≥ 0, the adjoint equation admits a unique solution. Taking the inner product of

(4.8) with p and of (4.10) with Dϑx(ϑε) we obtain

(4.11) DϑE(xε(ϑε))(ϑ − ϑε) = 2
〈
p, [KT

k N
′
ε(Kkxε(ϑε))](ϑ − ϑε)

〉 ≥ 0 for all ϑ ≥ 0

or, equivalently,

(4.12)
〈
N ′

ε(Kkxε(ϑε)),Kkp
〉
(ϑk − ϑε,k) ≥ 0 for all ϑk > 0, k = 1, . . . , q.

Summarizing, the necessary optimality condition for the regularized problem is given by

(4.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xε +

q∑
k=1

ϑε,kK
T
k N

′
ε(Kkxε) = f (primal equation) ,

pε +

q∑
k=1

ϑε,kK
T
k N

′′
ε (Kkxε)Kkpε = −(xε − g) (adjoint equation) ,〈

N ′
ε(Kkxε),Kkpε

〉
(ϑk − ϑε,k) ≥ 0 for all ϑk ≥ 0, k = 1, . . . , q (optimality).

The last expression in (4.13) can be expressed equally well as N ′
ε(Kkx)

TKkp ∈ −∂IR+(ϑ∗
k),

where IR+ is the indicator function of R+ and ∂IR+(ϑ∗
k) denotes the subdifferential evaluated

at ϑ∗
k, k = 1, . . . , q. To obtain an optimality system for the original problem (4.1) we shall

pass to the limit ε → 0+ in (4.13). A similar procedure was used in [9] in the context of
optimal control of a Bingham fluid; in that case the minimization variable appeared as affine,
rather than as a multiplicative term like in our case, and a different type of regularization
was used. Alternatively a first-order condition can be obtained by using the Mordukhovich
calculus; compare [23] for mathematical programming problems with equilibrium constraints.

Theorem 4.3. Let ϑ∗ ≥ 0 denote a solution to (4.1) with associated state x∗ = x(ϑ∗).
Then there exist an adjoint state p ∈ R

n and multipliers λk ∈ R
m, k = 1, . . . , q, and ξ ∈ R

n

satisfying the following optimality system:

(4.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗ +
q∑

k=1

ϑ∗
kK

T
k λk = f,

(λk)i ∈
{
sgn(Kkx

∗)i if (Kkx
∗)i �= 0,

[−1, 1] if (Kkx
∗)i = 0,

p+ ξ = −(x∗ − g),

〈λk,Kkp〉 ∈ −∂IR+(ϑ∗
k),

〈ξ, p〉 ≥ 0,

〈x∗ − g, p〉 ≤ 0,

〈ξ, x∗〉 = 0,

(Kkp)i = 0 if |(λk)i| < 1 for k = 1, . . . , q, i = 1, . . . ,m.
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Proof. The proof of Theorem 4.3 is given in the appendix.
Remark 4.4. Before closing this subsection we comment on the chosen regularization nε

of the norm function in (4.5) by comparing to other choices that were made in related cases.
The optimality condition for the lower-level problem in (4.4) with q = 1 is given by

x+ ϑKTλ = f,

where λi ∈ ∂(|(Kx)i|), which can also be expressed as

(4.15)

{
x+ ϑKTλ = f,

|Kx| ⊗ λ = Kx, |λ|∞ ≤ 1,

where a ⊗ b = (a1b1, . . . , anbn). The same system is obtained by Fenchel dualization of the
lower-level problem in (4.4) with λ chosen as the dual variable. A regularization of this primal-
dual formulation is obtained by replacing coordinatewise the norm operation |t| in (4.15) by
ñε(t) = 2

√
t2 + ε. Such an approach was used for TV-regularized problems in [5], and it is

also related to the taut string algorithm, as pointed out in [13]. Alternatively a localized
regularization can be chosen by setting

(4.16) n̂ε(t) =

⎧⎨⎩
1

2ε
t2 +

ε

2
if |t| < ε,

|t| else,

as used in [9, 14], for example. Let us compute to which kind of regularized primal formula-
tion the primal-dual formulation (4.15) regularized by (4.16) would lead; i.e., we replace the
generalized derivative λ ∈ ∂(|Kx|) by Kx

n̂ε(Kx) , coordinatewise, and compute the antiderivatives

to obtain a new regularization ñε(|Kx|). Carrying this out coordinatewise we obtain

(4.17) ñε(t) =

⎧⎪⎨⎪⎩ ε

[
log

(
ε

2
+

t2

2ε

)
− log

(
ε

2

)]
if |t| < ε,

(|t|+ ε(log(2)− 1)) else.

This regularization of n(t) is again C2-regular with monotone derivative ñ′
ε, which is essential

for the solvability of the necessary condition associated with the lower-level problem. Dif-
ferently from (4.4), ñε(t) acts globally and the expressions for the derivations are rational
functions rather than polynomials. Thus we prefer (4.4) over (4.17).

4.3. Necessary second-order optimality condition. Here we derive a second-order nec-
essary condition for local solutions of (4.4). Beyond the intrinsic relevance for describing the
structure of the second-order necessary condition, its discussion is motivated by the fact that
we introduce a second-order sufficient condition in the following subsection in order to ana-
lyze a semismooth Newton method for solving (4.13). Of course, it is desirable that the gap
between the necessary and sufficient optimality conditions is small. We henceforth drop the
dependence of (ϑ, x, p), a solution to (4.13), on ε > 0.

In principle, the derivation of the second-order conditions is quite standard; see, e.g.,
[21, section 10.5]. Our situation, however, is complicated due to the lack of second-order
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smoothness of the equality constraint in (4.4). Second-order conditions for general semismooth
optimization problems were investigated, for instance, in [6]. Our situation here is somewhat
different, however. First, only the constraints lack sufficient regularity, while the objective
functional is regular, and, second, the null-space representation of the linearized equality has
a special structure since the variables x ∈ R

n can be represented in terms of ϑ ∈ R
n. It is

therefore appropriate to give an independent derivation.
Let ϑ denote a local solution to (4.4) with associated state x = x(ϑ) (i.e., the dependence

of the solution on ε > 0 is dropped here). We denote the set of strongly active indices by

AS = {k :
〈
N ′

ε(Kkx),Kkp
〉
> 0}.

On this set ϑk = 0 is determined by the necessary conditions. The critical cone for the
necessary second-order condition is defined by

C = {ϑ ∈ R
q : ϑk = 0 for k ∈ AS , ϑk ≥ 0 if ϑk = 0}.

For any ϑ̂ ∈ C we have ϑ + tϑ̂ ≥ 0 for all t ≥ 0 sufficiently small. For convenience we also
recall the primal equation

(4.18) x+

q∑
k=1

ϑkK
T
k N

′
ε(Kkx) = f.

The directional derivative of x with respect to ϑ at ϑ in direction ϑ̂ is denoted by ẋ ∈ R
n. It

satisfies

(4.19) L1ẋ+ L2ϑ̂ = 0.

Here L1 ∈ R
n×n and L2 ∈ Rn×q are given by

L1 = I +

q∑
k=1

ϑkK
T
k N

′′
ε (Kkx)Kk, L2 = (KT

q N
′(Kqx), . . . ,K

T
q N

′(Kqx)).

We shall need the third derivatives of t → nε((Kkx(ϑ̄+tϑ̂))i) at t = 0, which requires attention
in case |(Kkx(ϑ))i| = ε. If (Kkx(ϑ

∗))i = ε and d
dt((Kkx(ϑ + tϑ̂))i)|t=0 = (Kkẋ)i > 0, then

by the formulas above (4.7) we have that the third-order directional derivative is 0; if, on the
other hand, (Kkẋ)i < 0, then the third-order right directional derivative is n′′′

ε ((Kkx(ϑ))i) =
− 3

ε3
(Kkx(ϑ))i. Finally, if (Kkx(ϑ̇))i = 0, then the third-order right directional derivative is

multivalued with values in {0,− 3
ε3
, (Kkx(ϑ))i}. Summarizing, if nε((Kkx(ϑ))i) = ε, then we

denote the third-order directional derivative of t → nε((Kkx(ϑ+ tϑ̂))i)|t=0 by n′′′
ε,ϑ̂

(Kkx(ϑ))i,

and it is given by

n′′′
ε,ϑ̂

((Kkx(ϑ))i) ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if (Kkẋ)i > 0, (Kkx(ϑ))i = ε,

− 3

ε3
(Kkx(ϑ))i if (Kkẋ)i < 0, (Kkx(ϑ))i = ε,{

0,− 3

ε3
(Kkx(ϑ))i

}
if (Kkẋ)i = 0, (Kkx(ϑ))i = ε.
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We shall see that the expression n′′′
ε,ϑ̂

(Kkx(ϑ))i always appears as a factor with (Kkẋ(ϑ))i, and

we note that the expression n′′′
ε,ϑ̂

((Kkx(ϑ))i)(Kkẋ(ϑ))i is single valued. The expressions for the

case (Kkx(ϑ))i = −ε can be derived in a completely analogous manner. If |(Kkx(ϑ))i| �= ε,
then the third derivative of t → nε(Kkx(ϑ + tϑ̂))i|t=0 is clearly well defined. It is again
denoted by n′′′

ε,ϑ̂
((Kkx(ϑ))i). The expression for the third-order right directional derivative of

t → Nε,ϑ̂(Kkx(ϑ)) is obtained from

N ′′′
ε,ϑ̂

(Kkx(ϑ)) = diag
(
n′′′
ε,ϑ̂

((Kkx(ϑ))1), . . . , n
′′′
ε,ϑ̂

((Kkx(ϑ))m)
)
.

Associated with the local solution (x, ϑ) we recall the adjoint equation, which we now
express as

(4.20) L1p = −(x− g).

Finally we introduce the Lagrangian associated with (4.1)

L̂(x, ϑ, p) = 1

2
‖x− g‖22 +

〈
p, x+

q∑
k=1

ϑkK
T
k N

′
ε(Kkx)− f

〉
.

We are now prepared to establish a second necessary condition for (4.1) at (x, ϑ).
Theorem 4.5 (second-order necessary condition). With the notation for N ′′′

ε,ϑ̂
introduced above

we have

0 ≤ (ẋT , ϑ̂T )

⎛⎜⎝I +

q∑
i=1

ϑiK
T
i N

′′′
ε,ϑ̂

(Kix)diag (Kp)Ki R

RT 0

⎞⎟⎠(ẋ
ϑ̂

)

for each ϑ ∈ C. Here R ∈ R
n×q is given by

R = (KT
1 N

′′
ε (K1x)K1p, . . . ,K

T
q N

′′
ε (Kqx)Kqp)

and ẋ satisfies (4.19).
Proof. Let ϑ̂ ∈ C, set ϑ(t) = ϑ+ tϑ̂, and let x = x(t) denote the solution to

(4.21) x+

q∑
k=1

(ϑk + tϑ̂k)K
T
k N

′
ε(Kkx) = f,

where t > 0, and ẋ is the solution to (4.19). In the following computation it is assumed that
t is sufficiently small so that ϑ+ tϑ̂ ≥ 0 and such that E(ϑ(t)) ≥ E(ϑ). Consequently we have

(4.22) 0 ≤ L̂(x(t), ϑ(t), p) − L̂(x, ϑ, p),

and, moreover,

∇x L̂(x, ϑ, p) = 0.
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Therefore we find, using |a|2 − |b|2 − 2 〈a− b, b〉 = |a − b|2, and ϑ̂ ∈ C in the first equality
below, that

0 ≤ L̂(x(t), ϑ(t), p) − L̂(x, ϑ, p)−
〈
∇x L̂(x, ϑ, p), x(t)− x

〉
=

1

2
||x(t)− g||22 −

1

2
||x− g||22 − 〈x(t)− x, x− g〉

+

〈
p,

q∑
k=1

(ϑk + tϑ̂k)K
T
k N

′
ε(Kkx(t))−

q∑
k=1

ϑkK
T
k (N

′
ε(Kkx))

−
q∑

k=1

tϑ̂kK
T
k N

′
ε(Kkx)−

q∑
k=1

ϑkK
T
k N

′′(Kkx)Kk(x(t)− x)

〉

=
1

2
||x(t)− x||2 +

〈
p,

q∑
k=1

ϑkK
T
k (N

′
ε(Kkx(t))−N ′

ε(Kkx)−N ′′
ε (Kx)Kk(x(t)− x))

〉

+

〈
p,

q∑
k=1

tϑ̂kK
T
k (N

′
ε(Kkx(t))−N ′

ε(Kkx))

〉
.

By the discussion preceding the statement of the theorem we obtain that

lim
t→0+

1

t2
(N ′

ε(Kkx(t))−N ′
ε(Kkx)−N ′′

ε (Kkx)Kk(x(t)− x))

= lim
t→0+

1

t2
(
N ′

ε(Kkx(t))−N ′
ε(Kkx)−N ′′

ε (Kkx)Kk(x(t)− x)

− 1

2
N ′′′

ε (Kkx)diag(Kk(x(t)− x))Kk(x(t)− x)

+
1

2
N ′′′

ε,ϑ̂
(Kkx)diag(Kk(x(t)− x))Kk(x(t)− x)

)
=

1

2
N ′′′

ε,ϑ̂
(Kkx)diag(Kkẋ)Kkẋ.

As a consequence we have

0 ≤ 1

2
||ẋ||2 + 1

2

〈
p,

q∑
k=1

ϑkK
T
k N

′′′
ε,ϑ̂

(Kkx)diag(Kkẋ)Kkẋ

〉
+

〈
p,

q∑
k=1

ϑ̂kK
T
k N

′′
ε (Kkx)Kkẋ〉

=
1

2
||ẋ||2 + 1

2

q∑
k=1

ϑk〈diag(Kkp)N
′′′
ε,ϑ̂

(Kkx)(Kkẋ),Kkẋ

〉

+

q∑
k=1

ϑk〈KT
k N

′′
ε (Kkx)Kkp, x〉,

which can be expressed as

0 ≤ (ẋT , ϑ̂T )

⎛⎜⎝I +

q∑
k=1

ϑkK
T
k N

′′′
ε,ϑ̂

(Kkx)diag (Kkp)Kk R

RT 0

⎞⎟⎠(ẋ
ϑ̂

)
,
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as desired.
From the discussion before Theorem 4.5 we recall that the coordinates of N ′′′

ε,ϑ̂
(Kix̂)Kiẋ

and hence of N ′′′
ε,ϑ̂

(Kix̂)diag(Kp)Kiẋ are single valued.

4.4. Semismooth Newton algorithms. In this subsection a semismooth Newton method
for solving the necessary optimality system (4.13) for the regularized problem (4.4) is de-
veloped and analyzed. Clearly, due to the regularization of the �1-norm, we obtain only an
approximate solution of the original problem, but convergence for ε → 0 to the �1 problem
was established above. An exact error analysis in terms of ε is left for future work. Conver-
gence of the regularized problem to the original one was already studied in Theorem 4.3. We
utilize that the optimality condition in (4.11) can equivalently be expressed by means of the
complementarity formulation

(
〈
N ′

ε(Kkx),Kkp
〉
)q×1 − μ = 0,

μ−max(0, μ − ϑ) = 0,

where
(
〈
N ′

ε(Kkx),Kkp
〉
)q×1 = (

〈
N ′

ε(K1x),K1p
〉
, . . . ,

〈
N ′

ε(Krx),Krp
〉
),

and max operates coordinatewise.
System (4.11) can therefore be expressed equivalently as

(4.23) G(x, ϑ, p, μ) = 0,

where

G(x, ϑ, p, μ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p+

q∑
k=1

ϑkK
T
k N

′′
ε (Kkx)Kkp+ x− g

(〈N ′
ε(Kkx), Kkp〉)q×1 − μ

q∑
k=1

ϑkK
T
k N

′
ε(Kkx) + x− f

μ−max(0, μ − ϑ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The reason for exchanging the order of the equations is to create symmetries in the generalized
Jacobian J(x, ϑ, p, μ) of G(x, ϑ, p, μ) to be specified below. In what follows we specify the value
of n′′′(t) at t = ±ε to be 0. We could equally well take ∓ 3

ε2
. For (x, ϑ, p, μ) ∈ R

n×R
q×R

n×R
q

we define

L1(x, ϑ) = I +

q∑
k=1

ϑkK
T
k N

′′
ε (Kkx)Kk, L2(x) = (KT

1 N
′
ε(K1x), . . . ,K

T
q N

′
ε(Kqx)),

R(x) = (KT
1 N

′′
ε (K1x)K1p, . . . ,K

T
q N

′′
ε (Kqx)Kqp) ∈ R

n×q,

Max′(0, μ) = diag(max′(0, μ1), . . . ,max′(0, μq)),

where

max′(0, μk) =

{
1 if μk > 0,

0 if μk ≤ 0.
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We note that there exists a neighborhood U . We find that the generalized Jacobian of G is
given by

(4.24) J(x, ϑ, p, μ) =

⎛⎜⎜⎜⎜⎝
Q(x, ϑ, p) R(x) L1(x, ϑ) 0

R(x)T 0 LT
2 (x) −I

L1(x, ϑ) L2(x) 0 0

0 Max′(0, μ− ϑ) 0 I −Max′(0, μ− ϑ)

⎞⎟⎟⎟⎟⎠ ,

where

Q(x, ϑ, p) = I +

q∑
k=1

ϑkK
T
k N

′′′
ε (Kkx) diag(Kkp)Kk.

A positive definiteness assumption of the upper 2 × 2 block of J(x, ϑ, p, μ) will be required.
Let (x, ϑ, p, μ) denote a solution to G(x, ϑ, p, μ) = 0. Furthermore, let U = U(x, ϑ, p, μ) denote
an open neighborhood of (x, ϑ, p, μ), and set

(4.25) A(ϑ, μ) = {k : μk − ϑk > 0},

and
C = {δϑ ∈ R

q : δϑk = 0 if k ∈ A(ϑ, μ)}.
Note that at the solution we have ϑkμk = 0, and μk ≥ 0, ϑk ≥ 0, and hence A(ϑ, μ) = {k :
μk > 0} coincides with the strongly active set of section 3.3. We shall utilize the following
assumption:

(H1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

There exists a bounded neighborhood U = U(x, ϑ, p, μ)
such that for all (x, ϑ, p, μ) ∈ U

(δxT , δϑT )

(
Q(x, ϑ, p) R(x)
R(x)T 0

)(
δx
δϑ

)
> 0

for all ϑ ∈ C and L1(x, ϑ)δx + L2(x)δϑ = 0.

Note that μ does not appear in the positive definite condition, but boundedness of the
μ-coordinates in U will be used below.

Comparing (H1) to the second-order necessary condition of Theorem 4.5 we note that
(H1) requires positive definiteness in a neighborhood of (x, ϑ, p), that perturbations of the
active set need to be admitted, and that the values of n′′′

ε at t = ±ε are fixed, whereas in
Theorem 4.5 they appear as directional derivatives. For the purpose of this subsection the
choice of max′(0, μk) could be 0 at μk = 0. This would change A(ϑ, μ) = {k : μk − ϑk ≥ 0},
but the following convergence result would remain unchanged.

By (H1) and the fact that t → n′′′
ε (t) has only finitely many discontinuities, there exists

κ > 0 such that

(δxT , δϑT )

(
Q(x, ϑ, p) R(x)
RT (x) 0

)(
δx
δϑ

)
≥ κ‖

(
δx
δϑ

)
‖22

for all ϑ ∈ C, L1(x, ϑ)δx + L2(x)δϑ = 0, and (x, ϑ, p, μ) ∈ U.
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Proposition 4.6. If (H1) holds, then J(x, ϑ, p, μ) is regular for each (x, ϑ, p, μ) ∈ U and the
inverses are uniformly bounded.

Proof. Let (x, ϑ, p, μ) ∈ U , set A = A(ϑ, μ) as defined above, and let I = {1, . . . , r} \ A.
We show that J(x, ϑ, p, μ) is injective. Let (δx, δϑ, δp, δμ) ∈ R

n × R
q × R

n × R
q, and assume

that

(4.26) J(x, ϑ, p, μ)

⎛⎜⎜⎝
δx
δϑ
δp
δμ

⎞⎟⎟⎠ = 0.

We partition δϑ into coordinates associated with inactive δϑI and active δϑA coordinates,
and similarly for δμ. The columns of R(x) corresponding to inactive coordinates are denoted
by R(x)I , and analogously for L2(x)I . Thus R(x)I is of dimension n × #(I), where #(I)
denotes the cardinality of I. From the last equation in (4.26) we have

δϑA = 0 and δμI = 0.

From the third equation in (4.26) we have

(4.27) L1(x, ϑ)δx + L2(x)δϑ = L1(x, ϑ)δx + L2(x)I(δϑ)I = 0.

Now from the first and second equations of (4.26)

(4.28)
Q(x, ϑ, p)δx +R(x)IδϑI = −LT

1 (x, ϑ)p,

(R(x)I)T δx = −(L2(x)I)T p,

where we use that (δμ)I = 0. Since by (H1) the matrix (
Q RI
RT

I 0 ) is positive definite on

ker (L1(x, ϑ), L2(x)I) and the right-hand side is in its orthogonal complement, we find that
δx = 0 and δϑI = 0. From the first equation in (4.26) we deduce that δp = 0. The third
equation, evaluated for the A-coordinates, implies that δμA = 0, and hence J(x, ϑ, p, μ) is a
regular matrix. Since U is bounded, its closure is compact. Now, by a compactness argu-
ment and the fact that J(x, ϑ, p, μ) has at most finitely many discontinuities in x, uniform
boundedness of the inverses follows.

A semismooth Newton algorithm for solving G(x, ϑ, p, μ) = 0 can now be specified.

Algorithm 4.1. Newton Learning for �1 (NL-�1).

(i) Choose (x0, ϑ0, p0, μ0) ∈ R
n × R

q × R
n × R

q, and set n = 0.

(ii) Solve J(xn, ϑn, pn, μn)

⎛⎜⎜⎝
δx
δϑ
δp
δμ

⎞⎟⎟⎠ = −G(xn, ϑn, pn, μn).

(iii) Update (xn+1, ϑn+1, pn+1, μn+1) = (xn, ϑn, pn, μn)+(δx, δϑ, δp, δμ), set n = n+1, and
goto (ii).
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Theorem 4.7. Let (x, ϑ, p, μ) denote a solution of G(x, ϑ, p, μ) = 0, and assume that (H1)
holds. Then, Algorithm 4.1 converges locally superlinearly.

Proof. Using well-known characterizations for semismooth functions (see, e.g., [30, page
27], it can be argued that G is semismooth. Together with uniform boundedness of the
generalized Jacobians J(x, ϑ, p, μ) in a neighborhood of (x, ϑ, p, μ), the claim follows; see, e.g.,
[30, page 29].

Algorithm 4.1, which arises as a Newton algorithm applied to the optimality condition,
is frequently referred to as the sequential quadratic programming (SQP) algorithm. The
algorithm can equivalently be obtained by iteratively minimizing a quadratic approximation
to the cost and a linear (in x and ϑ) approximation to the constraining equation, which in
our case is the necessary optimality condition to the lower-level problem. Algorithm 4.1 is
closely related to applying a Newton algorithm to the reduced functional ϑ → E(x(ϑ)), where
x(ϑ) satisfies the nonlinear constraining equation. They differ by the property that the primal
updates of the Newton algorithm applied to the reduced functional ϑ → E(x(ϑ)) live on the
nonlinear constraining manifold, while iterates of Algorithm 4.1 are contained in the tangent
space to the constraint at the current iterate. It is well known that the former of these two
algorithms can be obtained from the latter by introducing feasibility steps [16]. For the current
problem this is given in Algorithm 4.2.

Algorithm 4.2. Reduced Newton Learning for �1 (RNL-�1).

(i) Choose (ϑ0, μ0) ∈ R
q × R

q, and set n = 0.
(ii) Solve x+

∑q
k=1 ϑ

nKT
k N

′
ε(Kkx) = f for xn (primal feasibility step).

(iii) Solve L1(x
n, ϑn)p = −(xn − g) for pn (dual feasibility step).

(iv) Solve J(xn, ϑn, pn, μn)

⎛⎜⎜⎝
δx
δϑ
δp
δμ

⎞⎟⎟⎠ = −G(xn, ϑn, pn, μn).

(v) Update (ϑn+1, μn+1) = (ϑn, μn) + (δϑ, δμ), set n = n+ 1, and goto (ii).

Due to the feasibility steps the right-hand side of step (iii) in Algorithm 4.2 has the form

G(x, ϑ, p, μ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

(〈N ′
ε(Kkx), Kkp〉)q×1 − μ

0

μ−max(0, μ − ϑ)

⎞⎟⎟⎟⎟⎟⎟⎠ .

For any solution (x, ϑ, p, μ) to G(x, ϑ, p, μ) = 0 we have ϑ̄ ≥ 0. Hence L1(x̄, ϑ̄) is positive
definite, and the implicit function theorem implies the existence of neighborhoods U(x)×U(ϑ)
such that for each ϑ ∈ U(ϑ) there exists a solution x = x(ϑ) ∈ U(x̄) satisfying

(4.29) x+

q∑
k=1

ϑkK
T
k N

′
ε(Kkx)− f = 0.



26 KARL KUNISCH AND THOMAS POCK

Moreover, ϑ → x(ϑ) is continuously differentiable from U(ϑ) to U(x̄). The solution in step (ii)
of Algorithm 4.2 is chosen to satisfy xn ∈ U(x̄). Without loss of generality we may assume that
{(x, ϑ) : (x, ϑ, p, μ) ∈ U((x̄, ϑ̄, p̄, μ̄))} ⊂ U(x̄) × U(ϑ̄), where U(x̄, ϑ̄, p̄, μ̄) was introduced in
(H1), and that L1(x, ϑ) is regular with uniformly bounded inverses for all (x, ϑ) ∈ U(x̄)×U(ϑ̄).
For nonnegative ϑ this property is obviously satisfied for all x.

In numerical practice we switched from Algorithm 4.1 to Algorithm 4.2 for small values of
epsilon (e.g., ε ≤ 10−2). Moreover, we used a reduced form of the system in step (iii) which
will be detailed after addressing convergence for Algorithm 4.1.

Theorem 4.8. Let (x, ϑ, p, μ) be a solution to G(x, ϑ, p, μ) = 0. If (H1) holds, then the
iterates of Algorithm 4.1 converge locally superlinearly.

Proof. The proof can be given by standard arguments, and hence it suffices to give the
main steps.

The iteration can be characterized by

(4.30) zn → ẑn+1 = zn + δz → zn+1 = (xn+1, ϑn + δϑ, pn+1, μn + δμ),

where zn = (xn, ϑn, pn, μn), and δz = (δx, δϑ, δp, δμ) is the solution to the system in step (iii)
in Algorithm 4.2. The first step in (4.30) is a semismooth Newton step, and hence

(4.31) ‖zn + δz − z̄‖ = o(‖zn − z̄‖),
where z̄ = (x̄, ϑ̄, p̄, μ̄), and the norm ‖ ·‖ is taken in R

n×R
q×R

n×R
q. Arguing iteratively, by

(4.31) together with the Lipschitz estimates below, we find that the iterates zn ∈ U(x̄, ϑ̄, p̄, μ̄)
if ‖(x0, ϑ0)− (x̄, ϑ̄)‖ is sufficiently small.

Since ϑ → x(ϑ) is C1 on U(ϑ̄), there exists a constant K1 such that ‖x(ϑ)−x̄‖ ≤ K1‖ϑ−ϑ̄‖
for all ϑ ∈ U(ϑ), and in particular

(4.32) ‖x(ϑn+1)− x̄‖ = ‖xn+1 − x̄‖ ≤ K1‖ϑn+1 − ϑ̄‖ = o(‖ϑn − ϑ̄‖).
Moreover, we find that

L1(x
n+1, ϑn+1)(pn+1 − p̄) = −(L1(x

n+1, ϑn+1)− L1(x̄, ϑ̄)) p̄ + x̄− xn+1,

and therefore there exists a constant K2, independent of n, such that

(4.33) ‖pn+1 − p̄‖ ≤ K2‖(xn+1, ϑn+1)− (x̄, ϑ̄)‖ = o(‖ϑn − ϑ̄‖).
Combining (4.31)–(4.33) the claim follows.

We next express step (iv) of Algorithm 4.2 in terms of the variables (ϑ, μ). From the first
and third equations of (iv) we derive

δp = −L−1
1 (Qδx+Rδϑ) ,

δx = −L−1
1 L2 δϑ.

Here and below we drop the dependence of L1, L2, R, and Q on the current iterate (xn, ϑn, pn).
The second equation of (iv) gives

(4.34) RT δx+ LT
2 δp− δμ = −G3.
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Introducing the symmetric matrix

P (xn, ϑn, pn) = LT
2 L

−1
1 QL−1

1 L2 −RTL−1
1 L2 − LT

2 L
−1
1 R

and δx and δμ in terms of δϑ in (4.34) we obtain

P (xn, ϑn, pn) δϑ − δμ = −G2(x
n, pn, μn).

Combined with the fourth equation in (iii) we obtain the asymmetric system

(4.35)

(
P (xn, ϑn, pn) −I

Max′(0, μn − ϑn) I −Max′(0, μn − ϑn)

)(
δϑ
δμ

)
=

(−G2(x
n, pn, μn)

−G4(ϑ
n, μn)

)
.

The second equality in (4.35) can be expressed as

Max′(0, μn − ϑn) δϑ + (I −Max′(0, μn − ϑn)) δμ + μn −max(0, μn − ϑn) = 0.

This implies that

(4.36) ϑn+1
A = 0 and μn+1

I = 0,

where A = A(ϑn, μn) is defined in (4.25) with (ϑ, μ) replaced by (ϑn, μn) and the subscript A
with ϑn+1

A is defined in the proof of Proposition 4.6.
Finally we partition the coordinates into active and inactive ones, so that, after possible

reordering, x = (xI , xA). Accordingly P (xn, ϑn, pn) is split into block matrices

P (xn, ϑn, pn) =

(
P (xn, ϑn, pn)I P (xn, ϑn, pn)I,A

P (xn, ϑn, pn)A,I P (xn, ϑn, pn)A

)
.

Thus (4.35) is equivalent to solving the symmetric system

P (xn, ϑn, pn)I δϑI = −〈N ′
ε(Kix), Kip〉I + P (xn, ϑn, pn)I,Aϑn

A,

where we use that δϑA = −ϑA, and assigning

μn+1
A = (P δϑ)A + 〈N ′

ε(Kix), Kip〉A,
and ϑn+1

A , μn+1
I = 0 according to (4.36).

5. Numerical realization. In our numerical experiments, we consider the problem of learn-
ing the optimal regularization parameters for the �1 model with multiple priors. For this
purpose, we consider a training data base consisting of a set of clean images and their noisy
versions that are generated by adding noise of different strengths to the clean images. Then, if
the training data base is large enough, we can expect that we can compute some “universally
optimal” parameters that lead to good denoising results, at least for images that are in the
same class as the images in the training data base (e.g., natural images or medical images).

In section 5.1 we will present the results of learning the optimal parameters for different
noise levels using different algorithms. Once we have computed the optimal parameters, the
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(a) (b)

Figure 4. Subset of the ground truth data g extracted from the BSDS500 database [1] and the noisy data f
using a noise level of σ = 25.

models can be tested on previously unseen images. Results for testing will be presented in
section 5.2.

Having a set of training data (gi, fi), i = 1 . . . , N , the bilevel problem we are aiming to
solve is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
ϑ≥0

E(x(ϑ)) =
N∑
i=1

‖xi(ϑ)− gi‖22

subject to xi(ϑ) = argmin
x

q∑
k=1

ϑkg‖Kkx‖1 + 1

2
‖x− fi‖22.

To generate the training data, we first randomly sample N = 64 patches of size w×h = 64×64
from the BSDS500 image segmentation database [1] and store them in vectors gi ∈ R

wh. The
reason for sampling random patches in a large database is to generate samples of a large
diversity by simultaneously minimizing the amount of training data. Then, we generate
the noisy versions fi ∈ R

wh by adding Gaussian noise with different standard deviations
σ ∈ {15, 25, 50} to gi. Figure 4 shows an exemplary subset of the training data together with
a noisy version.

In previous sections, we did not consider the case of multiple training data (gi, fi). How-
ever, we can easily convert the learning problem for multiple training data to the form (4.1)
by stacking up all gi and fi to large vectors, i.e., g̃ = (g1, . . . , gN ) and f̃ = (f1, . . . , fN ), and
by defining the linear operators K̃k as the N ×N block-diagonal matrices

(5.1) K̃k = diag(Kk, . . . ,Kk︸ ︷︷ ︸
N times

) .

Then, we can treat the multiple training data problem as a single training data problem with
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(a) 1st

(b) 1st + 2nd

(c) DCT3

(d) DCT5

Figure 5. Different sets of filters used in the experiments.

a modified linear operator K̃ and the analysis carried out in the previous sections can be
applied.

The linear operators Kk ∈ R
m×n we consider in our experiments are generated from

local filter kernels κk ∈ R
μ×ν such that the matrix-vector product Kkx is equal to the two-

dimensional convolution of the two-dimensional image x with the filter kernel κk, i.e.,

Kkx = x ∗ κk,

where ∗ denotes the two-dimensional convolution operation. Note that for the matrix-vector
product Kkx, the image is treated as a column vector, whereas for the two-dimensional con-
volution with the filter kernels κk, the image is treated as a two-dimensional array.

For the filter kernels we consider various choices, e.g., standard finite difference approxi-
mations of first- and second-order derivatives or higher-order linear operators obtained from
the basis vectors of the two-dimensional discrete cosine transform (DCT). Figure 5 shows the
filter kernels we used in our experiments. For the boundary conditions, we modify the linear
operators in a way such that the image data is reflected at the boundaries.

5.1. Learning. In the following sections we show how to learn the optimal regularization
parameters ϑ in the multiple prior �1 model. We shall study two approaches: a first approach
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that reduces the �1 learning problem to a sequence of reweighted �2 learning problems which
will be solved using Algorithm 3.1 and a second approach that directly solves the �1 learning
problem using the reduced Newton algorithm, Algorithm 4.2. We will compare the perfor-
mances of both approaches and finally show preliminary extensions to solving the optimal
parameters of a nonconvex � 1

2
model. All algorithms are implemented in MATLAB and are

executed on a 2.60GHz i5 CPU running a 64bit Linux system.

5.1.1. Iteratively reweighted �2 learning. Motivated by the fixed-point algorithm for
solving the lower-level �1 problems [32, 8], we consider a sequence of reweighted �2 problems
for learning the optimal regularization parameters of the �1 problem.

Let nε be the ε regularized Huber-�1 norm

(5.2) nε(t) =

{
t2

2ε +
ε
2 if |t| ≤ ε,

|t| else.

Given a point t̂, we can bound nε(t) from above via the quadratic function [3]

nε(t) ≤ 1

2

(
t2

max(ε, |t̂|) + max(ε, |t̂|)
)
.

Now, assume we are given an x̂ which is sufficiently close to the optimal solution of the lower-
level problem. We can then approximate the �1 bilevel learning problem as a quadratic single
level problem

min
ϑ≥0

E(ϑ) = 1

2

∥∥∥∥∥∥
(
I +

q∑
k=1

ϑkKk(x̂)

)−1

f − g

∥∥∥∥∥∥
2

,

where

Kk(x̂) = KT
k diag

(
1

max(ε, |(Kkx̂)1|) , . . . ,
1

max(ε, |(Kkx̂)m|)
)
Kk

is the weighted linear operator. This motivates an iterative algorithm which starts with an ini-
tial estimate of x̂ and then solves a sequence of quadratic single-level problems with iteratively
updated versions of x̂. The outline of the algorithm is presented in Algorithm 5.1. The most
involved step in the algorithm is computing the solution of the weighted �2 single-level problem
which is carried out by using the semismooth Newton algorithm, Algorithm 3.1. In our ex-
periments, we observe that the Hessian matrix M involved in the Newton equation (3.20) can
have negative eigenvalues, which means that the Newton direction is not a descent direction.
In view of the higher-level function E(ϑ) as depicted in Figure 1, this comes as no surprise
given the concave behavior of E(ϑ) away from zero. In this case we use a positive definite
approximation of M by flipping the signs of the negative eigenvalues (see [22] for more de-
tails). It is important to point out that M is always positive definite when the iterate becomes
sufficiently close to the optimal solution, which enables local superlinear convergence of the
algorithm. During the iterations of Algorithm 3.1, we always perform full steps in μ and in ϑi

for all i ∈ An and carry out an Armijo-type linesearch in ϑi for all i ∈ In using the function
value of the higher-level optimization problem as the merit function. We set ε = 10−3 in the
Huber-regularized | · | function in (5.2). The iterations of the inner algorithms, Algorithm 3.1,
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are stopped when a maximum number of inner iterations maxiter1 = 100 is reached or the
normalized residual, i.e., the �2-norm of the right-hand side of (3.20) divided by its number of
elements, is less than a tolerance of tol1 = 10−6. We stop the iterates of the outer algorithms,
Algorithm 5.1, when a maximum number of outer iterations maxiter2 = 100 is reached or the
normalized outer residual, i.e., the �2-norm of (3.20) using ϑn and recomputing x̂, is below a
tolerance of tol2 = 10−3.

Algorithm 5.1. Iteratively Reweighted Learning for �2 (IRL-�2).

(i) Set n = 0, ϑ = 0, x̂ = f .
(ii) Compute Kk(x̂) = KT

k diag(
1

max(ε,|(Kkx̂)1|) , . . . ,
1

max(ε,|(Kkx̂)m|))Kk.

(iii) Solve

ϑn = argmin
ϑ≥0

E(ϑ) = 1

2

∥∥∥∥∥∥
(
I +

q∑
k=1

ϑkKk(x̂)

)−1

f − g

∥∥∥∥∥∥
2

using Algorithm 3.1.
(iv) Compute x̂ = (I +

∑q
k=1 ϑ

n
kKk(x̂))

−1f .
(v) Set n = n+ 1, and goto (ii).

5.1.2. Direct �1 learning. Next we discuss the reduced Newton learning algorithm for �1
problems as presented in Algorithm 4.2. In step (ii) of the algorithm, we need to perform the
primal feasibility step, which amounts to computing the minimizer of the lower-level problem.
For this, we use a standard primal Newton algorithm with an Armijo-type backtracking line-
search which takes on average 10–20 iterations to bring the normalized residual of the primal
equation below a threshold of tol1 = 10−9. In step (iii) of the algorithm we need to compute
the dual feasibility step, which we solve by using the MATLAB mldivide command. We
again use a positive definite approximation of the matrix P in (4.35) in case it has negative
eigenvalues by flipping the signs of the negative eigenvalues. Furthermore, we perform full
steps on μ and ϑi for all i ∈ An and an Armijo-type backtracking linesearch on ϑi for all
i ∈ In using the higher-level problem E(ϑ) as the merit function. We set ε = 10−3 in the
fourth-order polynomial approximation of the | · | function in (4.5). We stop the algorithm
when a maximum number of iterations maxiter = 100 is reached or the normalized residual,
i.e., the �2-norm of the right-hand side of the Newton equation in step (iv) divided by its
number of elements, is less than a tolerance of tol2 = 10−3.

5.1.3. Results. Table 1 shows the result of learning the optimal regularization parameters
on natural images for various linear operators and noise levels using the iteratively reweighted
�2 learning algorithm (IRL-�2) and the reduced Newton �1 learning algorithm (RNL-�1).

In general, one can see that the energy of the higher-level problem E(ϑ) decreases with
the diversity of the filter banks and, equivalently, that the quality of the �1 models increases
with the diversity of the differentiation order included in the filter banks. Observe that
the largest performance increase comes through adding second-order filters to the first-order
derivative filters. We also performed experiments where we added first-order derivative filters
to the DCT filter banks, and it happened that the weights of the first-order filters were set
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Table 1
Results for the �1 learning algorithms on natural images. The table shows the number of Newton steps and

the value of the higher-level problem E(ϑ).

Algorithm IRL-�2

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
1st 107 163.19 145 303.21 191 602.83

1st + 2nd 119 152.98 190 282.91 174 563.86
DCT3 132 148.79 141 272.60 183 545.46
DCT5 101 147.67 150 268.12 506 529.83

Algorithm RNL-�1

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
1st 8 162.87 24 302.69 16 601,88

1st + 2nd 18 152.45 33 282.02 43 562.44
DCT3 12 147.55 20 270.62 37 542.90
DCT5 16 144.69 44 265.41 100 525.97

to zero by the learning algorithm. This experiment suggests that the first-order filters and
hence the classical total variation prior are not very suitable for natural images. In contrast,
we observed that on randomly generated piecewise constant images the learning algorithm
always preferred first-order filters over any additional higher-order filter, which suggests that
for piecewise constant images, the total variation is already a very good prior.

Comparing the results of the IRL-�2 and RNL-�1 algorithms, one can clearly see that
RNL-�1 needs far fewer Newton steps to converge. This can be explained by the fact that
the IRL-�2 algorithm performs a fixed-point iteration by solving a sequence of reweighted �2
learning problems, and hence the overall algorithm is in principle a first-order algorithm. In
contrast, the RNL-�1 algorithm is a full Newton algorithm on the original �1 learning problem
and hence exhibits superlinear convergence.

Furthermore, one can see that the RNL-�1 algorithm stops at slightly smaller energies.
This is explained by the fact that for a fixed value of ε, the function (4.5) utilized in the RNL-
�1 algorithm is a better approximation to the true | · | function than the Huber function (5.2)
utilized in the IRL-�2 algorithm. We also tried to use a smaller ε in the IRL-�2 algorithm,
which, however, led to convergence problems.

5.1.4. Learning of a nonconvex �1
2
model. It is well known that the probability density

function (PDF) of the responses of zero mean linear filters (e.g., DCT filters) on natural images
has heavily tailed distributions [15]. Figure 6 plots the negative log PDF of the last DCT5
filter shown in Figure 5 applied to natural images together with different model fits. One can
clearly see that the |·|2 function provides a bad fit to the negative log PDF, which is consistent
with the inferior performance of quadratic energies for image regularization. Although the | · |
function provides a much better fit than the | · |2 function, the

√| · | function represents an
almost perfect model. However, while the | · | function is still convex, the

√| · | is nonconvex,
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(a)

Figure 6. Negative log PDF of the filter response of a DCT5 filter applied to natural images. Note that the√| · | function provides the best fit to the heavy-tailed shape of the true density function.

which makes the lower problem much harder to solve.
Our aim is now to show that we can utilize the algorithms developed in this paper to learn

the optimal regularization parameters of a model involving the nonconvex � 1
2
quasi norm. We

shall see that this simple nonconvex model achieves excellent image denoising results very
close to state-of-the-art algorithms.

The bilevel learning problem involving the nonconvex � 1
2
quasi norm is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min
ϑ≥0

E(x(ϑ)) =
l∑

i=1

‖xi(ϑ)− gi‖22

subject to xi(ϑ) = argmin
x

q∑
k=1

ϑk‖Kkx‖
1
2
1
2

+
1

2
‖x− fi‖22 ,

where ‖Kkx‖
1
2
1
2

=
∑n

i=1

√|(Kkx)i|. In order to apply our learning algorithms, we need to

regularize the above problem. Similar to (4.5) we use a locally regularized approximation of
the

√| · | function:

(5.3) nε(t) =

⎧⎪⎨⎪⎩− 3t4

32
√
ε7

+
7t2

16
√
ε3

+
21
√
ε

32
if |t| < ε,√

|t| else,

with derivatives

n′
ε(t) =

⎧⎨⎩ − 3t3

8
√
ε7

+ 7t

8
√
ε3
if |t| < ε,

t

2
√

|t|3 else,
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n′′
ε(t) =

⎧⎨⎩ − 9t2

8
√
ε7

+ 7
8
√
ε3

if |t| < ε,

− 1

4
√

|t|3 else,

n′′′
ε (t) =

⎧⎨⎩ − 9t
4
√
ε7

if |t| < ε,

3t

8
√

|t|7 else.

For learning, we use the reduced Newton algorithm, Algorithm 4.2, which can be easily
adapted to the � 1

2
setting by replacing the regularized �1-norm with the regularized � 1

2
–quasi

norm. We term the resulting algorithm the reduced Newton � 1
2
learning algorithm (RNL-� 1

2
).

In our experiments we observe that the Hessian matrix in the � 1
2
case can have strongly

negative eigenvalues and that computing a positive definite approximation of the Hessian by
simply flipping the signs of the negative eigenvalues does not always lead to a very good
second-order approximation. This results in a worse convergence behavior of the algorithm.
We stop the algorithm after the normalized residual is below a tolerance of tol = 10−3 or a
maximum number of iterations maxiter = 100 is reached. The investigation of an improved
Newton algorithm, for example the development of a trust region Newton method, is subject
to future work. For computing the primal feasibility step, we use the limited memory BFGS
quasi-Newton method [20], where again for convergence reasons, we set ε = 10−2 in the ε
regularized

√| · | function (5.3). The development of an algorithm that can handle smaller ε
is left to future work. Table 2 shows the results of applying the RNL-� 1

2
to natural images using

DCT3 and DCT5 filter banks and various noise levels. Observe that the RNL-� 1
2
algorithm

takes significantly more iterations than the RNL-�1 algorithm. However, as already said,
our predominant aim is to show the potential of the nonconvex � 1

2
model and hence also

the limitations of the convex �1 model. Comparing the function values of E(ϑ) using the � 1
2

models to the function values when using �1 models, as shown in Table 1, we can see that
the nonconvex � 1

2
models lead to significantly lower function values, which means that the � 1

2

model can recover images which are closer to the ground truth images.

Table 2
Results for the � 1

2
learning algorithm on natural images. The table shows the number of Newton steps and

the value of the higher level problem E(ϑ).

Algorithm RNL-� 1
2

σ = 15 σ = 25 σ = 50

Filters k E(ϑ) k E(ϑ) k E(ϑ)
DCT3 47 134.02 100 253.35 100 527.13
DCT5 13 128.63 100 240.63 100 500.83

5.2. Testing. In this section we use the learned models from the last section to evaluate
their denoising performance on unseen images from the BSDS500 database [1]. Furthermore,
we will show comparisons to related methods as well as state-of-the-art algorithms.
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In this work, we inherently assumed that the noise level of the images is known in advance.
We point out that this assumption is reasonable also for practical problems since in many cases,
the noise level can be computed from the image acquisition process, can be specified by the
user, or can be estimated by separate algorithms [19].

Having given the noise level, we compute the solution of the lower-level problems using
the first-order primal-dual algorithm [4] with the preconditioning described in [25] in the case
of the �1 models and using the limited memory BFGS quasi-Newton method [20] in the case of
the � 1

2
models. Note that for testing we require only a moderate accuracy of the minimizers of

the lower-level problems, and hence we stopped the algorithms after the change of the function
value was below a threshold of tol = 10−3.

5.2.1. Results of the �1 model. Figures 7, 8, and 9 show the denoising results of the
learned �1 models on natural images containing zero-mean Gaussian noise of various standard
deviations, σ ∈ {15, 25, 50}. One can observe that larger filter banks consistently lead to a
better image denoising performance, where, in particular, the DCT filters are much better
in recovering textured areas. Furthermore, one can see that while the first-order filters lead
to cartoon-like images (see the detail views in the last rows of the figures), the higher-order
filters lead to much more naturally appearing results.

From the experiments we can observe an interesting limitation of the �1 models. While
the step from simple first-order priors (i.e., the total variation) to higher-order priors (e.g.,
second-order derivatives or DCT3) gives the largest performance increase, the performance
seems to saturate when further increasing the diversity of the filter banks (e.g., from DCT3
to DCT5), and hence we expect that the performance of �1 models cannot be improved much
more by keep adding priors to the model. We do not think that this is due to a wrong set
of priors (we also experimented with dictionary priors such as SVD and ICA priors) but is
an inherent limitation of the �1 model. Indeed, we will see that switching from the convex �1
model to the nonconvex � 1

2
model will overcome this limitation.

5.2.2. Comparison between the �1 model and the �1
2
model. Figure 10 shows a com-

parison between the convex �1 model and the nonconvex � 1
2
model using the DCT5 filter bank

for different noise levels. One can clearly see that the nonconvex � 1
2
model leads to signifi-

cantly better denoising results and the difference is higher for smaller noise levels. We can
characterize the qualitative differences between the �1 model and the � 1

2
model as follows:

(i) The � 1
2
model leads to a better preservation of the contrast in the reconstructed image

than the �1 model. Let us interpret both models in terms of a shrinking process. It is
known that the �1 model performs in principle a soft shrinkage of the coefficient which
shrinks the coefficients independently of their strength. The � 1

2
, however, performs a

stronger shrinkage of smaller coefficients and a weaker shrinkage of larger coefficients
which result in a better preservation of the contrast.

(ii) The �1 model is not very successful in recovering homogeneous areas, although it
preserves textured regions very well. This effect comes from the convexity of the �1-
norm, which cannot distinguish very well between homogeneous regions and textured
regions. In contrast, the concave shape of the � 1

2
-norm is much more successful in

distinguishing textured and nontextured areas and hence gives better results.
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(a) clean (b) noisy (24.61) (c) 1st(29.12)

(d) 1st + 2nd(29.31) (e) DCT3(29.50) (f) DCT5(29.49)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 7. Image denoising performance of the trained �1 model for a natural image and σ = 15. The
numbers shown in the brackets refer to PSNR values with respect to the clean image.
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(a) clean (b) noisy (20.17) (c) 1st(28.17)

(d) 1st + 2nd(28.73) (e) DCT3(28.81) (f) DCT5(28.93)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 8. Image denoising performance of the trained �1 model for a natural image and σ = 25. The
numbers shown in the brackets refer to PSNR values with respect to the clean image.
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(a) clean (b) noisy(14.15) (c) 1st(22.97)

(d) 1st + 2nd(23.15) (e) DCT3(23.28) (f) DCT5(23.31)

(g) clean (h) noisy (i) 1st (j) 1st + 2nd (k) DCT3 (l) DCT5

Figure 9. Image denoising performance of the trained �1 model for a natural image and σ = 50. The
numbers shown in the brackets refer to PSNR values with respect to the clean image.
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(iii) As already pointed out above, further increasing the diversity of the �1 model does not
improve the denoising performance. In contrast, the performance of the � 1

2
model can

be further improved by increasing the diversity of the filter bank (see also Table 2).
In [27], Samuel and Tappen proposed a bilevel learning algorithm for learning the optimal

filters (comparable to a dictionary) of the so-called Fields of Experts (FoE) model of Roth and
Black [26]. The FoE model uses a sum of priors involving nonconvex potential functions related
to the negative log density of a Student-t distribution. The optimization algorithm is a plain
gradient descent algorithm, where the gradients are computed using implicit differentiation.
Since the FoE model has many more degrees of freedom than our simple models, one would
expect that the FoE model would lead to better results. However, it turns out that our
simple convex �1 model leads to comparable results and our nonconvex � 1

2
model leads to

significantly better results (see Figure 11 for an example). We do not exactly know the reason
for the improved performance of our simpler model, but possibly our Newton algorithms
are distinctly more accurate in approximating (locally) optimal solutions than the gradient
descent methods that are used in [27]. This fact justifies the use of Newton algorithms for
this kind of learning problem.

5.2.3. Comparison to state-of-the-art methods. In our last experiment, we compare the
results of our �1 and � 1

2
models to state-of-the art algorithms. Figure 12 shows a comparison

of the proposed models to the FoE model of Roth and Black [26], the KSVD dictionary
learning algorithm of Elad and Aharon [11], the recently proposed Gaussian mixture model
(GMM) of Zoran and Weiss [33], and the BM3D algorithm of Dabov et al. [7], which define
the current state-of-the-art in image denoising. One can see that while the convex �1 model
cannot compete with the current state-of-the-art, the nonconvex � 1

2
model is clearly state-of-

the-art. Note that the two methods GMM and BM3D, which are superior to our � 1
2
model, are

much more involved. For example, the GMM method uses a generic image prior consisting
of a GMM with 200 components, each of them specified by a 64 × 64 covariance matrix.
Decomposing these covariance matrices into its eigenvectors, we end up with a total of 12800
filters, whereas our � 1

2
model uses only 24 DCT5 filters. The BM3D method is still the best

method in this example, although it can also lead to strange artifacts, as can be seen from
the overemphasis of the stripe-like texture in the detail view in Figure 12.

6. Conclusion and outlook. In this paper we have proposed semismooth Newton methods
for learning the optimal regularization parameters in variational image denoising models,
including the smooth �2-norm as well as the nonsmooth �1-norm. The parameters are learned
in a way such that the minimizers of the variational models give the best approximation to
given ground truth solutions. This naturally leads to a bilevel optimization approach with
the higher-level problem being a loss function that minimizes the error between the solution
of the lower-level optimization problem (the variational model) and the given ground truth
data. We have analyzed the structure of the arising bilevel optimization problems, and in the
case of an �2 model with a single prior we were able to show that the problem is quasi-convex
in the regularization parameter.
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(a) �1(29.49) (b) �1(28.93) (c) �1(23.31)

(d) � 1
2
(30.24) (e) � 1

2
(29.19) (f) � 1

2
(23.42)

(g) �1 (h) � 1
2

(i) �1 (j) � 1
2

(k) �1 (l) � 1
2

Figure 10. Comparison between the convex �1 model and the nonconvex � 1
2
model for different noise levels

and using DCT5 filters. The numbers shown in the brackets refer to PSNR values with respect to the clean
image.
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(a) clean (b) noisy(20.17)

(c) FoE-bi (29.33) (d) �1(29.33) (e) � 1
2
(29.70)

Figure 11. Comparison between our �1 and � 1
2
models using DCT5 filters and the bilevel-optimized Fields

of Experts (FoE-bi) model [27]. The numbers shown in the brackets refer to PSNR values with respect to the
clean image.
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(a) clean (b) noisy(20.17) (c) �1(28.46) (d) � 1
2
(29.26)

(e) FoE(28.72) (f) KSVD(29.19) (g) GMM(29.48) (h) BM3D(29.53)

(i) clean (j) noisy (k) �1 (l) � 1
2

(m) FoE (n) KSVD (o) GMM (p) BM3D

Figure 12. Comparison between the proposed �1 and � 1
2
models to the FoE model of Roth and Black [26],

the KSVD dictionary learning algorithm of Elad and Aharon [11], the recently proposed GMM of Zoran and
Weiss [33], and the BM3D algorithm of Dabov et al. [7]. The numbers shown in the brackets refer to PSNR
values with respect to the clean image.
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We have proposed and analyzed semismooth Newton methods that lead to efficient learn-
ing algorithms with guaranteed locally superlinear convergence. We tested the algorithms on
natural image denoising problems using different noise levels and different sets of regulariza-
tion priors. We have demonstrated that our proposed Newton algorithms can efficiently find
optimal regularization parameters requiring approximately 20 Newton iterations on average.

Furthermore, we have presented preliminary results on applying the bilevel learning frame-
work to variational models, including the nonsmooth and nonconvex � 1

2
-norms. In particular,

we have shown that switching from the �1-norm to the � 1
2
-norm consistently improved the

denoising performance over the �1 models.
Future work should include the investigation of data fidelity terms different from quadratic

ones and a further analysis of models incorporating the nonconvex � 1
2
-norm.

Appendix A. Proof of Theorem 4.3. The proof is given in several steps.
(i) First we need to address convergence of the solutions ϑε to (4.4) as ε → 0+. It is

not difficult to see that convergent subsequences of ϑε converge to a solution of (4.1),
but since the solutions to (4.1) are not unique, this may not be the desired one. For
this reason we adapt Barbu’s trick and introduce (only for the purpose of deriving the
optimality condition) the auxiliary problem

(A.1)

⎧⎪⎪⎨⎪⎪⎩
min
ϑ≥0

‖x(ϑ) − g‖22 + ‖ϑ − ϑ∗‖22

subject to x(ϑ) = argmin
x

q∑
k=1

ϑk‖Kkx‖1 + 1

2
‖x− f‖22

and the auxiliary regularized problem

(A.2)

⎧⎪⎪⎨⎪⎪⎩
min
ϑ≥0

‖x(ϑ)− g‖22 + ‖ϑ − ϑ∗‖22

subject to x(ϑ) = argmin
x

q∑
k=1

ϑk

m∑
i=1

nε((Kkx)i) +
1

2
‖x− f‖22.

Adding the term ‖ϑ − ϑ∗‖22 to the cost has no effect on the discussion preceding the
statement of the theorem. Problem (A.1) has ϑ∗ as a unique solution. The necessarily
optimality condition for (A.2) consists of the first two equations in (4.13) and

(A.3) (
〈
N ′

ε(Kkxε),Kkpε
〉
+2(ϑε,k−ϑ∗

k))(ϑk−ϑε,k) ≥ 0 for all ϑk ≥ 0, k = 1, . . . , q.

Let {ϑε}ε>0 denote a family of solutions to (A.2). Since ϑ∗ is suboptimal for (A.2),
we obtain that

‖ϑε − ϑ∗‖2 ≤ ‖x(ϑ∗)− g‖2 + ‖ϑ∗‖2,
and therefore {ϑε}ε>0 is bounded. By the first equation in (4.13) the family xε = x(ϑε)
is bounded as well. Hence there exist a subsequence, denoted by the same symbol,
and ϑ ∈ R

q such that limε→0+ ϑε = ϑ and limε→0+ xε(ϑε) = x(ϑ). Taking the limit
ε → 0+ in

‖xε(ϑε)− g‖22 + ‖ϑε − ϑ∗‖22 ≤ ‖xε(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22,
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where xε(ϑ) = argminx
q∑

k=1

ϑk

m∑
i=1

nε((Kkx)i) +
1
2‖x− f‖22,

we obtain

‖x(ϑ)− g‖22 + ‖ϑ− ϑ∗‖22 ≤ ‖x(ϑ)− g‖2 + ‖ϑ − ϑ∗‖22

for all ϑ ≥ 0, where x(ϑ) = argminx
q∑

k=1

ϑk‖Kkx‖1 + 1
2‖x− f‖22. By construction this

implies that ϑ = ϑ∗.

Let us henceforth set (λε)k = N ′
ε(Kkxε) and ξε =

∑q
k=1 ϑε,kK

T
k N

′′
ε (Kkxε)Kkpε.

(ii) By (4.13) and the properties of nε the families {pε}ε>0, {(λε)k}ε>0, and {ξε}ε>0 are
bounded. Note that the boundedness of {ξε}ε>0 follows from the adjoint equation
since {pε}ε>0 is bounded. Hence, possibly after taking another subsequence, there
exist p, λk, k = 1, . . . , q and ξ such that

(pε, λε,k, ξε) −→ (p, λ, ξ) as ε → 0+.

We can now pass to the limit in the first and second equations of (4.13) and in (A.3) to
obtain the first, third, and fourth equations of (4.14). Moreover, 0 ≤ limε→0+ 〈ξε, pε〉 =
〈ξ, p〉, which gives the fifth assertion in (4.14). Passing to the limit in λε we find the
second assertion of (4.14). Taking the inner product of the adjoint equation with pε
and passing to the limit we obtain the sixth equation in (4.14).

(iii) To verify the last two claims, we note at first that by the adjoint equation

‖pε‖22 +
∣∣∣∣∣

q∑
k=1

ϑε,k

〈
N ′′

ε (Kkxε)Kkpε,Kkpε
〉∣∣∣∣∣ ≤ ‖xε − g‖ ‖pε‖2.

Consequently {∑q
k=1 ϑε,k‖

√
N ′′

ε (Kkxε)Kkpε‖22}ε>0 is bounded. We have

| 〈ξε, xε〉 | =
∣∣∣∣∣

q∑
k=1

ϑε,k

〈
N ′′

ε (Kkxε)Kkpε,Kkxε
〉∣∣∣∣∣

≤
q∑

i=1

ϑε,k||
√

N ′′
ε (Kkxε)Kkpε‖2 ‖

√
N ′′

ε (Kkxε)Kkxε‖2

≤
(

q∑
k=1

ϑε,k‖
√

N ′′
ε (Kkxε)Kkpε‖22

) 1
2
(

q∑
k=1

ϑε,k‖
√

N ′′
ε (Kkxε)Kkxε‖22

) 1
2

ε→0+→ 0

by the properties of n′′
ε . Therefore | 〈ξ, x∗〉 | = limε→0+ | 〈ξε, xε〉 | = 0, which is the

seventh claim in (4.14). To verify the last one we set Iε,k = {i : |(Kkxε)i| < ε} and
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find that

0 ≤
m∑
i=1

|(Kkpε)i| (1 − |(λε,k)i|)

=
m∑

i∈Iε,k
|(Kkpε)i|

(
1−

∣∣∣∣ 32ε (Kkx)i − 1

2ε3
(Kkx)

3
i

∣∣∣∣)

≤
m∑

i∈Iε,k
|
√

n′′(Kkxε)(Kkpε)i| 1√
n′′((Kkxε)i)

(
1−

∣∣∣∣ 32ε(Kkxε)i − 1

2ε3
(Kkxε)

3
i

∣∣∣∣)

≤ ‖
√

n′′(Kkxε) (Kkpε)‖2
⎛⎝ ∑

i∈Iε,k

1

n′′((Kkxε)i)

(
1−

∣∣∣∣ 32ε (Kkxε)i − 1

2ε3
(Kkxε)

3
i

∣∣∣∣)2
⎞⎠

1
2

.

Utilizing that n′′(t) = − 3
2ε3

t2+ 3
2ε , for |t| < ε one argues that limε→0+ sup|t|≤ε

1
n′′(t)(1−

| 32ε t− 1
2ε3

t3|)2 = 0, and hence
∑μ

i=1(Kkp)i(1− |(λi)i|) = 0, as desired.
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