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Abstract The problem of optimal placement of point sources is formulated as a dis-
tributed optimal control problem with sparsity constraints. For practical relevance,
partial observations as well as partial and non-negative controls need to be consid-
ered. Although well-posedness of this problem requires a non-reflexive Banach space
setting, a primal-predual formulation of the optimality system can be approximated
well by a family of semi-smooth equations, which can be solved by a superlinearly
convergent semi-smooth Newton method. Numerical examples indicate the feasibil-
ity for optimal light source placement problems in diffusive photochemotherapy.

Keywords Optimal control · Optimal actuator placement · Non-reflexive Banach
space · Radon measures · Fenchel duality

1 Introduction

This work is concerned with the (formal) optimal control problem
⎧
⎪⎨

⎪⎩

min
y,u

1

2
‖y|ωo − z‖2

L2(ωo)
+ α‖u‖M�(ωc)

subject to Ay = χωcu, y|∂� = 0,

(P)

where A is a linear second-order elliptic operator, ωo and ωc represent the ob-
servation and control subdomains of the bounded domain � ⊂ R

n with charac-
teristic function χωo and χωc , respectively, and z ∈ L2(ωo) is given. For conve-
nience, we abbreviate � = ∂�. Furthermore M�(ωc) denotes the topological dual of
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C�(ωc) := {v ∈ C(ωc) : v|∂ωc∩� = 0}, where the constraint v|∂ωc∩� = 0 is dropped if
∂ωc ∩ � = ∅. The norm on M�(ωc) is given by

‖u‖M�(ωc) = sup
ϕ∈C�(ωc)‖ϕ‖C�(ωc)≤1

∫

ωc

ϕ du, (1.1)

which coincides with ‖u‖L1(ωc)
if u ∈ L1(ωc) (identified with a subspace of M�(ωc))

holds. Since ωc \� is a locally compact Hausdorff space, the Riesz representation the-
orem allows identifying elements of M�(ωc) with Radon measures that have com-
pact support in ωc \ � (cf. [9, Theorem VIII.2.19]).

The problem is motivated by the question of optimal source placement, e.g., in
diffusive optical tomography, since the L1 norm is known to promote sparsity in
optimization. The connection between L1 control costs and source placement was
first discussed in [16]. However, problem (P) is not well-posed in L1, since L1 lacks
the necessary weak compactness properties. Problems with L1 control cost and L∞
control constraints were considered in [16, 19, 20] and [5], while a measure space
setting was first investigated in [6].

In this work, we address the feasibility of optimal source placement by optimal
control in measure spaces by including partial observation, control on subdomains
and non-negativity of the controls, which was not considered in the previously cited
works. The Fenchel predual framework as utilized in [6] is not applicable in this
situation, so we consider a primal-predual setting. This framework can be modified
to allow for nonlinear control-to-state mappings, which also do not fit into the earlier
Fenchel duality framework.

This paper is organized as follows. In Sect. 2, we discuss the well-posedness of the
optimal control problem for measure source terms defined on subdomains and derive
the optimality system. Section 3 is devoted to the regularization of the optimality
system and addresses the convergence of the regularized solutions to those of the
original problem. The numerical solution using a semi-smooth Newton method is
discussed in Sect. 4. Finally, in Sect. 5 we give numerical examples to indicate the
feasibility of the proposed approach for a problem of optimal light source placement
in photochemotherapy.

Throughout, we take as W1,r
0 (�) the closure of {v ∈ C∞(�) : v|∂� = 0} in the

W1,r (�) norm, r ∈ (1,∞). We denote by W−1,r ′
(�) = (W1,r

0 (�))∗ the topological

dual of W1,r
0 (�). Moreover, for ω ⊂ � we set W1,r (ω) = {ϕ|ω : ϕ ∈ W1,r

0 (�)} with
dual denoted by (W1,r (ω))∗.

2 Problem formulation and optimality system

We first address the well-posedness of the state equation. Let M (�) denote the
topological dual of C0(�) endowed with the operator norm, cf. (1.1). By the Riesz
representation theorem (e.g., [9, Theorem VIII.2.10]), M (�) can be identified with
the Banach space of finite Radon measures. We further choose q ∈ (1, n

n−1 ) and set
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q ′ = q−1
q

∈ (n,∞). For this choice, we have W1,q ′
0 (�) ↪→ C0(�), and this embed-

ding is compact.
We consider the operator

Ay = −
n∑

j,k=1

∂j (ajk(x)∂ky + dj (x)y) +
n∑

j=1

bj (x)∂j y + d(x)y,

and for μ ∈ M (�) the abstract Dirichlet problem
{

Ay = μ, in �,

y = 0, on ∂�,
(2.1)

which is to be interpreted in variational form, i.e., y satisfies

−
n∑

j,k=1

〈ajk∂j y, ∂kv〉L2 +
n∑

j=1

〈bj ∂j y, v〉L2 +
n∑

k=1

〈y, dk∂kv〉L2 + 〈dy, v〉L2 =
∫

�

v dμ

(2.2)
for all v ∈ W1,q ′

0 (�). Here, � is a bounded domain in R
n with C1,δ boundary ∂�,

ajk, bj ∈ C0,δ(�) for some δ ∈ (0,1), dj , d ∈ L∞(�), and it is assumed that 0 is not
an eigenvalue of A (e.g., A is uniformly elliptic and the lower order coefficients are
small enough, cf. [11, Theorem 8.3]). These assumptions imply that the adjoint A∗

of A is an isomorphism from W1,q ′
0 (�) to W−1,q ′

(�), see, e.g., [18, Theorem 3.16],

[10]. Consequently, A is an isomorphism from W1,q

0 (�) to W−1,q (�). In particular,
(2.1) admits a unique solution satisfying

‖y‖
W1,q

0 (�)
≤ C‖μ‖M (�)

for a constant C independent of μ, by the fact that M (�) embeds continuously into
W−1,q (�) (see, e.g., [17, Theorem 9.1] and [15, Theorem 4.1]). We refer to [15] for a
discussion of the various (equivalent) characterizations of solutions to (2.2) and their
uniqueness if A∗ is not surjective on W−1,q ′

(�).
We now define the control-to-state mapping associated to (P). For this purpose,

let

Rωo : W1,q

0 (�) → W1,q (ωo), Rωc : W1,q ′
0 (�) → W1,q ′

(ωc)

denote the canonical restriction operators from � to ωc and ωo, respectively, with
adjoints

R∗
ωo

: (W1,q (ωo))
∗ → W−1,q ′

(�), R∗
ωc

: (W1,q ′
(ωc))

∗ → W−1,q (�).

Further we shall employ the injections

Jωo : W1,q (ωo) → L2(ωo), Jωc : W1,q ′
(ωc) → C�(ωc)

with adjoints

J ∗
ωo

: L2(ωo) → (W1,q (ωo))
∗, J ∗

ωc
: M�(ωc) → (W1,q ′

(ωc))
∗.
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Then we set

Sω : M�(ωc) → L2(ωo), u �→ JωoRωoA
−1R∗

ωc
J ∗

ωc
u,

and note that Sω is a bounded linear operator. Since Rωo , Rωc , Jωo and Jωc have
dense ranges, their adjoints are injections. To argue that Jωc has dense range, let
ϕ ∈ C�(ωc). By Tietze’s extension theorem (e.g., [7, Theorem 3.1]), there exists a
ϕ̃ ∈ C�(ωc) with ϕ̃|∂� = 0 and ϕ̃|ωc = ϕ (see also [18, Theorem 1.N]). Moreover

ϕ̃ can be approximated by ϕ̃n ∈ W1,q ′
0 (�) in the W1,q ′

0 (�)-norm, and hence ϕ̃n|ωc ∈
W1,q ′

(ωc) approximates ϕ ∈ C�(ωc).
We will also need the following continuity property of the control-to-state map-

ping.

Proposition 2.1 For any sequence {uk} ⊂ M�(ωc) converging weakly-� in M�(ωc),
the sequence Sω(uk) converges strongly to Sω(u) in L2(ωo).

Proof Since q ′ > n, the embedding W1,q ′
(ωc) ↪→ C�(ωc) is compact. Therefore, the

adjoint embedding M�(ωc) ↪→ (W1,q ′
(ωc))

∗ is compact as well. Weak-� conver-
gence of uk in M�(ωc) thus implies strong convergence of J ∗

ωc
uk . The claim then

follows from the continuity of JωoRωoA
−1R∗

ωc
. �

The reduced problem corresponding to (P) can then be formulated as

min
u∈M�(ωc)

1

2
‖Sωu − z‖2

L2(ωo)
+ α‖u‖M�(ωc). (2.3)

Existence of a minimizer u∗ follows from the fact that bounded sequences in M�(ωc)

contain a weakly-� convergent subsequence, and that u �→ ‖u‖M�(ωc) is weak-�
lower semicontinuous.

Remark 2.1 If a minimizer u∗ satisfies u∗ ∈ L1(ωc), it is also a solution of the prob-
lem

min
u∈L1(ωc)

1

2
‖Sωu − z‖2

L2(ωo)
+ α‖u‖L1(ωc)

.

This follows from the embedding of L1(ωc) into M�(ωc) and the fact that
‖v‖M�(ωc) = ‖v‖L1(ωc)

for v ∈ L1(ωc) (cf. [4, Chap. IV]).

We wish to employ a Fenchel duality argument for the derivation of a necessary
optimality condition for (2.3). To avoid dealing with (M�(ωc))

∗, we shall consider a
predual of (2.3) rather than a dual problem. Such a procedure was previously used in
[3, 6, 12], for example. For this purpose, we introduce

∗Sω : L2(ωo) → C�(ωc), ϕ �→ JωcRωc(A
∗)−1R∗

ωo
J ∗

ωo
ϕ,

noting that

(∗Sω)∗ = Sω,

i.e., ∗Sω is the “preadjoint” to Sω.
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Theorem 2.1 Let u∗ ∈ M�(ωc) be a solution to (2.3). Then there exists a p∗ ∈
C�(ωc) satisfying

{ ∗Sω(Sωu∗ − z) = p∗,
〈u∗,p∗ − p〉M�(ωc),C�(ωc) ≤ 0, ‖p∗‖C�(ωc) ≤ α,

(OS)

for all p ∈ C�(ωc) with ‖p‖C�(ωc) ≤ α.

Proof We consider the following problem in L2(ωo), which will be shown to be the
predual of (2.3):

min
q∈L2(ωo)

1

2
‖q + z‖2

L2(ωo)
− 1

2
‖z‖2

L2(ωo)
+ I{‖q‖C�(ωc)≤α}(∗Sωq)

=: min
q∈L2(ωo)

F (q) + G (∗Sωq), (2.4)

where F : L2(ωo) → R and G : C�(ωc) → R ∪ {∞}. A short computation shows
that the Fenchel conjugates F ∗ : L2(ωo) → R and G ∗ : M�(ωc) → R are given by

F ∗(v) = 1

2
‖v − z‖2

L2(ωo)
, G ∗(v) = α‖v‖M�(ωc).

Since q �→ F (q) + G (∗Sωq) is continuous at 0, the Fenchel duality theorem (see,
e.g., [8, Theorem 4.1]) is applicable and implies that

min
q∈L2(ωo)

F (q) + G (∗Sωq) = min
u∈M�(ωc)

F ∗(Sωu) + G ∗(−u)

= min
u∈M�(ωc)

1

2
‖Sωu − z‖2

L2(ωo)
+ α‖u‖M�(ωc), (2.5)

where we utilize (∗Sω)∗ = Sω. Moreover (cf. [8, Proposition 4.1]), to every minimizer
q∗ ∈ L2(ωo) of the left hand side of (2.5) corresponds a minimizer u∗ ∈ M�(ωc) of
the right hand side satisfying the relationship

{
Sωu∗ = q∗ + z,

−u∗ ∈ ∂I{‖q‖C�(ωc)≤α}(∗Sωq∗).

From the second relation, we have ‖∗Sωq∗‖C�(ωc) ≤ α and

〈−u∗,p − ∗Sωq∗〉M�(ωc),C�(ωc) ≤ 0 for all ‖p‖C�(ωc) ≤ α. (2.6)

Setting p∗ = ∗Sωq∗ = ∗Sω(Sωu∗ − z) we find that

〈u∗,p∗ − p〉M�(ωc),C�(ωc) ≤ 0 for all ‖p‖C�(ωc) ≤ α

and ‖p∗‖C�(ωc) ≤ α. �

We note that by construction p∗ ∈ W1,q ′
(ωc) holds. From the second relation of

(OS), we can also obtain the following structural information on an optimal con-
trol u∗.
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Corollary 2.1 Let (u∗,p∗) be a solution to (OS). Then for any p ∈ C�(ωc) with
p ≥ 0,

〈u∗,p〉M�(ωc),C�(ωc) = 0 if supp(p) ⊂ {x ∈ ωc : |p∗(x)| < α},
〈u∗,p〉M�(ωc),C�(ωc) ≤ 0 if supp(p) ⊂ {x ∈ ωc : p∗(x) = α},
〈u∗,p〉M�(ωc),C�(ωc) ≥ 0 if supp(p) ⊂ {x ∈ ωc : p∗(x) = −α}.

This can be interpreted as a sparsity property: An optimal control u∗ will be non-
zero only on sets where the constraint on p∗ is active; hence the larger the penalty α,
the smaller the support of the control.

Remark 2.2 (Non-negative controls) If in (P) only non-negative controls are admit-
ted, we replace G ∗(v) by

G ∗+ : M�(ωc) → R ∪ {∞}, v �→ I{f ≤0}(v) + α‖v‖M�(ωc)

(noting that the dual problem involves the term G ∗+(−u∗)). This is the Fenchel dual
of

G+ : C�(ωc) → R ∪ {∞}, q �→ I{f ≥−α}(q),

and (2.6) must be replaced by

〈−u∗,p − ∗Sωq∗〉M�(ωc),C�(ωc) ≤ 0 for all p ≥ −α.

The optimality conditions for the case of non-negative controls become
{ ∗Sω(Sωu∗ − z) = p∗,

〈u∗,p∗ − p〉M�(ωc),C�(ωc) ≤ 0, p∗ ≥ −α
(OS+)

for all p ∈ C�(ωc) with p ≥ −α.

3 Regularization

The numerical solution of the optimality system (OS) is based on a Moreau–Yoshida
regularization of (OS). For given c > 0, we search for (uc,pc) ∈ L2(ωc)× W1,q ′

(ωc)

which satisfy
{

pc = S∗
ω(Sωuc − z),

−uc = c max(0,pc − α) + c min(0,pc + α),
(OSc)

where the max and min are taken pointwise in ωc . Here, Sω is considered as an
operator from L2(ωc) → L2(ωo). The action of its adjoint S∗

ω : L2(ωo) → L2(ωc)

coincides with that of ∗Sω. Moreover, the range of S∗
ω is contained in W1,q ′

(ωc).
This regularization can be interpreted as a quadratic penalization of the box con-

straints in (2.4).
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Theorem 3.1 There exists a unique solution (uc,pc) ∈ L2(ωc)×W1,q ′
(ωc) of (OSc).

Proof The claim will follow from the fact that (OSc) are the necessary optimality
conditions of the problem

min
u∈L2(ωc)

1

2
‖Sωu − z‖2

L2(ωo)
+ α‖u‖L1(ωc)

+ 1

2c
‖u‖2

L2(ωc)
. (Pc)

The cost function in (Pc) is continuous, bounded from below and strictly convex
due to the presence of the L2(ωc) term, hence (Pc) admits a unique minimizer uc ∈
L2(ωc). To express (Pc) abstractly, we introduce

F ∗
c : L2(ωc) → R, u �→ 1

2
‖Sωu − z‖2

L2(ωo)
,

G ∗
c : L2(ωc) → R, u �→ α‖u‖L1(ωc)

+ 1

2c
‖u‖2

L2(ωc)
.

The optimality condition for (Pc) is given by

0 ∈ S∗
ω(Sωuc − z) + ∂G ∗

c (uc)

or equivalently,
{

pc = S∗
ω(Sωuc − z),

−pc ∈ ∂G ∗
c (uc),

(3.1)

where the first equation implies pc ∈ W1,q ′
(ωc) ↪→ C�(ωc). We claim that G ∗

c is the
Fenchel conjugate of

Gc : L2(ωc) → R, p �→ c

2
‖max(0,p − α)‖2

L2(ωc)
+ c

2
‖min(0,p + α)‖2

L2(ωc)
.

To show this, we compute the Fenchel conjugate of Gc at u ∈ L2(ωc), which is defined
as

G ∗
c (u) = sup

q∈L2(ωc)

〈u,q〉L2(ωc)
− Gc(q).

The supremum is attained at p ∈ L2(ωc) if and only if

u = ∂Gc(p) = c max(0,p − α) + c min(0,p + α)

holds almost everywhere in ωc. If u(x) > 0, the right hand side has to be positive as
well, which implies that u(x) = c(p(x)−α) and hence p(x) = 1

c
u(x)+α. Similarly,

u(x) < 0 yields p(x) = 1
c
u(x) − α. For u(x) = 0, we deduce that −α ≤ p(x) ≤ α

holds. Substituting in the definition of G ∗, we have that
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G ∗
c (u) =

∫

{u>0}
u(x)

(
1

c
u(x) + α

)

− 1

2c
max(0, u(x))2 dx

+
∫

{u<0}
u(x)

(
1

c
u(x) − α

)

− 1

2c
min(0, u(x))2 dx

= 1

2c
‖u‖2

L2(ωc)
+ α‖u‖L1(ωc)

.

Since Gc is Lipschitz continuous, the second condition in (3.1) can be expressed
as (cf., e.g., [1, Theorem 9.5.1])

uc ∈ ∂Gc(−pc) = {c(max(0,−pc − α) + min(0,−pc + α))}.
Noting that max(0,−p) = −min(0,p), the optimality conditions (OSc) follow.

Turning to uniqueness, let (uc,pc) and (uc,pc) be two solutions to (OSc) and
set (δu, δp) = (uc − uc,pc − pc). Then, subtracting the corresponding optimality
conditions and taking the inner product with (δu, δp) implies that

0 = ‖Sωδu‖2
L2(ωo)

+ c〈max(0,pc − α) − max(0,pc − α),pc − pc〉L2(ωc)

+ c〈min(0,pc + α) − min(0,pc + α),pc − pc〉L2(ωc)
. (3.2)

Since the mappings p �→ max(0,p) and p �→ min(0,p) are monotone, we obtain
that the inner products in (3.2) are non-negative and thus that Sωδu = 0. Since δp =
S∗

ω(Sωδu) = 0 by linearity of state and adjoint equation, we deduce pc = pc and
hence uc = uc from the second equation of (OSc). �

Next, we address the convergence of solutions of (OSc) as c → ∞.

Theorem 3.2 Let (uc,pc) ∈ L2(ωc) × W1,q ′
(ωc) be solutions of (OSc) for c > 0.

Then the family (uc,pc) contains a subsequence, denoted by the same symbol, such
that

uc ⇀ � u∗ in M�(ωc),

pc → p∗ in W1,q ′
(ωc) and hence in C�(ωc),

and (u∗,p∗) is a solution of (OS).

Proof Since uc = 0 is an admissible control, we have

α‖uc‖M�(ωc) ≤ 1

2
‖Sωuc − z‖2

L2(ωo)
+ α‖uc‖M�(ωc) + 1

2c
‖uc‖2

L2(ωc)

≤ 1

2
‖z‖2

L2(ωo)
. (3.5)

The family of minimizers {uc}c>0 is thus bounded in M�(ωc), and hence there exists
a subsequence (also denoted by {uc}) which converges weakly-� in M�(ωc) to a ũ ∈
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M�(ωc). Since Sω(uc) → Sω(ũ) strongly in L2(ωo) by Proposition 2.1, we deduce
from the continuity of S∗

ω that

pc → p̃ := S∗
ω(Sωũ − z)

strongly in W1,q ′
(ωc) and hence in C�(ωc).

We next verify the feasibility of p̃. By squaring the second relation of (OSc) and
inspecting pointwise, we obtain that

1

c
‖uc‖2

L2(ωc)
= c‖max(0,pc − α)‖2

L2(ωc)
+ c‖min(0,pc + α)‖2

L2(ωc)
.

From (3.5), we have that 1
c
‖uc‖2

L2(ωc)
≤ ‖z‖2

L2(ωo)
, so that

‖max(0,pc − α)‖2
L2(ωc)

≤ 1

c
‖z‖2

L2(ωo)
→ 0,

‖min(0,pc + α)‖2
L2(ωc)

≤ 1

c
‖z‖2

L2(ωo)
→ 0,

hold for c → ∞. Since pc → p̃ strongly in C�(ωc), this implies that

−α ≤ p̃(x) ≤ α for all x ∈ ωc.

It remains to pass to the limit in the second equation of (OSc). Observe that

〈−uc,p − pc〉L2(ωc)
= c〈max(0,pc − α),p − pc〉L2(ωc)

+ c〈min(0,pc + α),p − pc〉L2(ωc)
≤ 0

holds for all p ∈ C�(ωc) with ‖p‖C�(ωc) ≤ α, and thus that

〈ũ, p̃ − p〉M�(ωc),C�(ωc) ≤ 0

is satisfied for all p ∈ C�(ωc) with ‖p‖C�(ωc) ≤ α. Therefore, (ũ, p̃) ∈ M�(ωc) ×
C�(ωc) satisfies (OS). �

Remark 3.1 (Non-negative controls) By a similar argument as in the proof of Theo-
rem 3.1, it can be shown that

G ∗+,c : L2(ωc) → R, v �→ I{f ≤0}(v) + 1

2c
‖v‖2

L2(ωc)
+ α‖v‖L1(ωc)

,

is the Fenchel conjugate of

G+,c : L2(ωc) → R, q �→ c

2
‖min(0, q + α)‖2

L2(ωc)
,

and thus that the corresponding regularized optimality system is
{

pc = S∗
ω(Sωuc − z),

−uc = c min(0,pc + α).
(OS+,c)

The convergence result for c → ∞ as in Theorem 3.2 remains valid.
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4 Semi-smooth Newton method

For the numerical solution, we consider (OSc) as the operator equation F(uc) = 0 for
F : L2(ωc) → L2(ωc), given by

F(u) = u + c max(0, S∗
ω(Sωu − z) − α) + c min(0, S∗

ω(Sωu − z) + α).

It is known (e.g., from [13, Example 8.14]), that the function v �→ max(0, v − α) is
Newton differentiable from Lp to Lq for any p > q ≥ 1 with Newton derivative in
direction h given pointwise almost everywhere by

[DN max(0, v − α)]h = χ{v>α}h =
{

h(x), if v(x) > α,

0, if v(x) ≤ α.

An analogous statement holds for the pointwise min function. Since S∗
ωv ∈ W1,q ′

(ωc)

holds for all v ∈ L2(ωo), F is Newton differentiable and the chain rule for Newton
derivatives (e.g., [13, Lemma 8.15]) yields that the action of the Newton derivative of

G+(u) := max(0, S∗
ω(Sωu − z) − α)

in the direction h is given by

DNG+(u)h = χ{S∗
ω(Sωu−z)>α}(S∗

ωSωh)

=
{

(S∗
ωSωh)(x) if (S∗

ω(Sωu − z))(x) > α,

0 if (S∗
ω(Sωu − z))(x) ≤ α,

and a similar claim holds for the min term. A semi-smooth Newton step thus consists
in solving for δu in the equation

δu + cχ{|S∗
ω(Sωuk−z)|>α}(S∗

ωSωδu) = −uk − c max(0, S∗
ω(Sωuk − z) − α)

− c min(0, S∗
ω(Sωuk − z) + α) (4.1)

and setting uk+1 = uk + δu. The semi-smooth Newton step (4.1) can be solved using
an iterative Krylov solver (e.g., GMRES), where the action of the Newton derivative
on given δu is computed by first solving the linearized state equation for the state
differential δy followed by the adjoint equation for the adjoint differential δp. The
full procedure is given as Algorithm 1.

It remains to verify the well-posedness and uniform boundedness of the Newton
step (4.1).

Proposition 4.1 For fixed α, c > 0 and for any u ∈ L2(ωc), the mapping DNF(u) ∈
L (L2(ωc),L2(ωc)) is invertible, and there exists a constant C > 0 independent of u

such that

‖DNF(u)−1‖L (L2(ωc),L2(ωc))
≤ C

holds.
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Algorithm 1 Semi-smooth Newton method

1: Choose u0, set k = 0
2: repeat
3: Solve for ỹk in Ay = R∗

ωc
uk , set yk = Rωoỹ

k

4: Solve for p̃k in A∗p = R∗
ωo

(yk − z), set pk = Rωc p̃
k

5: Compute active sets

A k+ = {x ∈ ωc : pk(x) > α}
A k− = {x ∈ ωc : pk(x) < −α},
A k = A k+ ∪ A k−

6: Set F(uk) = −uk − cχA k+(pk − α) − cχA k−(pk + α)

7: Compute δu by solving DNF(uk)δu = F(uk) using APPLYNEWTONMA-
TRIX in Krylov method

8: Set uk+1 = uk + δu, k ← k + 1
9: until (A k+ = A k−1+ and A k− = A k−1− ) or k = k∗

1: function APPLYNEWTONMATRIX(δu,A k)
2: Solve for δ̃y in Aδy = R∗

ωc
δu, set δy = Rωo δ̃y

3: Solve for δ̃p in A∗δp = R∗
ωo

δy, set δp = Rωc δ̃p

4: return δu + cχA k δp

5: end function

Proof Let u ∈ L2(ωc) be given and set

A = {|S∗
ω(Sωu − z)| > α}

as well as I = ωc \ A .
For arbitrary w ∈ L2(ωc), we need to find δu ∈ L2(ωc) satisfying

δu + cχA (S∗
ωSωδu) = w. (4.2)

From this, we have that δu = w almost everywhere in I . By the linearity of Sω and
S∗

ω, we can thus write

cχA (S∗
ωSωδu) = cχA (S∗

ωSω(χA δu)) + cχA (S∗
ωSω(χI w)).

Inserting this identity into (4.2) and testing with δu, we obtain

‖δu‖2
L2(ωc)

+ c‖Sω(χA δu)‖2
L2(ωo)

= 〈w,δu〉L2(ωc)
− c〈Sω(χI w),Sω(χA δu)〉L2(ωo)

≤ ‖w‖L2(ωc)
‖δu‖L2(ωc)

+ C‖w‖L2(ωc)
‖δu‖L2(ωc)

≤ C‖w‖L2(ωc)
‖δu‖L2(ωc)

by the continuity of Sω. Together this implies

‖δu‖L2(ωc)
≤ C‖w‖L2(ωc)
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with a constant C > 0 depending on c but independent of A and therefore of u,
which yields the claimed uniform boundedness. �

From this, the superlinear convergence of the semi-smooth Newton method fol-
lows from standard arguments (e.g., [13, Theorem 8.16]). The termination criterion
in Algorithm 1, step 9, can be justified as follows: If A k+1± = A k± holds, then uk+1

satisfies F(uk+1) = 0 (cf. [13, Remark 7.1.1]).
For the numerical implementation, we use a continuation strategy: Solve for uck

,
set ck+1 = qck with q > 1, and use uck

as initial guess for the computation of uck+1 .

Remark 4.1 (Non-negative controls) By setting A k+ = ∅, Algorithm 1 can be applied
to the numerical solution of (OS+,c). The superlinear convergence holds in this case
as well.

5 Numerical examples

We illustrate the proposed approach with a simple convection-diffusion equation, de-
scribed by the operator Ay = −ν�y −b ·∇y with ν = 0.1 and b = (1,0)T and homo-
geneous Dirichlet conditions on the unit square [−1,1]2. The control and observation
domains are given by

ωc = {x ∈ � : 1
16 ≤ |x|2 ≤ 1

2 },
ωo = {x ∈ � : |x|2 ≤ 1

32 },
and the target is z = χωox2 (see Fig. 1). The differential operators are discretized us-
ing standard finite differences with N = 128 nodes in each direction, and Algorithm 1
is implemented in MATLAB.

Fig. 1 Target z, control domain
ωc and observation domain ωo
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The parameters for this example are set as follows. In the continuation scheme for
the penalty parameter c, the initial value is c0 = 1, the incrementation factor is set to
q = 10, and the continuation is terminated at c∗ = 1012. The semi-smooth Newton
method is terminated if the active sets coincide or k∗ = 10 iterations are reached. For
the solution of the linear systems arising in the semi-smooth Newton step, we use
MATLAB’s built-in GMRES with a relative tolerance of 10−9 and a maximum number
of iterations of 100. The MATLAB code of our implementation can be downloaded
from http://www.uni-graz.at/~clason/codes/measurecontrol.m.

The discrete optimal controls uα and corresponding states yα for different values
of α are shown in Fig. 2. As α is decreased, the state becomes closer to the target,
while the control becomes less sparse. Note that the loss in sparsity is manifested by
an increasing number of point sources, but the support of the control remains local-
ized. This is due to the structural properties of the optimality system: the control is
allowed to be active only where the dual variable p∗ is active and must be identically
zero everywhere else (cf. Corollary 2.1). Also, the controls are placed asymmetrically
due to the directionality of the convection term. We point out that the placement of
the corresponding sources is not obvious.

We indicate the superlinear convergence of the semi-smooth Newton method by
fixing c = 105 and α = 10−4 and starting from the initial guess u0 = 0. Table 1
shows the norm of the residual ‖F(uk)‖L2 and the change in active sets δA k for
each iteration in the semi-smooth Newton method, verifying the locally superlinear
convergence.

The feasibility of our approach for the optimal placement of sources is illustrated
with an example that is motivated by an application in photochemotherapy. Here, ωo

denotes a region where a photosensitive chemotherapeutic agent is locally activated
by laser light from multiple strategically placed fiber-optic light sources [2]. The
latter can be focused inside a small boundary layer, which corresponds to the control
domain ωc. This example further demonstrates the dependence of the locations of
the optimal controls on the geometry of the problem, here determined by an irregular
domain (see Fig. 3).

The corresponding state equation is

{−∇ · ( 1
2(μa+μs)

∇y
) + μay = χωcu on �,

1
2(μa+μs)

∂νy + ρy = 0 on ∂�,

which describes diffusive photon transport in tissue. Here, μa is the tissue’s absorp-
tion coefficient, μs is the scattering coefficient, and ρ is the reflection coefficient at
the boundary ∂�. In our tests, we set μa = 0.03, μs = 0.275 and ρ = 0.1992 to
model a small piece of lung tissue. The objective is then to achieve a homogeneous
illumination of the region of interest ωo for the optimal activation of the chemo-
sensitive agent. Due to the linearity of the equation, we set without loss of generality
z ≡ 1. As noted in Remark 4.1, non-negativity of the controls is enforced by setting
A+ ≡ ∅.

Due to the irregularity of the domain, we now use a standard finite element dis-
cretization of state and adjoint equation in weak form (cf. (2.2)) with triangular ele-
ments, where the discretized control is taken as piecewise constant and the discretized

http://www.uni-graz.at/~clason/codes/measurecontrol.m
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Fig. 2 Optimal controls uα and states yα for different values of α

state and adjoint as piecewise linear. The implementation is based on the open source
FENICS project [14]. Here, the final penalty parameter is set to c∗ = 109, the remain-
ing parameters being unchanged. The results for different values of α are shown in
Fig. 4. The influence of α on sparsity of the controls and homogeneity of the illumi-
nation can be observed clearly. Note that the placement of the optimal point sources
is again not obvious, and depends on α in a non-intuitive manner (compare the loca-
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Table 1 Convergence of semi-smooth Newton method. Shown are the norm of the residual of (4.1) and
the change in active sets δA k in each iteration

k 1 2 3 4 5

‖F(uk)‖ 3.84 · 102 3.78 · 101 6.12 · 100 6.16.78 · 10−1 1.08 · 10−10

δA k 3678 532 106 8 0

Fig. 3 Geometry for model problem. Shown are the indicator functions of control and observation domain

tion of the major point source on the right hand side of the domain between Figs. 4a
and 4b).

6 Conclusion

The problem of optimal placement of point sources was formulated in a non-reflexive
Banach space setting. The optimality system for this non-smooth optimization prob-
lem was derived and a family of regularized problems, which can be approximated
efficiently by semi-smooth Newton methods, was analysed. The numerical examples
demonstrate the effectivity for optimal light source placement problems in diffusive
photochemotherapy. Current work is concerned with the application of the proposed
approach to patient-specific geometries. Formally, the primal-dual framework con-
sidered here can be extended to nonlinear control-to-state mappings, although the
proper functional analytic treatment of the linearization remains challenging. Finally,
it would be of interest to consider parabolic state equations.
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Fig. 4 (Color online) Optimal controls u and state y for different values of α. Shown is a superposition
of u on ωc (as height plot) and y on ωo (as color plot)
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