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Abstract
Sparsity optimization for linear least squares problems formulated as non-smooth regularization

problems are considered in infinite dimensional sequence spaces `p with p ∈ [0, 1]. Necessary
optimality conditions in the format of a complementarity system are obtained. A monotonically
convergent scheme is developed for the case p ∈ (0, 1]. For the case p = 0 a primal dual active set
strategy based on the Lagrange multiplier rule is proposed and analyzed for special cases.
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1 Introduction

In this paper we discuss optimization problems of the form:

(1.1) min
x∈`p

J(x) =
1

2
|Ax− b|22 + β |x|pp.

Here `p = {x ∈ `2 :
∑∞

k=1 |xk|p <∞}, 0 < p ≤ 1, is endowed with

|x|p = (

∞∑
k=1

|xk|p )1/p,

which is a norm if p = 1 and a quasi-norm for 0 < p < 1. We also consider p = 0. In this case in
(1.1) is replaced by

min
x∈`p

J(x) =
1

2
|Ax− b|22 + β |x|0

where

|x|0 =
∞∑
k=1

|xk|0 = number of nonzero elements of x
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and for a scalar a ∈ R
|a|0 =

{
1 if a 6= 0
0 if a = 0

Further we set `0 = {x : |x|0 < ∞}. For x ∈ `0 we have that |x|pp → |x|0, as p → 0+. Throughout
it is assumed that A ∈ L(`2). We also denote |x|2 = (

∑∞
k=1 |xi|2)1/2.

Optimization of `p-functionals as in (1.1) provides an efficient way to extract the essential
features of generalized solutions, e.g. in the context of data compression and order reduction
methods, with applications arising in signal and image analysis, inverse scattering, de-convolution
and tomography problems, and wavelet and generalized Fourier analysis. The literature on sparsity
optimization is rapidly increasing. Here we mention e.g., [BL, CT, D, E1, E2, WNF, LZ, RZ, Z,
ZDL] and the references therein. More recently sparsity techniques are also receiving increased
attention in the optimal control community, we quote e.g. [CCK, HSW, St] in this respect.

One of the objectives of this paper is to derive necessary optimality conditions for (1.1) for
0 ≤ p ≤ 1 which are of complementarity type. As a consequence, the nature of the conditions is
such that they do not require the a-priori knowledge whether a specific coordinate of an optimal
solution is different from zero or not. Rather this distinction is built into the optimality condition
itself. To obtain this system we us the quadratic nature of the smooth term of the cost. Another
important issue is the development of numerical schemes. This is motivated by fact that due to lack
of differentiability of s ∈ R → |s|p ∈ R+ at s = 0, the problems (1.1) are non-smooth, non-convex
optimization problem, and hence standard algorithms are not readily available.

Let us briefly point to some of the literature that is available for sparsity optimization in the
context of `p, p ∈ [0, 1) regularization. Especially numerical techniques have been analyzed by
many authors and we can therefore only refer to a small selection. In [Z] existence for (1.1) is
proven and the asymptotic behavior of solution as the regularization parameter tends to zero is
analyzed. The complexity level of the solution to (1.1) as a function of p and β is analyzed in e.g.
[CGWY, CXY]. In a very recent paper, solution concepts for the `0− problem are investigated in
[N].- Turning to numerical contribitions, combinatorial techniques are among the natural choices to
use for solving the `0 problem. Greedy algorithms are discussed in [E1, E2], for example. In [LW]
mixed integer programming techniques are used aiming at global solutions. An iterative algorithm
where each step is obtained by solving an optimization subproblem involving a quadratic term with
diagonal Hessian plus the original sparsity-inducing regularizer is proposed and analyzed mostly
for the p = 1 case in [WNF]. A surrogate functional approach combined with a gradient technique
is proposed in [RZ] for the cases p ∈ (0, 1]. In [BL] a general framework for minimization of non-
smooth non-convex functionals based on a generalized gradient projection method is analyzed and
applied to (1.1), with p ∈ (0, 1). Iterative thresholding techniques were developed in [BD] and
[FW]. In recent papers [LZ, ZDL] penalty decomposition methods are analyzed for wavelet based
image restoration and a general class of nonlinear optimization problems with `0 regularization
terms.

Our focus is on the infinite dimensional sequence spaces. The method that we analyze for solving
the `p problem is an iterative algorithm which solves a modified problem where the singularity at the
origin is regularized. It is proved that for this algorithm the iterates decrease the cost monotonically.
The method that we propose for the `0 problem is of Newton type and hence distinctly different
from previously considered algorithms.

The outline of the paper is as follows. In Section 2 the necessary optimality condition for
solutions to (1.1) is derived for 0 ≤ p ≤ 1. The complementarity conditions for the cases p = 0
and p = 1 are given as well. The asymptotic behavior of the minimizers as β → 0+ is analyzed
in Section 3. In Section 4 a monotone fixed point algorithm for solving a regularized version of
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(1.1), p ∈ (0, 1) is analyzed. Section 5 is devoted to an augmented Lagrangian formulation and
a primal-dual active set method for the case p = 0. It is based on the necessary optimality and
the Lagrange multiplier approach in Section 2.2. In Section 6 we briefly describe some numerical
results obtained for the primal-dual active set method.

2 Existence and Necessary Optimality

In this section we establish existence and derive necessary optimality conditions for a minimizer
of (1.1). For convenience we recall that `r with 1 < r < ∞ are reflexive Banach spaces, that
(`1)′ = `∞ and c′0 = `1, where c0 is the space of all convergent sequences with limit 0 endowed with
the sup-norm. We also have c′ = `1, where c is the space of all convergent sequences endowed with
the sup-norm, [Y], pg. 115. Moreover for 1 ≤ r < s ≤ ∞ we have `r $ `s and |x|`s ≤ |x|`r for all
x ∈ `r.

2.1 Case 0 < p ≤ 1

To establish existence we use a re-parametrization according to x = γ(y), y ∈ `2, where

xi = γ(y)i = |yi|
2
p sgn (yi), for i = 1, . . . ,∞.

Note that yi = |xi|
p
2
−1xi, and that γ : `2 → `p is an isomorphism satisfying |γ(y)|p = |y|

2
p

2 . In fact, γ

is clearly injective and for every x ∈ `p the sequence {yi} = {|xi|
p
2 sgnxi} ∈ `2 provides a preimage

under γ. It follows that (1.1) is equivalent to

(2.1) min
y∈ `2

J(y) =
1

2
|Aγ(y)− b|22 + β|y|22.

Existence for (2.1) and hence to (1.1) for p ∈ (0, 1] was obtained in [Z]. The proof is elegant and
hence to be self-contained we repeat it here.

Lemma 2.1. The mapping γ : `2 → `2 is weakly (sequentially) continuous, i.e. yn → y weakly in
`2 implies that γ(yn)→ γ(y) weakly in `2.

Proof. Let r = 2
p +1 ∈ [3,∞) and let r∗ denote the conjugate exponent given by r∗ = p

2 +1 ∈ (1, 3
2 ].

Then γ is the duality mapping from `r to `r
∗
, i.e.

(γ(y), y)`r∗ ,`r = |γ(y)|r∗ |y|r, |γ(y)|r∗ = |y|r.

If yn → y weakly in `2, then yn → y weakly in `r. Since the duality mapping γ : `r → `r
∗

is weakly
sequentially continuous, see [C], pg. 73, we have γ(yn) → γ(y) weakly in `r

∗
. Using that r∗ ≤ 2,

this implies that γ(yn)→ γ(y) weakly in `2.

Theorem 2.1. For any β > 0 there exists a solution y ∈ `2 to (2.1), and hence a solution
x = γ(y) ∈ `p to (1.1).

Proof. Let yn be a minimizing sequence of (2.1) and set xn = γ(yn) ∈ `p. Then |yn|22 = |xn|pp
and thus xn ∈ `2. It follows that {(xn, yn)}∞n=1 is a bounded sequence in `2 × `2. Hence there
exists a subsequence, denoted by the same symbols, such that {(xn, yn)} converges weakly to some
(x, y) ∈ `2 × `2. From Lemma 2.1 we have that x = γ(y), and by weak lower semi-continuity of
norms we find

1

2
|Aγ(y)− b|22 + β|y|22 = inf

y∈`2
J(y).

Hence y ∈ `2 is a minimizer of (2.1), and x = γ(y) minimizes (1.1).
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Since s→ γ(s) is continuous differentiable, we have the necessary optimality condition for ȳ:

γ′(yi)(Ai, Aγ(y)− b) + β yi = 0,

where Ai = Aei and ei is the sequence with 1 in the i− th coordinate and 0 otherwise. It does not
provide the one for x̄. But we have the following necessary optimality condition for ȳ or x̄.

Theorem 2.2. If x̄ is a global minimizer of (1.1), then

(2.2)


x̄i = 0 if |(Ai, fi)| < µi

(Ai, Ax̄− b) +
βp x̄i
|x̄i|2−p

= 0 if |(Ai, fi)| > µi,

where fi = b−Ax̄+Aix̄i and µi = β
1

2−p (2− p)(2(1− p))−
1−p
2−p |Ai|

1− p
2−p

2 .

If |(Ai, fi)| = µi, then x̄i = 0 or x̄i = (2β(1−p)
|Ai|22

)
1

2−p sgn((Ai, fi)).

Proof. Suppose at first that p ∈ (0, 1). The case p = 1 will be considered below. If x̄ is a global
minimizer of (1.1), then x̄i ∈ R minimizes

(2.3) F (xi) =
1

2
|Aixi − fi|22 + β |xi|p =

1

2
|Ai|22x2

i − (Ai, fi)xi +
1

2
|fi|22 + β |xi|p.

It is convenient to note that fi can be equivalently expressed as

fi = b−Ax̃, x̃k =

{
0 k = i

x̄k k 6= i.

Inspection of F (xi) shows that 0 is a local minimizer of F (xi). It is the only minimizer if Ai = 0.
Henceforth we assume that Ai 6= 0. If xi = z > 0 is another local minimizer of (2.3), then

(2.4) |Ai|22 z − (Ai, fi) +
βp

z1−p = 0

Equation (2.4) has a solution provided that

(2.5) (Ai, fi) ≥ |Ai|
2(1−p)
2−p

2 (p β)
1

2−p (1− p)
p−1
2−p (2− p).

This follows by requiring that F ′(ξ) ≤ 0 where F ′′(ξ) = 0, i.e. ξ = |Ai|
2

p−2

2 (βp)
1

2−p (1 − p)
1

2−p . If
F ′(ξ) < 0, i.e. if the inequality in (2.5) is strict, then (2.4) has two solutions, the smaller one
corresponding the a local maximum, the larger to a local minimum of F (xi). In this case then
F (xi) has two local minima, 0 and z > 0. To decide whether 0 or z is the global minimizer, we
first analyze under which condition F (z) = F (0), i.e.,

(2.6)
1

2
|Ai|22|z|2 − (Ai, fi)z + β zp = 0.

Then (2.3) has the two distinct global minima. Note that (2.4)–(2.6) are equivalent to
|Ai|22 z2−p − (Ai, fi)z

1−p + β p = 0

1

2
|Ai|22 z2−p − (Ai, fi)z

1−p + β = 0.
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Subtracting these equation we have

|Ai|22 z2−p = 2β(1− p)

and thus

(2.7) z̄ =

(
2β(1− p)
|Ai|22

) 1
2−p

.

satisfies F (z̄) = F (0). Let us set

µi = |Ai|22z̄ +
βp

z̄1−p = |Ai|
2(1−p)
2−p

2 β
1

2−p (2(1− p))
p−1
2−p (2− p).

Then from (2.4) we have F (0) = F (z̄) if (Ai, fi) = µi. A short computation shows that µi is larger
than the expression on the right hand side of (2.5). Moreover, still denoting by z the second local
solution of (2.3), we have F (z) < F (0) if and only if z > z̄, which is the cases if and only if

(Ai, fi) = |Ai|22 z +
βp

z1−p > µi

Similarly, F (z) > F (0) if and only if z < z̄, which holds if and only of (Ai, fi) < µi. Thus, if
the global minimizer of F (xi) is nonnegative, then necessarily x̄i = 0, if (Ai, fi) < µi, and x̄i = z

satisfying (2.4), if (Ai, fi) > µi. If |(Ai, fi)| = µi, then x̄i = 0 or x̄i = (2β(1−p)
|Ai|22

)
1

2−p sgn((Ai, fi)).

- For p → 0+, we have z̄ →
√

2β

|Ai|2
and µi →

√
2β |Ai|2. The case of non-positive minima can be

treated analogously, by noting that F (xi) = F̃ (−xi) where F̃ (xi) = 1
2 |Ai|

2x2
i + (Ai, fi)xi + 1

2 |fi|
2
2 +

β |xi|p.
The case p = 1 can be treated along the same lines, if the following modifications are taken

into account: ξ = z̄ = 0. In particular (2.3) has a unique global minimum which is xi = 0 if
|(Ai, fi)| ≤ µi, and xi 6= 0, satisfying the second equation in (2.2) if |(Ai, fi)| > µi. Moreover
µi = β for p = 1.

From Theorem 2.2 it follows that a minimizer to (1.1) is not necessarily unique. Moreover from
its proof we obtain the following corollary.

Corollary 2.1. If x̄i 6= 0 then |x̄i| ≥
( 2β(1−p)
|Ai|22

) 1
2−p .

Indeed the second local solution to (2.3) satisfies necessarily z ≥ z̄ with z̄ given in (2.7).
In [BL] a necessary optimality condition is obtained for nonlinear problems regularized by |x|pp.

It considers separately the inactive components with x̄i 6= 0 and the active ones. Here we exploit
the quadratic nature of the fit-to-data term to obtain a necessary optimality condition which is of
complementarity type, separating the active components of x̄ from the inactive ones by the sign of
|(Ai, fi)| − µi.

The following result addresses sparsity of the solution x̄ of (1.1). The first part is analogous to
a result already contained in [BL]. The second part is applicable in the case that A is close to an
orthogonal operator.

Proposition 2.1. Let x̄ denote a global minimizer of (1.1). Then we have:
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(a) #{i : x̄i 6= 0} ≤ |b|22
( (2β)

2
p

supi∈N |Ai|22
(1− p)

) p
p−2 .

(b) If |(Ai, b)| < µi − sup
j 6=i
|(Ai, Aj)|

∑∞
j=1 |x̄j |, then x̄i = 0

Proof. To verify (a) note that by Corollary 2.1

1

2
|b|22 ≥

1

2
|Ax̄− b|22 + β |x̄|pp ≥ #{i : x̄i 6= 0}β

( 2β(1− p)
supi∈N |Ai|22

) p
2−p

and hence

#{i : x̄i 6= 0} ≤ |b|
2
2

2β

( 2β(1− p)
supi |Ai|22

) p
p−2 .

Turning to (b), our assumption implies that

|(Ai, fi)| = |(Ai, b−Ax̄+Aix̄i)| = |(Ai, b)−
∑
j 6=i

(Ai, Aj)x̄j |

≤ |(Ai, b)|+ |
∑
j 6=i

(Ai, Aj)x̄j | ≤ |(Ai, b)|+ sup
j 6=i
|(Ai, Aj)|

∞∑
j=1

|x̄j | < µi,

and hence by Theorem 2.2 we have x̄i = 0.

2.2 Case p = 0

In this section we consider the case p = 0, i.e,

(2.8) min 1
2 |Ax− b|

2
2 + β |x|0,

where |x|0 = number of nonzero elements of x ∈ `2. We shall assume throughout that A ∈ L(`2).
The | · |0 functional satisfies the triangle inequality:

|x1 + x2|0 ≤ |x1|0 + |x2|0,

and it is also weakly lower semi-continuous in the sense of the following lemma.

Lemma 2.2. If xn ⇀ x in `2 and if |xn|0 ≤ L for all n sufficiently large, then |x|0 ≤ L and
|x|0 ≤ lim infn→∞ |xn|0.

Proof. First note that weak convergence in `2 implies convergence of each coordinate, (xn)i → xi.
Assume that |x|0 ≥ L+1, i.e. x contains more than L nontrivial entries. Let {i`} be these entries in
increasing order. Consider {xi`}

L+1
`=1 and let ε = {min |xi` | : ` = 1, . . . , L+ 1}, which satisfies ε > 0.

Since xni` → xi` for ` = 1, . . . , L+ 1, there exists n = n(ε) such that xni` 6= 0 for all n ≥ n(ε). This
is a contradiction. Hence iL is the largest index for which xi 6= 0, and |x|0 ≤ L. Using coordinate
convergence of xn to x and |x|0 <∞ it easily follows that |x|0 ≤ lim infn→∞ |xn|0.

The second part assertion of the previous lemma was also observed in the recent paper [WLMC].
We have the following result on the existence of a solution to (2.8). Here we assume that A

has closed range. Otherwise, if A is ill-posed we need to add a quadratic regularization term as
done in Section 5. Existence for (2.8) was also considered in [G], where lack coercivity of the `0−
functional was pointed out and in [Lo], where an example for nonexistence is given with a matrix
A which does not satisfy the assumptions which are imposed in the following result.

6



Theorem 2.3. Assume that A has closed range, and that its nullspace is finite dimensional. Then
problem (2.8) admits a solution.

Proof. The proof follows those of abstract existence results given in [AT], Chapter 3, and [BBGT],
but none of these results fit directly to the situation given here. We let {εn} ⊂ (0, 1) be a sequence
converging to 0 from above and consider the family of auxiliary problems

(2.9) min
x∈H

J(x) +
εn
2
|x|22.

where

J(x) =
1

2
|Ax− b|22 + β |x|0.

Since εn > 0 every minimizing sequence for (2.9) is bounded. Extracting a weakly convergent
subsequence and using weak lower semi-continuity of J and the norm functional, existence of a
solution xn ∈ `2 for (2.9) can be argued in a standard manner.

If the sequence of solutions {xn} to (2.9) is bounded in `2, then there exists a weakly convergent
subsequence, denoted by the same symbols, and x̄, such that xn ⇀ x̄. Since |xn|0 ≤ 1

2β |b|
2
2 for all

n, Lemma 2.2 is applicable. Passing to the limit εn → 0 in

J(xn) +
εn
2
|xn|22 ≤ J(x) +

εn
2
|x|22 for all x ∈ `2,

we have
J(x̄) ≤ J(x) for all x ∈ `2,

and thus x̄ is a minimizer for J .
Henceforth we show that the assumption that {xn} is unbounded in `2 leads to a contradiction.

In fact, if {xn} is not bounded, then there exists a subsequence, denoted by the same symbol, such
that

lim
n→∞

|xn| =∞, and
xn
|xn|

⇀ x̄, for some x̄ ∈ `2.

Using the assumption that A has closed range, every element x ∈ `2 can be uniquely decomposed
as x = x1 + x2 ∈ R(A∗) +N(A).

Since {xn} is a minimizing sequence, there exists a constant K > 0 such that

(2.10) J(xn) =
1

2
|Axn − b|22 + β |xn|0 ≤ K, for all n.

Consequently with xn = x1
n + x2

n ∈ R(A∗) +N(A) we find 0 ≤ |Ax1
n|2 − 2(b, Ax1

n)2 + |b|22 ≤ K and

(2.11) 0 ≤
∣∣A(

x1
n

|xn|2
)
∣∣2
2
− 2

1

|xn|2
(A∗b,

xn
|xn|2

)2 +
|b|22
|xn|2

→ 0.

Using that { xn
|xn|2 } is bounded, we deduce from (2.11) that |A( x1n

|xn|2 ) | → 0. By the closed range

theorem this implies that x1n
|xn|2 → x̄1 = 0 in `2. Since x2n

|xn|2 ⇀ x̄2 and since by assumption dim

N(A) <∞ it follows that

(2.12)
xn
|xn|2

→ x̄ = x̄2 strongly in `2.

Next we argue that there exists some ρ > 0 such that

(2.13) J(xn − ρx̄) =
1

2
|A(xn − ρx̄)− b|22 + β |xn − ρx̄|0 ≤ J(xn) =

1

2
|Axn − b|22 + β |xn|0
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for all n sufficiently large. Since x̄ = x̄2 ∈ N(A) this will be implied by showing that

|(x1
n + x2

n − ρx̄)i|0 ≤ |(x1
n + x2

n)i|0 for all i,

and for all n sufficiently large. Only the coordinates for which (x1
n + x2

n)i = 0 with (x̄2)i 6= 0
require our attention. Since {

∣∣ xn
|xn|2

∣∣
0
} ≤ K for all n sufficiently large and xn

|xn|2 → x̄2 we have

|x̄2|0 ≤ K, and hence x̄2 has bounded support, i.e. there exists ĩ such that (x̄2)i = 0 for all
i ≥ ĩ + 1. For i ∈ {1, . . . , ĩ} we define Ii = {n : (x1

n + x2
n)i = 0, (x̄2)i 6= 0}. These sets are

finite. In fact, if Ii is infinite for some i ∈ {1, . . . , ĩ}, then limn→∞,n∈Ii
1
|xn|2 (x1

n + x2
n)i = 0. Since

limn→∞
1
|xn|2 (x1

n)i = 0 this implies that (x̄2)i = 0, which is a contradiction. Taking ñ as the

maximal index in {Ii : i ∈ {1, . . . , ĩ} } we have that (x1
n + x2

n)i 6= 0 for all i ∈ {1, . . . , ĩ} and n ≥ ñ.
Summarizing we showed that (2.13) holds for any ρ > 0 and n ≥ ñ.

From (2.13) we have for n ≥ ñ:

J(xn) +
ε

2
|xn|22 ≤ J(xn − ρx̄) +

ε

2
|xn − ρx̄|22 ≤ J(xn) +

ε

2
|xn − ρx̄|22.

It follows that

|xn|2 ≤ |xn − ρx̄|2 = |xn − ρ
xn
|xn|2

+ ρ(
xn
|xn|2

− x̄)|2 ≤ |xn|2(1− ρ

|xn|2
) + ρ| xn

|xn|2
− x̄|2

This implies that

1 ≤ | xn
|xn|2

− x̄|2,

which give a contradiction to (2.12), and concludes the proof.

An alternative to the above assumptions which guarantee existence of a solution to (2.8) is to
assume radial unboundedness, i.e.

(H1) |Ax|2 →∞ for |x|2 →∞.

Theorem 2.4. Assume that (H1) holds. Then problem (2.8) admits a solution x̄. Moreover any
weak-cluster point in `2 (of which there exists at least one) of solutions {xp} to (1.1) as p→ 0+ is
a solution to (2.8).

Proof. (i) Let {xn} be a minimizing sequence of (2.8). Then |xn|0 ≤ 1
2 |b|2. By (H1) the sequence

{xn} is bounded in `2. Consequently there exists a weakly convergent subsequence, denoted by the
same symbol with weak limit x̄ ∈ `2. Using weak lower semi-continuity of the | · |2 norm and the
| · |0 functional we may pass to the limit in

lim
n→∞

1

2
|Axn − b|22 + β |xn|0 ≤

1

2
|Ax− b|22 + β |x|0, for all x ∈ l2,

to obtain that

(2.14) min
1

2
|Ax̄− b|22 + β |x̄|0 ≤ min

1

2
|Ax− b|22 + β |x|0, for all x ∈ `2,

and hence x̄ is a solution to (2.8).
Next, let {xp} be a solution sequence for (1.1) with p > 0, as p→ 0+. Thus we have

1

2
|Axp − b|22 + β |xp|pp ≤

1

2
|Ax− b|22 + β |x|pp for all x ∈ `0.
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By (H1) the sequence {xp} is bounded in `2. Hence there exists a subsequence, denoted by the same
symbols that converges weakly in `2 to some x̄ in `2. It satisfies that xpi → x̄i for each i = 1, . . . , .
For ε > 0 and x ∈ `2 let

Nε(x)i =

{
1 if |xi| > ε

0 if |xi| ≤ ε.
Then

1

2
|Axp − b|22 + β |Nε(x

p)� xp|pp ≤
1

2
|Ax− b|22 + β |x|pp for all x ∈ `0,

where (a� b)i = aibi. Using the fact that |Nε(x̄)|0 <∞ we find that

1

2
|Ax̄− b|22 + β |Nε(x̄)� x̄|0 ≤

1

2
|Ax− b|22 + β |x|0 for all x ∈ `0.

Since ε > 0 was arbitrary this implies that

1

2
|Ax̄− b|22 + β |x̄|0 ≤

1

2
|Ax− b|22 + β |x|0 for all x ∈ `0,

and hence x̄ is a solution to (2.8).

Theorem 2.5. If x̄ is a solution to (2.8), then the following necessary optimality holds:

(2.15)


x̄i = 0 if |(Ai, fi)| <

√
2β|Ai|2

(Ai, Ax̄− b) = 0 if |(Ai, fi)| >
√

2β|Ai|2,

where fi = b − Ax̄ + Aix̄i. For the second case in (2.15), |(Ai, fi)| >
√

2β|Ai|2 is equivalent to

|x̄i| >
√

2β

|Ai|2
. If |(Ai, fi)| =

√
2β|Ai|2, then x̄i = 0 or x̄i =

√
2β
|Ai|2 sgn((Ai, fi)).

Proof. Formally we obtain these conditions by passing to the limit p → 0+ in the optimality
conditions (2.2) for the `p problems. Here we proceed as in the proof of Theorem 2.2. If x̄ is a
global minimizer of (2.8), then for each i the coordinate x̄i ∈ R minimizes

(2.16) F (xi) =
1

2
|Aixi − fi|22 + β |xi|0 =

1

2
|Ai|22x2

i − (Ai, fi)xi +
1

2
|fi|22 + β |xi|0.

Therefore x̄i must be either (Ai,fi)
|Ai|2 or 0. For these values of x̄i we have F ( (Ai,fi)

|Ai|2 ) = −(Ai,fi)
2

2|Ai|2 +
1
2 |fi|

2 + β and F (0) = 1
2 |fi|

2. A case study implies the claimed optimality condition (2.15).

We turn to the discussion of sparsity of the solutions to (2.8). To guarantee the necessary
a-priori bounds we again utilize (H1). From (2.14) with x = 0 we have

1

2
|Ax̄− b|22 + β|x̄|0 ≤

1

2
|b|22

and hence by (H1) the family of solutions x̄ = x̄(β) to (2.8) is bounded in `2, i.e. there exists a
constant M such that

(2.17) |x̄(β)|2 ≤M for all β ∈ (0,∞).

For any i ∈ N we introduce

αi =
(∑
j 6=i
|(Ai, Aj)|2

) 1
2 ∈ [0,∞],

and note that αi = 0 for all i, if A is orthogonal.
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Proposition 2.2. Suppose that (H1) holds and let a2 = sup
i∈N
|Ai|22. We have

(a) #{i : x̄i 6= 0} ≤ a2M2

2β , and

(b) if |(Ai, b)| ≤
√

2β|Ai| − αiM, then x̄i = 0

Proof. By Theorem 2.4 and (2.17) we have

M2 ≥
∑
|x̄i|22 ≥

∑
i∈I

2β

|Ai|22
,

where I = {i : x̄i 6= 0}. Consequently

M2 ≥ 2β

a2
#(I)

and (a) follows. Next we compute

|(Ai, fi)| ≤ |(Ai, b)|+ |
∑
j 6=i

(Ai, Aj)x̄j | ≤ |(Ai, b)|+ (
∑
j 6=i

(Ai, Aj)
2)1/2M = |(Ai, b)|+ αiM,

and hence the first case in (2.15) occurs, if |(Ai, b)| ≤
√

2β|Ai|2 − αiM.

Remark 2.1. For those solutions x̄ of (2.8) which can be approximated as weak cluster points of
solutions {xp}, to (1.1) as p→ 0+, we can utilize Proposition 2.1 to establish that #{i : x̄i 6= 0} ≤
|b|22
2β , which has the same asymptotic as Proposition 2.2 (a).

2.3 Complementarity Problem for p = 0 and p = 1

For p = 1 the necessary condition of Theorem 2.2 is equivalent to

(2.18) A∗(Ax− b) + β λ = 0,

(2.19)


λi = 1 xi > 0

λi ∈ [−1, 1] xi = 0

λi = −1 xi < 0.

In fact, if (2.18)-(2.19) hold, then

−(Ai, fi) + |Ai|2xi + βλi = 0.

If λi = 1, xi > 0, then |Ai|22 xi = (Ai, fi) − β = (Ai, fi) − µi > 0, and if λi = −1, xi < 0, then
|Ai|22 xi = (Ai, fi) + β = (Ai, fi) + µi < 0. Consequently (Ai, Ax̄ − b) + β xi

|xi| = 0 if |(Ai, fi)| > µi,

which is the second line of (2.2) for p = 1. If xi = 0, λi ∈ [−1, 1], then (Ai, fi) − βλi = 0
and consequently |(Ai, fi)| ≤ µi. This is consistent with the first line in (2.2) and the statement
concerning the case |(Ai, fi)| = µi. Conversely the necessary condition of Theorem 2.2 implies
(2.18)-(2.19).
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Furthermore, the complementarity condition (2.19) can be expressed as

(2.20) λi =
λi + c xi

max(1, |λi + c xi|)
, for all i = 1, . . . ,

for each c > 0 [IK]. In fact, if (2.20) holds then |λi| ≤ 1. If |λi + c xi| ≤ 1 then λi = λi + c xi and
thus xi = 0. If a = |λi + c xi| > 1, then λi(a − 1) = cxi, |λi| = 1 and thus λi = sign(xi). The
converse can be argued analogously.

For p = 0 we introduce the multiplier

λi = (Ai, b−Ax̄).

Then |(Ai, fi)| can be expressed as |(Ai, fi)| = |λi + |Ai|2x̄i| and (2.15) becomes

(2.21)


x̄i = 0 if |λi + |Ai|2x̄i| <

√
2β|Ai|2

λi = 0 if |λi + |Ai|2x̄i| >
√

2β|Ai|2,

3 Asymptotic as β → 0+

In this section we discuss the asymptotic of xβ as β → 0+. Let P be the orthogonal projection of
`2 onto N(A∗) and set b̃ = (I − P )b. Then,

|Ax− b|22 = |Ax− (I − P )b|22 + |Pb|22 = |Ax− b̃|22 + |Pb|22.

Assume b̃ = (I − P )b ∈ R(A). Consider the minimum norm problem

(3.1) min |x|0 subject to Ax− b̃ = 0.

Let xβ be a minimizer of (2.8) over x ∈ `0, given β > 0.

Theorem 3.1. Assume that there exists x̃ ∈ `0 such that Ax̃ = b̃, and let (H1) hold. Then
every weak cluster point in `2 of solutions xβ to (2.8) as β → 0+ is a minimizer of (3.1) and
|Axβ − b̃|0 = O(

√
β).

Proof. Let x̃ satisfy Ax̃− b̃ = 0. Then,

1

2
|Axβ − b̃|22 + β |xβ|0 ≤

1

2
|Ax̃− b̃|22 + β |x̃|0 = β |x̃|0.

and thus |xβ|0 ≤ |x̃|0 and lim |Axβ − b̃|22 = 0 as β → 0+.
The proof is now similar to that of the first part of Theorem 2.4. By (H1) the sequence {xβ}β>0

is bounded in `2 and hence there exists a weak subsequential limit x̄ in `2. It clearly satisfies Ax̄ = b̃.
Moreover |x̄|0 < ∞. Let iL denote the largest index such that x̄i 6= 0, and define (x̂β)i = (xβ)i if
i ≤ iL and equal to zero otherwise. Then

1

2
|Axβ − b̃|22 + β |x̂β|0 ≤

1

2
|Ax− b̃|22 + β |x|0 for all x ∈ `2.

Taking the limit β → 0+ and choosing x as a solution to (3.1) concludes the proof.
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4 Monotone Convergent Algorithm

Here we consider the case p ∈ (0, 1]. In order to overcome the singularity of (|s|p)′ =
ps

|s|2−p
near

s = 0, we consider for ε > 0 the regularized problem:

(4.1) Jε(x) =
1

2
|Ax− b|22 + βΨε(|x|2),

where for t ≥ 0

Ψε(t) =


p

2

t

ε2−p
+ (1− p

2
) εp for 0 ≤ t ≤ ε2

t
p
2 for t ≥ ε2,

and Ψε(|x|2) is short for
∑∞

i=1 Ψε(|xi|2). Note that

Ψ′ε(t) =
p

2 max(ε2−p, t
2−p
2 )

for t ≥ 0,

and hence Ψ ∈ C1([0,∞),R). The necessary optimality condition for (4.1) is given by

(4.2) A∗Ax+
βp

max(ε2−p, |x|2−p)
x = A∗b,

where the max-operation is interpreted coordinate-wise. To solve (4.2) we consider the iteration
procedure:

(4.3) A∗Axk+1 +
βp

max(ε2−p, |xk|2−p)
xk+1 = A∗b,

where the second addend is short for the vector with components βp
max(ε2−p,|xki |2−p)

xk+1
i . Multiplying

this by xk+1 − xk, we obtain

1

2
(A∗Axk+1, xk+1)− 1

2
(A∗Axk, xk) +

1

2
(A∗A(xk+1 − xk), xk+1 − xk))

+
∞∑
i=1

βp

max(ε2−p, |xki |2−p)
1

2
(|xk+1

i |2 − |xki |2 + |xk+1
i − xki |2) = (A∗b, xk+1 − xk).

Below we use that

1

max(ε2−p, |xki |2−p)
p

2
(|xk+1

i |2 − |xki |2) = Ψ′ε(|xki |2)(|xk+1
i |2 − |xki |2).

Since t→ Ψε(t) is concave, we have

Ψε(|xk+1
i |2)−Ψε(|xki |2)− 1

max(ε2−p, |xki |2−p)
p

2
(|xk+1

i |2 − |xki |2) ≤ 0

and thus

(4.4) Jε(x
k+1) +

1

2
(A∗A(xk+1− xk), xk+1− xk)) +

∞∑
i=1

βp

max(ε2−p, |xki |2−p)
1

2
|xk+1
i − xki |2 ≤ Jε(xk).

We have the following convergence result:
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Theorem 4.1. For ε > 0 let {xk} be generated by (4.3). Then, Jε(x
k) is strictly monotonically

decreasing, unless there exists some k such that xk = xk+1 and xk satisfies the necessary optimality
condition (4.2). Moreover every weakly convergent subsequence of xk, of which there exists at least
one, converges weakly in `2 to a solution of (4.2).

Proof. From (4.4) it follows that {xk}∞k=1 is bounded in `2 and hence in `∞. Consequently from
(4.4) there exists κ > 0 such that

(4.5) Jε(x
k+1) +

1

2
(A∗A(xk+1 − xk), xk+1 − xk)) + κ|xk+1 − xk|22 ≤ Jε(xk).

This implies the first part of the theorem. From (4.5) we conclude that

(4.6)

∞∑
k=0

|xk+1 − xk|22 <∞.

Since {xk}∞k=1 is bounded in `2 there exists x̄ ∈ `2 and a subsequence such that xk` → x̄ weakly in

`2. By (4.6) moreover lim`→∞ x
k`+1

i = lim`→∞ x
k`
i = x̄i for all i. Testing (4.3) with ei, i = 1, . . .

and passing to the limit with respect to k, we find that x̄ satisfies (4.2).

5 Augmented Lagrangian Formulation and Primal-Dual Active
Set Method

In this section we develop the augmented Lagrangian formulation and the primal-dual active strat-
egy for the sparsity optimization problem (2.8). Let P be a nonnegative self-adjoint operator P ,
satisfying

(
(A+ αP )x, x

)
≥ γ|x|2`2 for some α, γ > 0 independent of x ∈ `2. We set

Λk = |Ak|22 + αPkk,

and let Λ denote the invertible diagonal operator with entries Λk. Here Pkk = PkPPk with Pk
the projection of `2 onto the k − th component of `2. Thus, if A is nearly singular, we use α > 0
and the regularization functional α

2 (x, Px) to regularize (2.8). Consider the associated augmented
Lagrangian functional

L(x, v, λ) =
1

2
|Ax− b|22 +

α

2
(Px, x) + β

∑
k

|vk|0 +
∑
k

(Λk
2
|xk − vk|2 + (λk, xk − vk)

)
.

Given (x, λ), the Lagrangian L can be minimized coordinate-wise with respect to v by considering
the expressions β|vk|0 + Λk

2 |xk − vk|
2 − λkvk to obtain

vk = Φ(x, λ)k =


λk + Λk xk

Λk
if |λk + Λk xk|2 > 2Λkβ

0 otherwise.

Given (v, λ), L is minimized at x that satisfies

A∗(Ax− b) + αPx+ Λ(x− v) + λ = 0.
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where Λ is diagonal operator with entries Λk. Thus, the augmented Lagrangian method [IK] uses
the update:

(5.1)

A∗(Axn+1 − b) + αPxn+1 + Λ(xn+1 − vn) + λn = 0

vn+1 = Φ(xn+1, λn)

λn+1 = λn + Λ(xn+1 − vn+1).

If it converges, i.e. xn, vn → x and λn → λ, then

(5.2)


A∗(Ax− b) + αPx+ λ = 0

λk = 0, if |λk + Λkxk|2 > 2β Λk,

xk = 0, if |λk + Λkxk|2 ≤ 2β Λk.

That is, (x, λ) satisfies the necessary optimality condition (2.21) with A replaced by A+ αP
1
2 .

Let us further observe that in the inactive case λk = 0 and |xk| >
√

2β
Λk

and in the active case

xk = 0 and |λk| ≤
√

2βΛk. Thus on the inactive set only the λ component is 0, the x component
is different from 0, on the active the x component is 0 and the λ component may or may not be 0.

Motivated by the augmented Lagrangian formulation we obtain a primal-dual active-set method
as follows.

Primal-Dual Active Set Method

1. Initialize: λ0 = 0 and determine x0 by A∗(Ax0 − b) + αPx0 = 0. Set n = 0

2. Solve for (xn+1, λn+1);

(5.3) A∗(Axn+1 − b) + αPxn+1 + λn+1 = 0,

where

(5.4)
λn+1
k = 0, if k ∈ {k : |λnk + Λkx

n
k |2 > 2β Λk}

xn+1
k = 0, if k ∈ {k : |λnk + Λkx

n
k |2 ≤ 2β Λk}.

3. Converged, or set k = k + 1 and return to Step 2.

Note that if the active set method converges, then the converged pair (x, λ) satisfies the necessary
optimality (5.2). Due to good numerical experience we shall analyze its convergence. First sufficient
conditions for uniqueness of solutions to (5.2) will be given and the following remarks are made.

Remark 5.1. Let us point out that (5.3) can be solved efficiently by first determining the solution
on the inactive set by solving

R(A∗A+ αP )R∗(Rxn+1) = R(A∗b),

where R denotes the restriction to the currently inactive set {k : |λnk + Λkx
n
k |2 > 2β Λk} and

then assigning the value for λn+1 according to (5.3). In computations the matrix representation of
R(A∗A+αP )R∗ is simply obtained from A∗A+αP by forming the block sub-matrix corresponding
to inactive rows and columns.
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Remark 5.2. Since (xn+1, λn+1) = 0 for all n, we have

((A∗A+ αP )xn+1, xn+1) ≤ (Axn+1, b)

and thus {|Axn|2 + α (Pxn, xn)}∞n=1 is bounded. Moreover from (5.3) we obtain

0 = (A∗(Axn+1 − b) + Pxn+1 + λn+1, xn+1 − xn)

=
1

2
(|Axn+1 − b|2 + α (xn+1, Pxn+1))− 1

2
(|Axn − b|2 + α (xn, Px

n))

+
1

2
(|A(xn+1 − xn)|2 + α (xn+1 − xn, P (xn+1 − xn))− (λn+1, xn).

The term (λn+1, xn) relates to the switching between active and inactive set. Its value must be
controlled to obtain convergence results.

5.1 Uniqueness

For any pair (x, λ) we define

I(x, λ) = {k : |λk + Λkxk|2 > 2βΛk} and A(x, λ) = {k : |λk + Λkxk|2 ≤ 2βΛk},

and we set
Q = A∗A+ P.

The following diagonal dominance condition will be used:

(5.5) ‖Λ−
1
2 (Q− Λ)Λ−

1
2 ‖∞ ≤ ρ for some ρ ∈ (0, 1).

Theorem 5.1. (Uniqueness) Assume that (5.5) holds and that δ > 2ρ
1−ρ . Then there exists at most

one solution to (5.2) satisfying

(5.6) inf
I(x,λ)

|Λ−
1
2 (λ+ Λx)| ≥ (1 + δ)

√
2β.

An analogous statement holds with (5.6) replaced by supA(x,λ) |Λ−
1
2 (λ+ Λx)| ≤ (1− δ)

√
2β.

Above minI(x,λ) |Λ−
1
2 (λ+ Λx)| stands for mink∈I(x,λ) |Λ

− 1
2

k (λk + Λxk)|.

Proof. Assume that there two pairs (x, λ) and (x̂, λ̂) satisfying (5.2) and (5.6). Then we have

Q(x− x̂) + λ− λ̂ = 0.

and therefore

(5.7) Λ
1
2x+ Λ−

1
2λ− (Λ

1
2 x̂+ Λ−

1
2 λ̂) = Λ−

1
2 (Λ−Q)Λ−

1
2 Λ

1
2 (x− x̂).

First consider the case that xk 6= 0 if and only if x̂k 6= 0. Then, due to the fact that xk 6= 0 implies
that λk = 0, diagonal dominance implies that x = x̂ and consequently λ = λ̂. If there exists j such
that sign|xj | 6= sign|x̂j |, then without loss of generality we may assume that xj 6= 0 and x̂j = 0.

As mentioned below (5.2) we have

(5.8) |(Λ−
1
2λ)k| ≤

√
2β if xk = 0, and |(Λ−

1
2 λ̂)k| ≤

√
2β if x̂k = 0.
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By (5.7) we find

Λ
1
2 (x− x̂) = Λ−

1
2 (Λ−Q)Λ−

1
2 Λ

1
2 (x− x̂)− Λ−

1
2 (λ− λ̂).

Due to (5.6) and (5.8) we obtain

|Λ
1
2 (x− x̂)|∞ ≤ ρ |Λ

1
2 (x− x̂)|∞ + 2

√
2β,

and hence

(5.9) |Λ
1
2 (x− x̂)|∞ ≤

2
√

2β

1− ρ
.

Again by (5.7) and by (5.9) we have for each k:

|Λ−
1
2

k (λk − Λkxk)| − |Λ
− 1

2
k (λ̂k − Λkx̂k)| ≤ |Λ

− 1
2

k (λk − λ̂k + Λk(xk − x̂k)|

|Λ−
1
2 (λ− λ̂+ Λ(x− x̂))|∞ ≤ ρ|Λ

1
2 (x− x̂)|∞ ≤

2ρ
√

2β

1− ρ
,

and consequently for the j chosen above

|Λ−
1
2

j (λj − Λjxj)| − |Λ
− 1

2
j (λ̂j − Λj x̂j)| ≤

2ρ
√

2β

1− ρ
.

The strict complementarity assumption (5.6) implies that

(1 + δ)
√

2β −
√

2β ≤ 2ρ
√

2β

1− ρ
,

and hence δ ≤ 2ρ
1−ρ which is a contraction to the assumption δ > 2ρ

1−ρ . – The case maxA(x,λ) |Λ−
1
2 (λ+

Λx)| ≤ (1− δ)
√

2β can be treated analogously.

5.2 Convergence: Diagonal dominant case

Here we give a sufficient condition for the convergence of the primal-dual active set method. We
shall utilize a diagonal dominance condition and consider a solution to (5.2) which satisfies a
strict complementary condition. As such it is unique according to Theorem 5.1. Recall that by
Remark (5.2) there exists M such that the iterates are bounded, i.e. |xn|`2 ≤ M for all n. We set

M̃ = ‖Λ
1
2 ‖L(`2,`∞)M .

Proposition 5.1. Let (x̄, λ̄) denote a solution to (5.2) which satisfies the strict complementarity
condition

(5.10) sup
A(x̄,λ̄)

|Λ−
1
2 λ̄| ≤ (1− δ)

√
2β and inf

I(x̄,λ̄)
|Λ

1
2 x̄| ≥ (1 + δ)

√
2β

and suppose that (5.6) holds. If 0 < δ < ρ
1−ρ(2ρM̃√

2β
+ 1), then the sets

Sn = {k ∈ I(x̄, λ̄) : λnk = 0} and Tn = {k ∈ A(x̄, λ̄) : xnk = 0}

are monotonically nondecreasing. If Sn = Sn+1 and Tn = Tn+1 for some n, then (xn, λn) = (x̄, λ̄).
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The proof will not make use of the particular initialization of the algorithm. In particular,
if (5.2) admits a solution satisfying the strict complementarity assumption (5.10) we have global
convergence to this solution.

Proof of Proposition 5.2. For two consecutive iterates we have

Q(xn − xn−1) + λn − λn−1 = 0,

and thus

(5.11) Λ−
1
2 (Q− Λ)Λ−

1
2 Λ

1
2 (xn − xn−1) + Λ−

1
2 (λn + Λxn)− Λ−

1
2 (λn−1 + Λxn−1) = 0.

If xnk = 0, then either λnk = 0, or λnk = 0, in which case |λn−1 + Λxn−1|2 ≤ 2βΛk and by (5.11)

(5.12)
|Λ−

1
2λnk | ≤ | [Λ

− 1
2 (Q− Λ)Λ−

1
2 Λ

1
2 (xn − xn−1)]k |+ |Λ

− 1
2

k (λn−1
k + Λkx

n−1
k )|

≤ ρ|Λ
1
2 (xn − xn−1)|∞ +

√
2β = 2ρM̃ +

√
2β,

with M̃ as defined before the statement of the theorem. We also have

λ(xn − x̄) + λn − λ̄ = (Λ−Q)(xn − x̄),

and hence

(5.13) Λ
1
2 (xn − x̄) + Λ−

1
2 (λn − λ̄) = Λ−

1
2 (Λ−Q)Λ−

1
2 Λ

1
2 (xn − x̄).

Considering separately the cases xnk 6= 0, x̄k 6= 0, and xnk 6= 0, x̄k = 0, and xnk = 0, x̄k 6= 0, by

(5.6), we find for all k and any n, using(5.12) and |Λ−
1
2

k λ̄k| ≤
√

2β, that

|Λ
1
2 (xnk − x̄k)| ≤ ρ|Λ

1
2 (xn − x̄)|∞ + 2ρM̃ +

√
2β.

As a consequence we have

(5.14) |Λ
1
2 (xn − x̄)|∞ ≤

2ρM̃ +
√

2β

1− ρ
.

Considering (5.13) on the set Sn = {λnk = λ̄k = 0} we find

sup
Sn
|Λ

1
2 (xnk − x̄k)| ≤ ρ|Λ

1
2 (xn − x̄)|∞ ≤

ρ

1− ρ
(2ρM̃ +

√
2β).

For k ∈ Sn we have |Λ
1
2 x̄k| ≥ (1 + δ)

√
2β and hence

|Λ−
1
2

k λnk + Λ
1
2
k x

n
k | ≥ |Λ

1
2
k x̄k| − |Λ

1
2
k (xnk − x̄k)| ≥ (1 + δ)

√
2β − ρ

1−ρ(2ρM̃ +
√

2β)

=
√

2β
(
1 + δ − ρ

1−ρ(2ρM̃ +
√

2β)
)
>
√

2β,

and hence λnk = 0 and k ∈ Sn+1. For k ∈ Tn we have by (5.13) and (5.14)

|Λ−
1
2

k (λnk − λ̄k)| ≤ ρ|Λ
1
2 (xn − x̄)|∞ ≤

ρ

1− ρ
(2ρM̃ +

√
2β)
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and hence

|Λ−
1
2

k λnk + Λ
1
2
k x

n
k | = |Λ

− 1
2

k λnk | ≤ |Λ
− 1

2
k (λnk − λ̄k)|+ |Λ

− 1
2

k λ̄k|

≤ (1− δ)
√

2β + ρ
1−ρ(2ρM̃ +

√
2β) =

√
2β
(
1 + ρ

1−ρ(2ρM̃ +
√

2β)− δ
)
<
√

2β,

and hence xn+1
k = 0 and k ∈ Tn+1.

Assume now that Sn = Sn+1 ⊂ I(x̄, λ̄) and Tn = Tn+1 ⊂ A(x̄, λ̄) and that

(5.15) Sn ∪ Tn ( I(x̄, λ̄) ∪ A(x̄, λ̄).

Assume that there exists k ∈ A(x̄, λ̄) \ Tn. Then

xn+1
k 6= 0, xnk 6= 0, x̄k = 0,

λn+1
k = 0, λnk = 0.

The update rule of the algorithm and strict complementarity imply that

|Λ
1
2
k x

n
k | >

√
2β and |Λ−

1
2

k λ̄k| ≤ (1− δ)
√

2β.

From (5.13) and (5.14)

|Λ
1
2
k (xnk − x̄k)| ≤

ρ

1− ρ
(2ρM̃ +

√
2β) + (1− δ)

√
2β

and hence √
2β < |Λ

1
2
k x

n
k | ≤

ρ

1− ρ
(2ρM̃ +

√
2β) + (1− δ)

√
2β.

This implies that δ < ρ
1−ρ(2ρM̃√

2β
+ 1) which is impossible by the choice of δ and thus Tn = A(x̄, λ̄).

Similarly, if there exists k ∈ I(x̄, λ̄) \ Sn then

λn+1
k 6= 0, λnk 6= 0, λ̄k = 0,

xn+1
k = 0, xnk = 0, x̄k 6= 0.

As a consequence

|Λ−
1
2

k λnk | ≤
√

2β and |Λ
1
2
k x̄k| > (1 + δ)

√
2β.

Again by (5.13) and (5.14)

(1 + δ)
√

2β < |Λ
1
2
k (xnk − x̄k)| ≤

ρ

1− ρ
(2ρM̃ +

√
2β) +

√
2β,

which implies that δ < ρ
1−ρ(2ρM̃√

2β
+ 1). This is impossible by the choice of δ and thus Sn = I(x̄, λ̄).

Once the active set structure is determined the unique solution is determined by (5.3).

In the finite dimensional case, we can use the fact that there are only finitely many combinations
of active indices and we obtain the following corollary.

Corollary 5.1. In the finite dimensional case under the assumptions of Proposition 5.1 the algo-
rithm converges in finitely many steps.
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5.3 Convergence: M-operator case

Again we set Q = A∗A + α. For C an arbitrary subset of the index set {1, . . . ,∞}, let PC be the
projection of `2 onto `2C = {x ∈ `2 : xi = 0 if i 6= C}. Further let Cc denote the complement of C
and set

QC = PCQPC , QCcC = PCcQPC .

We assume that Q is an M-operator , i.e.

(ei, Qej)`2 ≤ 0, for all i 6= j, (ei, Qej)`2 > 0, for all i,

and
QC : l2C → l2C is continuously invertible, with Q−1

C x ≥ 0 for 0 ≤ x ∈ `2C .

Note that by definition of Λ we have (Q− Λ)ii = 0 for all i. We further require the property

(5.16) (Q− Λ)ij ≤ 0 for all i 6= j,

which is clearly satisfied if Q is an M-operator and P is a diagonal operator.

Proposition 5.2. If Q is an M-operator , (5.16) holds, A∗b ≥ 0 and initialization is carried out
with x0 > 0, λ0 = 0, then xn ≥ 0, λn ≥ 0 for all n and

An = {k : |λnk + Λkx
n
k |2 ≤ 2βΛk}

is monotonically decreasing. If An = An+1 for some n ≥ 0, then (xn+1, λn+1) satisfy the necessary
optimality condition.

Corollary 5.2. In the finite dimensional case under the assumptions of Proposition 5.2 the algo-
rithm converges in finitely many steps.

Proof of Proposition 5.2. Let In denote the complement of An.

(i) Note that λ1 = λ0 = 0 on I0 and x0 ≥ x1 = 0 on A0. Hence

Q(x1 − x0) = −(λ1 − λ0) = 0 on I0.

Since Q is an M-operator and x0 ≥ x1 on A0 it follows that x1 ≤ x0 on I0.

Since
Qx1 = A∗b ≥ 0 on I0,

splitting PI0Q according to QI0 + QI0,A0 , the M-property of Q implies that x1 ≥ 0. Analo-
gously

Qx1 + λ1 = A∗b ≥ 0 on A0

and the fact that x1 = 0 on A0, x1 ≥ 0 on I0 and the M-property of Q imply that λ1 ≥ 0 on
A0 and consequently λ1 ≥ 0.

Next observe that by (5.16)

λ1 + Λx1 − (λ0 + Λx0) = −(Q− Λ)(x1 − x0) ≤ 0

and hence A0 ⊇ A1 and, taking complements, I0 ⊆ I1.
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(ii) Assume now that xn ≥ 0, λn ≥ 0 and let In,An be determined according to (5.4). Let

În = {k ∈ In : xnk 6= 0}, Ân = (În)c.

Then

(5.17) QÎnPÎn(xn+1 − xn) = −QÎnÂnPÂn(xn+1 − xn)− PÎn(λn+1 − λn) ≤ 0

where we use that due to complementarity of (xn, λn) we have PÎnλ
n = 0, PÎnλ

n+1 = 0, and

PÂnx
n+1 = 0. By (5.17) therefore xn+1 ≤ xn, on În and consequently xn+1 ≤ xn. As in (i)

above we now argue that xn+1 ≥ 0 and λn+1 ≥ 0. Finally

λn+1 + Λxn+1 − (λn + Λxn) = −(Q− Λ)(xn+1 − xn) ≤ 0

and hence An+1 ⊆ An.

(iii) If An+1 = An then for all i ∈ An+1 = {k : |λn+1
k + Λkx

n
k |2 ≤ 2βΛk} we have xn+1

k = 0
and for k ∈ In+1 = In = {k : |λn+1

k + Λkx
n
k |2 > 2βΛk} we find λn+1

k = 0. Moreover
Qxn+1 + λn+1 = A∗b and thus (xn+1, λn+1) satisfies the first order conditions.

6 Examples

In this section we discuss examples that demonstrate the efficiency of the primal-dual active set
algorithm for the case p = 0. We stress that in each case the algorithm is terminated when two
successive iterates coincide. Thus we obtain an exact solution for a finite-dimensional approximation
to the necessary condition (5.2), rather than an approximate solution, which is obtained by most
other algorithms which are used to solve optimization problems involving `0 terms. Note that each
iteration requires to solve one linear system. Our numerical experiments show that total number
of iterations is small.- A detailed comparison among different methods is planed further work.

6.1 Sparsity in a Control Problem

We consider the linear control system:

d

dt
y(t) = Ay(t) +Bu(t), y(0) = 0,

i.e.

y(T ) =

∫ T

0
eA(T−s)Bu(s) ds.

where the linear closed operator A generates a C0-semigroup eAt, t ≥ 0 on the state space X.
Specifically, we discuss the (normalized) one dimensional controlled heat equation for y = y(t, x):

yt = yxx + b1(x) v1(t) + b2(x)v2(t), x ∈ (0, 1),

with homogeneous boundary condition y(t, 0) = y(t, 1) = 0, where the differential operator Ay =
yxx is discretized in space by the fourth order finite difference approximation [LI] with n = 49
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Table 1:

β .001 .003 .005 .007 .01 .03 .05 .07 .1 .3 .5

no of iterates 1 3 16 7 4 29 7 4 2 2 2

|u|0 98 95 79 72 68 22 13 9 7 2 1

interior spatial nodes (mesh-size ∆x = 1/50). We utilize two time dependent controls u = (v1, v2)
with corresponding spatial control distributions bi chosen as step functions:

b1(x) = χ(.3,.4), b2(x) = χ(.6,.7).

The control problem consists in finding the control function u that steers the state y(0) = 0 to a
neighborhood of the desired state yd at the terminal time T = 1. We discretize the problem in time
by the mid-point rule, i.e,

(6.1) Au =

m∑
k=1

eA(T−tk+1/2)Buk ∆t,

where u ∈ R2m is a discretized control vector with coordinates uk ∈ R2 which represent the control
values at the mid-point of the intervals (tk, tk+1). A uniform step-size ∆t = 1/50, (m=50), is
utilized. The solution of the control problem is based on the sparsity formulation (1.1) where b
is the discretized target function chosen as the Gaussian distribution yd(x) = exp(−100(x − .7)2)
centered at x = .7. That is, we apply our proposed algorithm for the discretized optimal control
problem in time and space where x from (2.8) is the discretized control vector u ∈ R2m which is
mapped by A to the discretized output y at time 1 by means of (6.1). Further b from (2.8) is the
descretized desired state yd with respect to the spatial grid ∆x.

The primal-dual active set formulation (5.4) with p = 0 was tested, where the weight matrix P
was chosen as the derivative norm, i.e.,

(u, Pu) =

m−1∑
k=1

|uk+1 − uk
∆t

|2 ∆t.

Since the second control distribution is well within the support of the desired state yd we expect
the authority of this control to be much stronger than that of the first one, which is a distance
away from the target. Our tests were conducted by incrementally increasing β from β = .001 to
.5. For the results of the table below we initialized by u0 = (A∗A + αP )−1A∗b for the smallest β
value and with the solution of the smaller β value for the next larger one. Moreover λ0 = 0 for all
cases. Consistent with our expectation, the `0 norm increases with β.

The method globally converges to a solution for each β. If we modify the initialization and also
choose u = (A∗A + αP )−1A∗b and λ = 0 for β = .03 and β = .1 the algorithm requires 31 and
27 iterates respectively, and converged to the same solution. As we expected the sparsity increases
much faster on the first control v1. Also, we added 10 % noise to f and tested the method. It
converges globally and the number of iterates is actually smaller for this example.
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6.2 M-matrix Example

Here we report on computations corresponding to Section 5.3. We consider

(6.2) min
x∈Rn2

1

2
|Ax− b|22 + β |x|0.

where A is the forward finite difference gradient

A =

(
G1

G2

)
,

with G1 ∈ Rn(n+1)×n2
, G2 ∈ Rn(n+1)×n2

given by

G1 = I ⊗D, G2 = D ⊗ I.

Here I the n× n identity matrix, ⊗ denotes the tensor product, and D ∈ R(n+1)×n is given by
1 0 0 . . . 0
−1 1 0 . . . 0

0 . . . 0 −1 1
0 . . . 0 0 −1

 .

Then ATA is an M matrix coinciding with the 5 - point star discretization on a uniform mesh on
a square of the Laplacian with Dirichlet boundary conditions. Moreover (6.2) can be equivalently
expressed as

(6.3) min
x∈Rn2

1

2
|Ax|22 − (x, f) + β |x|0,

where f = AT b. If β = 0 this is the discretized variational form of the elliptic equation

(6.4) −∆y = f in Ω, y = 0 on ∂Ω.

For β > 0 the variational problem (6.3) gives a sparsity enhancing solution for this elliptic equation,
i.e. the displacement y will be 0 where the forcing f is small.

In Table 2 we present the results of the primal-dual active set method for an n = 128 mesh
and f chosen as discretization of f = 10x1sin(5x2)cos(7x1). The matrix P is constructed with
α = 0. The active sets convergence monotonically in spite of the fact that f does not have uniform
sign. It stops with two consecutive iterates coinciding. In the third row of Table 2 we see that the
cardinality of the active set increases with β. For β = 1 the solution to (6.3) is 0. The last row of
Table 2 exhibits the `2−norm of the difference between the ’free’ solution x∗ to ATAx = f and the
sparsity enhancing solutions xβ to (6.3). For β ≤ 10−9 the sparse solution xβ coincides with the
free solution x∗.

If n is increased to n = 256 then for β = .1 the algorithm requires 90 iterations to reach the
solution for which |x|0 = 52543.
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Table 2:

β .00001 .0001 .001 .01 .1 1

no of iterates 4 9 16 38 40 18

|x|0 1634 16226 15874 13842 3437 0

|x∗ − xβ|2 3.2 ∗ 10−4 2.02 ∗ 10−3 1.24 ∗ 10−2 1.86 ∗ 10−1 2.05 3.04
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Figure 1: Left: β = .01, Right β = .1

6.3 Sparsity and SVM

An important use of the sparsity optimization is for the Support Vector Machine (SVM) for the
classification. We are given training data D, a set of n points of the form

D = {(xi, di) | xi ∈ Rm, di ∈ {−1, 1}}ni=1

where the di is either 1 or -1. We want to find the maximum-margin hyperplane that divides the
points having di = 1 from those having di = −1. Any hyperplane can be written as the set of
points x satisfying

w · x− γ = 0.

To this end a linear SVM determines the hyperplane (w, γ) by unconstrained minimization of the
form [HIB]:

(6.5) min
1

2
|max(0, y)|2 + β (|w|p +

1

2
γ2)

over u = (w, γ), where y = e−D(Aw− γe) and max(0, y) measures the degree of misclassification.
D is the n× n diagonal matrix with diagonal Dii = di. That is, the SVM algorithm classifies data
into two categories, R− and R+, geometrically separated by the plane {x : x · w − γ = 0}, and
clustered around the two planes

(6.6)
R− = {x ∈ Rm : x · w − γ ≤ −1}

R+ = {x ∈ Rm : x · w − γ ≥ +1}.
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Figure 2: Heat map using `1/2, `1/5 and `.0002 norms

The weight w can largely consist of insignificant coefficients, which one may desire to “weed” out,
or effectively remove. We introduce sparsity by using `p which weeds out unnecessary weights and
selects the responsible data. That is, if wj = 0, the jth descriptor is not used for the classifier (6.6).
We tested the sparsity formulation (6.5) for detecting neural activities by the Braingate technology
[B]. The goal of the technology is to classify neural activity that correlates to specific imagined
movements given data recorded from an electrode array implanted in the primary motor cortex of
the human brain. The vector xi ∈ Rm describes the firing rate at time i, i.e. the j-th component
of xi corresponds to the firing rate measurement at the j-th electrode. Test example we used has
96 (m=96) neural channels data D that records neural firing rate data in time. Figure 2 shows a
heat map for weights w for neural nodes with different p with a fixed β = 1.e − 3. The sparsity
optimization formulation provides a method to identify the active neurons that are most responsible
for each movement. The smaller p the more sparsity is enhanced. We used the monotone convergent
algorithm of Section 4 to solve the optimization problem (6.5), given 0 < p < 1. The method is
terminated within 5-6 interacts after attaining the desirable accuracy of solutions.
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