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TIME OPTIMAL CONTROL OF THE HEAT EQUATION
WITH POINTWISE CONTROL CONSTRAINTS

Karl Kunisch
1

and Lijuan Wang
2∗

Abstract. Time optimal control problems for an internally controlled heat equation with point-
wise control constraints are studied. By Pontryagin’s maximum principle and properties of nontrivial
solutions of the heat equation, we derive a bang-bang property for time optimal control. Using the
bang-bang property and establishing certain connections between time and norm optimal control prob-
lems for the heat equation, necessary and sufficient conditions for the optimal time and the optimal
control are obtained.
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1. Introduction

We can distinguish two distinct versions of time optimal control problems [17]: (i) to reach the target
set at a fixed time while delaying the activation of the control as long as possible, and (ii) to reach the target
in the shortest time while controlling over the complete timespan. In this paper, we shall consider the above
two versions of time optimal control problems for an internally controlled heat equation with pointwise control
constraints. Let Ω be a bounded domain in R

N , N ≥ 1, with a sufficiently smooth boundary ∂Ω, if N ≥ 2, and
set C0(Ω) = {y ∈ C(Ω) : y = 0 on ∂Ω}. Further let ω be an open subset of Ω. We formulate the time optimal
control problems considered in this paper as follows.

For the first version let T > 0 be fixed, and consider the controlled heat equation⎧⎨
⎩
yt −Δy = χ(τ,T )×ωu in (0, T )×Ω,
y = 0 on (0, T )× ∂Ω,
y(0, x) = y1(x) in Ω,

(1.1)
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where χ(τ,T )×ω is the characteristic function of the set (τ, T ) × ω, with 0 ≤ τ < T, and y1 ∈ C0(Ω) is a given
function. Further u is a control function taken from the set of functions:

U1 ≡ {v : (0, T ) ×Ω → R measurable; |v(t, x)| ≤M1 for almost all (t, x) ∈ (0, T )×Ω},

where M1 is a positive constant. It is well-known that for each u ∈ L∞((0, T )×Ω), equation (1.1) has a unique
solution denoted by y(t, x; y1, χ(τ,T )×ωu) ∈ C([0, T ];C0(Ω)). In what follows, we write QT , ΣT , Q

ω
τ,T and Qω

T for
the product sets (0, T )×Ω, (0, T )× ∂Ω, (τ, T ) × ω and (0, T )× ω respectively. The Lebesgue measure of a set
D in R

d(d ≥ 1) is expressed by |D|Rd . The dual space C0(Ω) is denoted by (C0(Ω))∗. Let sgn(r) be the sign
function, i.e., sgn(r) = 1 if r > 0, sgn(r) = −1 if r < 0 and sgn(r) ∈ [−1, 1] if r = 0. We shall omit the variables
t and x for functions of (t, x) and omit the variable x for functions of x, if there is no risk of causing confusion.

Now we are prepared to state the first version of the time optimal control problems under consideration:

sup {τ : ‖y(T, ·; y1, χQω
τ,T
u)‖C0(Ω) ≤ 1, τ ∈ [0, T ), u ∈ U1}. (P1)

Without loss of generality we assume that

‖y(T, ·; y1, 0)‖C0(Ω) > 1. (1.2)

We call

τ∗ ≡ sup{τ : ‖y(T, ·; y1, χQω
τ,T
u)‖C0(Ω) ≤ 1, τ ∈ [0, T ), u ∈ U1}

the optimal time for problem (P1) and u∗1 ∈ U1 the associated time-optimal control (or opti-
mal control for simplicity) with corresponding state y(t, x; y1, χQω

τ∗,T
u∗1), solution of (1.1), satisfying

‖y(T, ·; y1, χQω
τ∗,T

u∗1)‖C0(Ω) ≤ 1. We call a control u ∈ U1 an admissible control for problem (P1), if there
exists some τ ∈ [0, T ) such that ‖y(T, ·; y1, χQω

τ,T
u)‖C0(Ω) ≤ 1.

The value of the control in QT \Qω
τ,T has no effect on the control system (1.1) and therefore we consistently

assign the control to have the value 0 in QT \Qω
τ,T . In this paper, we shall prove that the time-optimal control

u∗1 for problem (P1) satisfies the bang-bang property, namely, |u∗1(t, x)| = M1 for almost all (t, x) ∈ Qω
τ∗,T .

Moreover, we shall give necessary and sufficient conditions for τ∗ and u∗1 to be the optimal time and the time-
optimal control for (P1).

For the second version of time optimal control problems studied in this paper we consider the following
controlled heat equation ⎧⎨

⎩
yt −Δy = χωu in QT ,
y = 0 on ΣT ,
y(0, x) = y2(x) in Ω,

(1.3)

where y2 ∈ C0(Ω) is a given function, χω is the characteristic function of the set ω and u is a control function
taken from

U2 ≡ {v : (0,+∞) ×Ω → R measurable; |v(t, x)| ≤M2 for almost (t, x) ∈ (0,∞) ×Ω}.

Here M2 is a positive constant. For each u ∈ L∞(QT ), we denote the unique solution of (1.3) by y(t, x; y2, u).
The second time optimal control problem under consideration is given by:

inf {T : ‖y(T, ·; y2, u)‖C0(Ω) ≤ 1, T ∈ (0,∞), u ∈ U2}. (P2)

Without loss of generality we assume that ‖y2(·)‖C0(Ω) > 1. We call

T ∗ ≡ inf{T : ‖y(T, ·; y2, u)‖C0(Ω) ≤ 1, T ∈ (0,∞), u ∈ U2}
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the optimal (minimal) time for problem (P2) and u∗2 ∈ U2 the associated time-optimal control (or optimal control
for simplicity) with corresponding state y(t, x; y2, u∗2), solution of (1.3), satisfying ‖y(T ∗, ·; y2, u∗2)‖C0(Ω) ≤ 1.
We call a control u ∈ U2 an admissible control for problem (P2), if there exists some T > 0 such that
‖y(T, ·; y2, u)‖C0(Ω) ≤ 1.

The value of the control in ((0,+∞) × Ω) \ Qω
T has no effect on the control system (1.3) and therefore we

consistently assign the control to have the value 0 in ((0,+∞)×Ω) \Qω
T . We shall give necessary and sufficient

conditions for T ∗ and u∗2 to be the optimal time and the time-optimal control for (P2).
For time optimal control problems, one of the main interests is the bang-bang property of optimal controls. The

bang-bang property of optimal controls for time optimal control problems governed by linear evolution equation
was first established in [7]. Since then, many results on the bang-bang property of time optimal controls governed
by linear and semilinear parabolic differential equations were obtained [3, 4, 20], where the control constraint
is in integral form. Certainly pointwise constraints are of interest as well. In [2, 18], Pontryagin’s maximum
principle was considered, for time optimal control problems governed by semilinear parabolic equations with
pointwise constraints in space and time. But the bang-bang property of optimal controls was not established.
In [19], the “bang-bang” property of time optimal boundary controls for the heat equation with pointwise control
constraints and an arbitrary reachable target set was proved, under an assumption on the bound to which the
controls were subjected. In [8], bang-bang property of optimal controls was established for the time optimal
control problem governed by the linear parabolic equation, with pointwise control constraint. The target set
was a point in the state space and the control acted globally onto the equation. In [12], the bang-bang property
of optimal controls was derived for the time optimal control problem governed by the linear Fitzhugh–Nagumo
equation with pointwise control constraint, under appropriate assumptions on the initial value of the adjoint
equation in Pontryagin’s maximum principle. Moreover, in that work the authors pointed out that the time
optimal control u∗2 for (P2) satisfies the bang-bang property, namely, |u2(t, x)| = M2 for almost all (t, x) ∈ Qω

T∗ .
The above-mentioned works are concerned with the second version of the time optimal control problem. In [17],
the authors proved that one-dimensional heat equation with boundary control was exactly null-controllable
with control restricted to an arbitrary subset of [0, T ] with positive measure. This result implies the bang-
bang property of time optimal control for the first version of time optimal control problems. To the best of
our knowledge, the bang-bang property of time optimal controls for the first version of time optimal control
problems, acting locally onto parabolic equations with pointwise control constraint, was not studied so far.
One of the main contributions in this paper is that the bang-bang property of time optimal control for (P1)
is strongly related to the following property for nontrivial solution of the heat equation (see e.g. Thm. 4.7.12
in [8]): if p ∈ C∞([0, T )×Ω) is a nonzero solution to{

pt +Δp = 0 in QT ,
p = 0 on ΣT ,

then p(t, x) 	= 0 a.e. in QT .
The other main contribution of this paper are necessary and sufficient conditions for optimal times and

optimal controls for (P1) and (P2). Time optimal control problems for differential equations were first studied
for ordinary differential equations, see e.g. [5]. Then such problems were investigated in the context of partial
differential equations, see for instance [2,3,13,18,21]. In these works, necessary conditions for time optimal control
were given. To the best of our knowledge, for time optimal control problems governed by parabolic equations,
there are very few results on sufficient conditions for optimal time and optimal controls, see however [8, 9, 22].
In [8,9] the control acted globally onto the equation and the target set was a point. Moreover, the initial value of
the state equation or the target point satisfied some special properties. In [22] the authors obtained necessary and
sufficient conditions for the optimal time associated controls for the heat equation, by establishing connections
between time and norm optimal control problems. The above-mentioned contributions are concerned with the
second version of the time optimal control problem. The idea of our paper utilizes the approach from [22]. More
precisely, for (P1) and (P2), we introduce the norm optimal control problems

Min {‖u‖L∞(QT ) : u ∈ L∞(QT ) satisfying ‖y(T, ·; y1, χQω
τ,T
u)‖C0(Ω) ≤ 1} (P τ

nm)
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and
Min {‖u‖L∞(QT ) : u ∈ L∞(QT ) satisfying ‖y(T, ·; y2, u)‖C0(Ω) ≤ 1}, (PnmT )

and define N∗∞(τ) = Min(P τ
nm) and N̂∗∞(T ) = Min(PnmT ). By establishing the connections between (P1) and

(P τ∗
nm), (P2) and (PnmT∗), respectively, as well as strict monotonicity of N∗

∞(τ) and N̂∗
∞(T ), necessary and

sufficient conditions for optimal time and optimal control of (Pi) are obtained. However, there are some main
differences between [22] and our paper: (i) the time optimal control problem in [22] is of the second version, while
we consider two versions of time optimal control problems. (ii) The methods for the study of the connections
between time and norm optimal control problems are different. In [22], the analysis builds on the study of the
optimal time T ∗ as a function of control bound M , while we start by studying the relation of Mi (i = 1, 2)
and the minimum of the corresponding norm optimal control problem of (Pi). (iii) In our paper, the control
constraint is in pointwise form and the target set is a closed ball in C0(Ω), while in [22], the control constraint
is in integral form and the target set is 0.

The rest of this paper is organized as follows. In Section 2, we prove that the time optimal control of (P1)
satisfies a bang-bang property. In Section 3, some preliminary results about norm optimal control problems are
given, then connections between (P1) and its corresponding norm optimal control problem are established. In
Sections 4 and 5, necessary and sufficient conditions for the optimal time and the optimal control for (Pi)(i = 1, 2)
respectively are given. In Appendix A we gather some relevant technical results.

2. Bang-bang property for (P1)

In this section, we shall present the bang-bang property of the optimal control for problem (P1) and its
proof. To this end, we define the distance function d on U1 by

d(u, v) = |{(t, x) ∈ QT : u(t, x) 	= v(t, x)}|RN+1 , ∀ u, v ∈ U1.

Similarly as for Proposition 3.10 of Chapter 4 in [13], we have that (U1, d) is a complete metric space. We now
prove the bang-bang property for (P1).

Theorem 2.1. Assume that τ∗ is the optimal time and let u∗1 be an optimal control for problem (P1). Then

|u∗1(t, x)| = M1 for almost all (t, x) ∈ Qω
τ∗,T .

Proof. The proof is split into five steps.

Step 1. Introduction of a penalty functional Jε : (U1; d) → [0,+∞).
For any ε with 0 < ε < T − τ∗, we define the penalty functional Jε : (U1; d) → [0,+∞) by:

Jε(u) = dW (y(T, ·; y1, χQω
τ∗+ε,T

u)), ∀ u ∈ U1, (2.1)

where W = {w ∈ C0(Ω) : ‖w‖C0(Ω) ≤ 1} and

dW (y(T, ·; y1, χQω
τ∗+ε,T

u)) ≡ inf
w∈W

‖y(T, ·; y1, χQω
τ∗+ε,T

u) − w‖C0(Ω).

Due to the embedding theorem and Lp−theory for parabolic equations (see e.g. Thm. 1.4.1 in [23] and Thm. 1.14
of Chap. 1 in [11]), we have

|Jε(u) − Jε(v)| ≤ ‖y(T, ·; y1, χQω
τ∗+ε,T

u) − y(T, ·; y1, χQω
τ∗+ε,T

v)‖C0(Ω)

≤ ‖y(·, ·; y1, χQω
τ∗+ε,T

u) − y(·, ·; y1, χQω
τ∗+ε,T

v)‖C(QT )

≤ C‖y(·, ·; y1, χQω
τ∗+ε,T

u) − y(·, ·; y1, χQω
τ∗+ε,T

v)‖W 2,1
2(N+2)(QT )

≤ C‖u− v‖L2(N+2)(QT ). (2.2)
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Here and throughout the proof of this theorem, C denotes a generic positive constant independent of ε. Moreover,
the set

{y : DαDr
t y ∈ L2(N+2)(QT ), for any α and r such that |α| + 2r ≤ 2},

endowed with the norm

‖y‖W 2,1
2(N+2)(QT ) =

(∫ T

0

∫
Ω

∑
|α|+2r≤2

|DαDr
t y|2(N+2) dxdt

) 1
2(N+2)

is denoted by W 2,1
2(N+2)(QT ).

Due to (2.2), we can easily check that Jε is continuous on (U1; d) and it is obvious that Jε(u) > 0 for each
u ∈ U1. Due to similar arguments as in (2.2) we have that

Jε(u∗1) = dW (y(T, ·; y1, χQω
τ∗+ε,T

u∗1)) ≡ δ(ε)

≤ ‖y(T, ·; y1, χQω
τ∗+ε,T

u∗1) − y(T, ·; y1, χQω
τ∗,T

u∗1)‖C0(Ω)

≤ C‖χQω
τ∗+ε,T

u∗1 − χQω
τ∗,T

u∗1‖L2(N+2)(QT ) → 0 as ε→ 0.

Step 2. Application of Ekeland’s variational principle.
Due to Ekeland’s variational principle (see e.g. Cor. 2.2 of Chap. 4 in [13]), we see that there exists a uε ∈ U1

such that
d(uε, u

∗
1) ≤ [δ(ε)]

1
2 (2.3)

and
−[δ(ε)]

1
2 d(uε, u) ≤ Jε(u) − Jε(uε), ∀ u ∈ U1. (2.4)

Step 3. Derivation of the necessary conditions for (uε, y(·, ·; y1, χQω
τ∗+ε,T

uε)).
Let v ∈ U1. Then due to Lemma A.1 in Appendix A, we have that for any ρ ∈ (0, 1), there exists a measurable

set Eρ ⊂ QT such that |Eρ|RN+1 = ρ|QT |RN+1 , and the function

uε
ρ(t, x) ≡

{
uε(t, x), (t, x) ∈ QT \ Eρ,
v(t, x), (t, x) ∈ Eρ

(2.5)

satisfies uε
ρ ∈ U1. Moreover,

‖y(·, ·; y1, χQω
τ∗+ε,T

uε
ρ) − y(·, ·; y1, χQω

τ∗+ε,T
uε) − ρzε‖C(QT ) = o(ρ), (2.6)

where zε is the unique solution to the following equation⎧⎨
⎩

(zε)t −Δzε = χQω
τ∗+ε,T

(v − uε) in QT ,

zε = 0 on ΣT ,
zε(0, x) = 0 in Ω.

(2.7)

From (2.4) and (2.5) it follows that

−[δ(ε)]
1
2 ρ|QT |RN+1 = −[δ(ε)]

1
2 d(uε, u

ε
ρ) ≤ Jε(uε

ρ) − Jε(uε),

which, together with (2.1) and (2.6), implies

− [δ(ε)]
1
2 |QT |RN+1 ≤ Jε(uε

ρ) − Jε(uε)
ρ

=
dW (y(T, ·; y1, χQω

τ∗+ε,T
uε

ρ) − dW (y(T, ·; y1, χQω
τ∗+ε,T

uε))

ρ

→ 〈ζε, zε(T, ·)〉(C0(Ω))∗,C0(Ω) as ρ→ 0+, (2.8)
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see e.g. Proposition 3.11 of Chapter 4 in [13]. Here ζε ∈ ∂dW (y(T, ·; y1, χQω
τ∗+ε,T

uε)), which denotes the subdiffer-
ential of dW (·) at y(T, ·; y1, χQω

τ∗+ε,T
uε). Since τ∗ is the optimal time for (P1), we have y(T, ·; y1, χQω

τ∗+ε,T
uε) 	∈W

and
‖ζε‖(C0(Ω))∗ = 1, ∀ ε > 0. (2.9)

Step 4. Pass to the limit for ε→ 0 in (2.7) and (2.8).
Due to (2.3) and since uε, u

∗
1 ∈ U1, one can easily show that

uε → u∗1 strongly in L2(N+2)(QT ) as ε→ 0. (2.10)

Hence, by making use of (1.1), we get

‖y(·, ·; y1, χQω
τ∗+ε,T

uε) − y(·, ·; y1, χQω
τ∗,T

u∗1)‖C(QT ) ≤‖y(·, ·; y1, χQω
τ∗+ε,T

uε) − y(·, ·; y1, χQω
τ∗,T

u∗1)‖W 2,1
2(N+2)(QT )

≤C‖χQω
τ∗+ε,T

uε − χQω
τ∗,T

u∗1‖L2(N+2)(QT ) → 0 as ε→ 0.
(2.11)

Due to (2.10), (2.7) and similar arguments as in (2.11), we see that

‖zε − z‖C(QT ) ≤ C‖χQω
τ∗+ε,T

(v − uε) − χQω
τ∗,T

(v − u∗1)‖L2(N+2)(QT ) → 0 as ε→ 0, (2.12)

where z is the unique solution to the following equation⎧⎨
⎩
zt −Δz = χQω

τ∗,T
(v − u∗1) in QT ,

z = 0 on ΣT ,
z(0, x) = 0 in Ω.

(2.13)

Moreover, due to (2.8) and (2.9), we get that

〈ζε, z(T, ·)〉(C0(Ω))∗,C0(Ω) = 〈ζε, z(T, ·) − zε(T, ·)〉(C0(Ω))∗,C0(Ω) + 〈ζε, zε(T, ·)〉(C0(Ω))∗,C0(Ω)

≥ −‖zε(T, ·) − z(T, ·)‖C0(Ω) − [δ(ε)]
1
2 |QT |RN+1. (2.14)

Applying (2.9) again, we can assume, without loss of generality, that

ζε → ζ0 weakly star in (C0(Ω))∗. (2.15)

It follows easily from (2.14), (2.15) and (2.12) that

〈ζ0, z(T, ·)〉(C0(Ω))∗,C0(Ω) ≥ 0. (2.16)

Step 5. The bang-bang property for (P1).
Now we claim that

ζ0 	= 0. (2.17)

Indeed, due to (2.9), (2.11) and making use of the definition of the subdifferential ∂dW , we obtain

〈ζε, y(T, ·; y1, χQω
τ∗,T

u∗1) − w〉(C0(Ω))∗,C0(Ω)

= 〈ζε, y(T, ·; y1, χQω
τ∗,T

u∗1) − y(T, ·; y1, χQω
τ∗+ε,T

uε)〉(C0(Ω))∗,C0(Ω)

+〈ζε, y(T, ·; y1, χQω
τ∗+ε,T

uε) − w〉(C0(Ω))∗,C0(Ω)

≥ −‖y(T, ·; y1, χQω
τ∗,T

u∗1) − y(T, ·; y1, χQω
τ∗+ε,T

uε)‖C0(Ω) + dW (y(T, ·; y1, χQω
τ∗+ε,T

uε))

≥ −‖y(T, ·; y1, χQω
τ∗,T

u∗1) − y(T, ·; y1, χQω
τ∗+ε,T

uε)‖C0(Ω)

→ 0, ∀ w ∈ W.
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Then due to Lemma A.4 in Appendix A, (2.9), (2.15) and the fact that W is of finite codimensional in C0(Ω),
inequality (2.17) follows.

Next, let ψ ∈ L1(0, T ;W 1,1
0 (Ω)) be the unique solution to the following equation (Lem. A.2 in Appendix A):⎧⎨

⎩
ψt +Δψ = 0 in QT ,
ψ = 0 on ΣT ,
ψ(T, ·) = −ζ0 in Ω.

(2.18)

Then on one hand, due to Lemma A.3 in Appendix A, (2.17) and the smoothing effect of the heat equation, we
have

ψ(t, x) 	= 0, a.e. (t, x) ∈ QT . (2.19)

On the other hand, it follows from (2.16), (2.18), (2.13) and Lemma A.2 that

0 ≥ 〈−ζ0, z(T, ·)〉(C0(Ω))∗,C0(Ω) = 〈ψ(T, ·), z(T, ·)〉(C0(Ω))∗,C0(Ω)

=
∫

QT

χQω
τ∗,T

(v − u∗1)ψ dxdt, ∀ v ∈ U1. (2.20)

Finally, we denote
F (t, x) = χQω

τ∗,T
(t, x)(M1 − u∗1(t, x))ψ(t, x), for (t, x) ∈ QT , (2.21)

for which we have F ∈ L1(QT ). Therefore there exists a measurable set A ⊂ QT , with |A|RN+1 = |QT |RN+1,
such that any point in A is a Lebesgue point of F , i.e.,

lim
r→0+

|B((t̃, x̃), r)|−1
RN+1

∫
B((t̃,x̃),r)

|F (t, x) − F (t̃, x̃)| dxdt = 0, ∀ (t̃, x̃) ∈ A, (2.22)

where B((t̃, x̃), r) denotes a closed ball with center at (t̃, x̃) and of radius r. Now for any fixed (t̃, x̃) ∈ A, we
define for sufficiently small positive constant r

ur(t, x) =
{
u∗1(t, x), if (t, x) ∈ B((t̃, x̃), r)c ∩QT ,
M1, if (t, x) ∈ B((t̃, x̃), r) ∩QT .

Here B((t̃, x̃), r)c denotes the complement to B((t̃, x̃), r). From (2.20) with v = ur it follows that∫
B((t̃,x̃),r)∩QT

F (t, x) dxdt =
∫

B((t̃,x̃),r)∩QT

χQω
τ∗,T

(t, x)(M1 − u∗1(t, x))ψ(t, x) dxdt ≤ 0. (2.23)

Dividing (2.23) by |B((t̃, x̃), r)|RN+1 , we obtain by (2.22) that

M1 · χQω
τ∗,T

ψ(t, x) ≤ u∗1(t, x) · χQω
τ∗,T

ψ(t, x), ∀ (t, x) ∈ A. (2.24)

Since |A|RN+1 = |QT |RN+1 this implies that

M1 · χQω
τ∗,T

ψ(t, x) ≤ u∗1(t, x) · χQω
τ∗,T

ψ(t, x), a.e. (t, x) ∈ QT . (2.25)

Similarly we obtain

−M1 · χQω
τ∗,T

ψ(t, x) ≤ u∗1(t, x) · χQω
τ∗,T

ψ(t, x), a.e. (t, x) ∈ QT . (2.26)

Moreover, since
max

|a|≤M1

(χQω
τ∗,T

ψ(t, x) · a) = max
a∈{−M1,M1}

(χQω
τ∗,T

ψ(t, x) · a),
we deduce from (2.25) and (2.26) that

χQω
τ∗,T

ψ(t, x) · u∗1(t, x) = max
|a|≤M1

(χQω
τ∗,T

ψ(t, x) · a) = M1|χQω
τ∗,T

ψ(t, x)|.

This together with (2.19) completes the proof. �

Based on Theorem 2.1, we can easily obtain the following corollary.
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Corollary 2.2. The time optimal control for problem (P1) is unique.

Proof. Without loss of generality we assume that u1 and u2 are optimal controls for problem (P1). It is obvious
that u1+u2

2 is also an optimal control for problem (P1). Then due to Theorem 2.1, we have |u1(t, x)| = |u2(t, x)| =
|u1+u2

2 (t, x)| = M1 for almost all (t, x) ∈ Qω
τ∗,T . Consequently

∣∣∣∣∣u1 − u2

2
(t, x)

∣∣∣∣∣
2

=
1
2
(|u1(t, x)|2 + |u2(t, x)|2) −

∣∣∣∣∣u1 + u2

2
(t, x)

∣∣∣∣∣
2

= 0, a.e. (t, x) ∈ Qω
τ∗,T ,

and hence u1 = u2. �

3. The norm optimal control problem corresponding to (P1)

For fixed τ ∈ [0, T ) we consider the following norm optimal control problem:

Min {‖u‖L∞(QT ) : u ∈ L∞(QT ) satisfying ‖y(T, ·; y1, χQω
τ,T
u)‖C0(Ω) ≤ 1}. (P τ

nm)

Again u is assigned the value 0 in QT \Qω
τ,T .

We shall show how to construct a solution to (P τ
nm). To this end we first study an auxiliary problem:

Min Jτ (μ) over all μ ∈ (C0(Ω))∗, (P τ
au)

where the functional Jτ : (C0(Ω))∗ → R is defined by

Jτ (μ) =
1
2

(∫
Qω

τ,T

|ϕμ| dxdt

)2

+ ‖μ‖(C0(Ω))∗ + 〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω),

and ϕμ is the unique solution to the equation:⎧⎨
⎩

(ϕμ)t +Δϕμ = 0 in QT ,
ϕμ = 0 on ΣT ,
ϕμ(T, ·) = μ in Ω.

(3.1)

For (P τ
au), we have:

Lemma 3.1. Problem (P τ
au) has at least one minimizer. Moreover, its minimizer is not zero.

Proof. The proof is split into three steps.
Step 1. The following property holds:

Jτ (μ) → ∞ as ‖μ‖(C0(Ω))∗ → ∞. (3.2)

In fact, we shall show

lim‖μ‖(C0(Ω))∗→∞
Jτ (μ)

‖μ‖(C0(Ω))∗
≥ 1. (3.3)

It is obvious that (3.3) implies (3.2). In order to prove (3.3), let {μn}∞n=1 be a sequence of initial data for (3.1)
with ‖μn‖(C0(Ω))∗ → ∞. We set μ̃n = ‖μn‖−1

(C0(Ω))∗μn. Then ‖μ̃n‖(C0(Ω))∗ = 1 and

Jτ (μn)
‖μn‖(C0(Ω))∗

=
1
2
‖μn‖(C0(Ω))∗

(∫
Qω

τ,T

|ϕμ̃n | dxdt

)2

+ 1 + 〈μ̃n, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω). (3.4)
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The following two cases may occur:

Case 1. limn→∞
∫

Qω
τ,T

|ϕμ̃n | dxdt > 0. In this case, we obtain

Jτ (μn)
‖μn‖(C0(Ω))∗

→ ∞,

which implies (3.3).

Case 2. limn→∞
∫

Qω
τ,T

|ϕμ̃n | dxdt = 0. In this case, since ‖μ̃n‖(C0(Ω))∗ = 1, due to Lemma A.2, we deduce that
there exist a subsequence, still indexed by n, and μ̃, such that

μ̃n → μ̃ weakly star in (C0(Ω))∗ (3.5)

and
ϕμ̃n → ϕμ̃ weakly in Lδ(0, T ;W 1,δ

0 (Ω)) for some δ > 1. (3.6)

Due to (3.6) and the fact that limn→∞
∫

Qω
τ,T

|ϕμ̃n | dxdt = 0, we deduce that ϕμ̃ = 0 a.e. in Qω
τ,T , which, together

with Lemma A.3 and the smoothing effect of the heat equation, implies that μ̃ = 0. It follows from (3.4)
and (3.5) that

limn→∞
Jτ (μn)

‖μn‖(C0(Ω))∗
≥ 1.

This implies (3.3).

Step 2. We prove the existence of a solution to problem (P τ
au).

Due to Lemma A.2, we see that the functional Jτ : (C0(Ω))∗ → R is continuous. This together with (3.2)
implies that infμ∈(C0(Ω))∗ Jτ (μ) exists. Let

d = inf
μ∈(C0(Ω))∗

Jτ (μ). (3.7)

Then there exists a sequence {μn}∞n=1 ⊂ (C0(Ω))∗ such that

d = lim
n→∞ Jτ (μn). (3.8)

It follows from (3.2) and (3.8) that there exists a positive constant C independent of n such that
‖μn‖(C0(Ω))∗ ≤ C. Due to Lemma A.2, we deduce that there exist a subsequence, still indexed by n, and
μ̂, such that

μn → μ̂ weakly star in (C0(Ω))∗ (3.9)

and
ϕμn → ϕμ̂ weakly in Lδ(0, T ;W 1,δ

0 (Ω)) for some δ > 1, (3.10)

where ϕμn and ϕμ̂ are the solutions of (3.1) with initial values μn and μ̂ respectively. Hence, we obtain
by (3.8)–(3.10) that

d = limn→∞Jτ (μn) ≥ Jτ (μ̂),

which, combined with (3.7), implies that μ̂ is a solution of (P τ
au).
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Step 3. Let μ∗
τ be a solution to (P τ

au). Then μ∗
τ 	= 0.

By contradiction, if μ∗
τ = 0, then

Jτ (0) ≤ Jτ (λμ), ∀ λ ∈ R and μ ∈ (C0(Ω))∗,

which implies

0 ≤ λ2

2

(∫
Qω

τ,T

|ϕμ| dxdt

)2

+ |λ|‖μ‖(C0(Ω))∗ + λ〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω).

Here ϕμ is the solution to (3.1) with initial value μ. After some simple calculations, we obtain

|〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω)| ≤ ‖μ‖(C0(Ω))∗ , ∀ μ ∈ (C0(Ω))∗,

which shows that ‖y(T, ·; y1, 0)‖C0(Ω) ≤ 1, and provides a contradiction to (1.2). �

With the help of problem (P τ
au), we have

Lemma 3.2. Let μ∗
τ be a solution to (P τ

au). Then

u∗τ (t, x) =

(∫
Qω

τ,T

|ϕμ∗
τ
| dxdt

)
χQω

τ,T
(t, x)sgn(ϕμ∗

τ
(t, x)) a.e. (t, x) ∈ QT , (3.11)

is a solution to (P τ
nm), where ϕμ∗

τ
is the solution of (3.1) with initial value μ∗

τ .

Proof. This will be proven in two steps.

Step 1. u∗τ in (3.11) is admissible for (P τ
nm).

Due to Lemma 3.1, we know that μ∗
τ 	= 0. Combined with Lemma A.3 and the smoothing effect of the heat

equation this shows that ϕμ∗
τ
(t, x) 	= 0 a.e. in QT . Hence

∫
Qω

τ,T
|ϕμ∗

τ
| dxdt 	= 0. Since μ∗

τ is a solution to (P τ
au),

J(μ∗
τ ) ≤ J(μ∗

τ + λμ), ∀ λ ∈ R, μ ∈ (C0(Ω))∗,

and consequently

1
2

(∫
Qω

τ,T

|ϕμ∗
τ
| dxdt

)2

+ ‖μ∗
τ‖(C0(Ω))∗ + 〈μ∗

τ , y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω)

≤ 1
2

(∫
Qω

τ,T

|ϕμ∗
τ

+ λϕμ| dxdt

)2

+ ‖μ∗
τ + λμ‖(C0(Ω))∗ + 〈μ∗

τ + λμ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω)

≤ 1
2

(∫
Qω

τ,T

|ϕμ∗
τ

+ λϕμ| dxdt

)2

+ ‖μ∗
τ‖(C0(Ω))∗ + |λ| ‖μ‖(C0(Ω))∗ + 〈μ∗

τ + λμ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω),

(3.12)

where ϕμ is the solution to (3.1) with initial value μ. Due to (3.12), we get that for any λ ∈ R with λ 	= 0 and
μ ∈ (C0(Ω))∗,

1
2

∫
Qω

τ,T

(|ϕμ∗
τ

+ λϕμ| + |ϕμ∗
τ
|) dxdt ·

∫
Qω

τ,T

|ϕμ∗
τ

+ λϕμ| − |ϕμ∗
τ
|

|λ| dxdt

+‖μ‖(C0(Ω))∗ +
λ

|λ| 〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω) ≥ 0.
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Passing to the limits for λ→ 0+ and λ→ 0− in the above inequality we obtain∫
Qω

τ,T

|ϕμ∗
τ
| dxdt ·

∫
Qω

τ,T

ϕμ∗
τ

|ϕμ∗
τ
|ϕμ dxdt+ ‖μ‖(C0(Ω))∗ + 〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω) ≥ 0

and ∫
Qω

τ,T

|ϕμ∗
τ
| dxdt ·

∫
Qω

τ,T

ϕμ∗
τ

|ϕμ∗
τ
|ϕμ dxdt− ‖μ‖(C0(Ω))∗ + 〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω) ≤ 0.

These two inequalities together with (3.11) imply∣∣∣∣∣
∫

QT

χQω
τ,T
u∗τ · ϕμ dxdt+ 〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω)

∣∣∣∣∣ ≤ ‖μ‖(C0(Ω))∗ , ∀ μ ∈ (C0(Ω))∗. (3.13)

Furthermore it follows from (1.1) with u replaced by u∗τ and 0 respectively, and (3.1) that∫
QT

χQω
τ,T
u∗τ · ϕμ dxdt = 〈μ, y(T, ·; y1, χQω

τ,T
u∗τ )〉(C0(Ω))∗,C0(Ω) −

∫
Ω

y1(x) · ϕμ(0, x) dx

and

〈μ, y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω) −
∫

Ω

y1(x) · ϕμ(0, x) dx = 0.

The above two equalities combined with (3.13) imply

|〈μ, y(T, ·; y1, χQω
τ,T
u∗τ )〉(C0(Ω))∗,C0(Ω)| ≤ ‖μ‖(C0(Ω))∗ , ∀ μ ∈ (C0(Ω))∗.

Hence ‖y(T, ·; y1, χQω
τ,T
u∗τ )‖C0(Ω) ≤ 1. This completes the proof of Step 1.

Step 2. u∗τ is optimal for (P τ
nm).

Taking u from the admissible control set of (P τ
nm), we have by (1.1) and (3.1) with μ = μ∗

τ that∫
QT

χQω
τ,T
u · ϕμ∗

τ
dxdt− 〈μ∗

τ , y(T, ·; y1, χQω
τ,T
u)〉(C0(Ω))∗,C0(Ω) = −

∫
Ω

y1(x) · ϕμ∗
τ
(0, x) dx. (3.14)

Moreover, since μ∗
τ is a solution to (P τ

au), we have

Jτ (μ∗
τ ) ≤ Jτ (μ∗

τ + λμ∗
τ ), ∀ λ ∈ R.

Due to the previous inequality we obtain after some calculations(∫
Qω

τ,T

|ϕμ∗
τ
| dxdt

)2

+ ‖μ∗
τ‖(C0(Ω))∗ = −〈μ∗

τ , y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω). (3.15)

Noticing that

〈μ∗
τ , y(T, ·; y1, 0)〉(C0(Ω))∗,C0(Ω) =

∫
Ω

y1(x) · ϕμ∗
τ
(0, x) dx,

we obtain together with (3.15) and (3.14) that(∫
Qω

τ,T

|ϕμ∗
τ
| dxdt

)2

+ ‖μ∗
τ‖(C0(Ω))∗ =

∫
QT

χQω
τ,T
u · ϕμ∗

τ
dxdt− 〈μ∗

τ , y(T, ·; y1, χQω
τ,T
u)〉(C0(Ω))∗,C0(Ω)

≤ ‖u‖L∞(QT )

∫
Qω

τ,T

|ϕμ∗
τ
| dxdt+ ‖μ∗

τ‖(C0(Ω))∗ .
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Recalling that
∫

Qω
τ,T

|ϕμ∗
τ
| dxdt 	= 0 we have

∫
Qω

τ,T
|ϕμ∗

τ
| dxdt ≤ ‖u‖L∞(QT ). This combined with (3.11) and

Step 1, completes the proof. �
Remark 3.3. The idea of construction of a solution to problem (P τ

nm) by introducing (P τ
au) originates

from [14,15], where approximate controllability to u1 ∈ L2(Ω) of the heat equation in L2(Ω)⎧⎨
⎩
ut −Δu = χωg in QT ,
u = 0 on ΣT ,
u(0, x) = 0 in Ω,

is formulated as follows: for any ε > 0, find g ∈ L2(QT ) such that

‖u(T, ·; 0, g)− u1‖L2(Ω) ≤ ε. (3.16)

The control g∗ satisfying (3.16) with minimum L2(QT )-norm can be constructed in the following manner: con-
sider the minimization problem

MinJ(ψ0) over all ψ0 ∈ L2(Ω), (Pε)

where the functional J : L2(Ω) → R is defined by

J(ψ0) =
1
2

∫ T

0

‖ψ‖2
L2(ω) dt+ ε‖ψ0‖L2(Ω) − 〈u1, ψ0〉L2(Ω),L2(Ω),

and ψ is the solution to ⎧⎨
⎩
ψt +Δψ = 0 in QT ,
ψ = 0 on ΣT ,
ψ(T, x) = ψ0(x) in Ω.

(3.17)

We denote the solution of (Pε) by ψ∗
0 . Then g∗ = χωψ

∗, with ψ∗ the solution to (3.17) corresponding to initial
value ψ∗

0 , gives the solution to the approximate controllability problem with minimum L2(QT )-norm. Later
on, suitable variants of this functional are used to build different types of controls in dealing with approximate
controllability, finite-approximate controllability, null controllability and time optimal control problem of partial
differential equations [6, 16, 22, 24].

From now on, we denote
N∗

∞(τ) = Min(P τ
nm).

With the above preparations, we establish the connections between (P1) and (P τ∗
nm).

Lemma 3.4. Let τ∗ be the optimal time for (P1) and let u∗1 be the optimal control of (P1). Then N∗
∞(τ∗) = M1.

Proof. Since u∗1 is the optimal control of (P1), it is an admissible control for (P τ∗
nm), and hence N∗∞(τ∗) ≤M1.

It suffices to show that equality holds. To seek a contradiction, we assume that

N∗
∞(τ∗) < M1. (3.18)

By the definition of N∗
∞(τ∗), we deduce that there exists a sequence {un}∞n=1 from the admissible control set of

(P τ∗
nm) satisfying

lim
n→∞ ‖un‖L∞(QT ) = N∗

∞(τ∗) and ‖y(T, ·; y1, χQω
τ∗,T

un)‖C0(Ω) ≤ 1. (3.19)

From the equality in (3.19) and (3.18) it follows that for some integer n0 > 0

‖un‖L∞(QT ) ≤M1 for all n ≥ n0. (3.20)

Due to (3.20) and the inequality in (3.19) we see that un is an optimal control for problem (P1), if n ≥ n0.
Combined with Theorem 2.1 and (3.18) this implies that

‖un‖L∞(QT ) = M1 > N∗
∞(τ∗) ∀ n ≥ n0,

which contradicts with the equality in (3.19). �



472 K. KUNISCH AND L. WANG

Based on Corollary 2.2 and Lemma 3.4, we have

Lemma 3.5. Let τ∗ be the optimal time for (P1). Then (P τ∗
nm) has a unique solution and this solution is the

optimal control for (P1).

Proof. Assume that u1 and u2 are solutions to (P τ∗
nm). Then on the one hand,

‖y(T, ·; y1, χQω
τ∗,T

u1)‖C0(Ω) ≤ 1 and‖y(T, ·; y1, χQω
τ∗,T

u2)‖C0(Ω) ≤ 1. (3.21)

On the other hand, due to Lemma 3.4, we have

‖u1‖L∞(QT ) = ‖u2‖L∞(QT ) = N∗
∞(τ∗) = M1,

which, combined with (3.21), implies that u1 and u2 are optimal controls for problem (P1). Hence, due to
Corollary 2.2, we deduce that u1 = u2 a.e. in QT . �

Finally, due to Lemmas 3.5 and 3.2, we get

Corollary 3.6. Let τ∗ be the optimal time for (P1). Then

u∗τ∗(t, x) =
∫

Qω
τ∗,T

|ϕμ∗
τ∗ | dxdt · χQω

τ∗,T
(t, x)sgn(ϕμ∗

τ∗ (t, x)) a.e. (t, x) ∈ QT

is the unique solution to (P τ∗
nm) and (P1), where ϕμ∗

τ∗ is the solution to

⎧⎨
⎩

(ϕμ∗
τ∗ )t +Δϕμ∗

τ∗ = 0 in QT ,
ϕμ∗

τ∗ = 0 on ΣT ,
ϕμ∗

τ∗ (T, ·) = μ∗
τ∗ in Ω,

and μ∗
τ∗ is a minimizer of (P τ∗

au ).

4. Necessary and sufficient optimality conditions for (P1)

In this section necessary and sufficient optimality conditions for the optimal time τ∗ and the optimal
control u∗1 of (P1) are obtained. The main result is given first.

Theorem 4.1. τ̃∗ and ũ∗ (with ũ∗(t, x) = 0 a.e. in QT \ Qω
τ̃∗,T ) are the optimal time and the optimal control

for (P1) if and only if μ∗
τ̃∗ is a minimizer of (P τ̃∗

au ) with the property that

ϕμ∗
τ̃∗ (t, x) · ũ∗(t, x) = max

|a|≤M1

(ϕμ∗
τ̃∗ (t, x) · a) for almost all (t, x) ∈ Qω

τ̃∗,T , (4.1)

M1 =
∫

Qω
τ̃∗,T

|ϕμ∗
τ̃∗ | dxdt, (4.2)

⎧⎨
⎩

(ϕμ∗
τ̃∗ )

t
+Δϕμ∗

τ̃∗ = 0 in QT ,

ϕμ∗
τ̃∗ (t, x) = 0 on ΣT ,

ϕμ∗
τ̃∗ (T, ·) = μ∗

τ̃∗ in Ω.
(4.3)

To prove the above theorem, we need the following lemma.
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Lemma 4.2. The function N∗∞(·) : [0, T ) → (0,+∞) is strictly increasing, continuous and limτ→T− N∗∞(τ) =
+∞.

Proof. The proof is split into four steps.

Step 1. N∗
∞(·) : [0, T ) → (0,+∞) is strictly increasing.

Let 0 ≤ τ1 < τ2 < T . We shall show that

N∗
∞(τ1) < N∗

∞(τ2). (4.4)

Due to Lemmas 3.2 and 3.1, we see that for i = 1, 2,

u∗τi
(t, x) =

∫
Qω

τi,T

|ϕμ∗
τi
| dxdt · χQω

τi,T
(t, x)sgn(ϕμ∗

τi
(t, x)) a.e. (t, x) ∈ QT (4.5)

is a solution to (P τi
nm), where ϕμ∗

τi
is the solution of (3.1) with initial value μ∗

τi
with μ∗

τi
a solution to (P τi

au) and

ϕμ∗
τi

(t, x) 	= 0 for a.e. (t, x) ∈ QT .

Consider the equation ⎧⎨
⎩
zt −Δz = χωu in (τ1, τ2) ×Ω,
z = 0 on (τ1, τ2) × ∂Ω,
z(τ1, x) = δy(τ1, x; y1, 0) in Ω,

(4.6)

where δ ∈ (0, 1) will be determined later. Due to Theorem 3.1 in [10], we have that there exists a control
uδ ∈ L∞((τ1, τ2) ×Ω), such that the solution zδ(·, ·;uδ) of (4.6) corresponding to uδ satisfies

zδ(τ2, ·;uδ) = 0 (4.7)

and
‖uδ‖L∞((τ1,τ2)×Ω) ≤ c0 δ‖y(τ1, ·; y1, 0)‖L2(Ω). (4.8)

Here c0 is a positive constant independent of δ. Now take δ ∈ (0, 1) such that

c0 δ‖y(τ1, ·; y1, 0)‖L2(Ω) < ‖u∗τ2
‖L∞(QT ).

This combined with (4.8) gives
‖uδ‖L∞((τ1,τ2)×Ω) < ‖u∗τ2

‖L∞(QT ). (4.9)

Let

ũδ =
{
uδ in (τ1, τ2) × Ω,
0 in [τ2, T ) ×Ω.

(4.10)

Then due to (4.10), (4.9), (4.6) and (4.7), we can easily check that

‖ũδ‖L∞((τ1,T )×Ω) < ‖u∗τ2
‖L∞(QT ), (4.11)

and the solution to ⎧⎨
⎩

(ỹδ)t −Δỹδ = χωũδ in (τ1, T )× Ω,
ỹδ = 0 on (τ1, T ) × ∂Ω,
ỹδ(τ1, x) = δy(τ1, x; y1, 0) in Ω

(4.12)

satisfies
ỹδ(t, ·) = 0, ∀ t ∈ [τ2, T ]. (4.13)
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Next we consider the following equation⎧⎨
⎩

(ŷδ)t −Δŷδ = (1 − δ)χQω
τ2,T

u∗τ2
in (τ1, T )× Ω,

ŷδ = 0 on (τ1, T ) × ∂Ω,
ŷδ(τ1, x) = (1 − δ)y(τ1, x; y1, 0) in Ω,

(4.14)

and we deduce that
ŷδ(t, ·) = (1 − δ)y(t, ·; y1, χQω

τ2,T
u∗τ2

), ∀ t ∈ [τ1, T ]. (4.15)

It follows from (4.12), (4.14), (4.13) and (4.15) that⎧⎨
⎩

(ỹδ + ŷδ)t −Δ(ỹδ + ŷδ) = χωũδ + (1 − δ)χQω
τ2,T

u∗τ2
in (τ1, T ) ×Ω,

ỹδ + ŷδ = 0 on (τ1, T ) × ∂Ω,
(ỹδ + ŷδ)(τ1, x) = y(τ1, x; y1, 0) in Ω

(4.16)

and
‖ỹδ(T, ·) + ŷδ(T, ·)‖C0(Ω) ≤ 1 − δ < 1. (4.17)

Hence, due to (4.16), (4.17), (4.10) and (4.11), we see that the function

ûδ =

⎧⎨
⎩

0 in (0, τ1] ×Ω,
χωuδ in (τ1, τ2) ×Ω,
(1 − δ)χωu

∗
τ2

in [τ2, T ) ×Ω

is an admissible control for (P τ1
nm) and ‖ûδ‖L∞(QT ) < ‖u∗τ2

‖L∞(QT ). These facts together with (4.5) provide (4.4).

Step 2. N∗
∞(·) : [0, T ) → (0,+∞) is left continuous.

Let τ0 ∈ (0, T ) be fixed. Due to Step 1, we infer that

lim
τ↑τ0

N∗
∞(τ)

exists. We shall prove
lim
τ↑τ0

N∗
∞(τ) = N∗

∞(τ0). (4.18)

By contradiction, we assume that there did exist a sequence {τn}∞n=1 with τn ↑ τ0 such that

lim
τn↑τ0

N∗
∞(τn) = N∗

∞(τ0) − ε for some positive constant ε.

We denote by u∗τn
a solution to (P τn

nm). Then

‖u∗τn
‖L∞(QT ) = N∗

∞(τn) ↑ N∗
∞(τ0) − ε.

Hence there exist a subsequence, still indexed by n, and ũ ∈ L∞(QT ), such that

u∗τn
→ ũ weakly star in L∞(QT ) (4.19)

and
‖ũ‖L∞(QT ) ≤ N∗

∞(τ0) − ε < N∗
∞(τ0). (4.20)

Due to (4.19) we have

χQω
τn,T

u∗τn
→ χQω

τ0,T
ũ weakly star in L∞(QT ).
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This, combined with Lp- theory for parabolic equation (see e.g. Thm. 1.14 of Chap. 1 in [11]) shows that for a
subsequence, still indexed by n,

y(·, ·; y1, χQω
τn,T

u∗τn
) − y(·, ·; y1, χQω

τ0,T
ũ) → 0 weakly in W 2,1

2(N+2)(QT ).

Due to embedding Theorem (see e.g. Thm. 1.4.1 in [23]), we deduce that W 2,1
2(N+2)(QT ) is compactly embedded

in C(QT ), and hence for a subsequence, still indexed by n,

‖y(·, ·; y1, χQω
τn,T

u∗τn
) − y(·, ·; y1, χQω

τ0,T
ũ)‖C(QT ) → 0,

which implies that

‖y(T, ·; y1, χQω
τn,T

u∗τn
) − y(T, ·; y1, χQω

τ0,T
ũ)‖C0(Ω) → 0.

Together with the fact that ‖y(T, ·; y1, χQω
τn,T

u∗τn
)‖C0(Ω) ≤ 1 this shows that

‖y(T, ·; y1, χQω
τ0,T

ũ)‖C0(Ω) ≤ 1. (4.21)

Hence N∗
∞(τ0) ≤ ‖χQω

τ0,T
ũ‖L∞(QT ) ≤ ‖ũ‖L∞(QT ). This contradicts (4.20) and (4.18) follows.

Step 3. N∗∞(·) : [0, T ) → (0,+∞) is right continuous.
Let τ0 ∈ [0, T ) be fixed. Due to Step 1, we infer that

lim
τ↓τ0

N∗
∞(τ)

exists. We shall prove that

lim
n→∞N∗

∞(τn) = N∗
∞(τ0), where τn = τ0 +

1
2n2(N+2)

· (4.22)

Let u∗τ0
be a solution of (P τ0

nm) and let yδ
n and yδ be the solutions to⎧⎨

⎩
(yδ

n)t −Δyδ
n = χQω

τn,T
(1 + n−1)(1 − δ)u∗τ0

in QT ,

yδ
n = 0 on ΣT ,
yδ

n(0, x) = (1 − δ)y1(x) in Ω

(4.23)

and ⎧⎨
⎩

(yδ)t −Δyδ = χQω
τ0,T

(1 − δ)u∗τ0
in QT ,

yδ = 0 on ΣT ,
yδ(0, x) = (1 − δ)y1(x) in Ω

(4.24)

respectively, where δ = δ(n) ∈ (0, 1) will be determined later. It follows from (4.23), (4.24), Lp- theory for
parabolic equation (see e.g. Thm. 1.14 of Chap. 1 in [11]) and embedding theorem (see e.g. Thm. 1.4.1 in [23])
that

‖yδ
n − yδ‖C(QT ) ≤ C‖yδ

n − yδ‖W 2,1
2(N+2)(QT ) ≤ C‖χQω

τn,T
(1 + n−1)(1 − δ)u∗τ0

− χQω
τ0,T

(1 − δ)u∗τ0
‖L2(N+2)(QT )

= C

(∫ τn

τ0

∫
Ω

|χω(1 − δ)u∗τ0
|2(N+2) dxdt

+
∫ T

τn

∫
Ω

|χωn
−1(1 − δ)u∗τ0

|2(N+2) dxdt

) 1
2(N+2)

≤ C‖u∗τ0
‖L∞(QT )(1 − δ)

[
(τn − τ0)

1
2(N+2) + n−1

]
≤ C(1 − δ)n−1.
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Here and throughout the proof of this step, C denotes different positive constants independent of n and δ. The
previous inequality, together with the fact that yδ(t, x) = (1 − δ)y(t, x; y1, χQω

τ0,T
u∗τ0

), implies that

‖yδ
n(T, ·)‖C0(Ω) ≤ (1 − δ)‖y(T, ·; y1, χQω

τ0,T
u∗τ0

)‖C0(Ω) + C(1 − δ)n−1

≤ (1 − δ)[1 + Cn−1]. (4.25)

From the following equation ⎧⎨
⎩
zt −Δz = χQω

τn,T
u in QT ,

z = 0 on ΣT ,
z(0, x) = δy1(x) in Ω,

(4.26)

it is obvious that ⎧⎨
⎩
zt −Δz = 0 in (0, τn) ×Ω,
z = 0 on (0, τn) × ∂Ω,
z(0, x) = δy1(x) in Ω.

(4.27)

Multiplying the first equation of (4.27) by z and integrating on Ω, we get

d
dt

‖z(t, ·)‖2
L2(Ω) = −2‖∇z(t, ·)‖2

L2(Ω), ∀ t ∈ (0, τn),

which implies that the function ‖z(t, ·)‖2
L2(Ω) is decreasing on [0, τn]. Hence

‖z(τn, ·)‖L2(Ω) ≤ ‖z(0, ·)‖L2(Ω) = δ‖y1‖L2(Ω). (4.28)

From Theorem 3.1 in [10] it follows that there exists a function ũδ
n ∈ L∞((τn, T ) × Ω) such that the solution

of (4.26) corresponding to u = uδ
n ≡

{
0 in (0, τn] ×Ω,
ũδ

n in (τn, T )×Ω,
denoted by zδ

n, satisfies

zδ
n(T, ·) = 0 (4.29)

and

‖ũδ
n‖L∞((τn,T )×Ω) ≤ eC[1+T−τn+(T−τn)−1]‖zδ

n(τn, ·)‖L2(Ω) ≤ C‖zδ
n(τn, ·)‖L2(Ω).

The previous inequality, combined with (4.23), (4.25), (4.26), (4.28) and (4.29), implies that there exists a
positive constant c0 > 1 independent on n and δ such that

(yδ
n + zδ

n)(·, ·) = y(·, ·; y1, χQω
τn,T

[(1 + n−1)(1 − δ)u∗τ0
+ uδ

n]), ∀ (t, x) ∈ QT , (4.30)

‖(yδ
n + zδ

n)(T, ·)‖C0(Ω) ≤ (1 − δ)(1 + c0n
−1), (4.31)

and
‖(1 + n−1)(1 − δ)u∗τ0

+ uδ
n‖L∞(QT ) ≤ (1 + n−1)(1 − δ)‖u∗τ0

‖L∞(QT ) + c0δ. (4.32)

Now we take δ = c0(c0 + n)−1. Then it follows from (4.31) and (4.32) that

‖(yδ
n + zδ

n)(T, ·)‖C0(Ω) ≤ 1 (4.33)

and

‖(1 + n−1)(1 − δ)u∗τ0
+ uδ

n‖L∞(QT ) ≤ ‖u∗τ0
‖L∞(QT ) + c20(c0 + n)−1.
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Hence we deduce from the result of Step 1, (4.30), (4.33) and the previous inequality that

N∗
∞(τ0) < N∗

∞(τn) ≤ ‖χQω
τn,T

[(1 + n−1)(1 − δ)u∗τ0
+ uδ

n]‖L∞(QT ) ≤ N∗
∞(τ0) + c20(c0 + n)−1,

which gives (4.22).

Step 4. limτ→T− N∗∞(τ) = +∞.
Assume that this property does not hold. Then there would be a positive constantM0 and a sequence {τn}∞n=1

with τn ↑ T such that
N∗

∞(τn) ≤M0. (4.34)

Let u∗τn
be a solution to problem (P τn

nm). Then due to (4.34), we deduce

‖u∗τn
‖L∞(QT ) = N∗

∞(τn) ≤M0 (4.35)

and
‖y(T, ·; y1, χQω

τn,T
u∗τn

)‖C0(Ω) ≤ 1. (4.36)

It follows from (4.35) that

χQω
τn,T

u∗τn
→ 0 weakly star in L∞(QT ),

which, combined with (4.36) and the same arguments as (4.21), indicates

‖y(T, ·; y1, 0)‖C0(Ω) ≤ 1.

This contradicts assumption (1.2). �

We turn to the proof of Theorem 4.1.

Proof. The“only if” part can be easily derived by Corollary 3.6.
Concerning the “if” part, it follows from (4.2) and (4.3) that μ∗

τ̃∗ 	= 0 and ϕμ∗
τ̃∗ 	= 0 a.e. in QT . Then due

to (4.1)–(4.2) and Lemma 3.2, we deduce that

ũ∗(t, x) = M1 · χQω
τ̃∗,T

(t, x)sgn(ϕμ∗
τ̃∗ (t, x))

=
∫

Qω
τ̃∗,T

|ϕμ∗
τ̃∗ | dxdt · χQω

τ̃∗,T
(t, x)sgn(ϕμ∗

τ̃∗ (t, x)); a.e. in QT

is a solution of the problem (P τ̃∗
nm), which implies M1 = N∗

∞(τ̃∗). This together with Lemma 3.4 shows that

N∗
∞(τ̃∗) = N∗

∞(τ∗) = M1. (4.37)

By Lemma 4.2 and (4.37), we obtain τ̃∗ = τ∗. Furthermore, it follows from Lemma 3.5 that ũ∗ is the optimal
control for (P1). �

Remark 4.3.

(i) Assigning the control to have the value 0 in QT \Qω
τ,T is essential to obtain Theorem 4.1. Analogously this

will be the case in Theorem 5.5 of the following section.
(ii) In the proof of Theorem 4.1, from the properties of N∗∞(·) given in Lemma 4.2, we only use the fact that

N∗∞(·) : [0, T ) → (0,+∞) is strictly increasing.
(iii) The fact that M1 = N∗

∞(τ∗) =
∫

Qω
τ∗,T

|ϕμ∗
τ∗ | dxdt, Lemma 4.2 and Theorem 4.1 give us some directions to

numerically calculate the optimal time τ∗ and optimal control u∗1 for (P1).
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5. Necessary and sufficient optimality conditions for (P2)

In this section necessary and sufficient optimality conditions for optimal time T ∗ and optimal control u∗2
of (P2) are given. Let us first recall the following result from [12].

Lemma 5.1. Let T ∗ be the optimal time and let u∗2 be an optimal control for problem (P2). Then |u∗2(t, x)| = M2

for almost all (t, x) ∈ Qω
T∗ .

It follows from Lemma 5.1 and the same arguments as Corollary 2.2 that

Corollary 5.2. The time optimal control for (P2) is unique.

Next, let T > 0 be fixed. We introduce two minimization problems as in Section 3. The first one is the
following norm optimal control problem:

Min {‖u‖L∞(QT ) : u ∈ L∞(QT ) satisfying ‖y(T, ·; y2, u)‖C0(Ω) ≤ 1}, (PnmT )

where the control u is set to 0 in QT \Qω
T .

The second one is an auxiliary problem:

Min JT (μ) over all μ ∈ (C0(Ω))∗, (PauT )

where the functional JT : (C0(Ω))∗ → R is defined by

JT (μ) =
1
2

(∫
Qω

T

|ϕμ| dxdt

)2

+ ‖μ‖(C0(Ω))∗ + 〈μ, y(T, ·; y2, 0)〉(C0(Ω))∗,C0(Ω),

and ϕμ is the unique solution to the equation:⎧⎨
⎩

(ϕμ)t +Δϕμ = 0 in QT ,
ϕμ = 0 on ΣT ,
ϕμ(T, ·) = μ in Ω.

(5.1)

Due to Lemma 5.1, Corollary 5.2 and similar arguments as those in Section 3, we have

Lemma 5.3.

(i) Problem (PauT ) has at least a minimizer. Moreover, its minimizer is zero if and only if ‖y(T, ·; y2, 0)‖C0(Ω)

≤ 1.
(ii) If ‖y(T, ·; y2, 0)‖C0(Ω) > 1 and μ∗

T is a solution to (PauT ), then

u∗T (t, x) =
∫

Qω
T

|ϕμ∗
T
| dxdt · χω(x)sgn(ϕμ∗

T
(t, x)) a.e. (t, x) ∈ QT ,

is a solution of (PnmT ), where ϕμ∗
T

is the solution to (5.1) with initial value μ∗
T .

(iii) Let T ∗ be the optimal time for problem (P2). Then N̂∗
∞(T ∗) = M2, where N̂∗

∞(T ) denotes the minimum of
(PnmT ).

(iv) Let T ∗ be the optimal time for problem (P2). Then problem (PnmT∗) has a unique solution. This solution,
after being extended to be 0 on [T ∗,+∞) ×Ω, is the optimal control for problem (P2).

Henceforth for a given solution of (PnmT ), we extend it to be 0 on [T,+∞)×Ω. From Lemma 5.1 it follows
that ‖y(T ∗, ·; y2, 0)‖C0(Ω) > 1. Then, due to (ii) and (iv) in Lemma 5.3, we obtain the following result.
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Corollary 5.4. Let T ∗ be the optimal time for problem (P2). Then

u∗T∗(t, x) =
∫

Qω
T∗

|ϕμ∗
T∗ | dxdt · χω(x)sgn(ϕμ∗

T∗ (t, x)) a.e. (t, x) ∈ QT∗

is the unique solution to (PnmT∗) and (P2), where ϕμ∗
T∗ is the solution to

⎧⎨
⎩

(ϕμ∗
T∗ )t +Δϕμ∗

T∗ = 0 in QT∗ ,
ϕμ∗

T∗ = 0 on ΣT∗ ,
ϕμ∗

T∗ (T ∗, ·) = μ∗
T∗ in Ω,

and μ∗
T∗ is a minimizer of (PauT∗).

The main result of this section is given next.

Theorem 5.5. T̃ ∗ and ũ∗ (with ũ∗ = 0 on ((0,+∞)×Ω) \Qω
T̃∗) are the optimal time and the optimal control

for (P2) if and only if

ϕμ∗
T̃∗ (t, x) · ũ∗(t, x) = max

|a|≤M2

(ϕμ∗
T̃∗ (t, x) · a) for almost all (t, x) ∈ Qω

T̃∗ , (5.2)

M2 =
∫

Qω
T̃∗

|ϕμ∗
T̃∗ | dxdt, (5.3)

⎧⎪⎨
⎪⎩

(ϕμ∗
T̃∗ )t +Δϕμ∗

T̃∗ = 0 in QT̃∗ ,

ϕμ∗
T̃∗ (t, x) = 0 on ΣT̃∗ ,

ϕμ∗
T̃∗ (T̃ ∗, ·) = μ∗

T̃∗ in Ω,

(5.4)

where μ∗
T̃∗ is a minimizer of (PauT̃∗).

To prove the above theorem, we need some properties of the function N̂∗∞(·). For this purpose, we define

T0 = inf{T : ‖y(T, ·; y2, 0)‖C0(Ω) ≤ 1, T > 0}. (5.5)

The following properties are satisfied by N̂∗∞.

Lemma 5.6. We have T0 <∞ and the function N̂∗
∞ is strictly decreasing and continuous on (0, T0]. Moreover,

N̂∗∞(T ) = 0 for T ≥ T0 and limT→0+ N̂∗∞(T ) = +∞.

Proof. The proof is split into four steps.

Step 1. N̂∗
∞(·) : (0, T0] → [0,+∞) is strictly decreasing, T0 < +∞ and N̂∗

∞(T ) = 0 for T ≥ T0.
Let 0 < T1 < T2 < T0. It is obvious that

‖y(T1, ·; y2, 0)‖C0(Ω) > 1 and ‖y(T2, ·; y2, 0)‖C0(Ω) > 1. (5.6)

We shall show that
N̂∗

∞(T1) > N̂∗
∞(T2). (5.7)

Due to (5.6), and (i), (ii) in Lemma 5.3, we see that for i = 1, 2,

u∗Ti
(t, x) =

∫
Qω

Ti

|ϕμ∗
Ti
| dxdt · χω(x)sgn(ϕμ∗

Ti
(t, x)) a.e. (t, x) ∈ QTi (5.8)
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is a solution to (PnmTi), where ϕμ∗
Ti

is the solution of (5.1) with initial value μ∗
Ti

, and μ∗
Ti

is a solution to
(PauTi ). We also have

ϕμ∗
Ti

(t, x) 	= 0 for a.e. (t, x) ∈ QTi (μ∗
Ti

	= 0). (5.9)

Let yn be the solution to ⎧⎨
⎩

(yn)t −Δyn = χω(1 − n−1)u∗T1
in (0,+∞) ×Ω,

yn = 0 on (0,+∞) × ∂Ω,
yn(0, x) = y2(x) in Ω.

(5.10)

It is easy to check that

‖yn(T1, ·) − y(T1, ·; y2, u∗T1
)‖C0(Ω) ≤ Cn−1,

which implies
‖yn(T1, ·)‖C0(Ω) ≤ 1 + Cn−1. (5.11)

Here and throughout the proof of this step, C denotes different positive constants independent of n. Set zn(t, x) =
yn(t+ T1, x), for (t, x) ∈ QT2−T1 . Then we have⎧⎨

⎩
(zn)t −Δzn = 0 in QT2−T1 ,
zn = 0 on ΣT2−T2 ,
zn(0, x) = yn(T1, x) in Ω.

Define

z̃n(0, x) =
{ |yn(T1, x)| in Ω,

0 in R
N \Ω, (5.12)

and let z̃n satisfy the heat equation (z̃n)t −Δz̃n = 0 for x ∈ R
N , t > 0. Then

z̃n(t, x) =
∫

RN

(4πt)−
N
2 e−

|x−s|2
4t z̃n(0, s) ds, ∀ (t, x) ∈ (0,+∞) × R

N , (5.13)

and
|zn(t, x)| ≤ z̃n(t, x), ∀ (t, x) ∈ QT2−T1 . (5.14)

It follows from (5.14), (5.13) and (5.12) that

|zn(T2 − T1, x)| ≤
∫

RN

[4π(T2 − T1)]−
N
2 e−

|x−s|2
4(T2−T1) z̃n(0, s) ds

=
∫

RN

(2π)−
N
2 e−

|s|2
2 z̃n

(
0, x+

√
2(T2 − T1)s

)
ds

=
∫
{s∈RN :x+

√
2(T2−T1)s∈Ω}

(2π)−
N
2 e−

|s|2
2

∣∣∣yn

(
T1, x+

√
2(T2 − T1)s

)∣∣∣ds
≤ ‖yn(T1, ·)‖C0(Ω)

∫
{s∈RN :x+

√
2(T2−T1)s∈Ω}

(2π)−
N
2 e−

|s|2
2 ds, ∀ x ∈ Ω. (5.15)

It is easy to check that there exists an open, bounded set Ω̂ (depending on T2 − T1) in R
N such that{

s ∈ R
N : x+

√
2(T2 − T1)s ∈ Ω

}
⊂ Ω̂, ∀ x ∈ Ω.

This together with (5.15) implies

|zn(T2 − T1, x)| ≤ ‖yn(T1, ·)‖C0(Ω)

∫
Ω̂

(2π)−
N
2 e−

|s|2
2 ds, ∀ x ∈ Ω,
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from which it follows that

‖zn(T2 − T1, ·)‖C0(Ω) ≤ ‖yn(T1, ·)‖C0(Ω)

∫
Ω̂

(2π)−
N
2 e−

|x|2
2 dx.

Hence
‖yn(T2, ·)‖C0(Ω) ≤ ‖yn(T1, ·)‖C0(Ω)

∫
Ω̂

(2π)−
N
2 e−

|x|2
2 dx. (5.16)

This together with (5.11) leads to

‖yn(T2, ·)‖C0(Ω) ≤ [1 + Cn−1]
∫

Ω̂

(2π)−
N
2 e−

|x|2
2 dx. (5.17)

Moreover, we know that
∫

RN (2π)−
N
2 e−

|x|2
2 dx = 1, which implies

∫
Ω̂

(2π)−
N
2 e−

|x|2
2 dx < 1. It follows from (5.17)

and the latter that there exists a positive integer n0 such that

‖yn0(T2, ·)‖C0(Ω) ≤ 1. (5.18)

Hence due to (5.18), (5.10), (5.8) and (5.9), we obtain

N̂∗
∞(T2) ≤ ‖χω(1 − n−1

0 )u∗T1
‖L∞(QT2) ≤ ‖(1 − n−1

0 )u∗T1
‖L∞(QT1) < ‖u∗T1

‖L∞(QT1) = N̂∗
∞(T1),

which completes the proof of (5.7).
Furthermore by the same arguments as (5.16), we deduce that there exists a constant a0 ∈ (0, 1) such that

for any integer n ≥ 0,

‖y(n+ 1, ·; y2, 0)‖C0(Ω) ≤ a0‖y(n, ·; y2, 0)‖C0(Ω),

which implies

‖y(n, ·; y2, 0)‖C0(Ω) ≤ an
0‖y2(·)‖C0(Ω).

Hence there exists a positive integer n0 satisfying ‖y(n0, ·; y2, 0)‖C0(Ω) ≤ 1. This together with definition (5.5)
implies T0 < +∞ and N̂∗

∞(T0) = 0. Similarly, for T > T0, since

‖y(T − T0, ·; y(T0, ·; y2, 0), 0)‖C0(Ω) ≤ ‖y(T0, ·; y2, 0)‖C0(Ω) ≤ 1

and y(T, x; y2, 0) = y(T − T0, x; y(T0, ·; y2, 0), 0), ∀ x ∈ Ω, we get ‖y(T, ·; y2, 0)‖C0(Ω) ≤ 1. Hence N̂∗
∞(T ) = 0.

Step 2. N̂∗
∞(·) : (0, T0) → [0,+∞) is right continuous.

Let T̃ ∈ (0, T0) be fixed. Due to Step 1, we deduce that limT↓T̃ N̂
∗∞(T ) exists. We shall prove

lim
T↓T̃

N̂∗
∞(T ) = N̂∗

∞(T̃ ). (5.19)

By contradiction, we assume there exists a sequence {Tn}∞n=1 with Tn ↓ T̃ such that

lim
Tn↓T̃

N̂∗
∞(Tn) = N̂∗

∞(T̃ ) − ε for some positive constant ε.

We denote by un a solution to (PnmTn). Then

‖un‖L∞(QTn ) = N̂∗
∞(Tn) ↑ N̂∗

∞(T̃ ) − ε.
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Hence there exist a subsequence, still indexed by n, and ũ ∈ L∞((0,+∞) × Ω), such that

un → ũ weakly star in L∞((0,+∞) ×Ω) (5.20)

and
‖ũ‖L∞(QT̃ ) ≤ N̂∗

∞(T̃ ) − ε < N̂∗
∞(T̃ ). (5.21)

Due to the similar arguments as those of Step 2 in Lemma 4.2, we obtain that

‖y(T̃ , ·; y2, ũ)‖C0(Ω) ≤ 1.

Hence N̂∗
∞(T̃ ) ≤ ‖χωũ‖L∞(QT̃ ) ≤ ‖ũ‖L∞(QT̃ ). This contradicts (5.21) and therefore, (5.19) follows.

Step 3. N̂∗∞(·) : (0, T0] → [0,+∞) is left continuous.
Let T̃ ∈ (0, T0] be fixed. Due to Step 1, we deduce that limT↑T̃ N̂

∗
∞(T ) exists. We shall prove that for any

sequence Tn ↑ T̃ ,
lim

n→∞ N̂∗
∞(Tn) = N̂∗

∞(T̃ ). (5.22)

Consider the following equation ⎧⎨
⎩
yt −Δy = χωu in QTn ,
y = 0 on ΣTn ,
y(0, x) = δy2(x) in Ω,

(5.23)

where δ = δ(n) ∈ (0, 1) will be determined later. Due to Theorem 3.1 in [10] there exists a control uδ
n ∈ L∞(QTn),

such that the solution to (5.23) with u = uδ
n, denoted by yδ

n, satisfies

yδ
n(Tn, ·) = 0. (5.24)

Moreover we have
‖uδ

n‖L∞(QTn) ≤ ec1(1+Tn+T−1
n ) · δ‖y2‖L2(Ω) ≤ c2δ. (5.25)

Here c1 and c2 are positive constants independent of n and δ. Define

yδ(t, x) = (1 − δ)y(t, x; y2, ũ), ∀ (t, x) ∈ QTn , (5.26)

where ũ is a solution of problem (PnmT̃ ). Then it follows from (5.23)–(5.26) that⎧⎨
⎩

(yδ
n + yδ)t −Δ(yδ

n + yδ) = χω[uδ
n + (1 − δ)ũ] in QTn ,

yδ
n + yδ = 0 on ΣTn ,

(yδ
n + yδ)(0, x) = y2(x) in Ω,

(5.27)

‖(yδ
n + yδ)(Tn, ·)‖C0(Ω) = (1 − δ)‖y(Tn, ·; y2, ũ)‖C0(Ω)

≤ (1 − δ)(‖y(Tn, ·; y2, ũ) − y(T̃ , ·; y2, ũ)‖C0(Ω) + 1) (5.28)

and
‖uδ

n + (1 − δ)ũ‖L∞(QTn ) ≤ c2δ + (1 − δ)‖ũ‖L∞(QT̃ ). (5.29)

Choosing

δ =
‖y(Tn, ·; y2, ũ) − y(T̃ , ·; y2, ũ)‖C0(Ω)

1 + ‖y(Tn, ·; y2, ũ) − y(T̃ , ·; y2, ũ)‖C0(Ω)

,
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we deduce from (5.28) and (5.29) that

‖(yδ
n + yδ)(Tn, ·)‖C0(Ω) ≤ 1 (5.30)

and
limn→∞‖uδ

n + (1 − δ)ũ‖L∞(QTn) ≤ ‖ũ‖L∞(QT̃ ). (5.31)

It follows from the result of Step 1, (5.27) and (5.30) that

N̂∗
∞(T̃ ) < N̂∗

∞(Tn) ≤ ‖χω[uδ
n + (1 − δ)ũ]‖L∞(QTn ) ≤ ‖uδ

n + (1 − δ)ũ‖L∞(QTn ),

which, combined with (5.31) and the fact that ‖ũ‖L∞(QT̃ ) = N̂∗
∞(T̃ ), implies (5.22).

Step 4. limT→0+ N̂∗
∞(T ) = +∞.

Assume that this property does not hold. Then there would be a positive constantM0 and a sequence {Tn}∞n=1

with Tn ↓ 0 such that
N̂∗

∞(Tn) ≤M0. (5.32)

Let u∗Tn
be a solution to problem (PnmTn). Then due to (5.32), we deduce

‖u∗Tn
‖L∞((0,+∞)×Ω) = ‖u∗Tn

‖L∞(QTn ) = N̂∗
∞(Tn) ≤M0 (5.33)

and
‖y(Tn, ·; y2, u∗Tn

)‖C0(Ω) ≤ 1. (5.34)

Due to the similar arguments as those of Step 4 in Lemma 4.2, we obtain that ‖y2(·)‖C0(Ω) ≤ 1. Thus this
contradicts with assumption ‖y2(·)‖C0(Ω) > 1. �

Now we turn to the proof of Theorem 5.5.

Proof. The “only if” part can be easily derived by Corollary 5.4.
Now we turn to the proof of the “if” part. It follows from (5.3) and (5.4) that μ∗

T̃∗ 	= 0 and ϕμ∗
T̃∗ (t, x) 	= 0

a.e. in QT̃∗ . Then due to (5.2)–(5.3) and (i), (ii) in Lemma 5.3, we have

ũ∗(t, x) = M2 · χω(x)sgn(ϕμ∗
T̃∗ (t, x)) =

∫
Qω

T̃∗

|ϕμ∗
T̃∗ | dxdt · χω(x)sgn(ϕμ∗

T̃∗ (t, x)) a.e. in QT̃∗

is a solution of the problem (PnmT̃∗), which implies M2 = N̂∗
∞(T̃ ∗). This together with (iii) in Lemma 5.3

implies
N̂∗

∞(T̃ ∗) = N̂∗
∞(T ∗) = M2. (5.35)

Then due to Lemma 5.6 and (5.35), we get that T̃ ∗ = T ∗ ∈ (0, T0). Furthermore, it follows from (iv) in
Lemma 5.3 that ũ∗ is the optimal control for (P2). �

Remark 5.7.

(i) In the proof of Theorem 5.5, from the properties of N̂∗
∞(·) given in Lemma 5.6, we only use the fact that

N̂∗
∞(·) : (0, T0] → [0,+∞) is strictly decreasing.

(ii) The fact that M2 = N̂∗
∞(T ∗) =

∫
Qω

T∗
|ϕμ∗

T∗ | dxdt, Lemma 5.6 and Theorem 5.5 suggest a method to
numerically calculate the optimal time T ∗ and optimal control u∗2 for (P2).
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Appendix A

We quote from [1,8, 13] the following results, which are used in the present paper.

Lemma A.1. Let ρ ∈ (0, 1) be a fixed positive constant. Then for u1, u2 in U1, there exists a measurable subset
Eρ ⊂ QT such that

|Eρ|RN+1 = ρ|QT |RN+1.

Moreover, if we set

uρ(t, x) =
{
u1(t, x), (t, x) ∈ QT \ Eρ,
u2(t, x), (t, x) ∈ Eρ,

then ∥∥∥yρ − y1
ρ

− z
∥∥∥

C(QT )
→ 0 as ρ→ 0,

where yρ and y1 are the solutions to (1.1) corresponding to uρ and u1 respectively, and z is the solution to the
equation ⎧⎨

⎩
zt = Δz + χQω

τ,T
(u2 − u1) in QT ,

z = 0 on ΣT ,
z(0, x) = 0 in Ω.

Lemma A.2. Let μ ∈ (C0(Ω))∗. Then the following equation⎧⎨
⎩
yt −Δy = 0 in QT ,
y = 0 on ΣT ,
y(0, x) = μ in Ω

has a unique weak solution y ∈ L1(0, T ;W 1,1
0 (Ω)). Moreover, there exists a positive constant δ > 1, such that

y ∈ Lδ(0, T ;W 1,δ
0 (Ω)) and

‖y‖Lδ(0,T ;W 1,δ
0 (Ω)) ≤ C‖μ‖(C0(Ω))∗ ,

where C is a positive constant independent of y.

Lemma A.3. If p ∈ C∞([0, T ) ×Ω) is a nonzero solution to{
pt +Δp = 0 in QT ,
p = 0 on ΣT ,

then p(t, x) 	= 0 a.e. in QT .

Lemma A.4. Let X be a Banach space and let S1 be finite codimensional in X.

(i) Let S2 ⊂ X. Then, for any a ∈ R \ {0} and b ∈ R, the set

aS1 − bS2 ≡ {as1 − bs2|s1 ∈ S1, s2 ∈ S2}
is finite codimensional in X.

(ii) Let {fn}n≥1 ⊂ X∗ with

‖fn‖X∗ ≥ δ > 0, fn → f weakly star in X∗,

and

〈fn, s〉X∗,X ≥ −εn, ∀ s ∈ S1, n ≥ 1,

where δ is a constant and εn → 0. Then f 	= 0.

Lemmas A.1 and A.2 are special cases of Theorems 5.1 and 4.2 in [1], Lemma A.3 is a special case of
Theorem 4.7.12 in [8] and Lemma A.4 is taken from [13] (see Prop. 3.4 and Lem. 3.6 of Chap. 4 in [13]).
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du contròle, edited by T. Sari. Collection Travaux en Cours Hermann (2004) 69–157.

[17] V.J. Mizel and T.I. Seidman, An abstract bang-bang principle and time optimal boundary control of the heat equation. SIAM
J. Control Optim. 35 (1997) 1204–1216.

[18] J.P. Raymond and H. Zidani, Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375–402.

[19] E.J.P.G. Schmidt, The “bang-bang” principle for the time-optimal problem in boundary control of the heat equation. SIAM
J. Control Optim. 18 (1980) 101–107.

[20] G.S. Wang and L.J. Wang, The bang-bang principle of time optimal controls for the heat equation with internal controls. Syst.
Control Lett. 56 (2007) 709–713.

[21] L.J.Wang and G.S. Wang, The optimal time control of a phase-field system. SIAM J. Control Optim. 42 (2003) 1483–1508.

[22] G.S. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for heat equations. SIAM J. Control
Optim. 50 (2012) 2938–2958.

[23] Z.Q. Wu, J.X. Yin and C.P. Wang, Elliptic and Parabolic Equations. World Scientific Publishing Corporation, New Jersey
(2006).

[24] E. Zuazua, Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities. Control Cybern.
28 (1999) 665–683.


	Introduction
	Bang-bang property for (P1)
	The norm optimal control problem corresponding to (P1)
	Necessary and sufficient optimality conditions for (P1)
	Necessary and sufficient optimality conditions for (P2)
	Appendix A
	References

