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Abstract Portfolio optimization problems on a finite time horizon under propor-
tional transaction costs are considered. The objective is to maximize the expected
utility of the terminal wealth. The ensuing non-smooth time-dependent Hamilton—
Jacobi—Bellman equation is solved by regularization and the application of a semi-
smooth Newton method. Discretization in space is carried out by finite differences or
finite elements. Computational results for one and two risky assets are provided.
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102 R. Herzog et al.

1 Introduction

We consider numerical methods for the solution of a continuous-time portfolio opti-
mization problem with a finite time horizon and under proportional transaction costs.
An investor aims at maximizing the expected utility of the terminal value of the
liquidated investment portfolio (wealth). The supremum of this expected value over
all admissible trading strategies, the value function, satisfies a non-smooth time-
dependent Hamilton—Jacobi—-Bellman (HIB) equation of the form

max{V; + LV, max Lp V, max L5V} =0, (1.1)
1<i<n 1<i<n

cf. Akian et al. (1995) for a finite-time horizon and Davis and Norman (1990), Shreve
and Soner (1994), Akian et al. (1996) for an optimization problem with infinite time
horizon. The latter leads to a stationary problem (no dependency on time).

In our case, (1.1) is posed on the so-called solvency region S times the time inter-
val (0, T') and it is endowed with appropriate boundary and terminal conditions. The
number n denotes the number of risky assets (stocks) in the portfolio. While L is a
second-order differential operator, the buy and sell operators Lp, and Lg, are of first
order.

The sought-after optimal trading strategy is determined in terms of the time-depen-
dent partitioning of the solvency region S into subregions determined by which of the
2n + 1 terms in (1.1) are zero (active), and by the manifolds separating these subre-
gions. These subregions, the trading regions, describe which action is optimal, e.g., if
the first term V; (y) + LV (y) in (1.1) is zero for a risky fraction y, then it is optimal not
to trade. The component y; of the risky fraction y = (y1, ..., y,)" is the proportion of
wealth invested in stock i. This is different from the corresponding problem without
costs, for which Merton (1969) showed that it is optimal to keep the risky fraction
constant. This strategy requires continuous trading and cannot be followed when fac-
ing realistic transaction costs. Regions where one or several of the other operators
in (1.1) are zero correspond to regions where buying or selling a particular stock is
optimal. For more references and other cost structures we refer to the introductions of
Irle and Sass (2006) and Zakamouline (2005). For our model with proportional costs
these trading regions characterize the optimal strategy which is of the form that no
trading occurs as long as the fractions invested in the stocks stay inside the no-trading
(NT) region. Due to the dynamics of the stocks, these fractions might hit the boundary;
then infinitesimally small trading to keep the fractions inside the NT-region is optimal,
cf. (Shreve and Soner 1994, Section 9) for the stationary case.

It is the purpose of this paper to devise numerical methods for the solution of this
problem, i.e. for finding the trading regions, on the basis of methods that were first
analyzed for a simpler problem in Griesse and Kunisch (2009). The main idea consists
of replacing (1.1) by an approximating penalty-type formulation,

Vi LV +c D max{0, Lp V}+c D max{0, LV} = 0. (1.2)

i=1 i=1
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Primal-dual methods 103

This approach was recently used in Dai and Zhong (2010) for a similar prob-
lem. For the simpler problem max{—Ay + f, |Vy| — g} = 0 it was shown in
Griesse and Kunisch (2009) that the proposed penalty method is in fact regulariz-
ing and that the solutions of the penalized problems converge in appropriate function
spaces to the solution of the original HIB equation. After discretization in space
and time, (1.2) can be solved using a semi-smooth Newton methods, see e.g. Ito
and Kunisch (2008). The latter is naturally implemented in terms of an active set
strategy.

Compared to the results in Dai and Zhong (2010), in this paper we go a step beyond.
In the case of one risky asset we compare the results obtained by applying a semi-
smooth Newton method to both, the regularized and unregularized formulations of
(1.2) to investigate the effect of the regularization parameter. In the two-dimensional
case, the use of regularization appears to be numerically essential. However, it may
slow down the iteration procedure and give rise to highly convective contributions
from the first-order operators Lp, and Lg,. For this reason, in addition to using up-
winding techniques, we propose to combine the Newton approach with an Augmented
Lagrangian concept. Differently from Dai and Zhong (2010), we use a primal-dual
strategy as opposed to a purely primal one for the determination of the active sets.
A further distinctive feature of the proposed algorithm is an adaptive time-stepping
technique.

We mention that a different numerical approach for the stationary problem with
consumption as in Davis and Norman (1990), Shreve and Soner (1994), Akian et al.
(1996) was proposed in Muthuraman (2007), Muthuraman and Kumar (2006). There
the authors employ a monotonically decreasing update of the no-trading region, which
is motivated by a policy improvement procedure. By contrast, for our time-dependent
problem we propose a Newton scheme to resolve the trading and no-trading regions
in every time step. We do not need a priori structural assumptions on the location of
the NT region.

Problems of the form (1.1) with different differential operators of first and second
order arise frequently in stochastic control. This was pointed out, for instance in Evans
(1979). In Li and Wang (2009) a HJB equation related to (1.1) arising in European
stock pricing with proportional transaction costs was investigated. The authors show
that for a penalty approach the viscosity solutions of the penalized problems converge
to the viscosity solution of the original HIB equation as the penalty parameter tends to
infinity. In Hodder et al. (2001) finite difference schemes for variational inequalities
arising in international asset pricing are investigated and a time-stepping scheme based
on the dynamic programming principle is proposed. An interesting model for optimal
soaring is developed in Almgren and Tourin (2004). It also leads to a HIB equation of
the type (1.1).

The contents of the paper are organized as follows. We summarize the necessary
background on portfolio optimization in Sect. 2. In Sect. 3 we discuss and compare
the regularized and unregularized approaches for the solution of (1.1) in the case of
one risky asset (n = 1). Section 4 is devoted to the numerical treatment of the regular-
ized problem for the case n = 2. Numerical examples demonstrating the performance
of the algorithms are provided for both cases. In Sect. 5 we discuss some model
extensions.
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104 R. Herzog et al.

2 Background on portfolio optimization

We consider a continuous-time market model consisting of one bond or bank account
and n > 1 stocks with prices (Po(t)):cf0,7] and (P;(¢)):ejo,11, | = 1, ..., n, respec-
tively. For given interest rate r > 0, trend parameter 4 € R”", and non-singular
volatility-matrix o € R"*", these evolve according to

dPo(t) = Po(t) rdt, Py(0) =1,

n
dP;(t) = Pi(t) u; dt + P,'(l‘)ZG,’j de(t), PO)y=1, i=1,...,n.
j=1

Here W = (W (?))¢[0,7] is an n-dimensional standard Brownian motion on a proba-
bility space (2, A, P).Let F = (F;)sef0, 77 denote the augmented filtration generated
by W.

2.1 Trading without transaction costs

Without transaction costs, trading of an investor may be described by initial capital
X(0) > 0and risky fraction process (1(1))se[0,71, n(t) = (M1 (@), ..., M ()", where
n;i (t) is the fraction of the portfolio value (wealth) which is held in stock i at time 7.
The corresponding wealth process (Y(t)),e[oj] is defined self-financing by

dX(t) = (1= 1"n®) X (1) rdr + z ni () X(@) | i dr + Za,-j dw;@) | .
i=1 j=1

where 1 = (1,..., DT. In this section we call (17;);>0 admissible if it is adapted,
measurable, bounded, and X(7') > 0 holds. The terminal wealth x = X(T) > 0 is
evaluated by a power utility function

éx"‘ forany o <1, «a #0. 2.1
The parameter o« models the preferences of an investor. The strategy for the limiting
case @ — 0 corresponds to logarithmic utility, i.e., to maximizing the expected rate of
return. The case o > 0 corresponds to less risk averse and & < 0 to more risk averse
utility functions. Merton (1969) showed that for logarithmic (e« = 0) and power utility
the optimal trading strategy is given by a constant optimal risky fraction

1
=i, t€[0,T], for fj=—o A (u—r1, 2.2)
—

where A = oo denotes the covariance matrix of the stock returns.
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Primal-dual methods 105

2.2 Proportional transaction costs

Keeping the risky fraction constant like in (2.2) involves continuous trading. This is no
longer adequate in the presence of transaction costs. We consider proportional costs
y € (0, 1) which correspond to the proportion of the traded volume which has to be
paid as fees. These are paid from the bank account (bond).

The trading policy can be described by increasing processes L; = (L;(t)):e[0,T]
and M; = (M;(t)):c[0,1] representing the cumulative purchases and sales of stock
i,i=1,...,n.Werequire that L = (Ly, ..., Ln)T, M=(M,,..., Mn)T are right-
continuous, F-adapted, with initial values L(0—) = M (0—) = 0. Since transaction
fees are paid from the bank account, the dynamics of the controlled wealth processes
(Xo(#))req0,71 and (X (t)):ef0,1], corresponding to the amount of money in the bank
account and the amount invested in stock i, are

dXo(t) = rXo)dr — (1 +y)dA"L() + (1 —y)dA"M@)),  (2.3a)

dX;(t) = X;(t) u; dt + X; (1) ZO’,']‘ dW;(®) +dL;(t) —dM; (). (2.3b)
j=1

We write the wealth in stocks as vector X (1) = (X((¢), ..., X, o).

The objective is the maximization of the expected utility at the terminal trading
time 7', over all control processes L and M which satisfy the conditions above and for
which the wealth processes X;, i =0, ..., n, stay in the solvency region

S :={(xo,x) 1 x0€eR, xeR", xo+1"x —y |Ix|1 >0} (2.4)

which consists of all positions in bond and stocks for which a strictly positive wealth
remains after liquidating the stock holdings. Note thatin (2.4), y [lx[l1 = >/_; ¥ |xi|
are the liquidation costs. Starting in (Xo(0—), X (0—) € SO we thus require

(Xo@®), X)) €S, 1€[0,T).

Accordingly, we consider the maximization of the expected utility of the terminal total
wealth after liquidating the position in the stocks, i.e., we consider the value function

(1, xg, x)
= (EUE)E [L(Xo(T) +1"X(T) — y IX (D))" | Xo(t—) = xo, X (t—) = x].
7 (2.5)

Theorem 2.1 The value function ® is continuous, concave in (xg, x), and satisfies
the homotheticity property

D(t, cxp,cx) =c*D(t,x9,x) for ¢>0,1e[0,T), (x9,x) € SO, (2.6)

as well as the boundary conditions
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106 R. Herzog et al.

for (xo,x) — (X0, %) € 08°. (2.7

0, f0<a<l,
o (1, x9, x) —> [—oo, if o <0.

Further, ® is a viscosity solution of

max{®; + AP, max Ap, P, max As P} =0 on [0,T) x S°, 2.8)
1<i<n 1<i<n

O(T.x0.x) = & (x0+17x =y 1xll) for (o,x) €8 29)

where the differential operators A (generator of (Xo, X)) and Ap,, As;, i =
1, ..., n, are defined by

n n

Ah(x0, %) = 1 X0 hyg (X0, %) + D i Xihy (50, %) + 3 D A j X Xj b x; (X0, %),
i=1 i,j=1

Ap;h(x0, x) = —(1 + y) hyy(x0, X) + hy; (x0, X),

Agih(xo, x) = (1 — ) hyy(x0, x) — hy; (x0, X)

for all smooth functions h.

Proof The proof can be carried out similarly as in Akian et al. (1996) or Shreve and
Soner (1994), even if we consider a finite time horizon problem and consequently a
time-dependent value function. In particular the first part is standard, corresponding
to (Shreve and Soner 1994, Propositions 3.1-3.3). Continuity of ® in ¢ can be shown
using the no-trading strategy and the optimal strategy without costs to derive lower
and upper bounds for the change of the value function in time. The convergence in
(2.7) follows from arguments as used in (Shreve and Soner 1994, Corollaries 5.5, 5.8)
and the fact that @ is a viscosity solution follows along the lines of (Shreve and Soner
1994, Sections 6), only that we need the continuity of ® in ¢ as well. O

Depending on which of the three terms in the outer max operation in (2.8) is active
at a given (t, xg, x) € [0, T] x SY e, equals 0, we say that (¢, xq, x) belongs to the
no-trading region, or the buy or sell region, respectively. More precisely, at time 7, we
define the buy regions, sell regions and the no-trading region as follows:

B2(r) = {(x0, x) € S® : Ap, (1, x0, x) = 0},
SP(1) = {(x0, x) € S Ag, ®(1, x0, x1) = 0},
NTO (1) =8\ | B U S ().

1<i<n
The boundaries between these sets determine the optimal trading policy.
2.3 Reduction of the dimension
It is convenient to consider the risky fraction process rather than the wealth process

(2.3). For wealth x; in stock i and total wealth § = xo + 17x, the risky fractions are
given by y; = % i=1,...,n.
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From the homotheticity property (2.6) of ® we deduce

® (1, x0, x) = E9D (r’;—og—l %) (2.10)

Thus it is enough to consider
Vie,y) =@, 1-1"y,y), yveS, (2.11)
where
S={yeR" : ylylh <1} (2.12)

is the solvency region in terms of the risky fractions. For ® (¢, xo, x) = §*V (¢, x /&),
we obtain under suitable differentiability assumptions

@, = £V, By, = &%) (aV— Tvy), ®, = (aV+(ei—y)TVy),

sy =672 (@(1=0)V + (@ = D(er +¢; =200 Vy + @ = 1) Vi e =)

where Vy and Vy, denote the gradient and the Hessian of V, and ey, ..., e, are the
unit vectors in R”. We get for y = x /&

D, (1, %0, %) = EXV,(t,y), A®(t, x0,x) =E*LV (1, y),
Ap, ®(t, x0,x) = E“ L, (1, )V, A, ®(t, x0,x) = £ L5, V (1, y).

For classical solutions for which the above derivatives exist and are continuous,
Theorem 2.1 carries over directly to Theorem 2.2 below. For a viscosity solution
® it can be shown that also V is a viscosity solution of (2.14), which then yields
Theorem 2.2, cf. (Shreve and Soner 1994, Proposition 8.1):

Theorem 2.2 The value function V is continuous and concave in y with

0, f0<a<l1

i for - yedS, te€(0, 7). (2.13)
—o00, if ¢ <0

Vit,y) — {

Further, V is a viscosity solution of

max{V; + LV, max Lp,V, 1max LsV}=0 (2.14)
<i<n

1<i<n

on [0, T) x S with terminal condition
V(T y) =3 —ylylD* yeS. (2.15)
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108 R. Herzog et al.

The operators in (2.14) are defined by
v :a(r+(u—r1)Ty— la —ot)yTAy) %
+ [(diag(ue —r1) = (u —rD)'y 1) y

n
.
— 30 —a) D Ajjyiyilei+ej —2y)] Vy

ij=1
n
+3 D0 Aijyiyitei — ) Vyylej — y). (2.16a)
ij=1
LpV=—ayV+E+yy'V, i=1...n, (2.16b)
LsV=—ayV—(i—-yyVy, i=1,...,n. (2.16¢)

The trading regions are now given by

Bi(t) ={yeS : LpV(t,y) =0},
Si(t) ={y €S : LsV(t,y) =0},
NT@6) =8\ |J (Bi()USi®).

1<i<n

They correspond to buying stock i, selling stock i and not trading at all. On

() Ri. Ri€({Bi S,

1<i<n

we thus get from L,V =0, i =1,...,n, that

V(t,y) =Crg,, ., Rn<r>(1+2y,-yl-), (2.17)

i=1
where y; = y if R; = B and y; = —y if R; = §;.

Remark 2.3 Based on Theorem 2.1 we may further analyze the regularity of the value
function and the properties of the trading regions. From the results in Shreve and
Soner (1994) and the numerical analysis in Akian et al. (1996), Dai and Zhong (2010);
Muthuraman and Kumar (2006) we expect the value function ® = ®(z, xg, x) to be
continuously differentiable in ¢ and in x¢, and twice continuously differentiable in x =
(x1,...,x,)" for (t,x0,x) € (0,T) x (SO \ {(x0, X1, ...xn) | x; = O for some i}).
For n = 1 see Dai and Yi (2009). However, their proof based on a double-obstacle
problem may not carry over to n > 1. Smoothness of ® would carry over to V.

In the following we shall assume uniqueness of the viscosity solutions of (2.8),
(2.9) and thus of (2.14), (2.15). For a sketch of a proof in the setting of no borrowing
and no short selling, we refer to Akian et al. (1995), which carries over to the original
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Primal-dual methods 109

setting in Theorem 2.1 for 0 < o < 1. Typically, the case @ < 0 is more difficult since
then the utility function is unbounded near 0. Further we assume that NT°(z) # ¢
for all + € [0, T). Due to the homotheticity property (2.6) the trading regions for
the original problem are cones. Therefore, N T0(t) # ¢ implies NT (t) # ¢ for all
te[0, 7).

2.4 Numerical treatment of portfolio optimization as a non-variational
complementarity problem

It should be recognized that, even in the stationary case with V; not appearing in
(2.14), this problem is not of variational type. It is thus distinct from the obstacle
problem, not only since the constraints involve spatial derivatives of the state, rather
than the state itself, but also since it cannot be interpreted in a straightforward way
as the necessary optimality condition of a minimization problem in function space. In
a function space setting such problems have received very little attention. In Griesse
and Kunisch (2009) we investigated

max{—Au — f, |Vu|—g} =0 ae.in 2, (2.18)

u=0 onl' =08,
where  C R is a bounded domain with smooth boundary I', as a prerequisite to the
present work. There we mainly investigated two approaches, namely of (2.18) as a
complementarity problem, which involves the introduction of a new variable X for the
term |Vu| — g, and alternatively a regularization procedure, which realizes the con-
straint on |Vu| — g by means of a penalty formulation. The complementarity approach
was already treated in Kunisch and Sass (2007) for the one-dimensional case of (2.14).
The introduction of the regularization term allows to interpret the approach as a semi-
smooth Newton method in function spaces, whereas without the regularization the
interpretation as semi-smooth Newton method is only possible after discretization.
This is described in more detail in Sect. 3.1 below.

3 The case of one risky asset
In the case of only one risky asset (stock) n = 1, Eq. (2.14) reduces to

max{V; + LV, LgV, LsV}=0 on(0,T) xS 3.1
on S = (—1/y, 1/y) with boundary conditions

0, ifo0 1
Vi, —1/y) =V, 1/y) = BUSCST forall 1€ (0,7) 32)
—o00, if a <0

and terminal condition on &

V(T,y) = 21—y Iyl (3.3)
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110 R. Herzog et al.

By (2.16), the linear differential operators in (3.1) become

LV = [a (r—|—(u—r)y)+%oz (¢ — l)azyz]V
Fl=ryd =y +@= Dy 1 = »]Vy+ 302521 = y)? Vyy

(3.4a)
LgV=04+y»V,—ayV (3.4b)
LsV=—0—-yyVy—ayV. (3.4¢)

3.1 Regularization
Instead of treating (3.1)—(3.3) directly, we consider the regularized formulation
Vi + LV 4+ ¢ max{0, LgV} + ¢ max{0, LsV} =0 3.5)

with regularization parameter ¢ > 0 and subject to the boundary and terminal con-
ditions (3.2)—(3.3). The motivation for introducing this formulation for the numerical
realization of (3.1) resides in the fact that we shall utilize a Newton type method.
Clearly this is impeded by the max-operation appearing in (3.1). The regularized form
(3.5), however, lends itself to a semi-smooth Newton treatment. To briefly explain this
point for a significantly simpler problem which,we consider

max{—Au—f, u'—g, h—u'} =0 ae.in,
{ S g 1 3.6)
u=0 ondS2,

and the family of regularized problems:
—Au+cmax{0,u' —g} +cmax{0,h —u'}=f inQ, u=0 ondQ. 3.7

Above Qis aninterval in R, and f, g and &, with g > & are given. Setting A = f + Au
this equation can be expressed as

F() i= & —c max{0, (=)' (f — 1) — g}
—c max{0, h — ((=2)7'(f =)} =0, (3.8)

where A™! denotes the solution operator for the Laplacian in € with homogenous
Dirichlet boundary conditions. It can be shown that for any ¢ > 0 the mapping F is
Newton differentiable from L?(2) to itself, and consequently the semi-smooth New-
ton algorithm applied to F(A) = 0 converges locally g-superlinearly to the solution
uc of (3.7), see Griesse and Kunisch (2009), for example.

Clearly, the choice of the regularization parameter ¢ must be addressed. In practice
this will frequently be done heuristically, but for the related class of optimal con-
trol problems with pointwise constraints, path-following algorithms were developed
in Hintermiiller and Kunisch (2006) which allow self-tuning of the regularization
parameter c.
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3.2 Discretization in time

For the numerical realization a semi-discretization of (3.5) backwards in time by the
one-step 6 method with 6 € (0, 1] is used. Let V" denote the unknown at time level
n. Then V" is computed from V! according to

Vn+1 —_ynr
— HLOV'+A=0) V™) 4 max{0, LEO V" + (1 — o)V

+¢ max{0, Ls(@ V" + (1 — )V )} =0 3.9)

subject to the boundary conditions (3.2). The time step size is denoted by 7. For the
specific choices 6 = 1 and 8 = 1/2 the scheme becomes the implicit (backward)
Euler and the Crank-Nicolson methods, respectively.

3.3 Semi-smooth Newton method

At any given time level n, (3.9) represents a second-order elliptic partial differential
equation for the variable V" with a non-smooth first-order term. The nonsmooth-
ness arises from the presence of the max{0, -} operation. However, this operation
enjoys the Newton differentiability property, which allows for the formulation of a
generalized Newton’s method. A Newton derivative of max{0, Lz V} is given by the
indicator function of {£ gV > 0}. The structure of the indicator function entails that the
Newton step takes the form of an active set method. This has been rigorously proved
in Griesse and Kunisch (2009) for a similar problem setting.

Apart from the max{0, -} terms, (3.9) is a linear equation. Hence the Newton step,
written in terms of the new iterate V = V!, | is given by

Vn+1 — n+1 n+1
+LOV+A-60)V )+CXA££B(9V+(1—9)V ) (3.10)
+exusLs@V + (1~ o)V"th =0,

subject to the boundary conditions (3.2), where
AP ={ye =1y, 1/y) : Lg@ V' + (1 —0)V") > 0} G

AS ={y e (=1/y, 1)y): Ls@ VI + (1 —)V" 1) > 0}.

The complete semi-smooth Newton (SSN) algorithm is given as Algorithm 3.1. An
initial guess for V| on the current time level is obtained from linear extrapolation of
yrtland vit2 e,

Ve =2yt i (3.12)
or VON ~! = v in case of the first time step.

3.4 Discretization in space and treatment of boundary conditions

The spatial operators in (3.10)—(3.11) are discretized by finite differences. The trading
bounds sup B(¢) and inf S(¢) lie to the left and right of the Merton fraction, see (2.2),
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112 R. Herzog et al.

1 wu—r

T=1 4 o2

In order to resolve the trading bounds accurately, a refined grid in [ — 1, 7+ 1] around
the Merton fraction and a coarse grid away from iton [—1/y, 7 — 1]and [+ 1, 1/y]
was used. For 77 € (0, 1) this choice guarantees that the N T -region is covered by the
refined grid. For 7) far away from O it might happen that it does not lie in the N T -region,
see e.g., Irle and Sass (2006), Shreve and Soner (1994), and the choice for the grid
would have to be adapted.

The second derivative V), was discretized by the standard stencil [1 —2 1]/ h2.
The convective terms involving £p and Lg in (3.10) need to be stabilized. For this
purpose upwind differences for V, were utilized. That is, V, in LV was discretized
by first-order backward differences, while V, in LsV was approximated by forward
differences. The same discretization was used to determine the active sets in (3.11).

The boundary conditions (3.2) for the Newton step (3.10) read

V1) = V) = {0’ rosasl
—o00, if a <0

and thus they require special care if @ < 0. Regardless of the sign of o we shall exploit
the fact that the buy and sell trading regions extend to the boundaries —1/y and 1/y,
respectively. This follows from the boundary conditions (2.13) with arguments as used
to derive the corresponding Corollaries 8.7/8.8 in Shreve and Soner (1994). That is,
the solution of the continuous problem satisfies LgV (¢, y) = 0 for y near —1/y atall
timest € [0, T), i.e.,

Vt,y) =cg®)(1 +y »*
holds with an unknown integration constant cp(¢) # 0.
Suppose that a € (—1/y, sup B(¢)) is a given number in the buy region. From
LpV(t,a) =0 we infer
I+ya)Vyt,a)—ay V(t,a) =0. (3.13a)
Similarly, we obtain for b € (inf S(¢), 1/y) the condition
—(I+yb)Vy@t,b)—ay V(t,b) =0. (3.13b)
Thus using the Robin boundary conditions (3.13) allows us to solve the Newton
step (3.10) on the subdomain (a,b) C (—1/y, 1/y) only. We refer to this as the
reduced domain technique and it leads to a significant reduction of the size of the

computational domain. The unknown constants c¢p () and similarly cg () can be com-
puted a posteriori from

cg) =V, a)(A+ya)™®, cs@)=V(E, b1 —yb)™*. (3.14)
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The solution V (¢, -) can thus be recovered outside (a, b). Note that this procedure can
be used regardless of the sign of «.

For convenience, we summarize the semi-smooth Newton time-stepping method
as Algorithm 3.1.

Algorithm 3.1 Semi-smooth Newton time-stepping method in the one-dimensional
case

1: Initialize VN according to (3.3)

2:forn=N-1,...,1do

3:  Initialize Vj :=2 yntl _ynt2 o Vévfl =VN)andsetk :=0

4:  while not converged (SSN) do

5 Set

AR =(ye =1y 1/y) L@V + 1 -0V > 0)
AL =y e (=1/y. 1/y): Ls@O@ VI + 1 —)V"T1) > 0}

6: Solve for VI?H

Vn+1 -V
e LOV A=V e x s LpOV + (1 -0V
k

+4‘XAgﬁs(9 V+d-6vHth =o.

either on the full domain (—1/y, 1/y) with boundary conditions (3.2), or on the reduced domain
(a, b) with boundary conditions (3.13)

7: if reduced domain case then

8: Compute cp and cg from (3.14)

o savi = [03(1 +Y)° on=1/y.a)
cs(I—y ) on(b,1/y)

10: end if

11: Increase k

12:  end while (SSN)
13: SetV" := Vk”
14: end for

3.5 Unregularized active set method

For comparison, we also implemented an unregularized version of the semi-smooth
Newton iteration. It is based on the following reformulation of (3.1) as a complemen-
tarity problem:

Vi+ LV +Aip+is=0

Ap >0, LgV <0, rgLlpV =0 (3.15)

As >0, LgV <0, AsLsV =0
with boundary and terminal conditions (3.2)—(3.3). Using the max{0, -} complemen-
tarity function, (3.15) can be equivalently expressed as

Vi+ LV +Ap+i5=0

3.16
Ap =max{0,Ag +0LpV}, is=max{0,As5+0LsV} ( )
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for any o > 0. This leads to the following semidiscrete formulation of (3.1)

Vn+l —yn +1
s n . n _
+LOV'+(1—0) V") a5 +2a5=0 G1D)

Ap =max{0, g + 0 LpV"}, rs=max{0,rs+ o0 LsV"}
on (0, T) x (—1/y, 1/y). We suppose again that the active sets

AB =1{ye(=1/y,1/y): kg +0LpV" > 0}
AS ={ye(=1/y,1/y) i ks + 0 LsV" > 0}

are intervals of the form (—1/y,a) and (b, 1/y). As in (3.13), we impose Robin
boundary conditions at y = a and y = b and solve

Vn+l —yn
— 4 LOV'+1-=-6)V"™)Y=0 on(a,b).

The equations in (3.17) are coupled through the active sets. Their iterative solution by
Newton’s method leads to Algorithm 3.2. Note that the interval structure of the active
sets is enforced in step 8. The initialization of )»g!al and )»Q{ 51 in step 5 is motivated
by the update formula for Ap and Ag as applied in step 12, under the best available
guess VNI = vV,

3.6 Numerical results

For all computations, a uniform time grid with 200 points with implicit Euler time-
stepping (¢ = 1) was used. In order to resolve the trading bounds accurately, a refined
grid with 4,000 grid points in [/ — 1, 7) + 1] around the Merton fraction and a coarse
grid with 100 points each away from it on [—1/y, 7 — 1] and [ + 1, 1/y] was used.
For all examples, the Robin-type boundary conditions (3.13) were employed on the

. _ 1 1
reduced domain (a, b) = (_W’ 07 )
The iteration for a given time level n (see steps 4—12 in Algorithm 3.1) was termi-
nated as soon as one of the following criteria was satisfied:

(1) the active sets coincided: A | = Af and A;EJrl = A}
(2) the time step residual

yrtl_yp
| max [— —LOVL + Q=0 LV EsVé’H] 1)

(3.18)
after step 10 was below 1077,
(3) the terms determining the change of active sets
g =L@V, + A —0)v"H!
JB BO Vi +( ) ) (3.19)

Jsi=Ls@O VI + (1 —o)vth
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after step 10 satisfied
ljgl < 107% on AP\ AP, andon AP\ (AP UAD)
ljsl <107° on A{\ Af,, andon AP, \ (Af U AD).

In all examples, criteria (1) or (3) were always satisfied first.

Algorithm 3.2 Unregularized semi-smooth Newton time-stepping method in the one-
dimensional case

1: Initialize VN according to (3.3)
2: Set

a:=min{y e (~1/y,1/y): VN >0}
b:=max{y e (~1/y,1/y): LVN >0}
3:forn=N-1,...,1do
4 Initialize V§ :=2V"+ — v 42 (or V! = vV) and set k := 0
5: Initialize )L’é,o = 2)3;;1 — )L'Erz and )‘2,0 = 2)Lg.+1 — A§+2 or
Mpo =—LVN on(=1/y,a)
wyot=—vh on b, 1/y)

)Lg_al = Ag{gl ;=0 elsewhere

6:  while not converged (SSN) do

7T: Set
AR =y ey, 1y): N +oLpV >0}
Af={y e (—1/y. 1/y): M + o LsVy > 0}
8: Set
a:= mafo and b := min Af
9: Solve for Vl?+1

VVH—] _
+LOV+A-0v'Th=0

on (a, b) with boundary conditions (3.13)
10: Compute cp and cg from (3.14)

cg(l+y ¥ on(=1/y,a)

11: Set VI, | =
L es =y »)® on (b, 1/y)
12: Set
Vn+1 _yn
MBiy1 = _fk“ —LOV+ (0= V™) on(=1/y,a)
VrH—l _ Vn
Skl = —%k“ —LO VL, —A=)V") on b, 1/y)

and )L'é’k+1 = )L’S”kJrl = 0 elsewhere
13: Increase k
14:  end while (SSN)
15: Set V" := Vk", A"B = )‘%,k and kg = )L’Sf,k
16: end for
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Example 3.1 In this example we consider the following problem data

a=0.1 utility exponent y = 1.0% trading costs
w=9.6% stock trend oc=04 stock volatility

r =0.0% interest rate

on the time interval (0, 1). The Merton fraction for this example is 7 = 2/3, and we
consider the case with liquidation costs.

We report on the performance of Algorithm 3.1 in a MATLAB implementation with
various choices of the regularization parameter c, see Table 1. The plot of the trading
region boundaries is shown in Fig. 1. The run-time was never more than 7 seconds on
a contemporary PC.

The area between the black and the red curve is the no-trading region N T'. If at time
t a fraction y € NT(t) of our wealth is invested in the stocks, we would not trade.
Below from the black curve we have the buy region B, above from the red curve the
sell region S. Starting with a risky fraction in NT we actually only touch the bound-
ary of B or § as described in the introduction. But starting at ¢t € [0, T') with a risky
fraction in the interior of B(t) or S(¢), it would be optimal to buy or sell, respectively,
in such a way that after trading the new risky fraction lies on the boundary of N7 ()
and afterwards to continue as above.

The financial interpretation of the shape of the regions in Fig. 1 is as follows: The
Merton fraction 7 = 2/3 > 0 indicates that it is optimal to invest in the stocks. It is
desirable to stay close to 7. From Fig. 1 we learn that for positions above 7 (dashed
line) it becomes more and more attractive to sell stocks (red curve) to get closer to
7, since we have to sell all stocks at terminal time anyway. On the other hand, it is
always better to be 100 % invested in the bond (y = 0), than to have a short position
in the stocks (y < 0). Due to the liquidation costs at terminal time we would liquidate
a short position in the stocks immediately (positive black curve). If the expected gains
from the stock investment are higher than the costs, we buy stocks, as is the case for
t < 0.78 (black curve strictly positive). The influence of these small realistic costs of

Table 1 Performance of Algorithm 3.1 for Example 3.1 with implicit Euler time-stepping (¢ = 1) for
various values of the regularization parameter ¢

c Iter Ab As Residual
1.00E0 319 - - 4.00E—1
1.00E1 459 0.0040 0.0040 1.97E—1
1.00E2 524 0.0005 0.0005 4.15E-2
1.00E3 539 0.0005 0.0005 6.61E-3
1.00E4 543 0.0000 0.0005 8.15E—4
1.00ES 550 0.0005 0.0005 8.76E—5

‘iter” refers to the total number of iterations, accumulated over all 200 time steps, and ‘residual’ denotes the
expression in (3.18) at time ¢ = 0. Moreover, ‘Ab’ denotes the shift of the computed buy trading boundary
at time ¢ = 0, compared to the previous value of c¢. It is a multiple of the local mesh size 0.0005. ‘As’ is
the same for the sell trading boundary
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Evolution of the trading regions

0.8 1
0.7 B ;
0.6 —
—
0.5
g \
0.4 o N

risky fraction V

0.3 \
0.2
0.1
—O— buy X \
—6c— sell

max v
— —Merton
-0.1 : :

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time t

Fig.1 Boundaries of the trading regions in Example 3.1 (red and black). The figure also shows the Merton
fraction (dash-dotted) and the risky fraction where V assumes its maximum at any given time (solid line).
(Color figure online)

y = 1 % can be seen very well from the solid blue curve which shows that it would be
better to start at + = 0.9 with a position zero in the stocks than at the Merton fraction
7, which is optimal without costs. In the short remaining time the liquidation costs are
higher than the expected proceeds from the stock investment.

In Fig. 2, the three terms in

max (V=Y L@ v (1 —0) Vi, LV, LsV'} =0 (3.20)

are depicted in the vicinity of the trading bounds. Note that the angle of intersection
between these curves is small. Hence the sensitivity of the boundaries of the trading
regions with respect to the penalty parameter ¢ must be checked. To this end, the
values Ab and As are included in Table 1. As can be seen, the boundaries converge
as c¢ increases. Moreover, the table gives a clear indication that the residual error is
linked to regularization.

For the sake of comparison, we also applied the unregularized Algorithm 3.2 for
this and the following example. The reduced computational domain was chosen to

be (a, b) = (—%, %) in these cases. With the same stopping criteria in place and

o = 10!, the residual error at # = 0 was found to be 3.47 - 107> and 4.60 - 1079,
respectively. It is thus comparable than the residuals obtained by the regularized algo-
rithm (Algorithm 3.1) for appropriate values of ¢, compare Tables 1 and 2. A total
number of 645 and 526 iterations were needed for all 200 time steps.

We also remark that the use of appropriate initialization of the Lagrange multipliers
given in Step 5 of the Algorithm 3.2 as well as Step 8, which enforces the interval
structure of the no-trading region, are essential.
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Indicators at time t = 0.50

02} - = = NT|
B
015} — S |

0.1 b

0.05 b

Op==== ———=— - - - o -- o=

0.3 0.4 0.5 0.6 0.7 0.8
y axis

Fig. 2 Plot of the three terms in (3.20) at = 0.5 near the trading boundaries b(¢) ~ 0.38 and s(¢) ~ 0.71

Table 2 Performance of Algorithm 3.1 for Example 3.2

c Iter cB cs Residual
1.00E2 457 —2.4561 —1.8063 3.21E—-1
1.00E3 459 —1.0835 —1.0474 1.82E—-2
1.00E4 460 —1.0086 —0.9955 2.02E-3
1.00E5 462 —1.0013 —0.9905 2.18E—4
1.00E6 460 —1.0006 —0.9899 9.02E-5

See Table 1 for a legend. In addition, cp and cg denote the values of these constants, see (3.14), at time
t=0

Example 3.2 Here the previous problem is modified by choosing the more risk-averse
parameter

o = —1.0 utility exponent.

The Merton fraction is now 7 = 0.3. In Fig. 3 we see that we have a similar interpre-
tation as in Fig. 1 w.r.t. to the Merton fraction which is now smaller due to the more
risk averse utility function.

We report again on the performance of Algorithm 3.1 for various choices of the
regularization parameter c, see Table 2. As discussed before, in view of & < 0 bound-
ary conditions (3.13) are employed. As the reduced domain of computation, we used

again (a, b) = (—ﬁ, ﬁ)
Example 3.3 In a third example, we modified Example 3.1 by choosing

u=—10.0% stock trend.
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Evolution of the trading regions
0.4

0,35 S

0.3
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0.2
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max v

— - —Merton

-0.05 : :
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time t

risky fraction V

Fig. 3 Boundaries of the trading regions in Example 3.2 (red and black). See Fig. 1 for a legend. (Color
figure online)

Evolution of the trading regions

0.4
—— buy
—o— sell
max v
2H
0 — - —Merton
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=
o
©
-
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R2]
=
-0.6
-0.8 s
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0 0.1 02 03 04 05 06 07 08 09 1
time t

Fig. 4 Boundaries of the trading regions in Example 3.3 (red and black). See Fig. 1 for a legend. (Color
figure online)

The Merton fraction is 7 = —0.6944 in this example.

In Fig. 4 we see that we have qualitatively a mirrored plot compared to Fig. 1 of
Example 3.1. This is due to the fact that we now have a negative trend pu for which
it can be shown that holding stocks (y > 0) can never be optimal. It is preferable to
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Table 3 Performance of

Algorithm 3.1 for Example 3.3 fter Residual
1.00E0 259 5.69E—1
1.00E1 367 2.59E—1
1.00E2 436 4.86E—2
1.00E3 444 6.83E—3
1.00E4 445 8.07E—4

See Table 1 for a legend 1.00E5 446 8.46E—5

be short in the stocks (y < 0) which allows us to profit from decreasing stock prices.
Liquidation now means that we have to buy stocks at terminal time to close the short
position in the stocks, and the same arguments as for the interpretation of Fig. 1 apply.

We report once again on the performance of Algorithm 3.1 for various choices of
the regularization parameter c, see Table 3.

4 The case of two risky assets

In the case of two risky assets n = 2, the solution of Eq. (2.14) becomes significantly
more involved. We recall that the solvency region

S={yeR* : |yl <1/y} (4.1)

is a diamond-shaped subset of R2. Parallel to the regularized formulation in the 1D
case, see (3.5), we consider

2 2
Vi+ LV +c D> max{0, Lp;V}+c D max{0, Ls;V}=0 4.2)
j=1 j=1

on [0, T) x S with regularization parameter ¢ > 0 and subject to the boundary con-
ditions (2.13). The terminal condition for V on § is given by

V(T,y) = 21—y lylne. (4.3)

Similar to the 1D case (3.9) we discretize (4.2) in time to obtain

n+1 n
Y =V L@V + (1 — ) vt
2
+c D max{0, Lg; O V" + (1 -0Vt
j=1
2
+c > max{0, Ls; (0 V" + (1 - 0)V"TH} = 0. (4.4)

j=1

We then solve (4.4) by a semi-smooth Newton iteration as in (3.10)—(3.11).
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As will be described in the next subsection, the practical realization of the semi-
smooth Newton iteration has to take into account the significant influence of convection
induced by the buy and sell operators on the respective active sets. Stabilization is nec-
essary even for small values of the regularization parameter c. In order to balance the
influence of regularization error (which is small for large ¢) and of the magnitude of
convection (which is small for small ¢), we found it favorable to work with moderate
values for c.

To reduce the influence of the incurred remaining regularization error, we embed
the semi-smooth Newton iteration for each time step into an Augmented Lagrangian
(ALM) loop. That is, (4.4) is replaced by

Vn-‘rl —_yn
T

T LEOV" (1 —0) vt

2
+ Zmax{O, Ag;+cLp,OV"+ (1 -0V
j=1
2
+ > max{0, &g, +cLs; O V" + (1 —0)V"THy =0.  (4.5)
j=1

During one semi-smooth Newton loop for (4.5), the Lagrange multiplier estimates
AB; and Ag : remain unchanged. Once the Newton iteration for V" terminates, Ap i and
As; are updated according to

A, = max{0,Ag, +cLp, O V" + (1 —0)V"T)}

As; == max{0, ks, + ¢ Ls; (0 V" + (1 —0)V"t1)}

for j = 1, 2. At the beginning of each time step, all A5; and As; are initialized by con-
stant extrapolation from the previous time step. Upon termination of the Augmented
Lagrangian loop in any given time step, complementarity systems similar to (3.17) for
the 1D case are satisfied.

The complete Augmented Lagrangian semi-smooth Newton algorithm is given as
Algorithm 4.1. We emphasize that in Augmented Lagrangian methods, it is not nec-
essary to take the penalty parameter ¢ — oo. In the present context, this prevents
the convective terms in (4.5) from becoming overly dominant. For convergence it is
sufficient that the Lagrange multiplier estimates Ap; and As; converge, and ¢ may
remain fixed or increase only moderately. We refer to (Bertsekas 1996, Chapters 2-3)
and (Ito and Kunisch 2008, Chapter 3) for the corresponding analysis in finite and
infinite dimensional spaces, respectively.

4.1 Discretization in space and computational domain

The spatial discretization of the value function V is based upon linear continuous
finite elements. This choice offers more flexibility, e.g., with respect to local grid
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refinement, than does the finite difference approach. In order to assemble the weak
form of £, see (2.16a), we convert the second-order contributions in £ into divergence
form using

" 9Cy 9

Co ® Vyy = div(CoVV) — —
o 0y 9y,

(4.6)

where ® denotes the Hadamard product of matrices, i.e., (A ® B); j = A; j B; j. The
coefficient matrix is given by

1 n
(Cox, i = 3 Z Aij yi ¥i ik — i) (8j1 — yi)s
ij=1

where §; denotes the Kronecker delta symbol. This conversion into divergence form
incurs an additional convection term, the last term in (4.6), which needs to be added
to the connection terms already present in (2.16a).

In order to accomodate potentially highly convective contributions in (4.5), the
discretization of the first-order terms is based upon an upwind triangle stabilization,
as described for instance in (Roos et al. 1996, Chapter III, Section 3). This applies to
the convective terms in £ as well as to those in the buy and sell operators Lp; and
CSJ., see (2.16).

It is well known that for the range of problem parameters of interest, the no-trad-
ing region is small and well inside the solvency region (4.1). This was also already
observed in the one-dimensional case treated in Sect. 3. Together with the fact that
our main interest lies in the no-trading region and the optimal trading structure in
its neighborhood, this suggests once again a restriction of the computational domain.
We choose our computational domain as the diamond-shaped region

Sred ={y € R |ly — #ill1 < R)

centered around the Merton fraction, where R > 0 is chosen problem depen-
dent.

The choice of boundary conditions on dS;eq is based on the current configura-
tion of the active sets. Since the boundary conditions are not of variational type, we
adjoin them as equality constraints to the linear system (4.5) by introducing addi-
tional Lagrange multipliers. This converts (4.5) to a saddle point problem of the

form
ABT] (VN _ (b
B 0 |\p)] \0)
The rows of B have, for instance, entries of the form

/ LB] (pj(pidss j:1’~--vnn0deSy
aSlre:d
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Computational grid with 16465 vertices (reduced domain)

0.2

0.1

o
T

risky fraction Y,
S

-0.21

-0.31

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
risky fraction y ;

Fig.5 Computational grid used in Example 4.1 on the reduced domain S centered at the Merton fraction.
The regions outside the inner square pertain to the assisted active set strategy (4.7). (Color figure online)

where node i € Ag, N NT>. At parts of the boundary which belong to two active sets,
we use the sum of the two contributions from each of them.

It is known that the no-trading region is enclosed to the left and the right by buy and
sell regions for the first asset, and analogously on top and below by the second asset.
This knowledge is used to assist the choice of active sets in Algorithm 4.1, step 9.
Indeed, in practice we use

A=A Uly eR? iy —ij < —R/2) j=1.2, @
Zij ::AijU{yGRziyj—ﬁjER/z}’ Jj=12

The assist strategy can be interpreted as applying boundary conditions in a penalized
form in a square of side length R centered at the Merton fraction which is inscribed
into Speq, see Fig. 5.

The graphical representation of the trading regions in the examples below is based
on an inexpensive postprocessing step in which the active sets on every time level n
are determined according to the unstabilized buy and sell operators, i.e.,

ABI = {y € S : ﬁ‘g}sme" > 0}
4.8)
AS = {y € Sreq : E‘S“;StabV" > 0}.
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4.2 Adaptive time stepping

Algorithm 4.1 is stated for a predetermined number N of time steps of fixed length
7. Computational experience shows that the changes in the trading regions can
be highly varying in time, especially near the final time 7. This suggests the use
of an adaptive time stepping procedure. We gave preference to a simple heuristic
procedure over classical ones. Our target is to choose the time step size 7, such
that

VOV =Vl 28

” VV" ”Lz(sred)

dre) == C. 4.9)

The new time step is chosen as min{max{t, /drel, Tmin}, Tmax} Where Tmin = 10~4
and Tyax = 5 - 1072, A time step is accepted if dpej/C < 1.2 orif 7, = 10~4, and
otherwise rejected. Typically, rejection only occured at the first time step when the
initial T was chosen too large.

4.3 Numerical results

As in the 1D case, we used the implicit Euler time-stepping scheme (6 = 1)
and a locally refined spatial grid near the Merton fraction for all computations.
The mesh for Example 4.1 is shown in Fig. 5. It contains 32,776 triangles and
16,465 vertices, i.e., degrees of freedom in the linear systems in step 10 of Algo-
rithm 4.1.

The iteration for any given time level n of the SSN loop was terminated as soon as
one the following criteria were met:

(1) the active sets coincided,
(2) jump terms analogously defined as in (3.19) were below 1072,
(3) the relative change between iterations in the value function

IVites — Vil (Seea)

” an-i-l ”LOO(Sred)
was below 10712,

Typically, criteria (1) or (3) were satisfied first with only very few occurences of
criterion (2). This clarifies the stopping in step 8 of Algorithm 4.1.

The outer ALM loop was essential in converging the trading regions especially in
the first few time steps (where time ¢ is near 7). We found three ALM steps to be
sufficient in each case.
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Algorithm 4.1 Semi-smooth Newton Augmented Lagrangian time-stepping method
in the two-dimensional case
1: Initialize VN according to (2.15)
2:forn=N-1,...,1do
3: Initialize VJ =2V — vi+2 or y N = vV
nitialize 1 = A’gj“‘ (or ;\’g’;é =0) for j = 1,2, and similarly for %
Setl:=0
while not converged (ALM) do

Setk :=0

while not converged (SSN) do

Set

Lo A

B; o
A’ ::{yeS:A%/,k—O—cﬁﬁjb(QV,:’—o—(l—9)V"+l)>0}, i=1,2
S te
A =1y eSiay  +eLEPEVE+ -0V >0 j=1.2

and apply the assist strategy
10: Solve for V;", |

Vl’l+] -V
L Tyt y 41—yt
2
+> x i (i +eLFPOV+ 1 —ayth
=1
2
+> x s (0%, + cLEPEV+1—ovrth =0,
=1 % '

on the reduced domain, with boundary conditions as described in Section 4.1
11: Increase k
12: end while (SSN)
13: Update the Lagrange multipliers

Ky, i=max {0 xf + cLEPOV+A-nVThY =12

n

and analogously for A’ ol
J.

14: Increase ¢

15:  end while (ALM)

161 Set V' := V[, A%j = Ap;,¢and )Lg,j =g =12
17: end for

Example 4.1 In our first example, we used the following problem data:

a=-05 utility exponent y = 0.5% trading costs

—1.0% 0.30 0.05 -
nw= (_1' 59, ) stock trends o= (0.05 0 40) stock volatilities
r=0.0% interest rate

on the time interval (0, 1). The Merton fraction is 7 = (—0.0531, —0.0501)", and we
consider the case with liquidation costs.

@ Springer



126 R. Herzog et al.
Buy and sell regions at time 0.0000 Buy and sell regions at time 0.3314

BiB2 BiB2

0.15 B 0.15 .

g 0%; siB2 0%15 s1B2
é 0 BN S g BIN2
S -005 - NINZ S -0.05 . N1N2
i -0.1 SN2 'i -0.1 SN2
.?é '0(':: BiS2 'é '06': BiS2
025 N1S2 005 N1S2
st Mgygs —— Mgz

03 -02 -04 0 01 02 03 -02 01 0 01 02
risky fraction ¥4 risky fraction ¥y

Buy and sell regions at time 0.6677 —_— Buy and sell regions at time 0.9900 o

N1B2 045 MiB2

Ry stz SO 0%; siB2
é BiN2 _'g_ 0 BiN2
@ N1NZ ﬁ -0.05 N1NZ
bl sinz 01 SN2
fé B1S2 'ié £ B1S2
NiS2 002: N1S2

0§ 02 -04 0 01 02 o 08 02 -01 0 01 02 °°°

risky fraction y,

risky fraction y,

Fig. 6 Color-coded trading regions in Example 4.1 at times near ¢ € {0, 1/3, 2/3, 1}. The figure shows the
major part of the reduced computational domain Syeq centered at the Merton fraction (black dot). (Color
figure online)
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Fig. 7 Evolution of time step sizes for Example 4.1 (left) and 4.2 (right)

We ran Algorithm 4.1 with regularization parameter ¢ = 103 on a reduced domain
of radius R = 0.3. With a target relative change of VV in between time steps of
C = 5-1073, see (4.9), the algorithm used 104 time steps. The evolution of time
step sizes is shown in Fig. 7 (left). The nearly constant time steps reflect the rela-
tively gentle motion of the trading regions (see Fig. 6), which is due to the utility
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exponent @ = —0.5, representing a high level of relative risk aversion 1 —a = 1.5.
Approximately 8 semi-smooth Newton steps were used on average per time step. The
total run-time was approximately 930 seconds and thus significantly higher than for
the 1D problems. This is mainly due to the increased size of the linear systems in
step 10 of Algorithm 4.1, which were solved using direct sparse linear algebra. To be
more precise, approximately 77 % of the run-time was spent solving linear systems.
These numbers can be improved by using solvers of better complexity, e.g., multigrid
methods, but this is beyond the scope of this paper.

To show that our method is not restricted to the simplex we chose this example with
negative trend parameters which yields a Merton fraction 7 with negative positions in
the stocks (short selling of stocks). This corresponds to the one-dimensional Exam-
ple 3.3. Like in that example we observe in Fig. 6 that—when approaching terminal
time—the boundary of the NT-region gets closer to the Merton fraction and extends
to the axes (corresponding to the red and black boundaries in Fig. 4). This is to be
expected since at terminal time we have to liquidate anyway and hence can try to get
closer to the Merton fraction when we are far away while this would be too expen-
sive if our position lies *between’ Merton fraction and 0. Note that one year (t = 0)
before terminal time we would still trade (sell stocks) when we have no position in the
stocks, while at = 0.6677 this is no longer optimal. This is different in the following
example.

Example 4.2 In our second example, we used the following problem data:

a=03 utility exponent y = 0.5% trading costs

_ (150% stock trends _ (V42 010 stock volatilities
=\ 20% 7= \0.10 038 v
r=70% interest rate

on the time interval (0, 1). The Merton fraction is 7 = (1.0438, —1.0034)" in this
example, and we consider again the case with liquidation costs.

We ran Algorithm 4.1 with the same algorithmic parameters as in Example 4.1, but
on a reduced domain of radius R = 4.0. The same computational mesh (re-scaled to
the new radius and centered at the Merton fraction) was used. The algorithm produced
a total of 264 time steps. The evolution of time step sizes is shown in Fig. 7 (right). The
increased number of time steps corresponds to the more pronounced movements of the
trading regions, which relate to a lower level of risk aversion (1 — « = 0.7). Approx-
imately 14 semi-smooth Newton steps were used on average per time step. Conse-
quently, the computational time was approximately three times as high (2 713 seconds)
in this example. The same remarks concerning fast linear solvers as in Example 4.1
apply.

In this example the first component of the Merton fraction 7 is greater than 1 (a
long position for which we have to borrow money or sell the other stock short) and
the second slightly negative (short position). The shapes of the NT-regions depending
on time are similar to those in the preceding Example 4.1. The interpretation close to
terminal time is the same as before. But in this example it is longer optimal to trade
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Fig. 8 Color-coded trading regions in Example 4.2. The figure shows the major part of the reduced com-
putational domain. It also shows the Merton fraction (black circle)

in the stocks when we have a position 0 in the stocks. Opposed to Example 4.1 this
is true even at ¢+ = 0.6700 as we can see clearly from Fig. 8. This, as well as the fact
that the NT-regions are smaller at the beginning when compared to Example 4.1, is
due to the lower risk aversion. Moreover the NT-region is further away from 0 as a
consequence of the more extreme trend parameter of the first stock yielding a more
extreme 7).

5 Extensions

There are several model variations and extensions to which the proposed methods
carry over with minor modifications. For instance, analogous results can be obtained
for logarithmic utility; and more general cost coefficients, which may be different for
buying and selling and may differ among assets, can be treated as well.

Instead of liquidating the position in the stocks we may maximize the expected
utility of terminal total wealth, corresponding to the value function

®(t, x0,x) = sup E[L (Xo(T) +1"X(1))* | Xo(t—) = x0. X (t—) = x]
(L.M)
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instead of (2.5). In Theorem 2.1 this would only change the terminal condition to
O(T, x0, x1) = é(xo + 17 x)%. The homotheticity property (2.10) also holds for ®.
Hence we can consider \7(t, y) = Ci>(t, 1-— lTy, y) for which we have to solve (2.14)
with terminal condition V (T, y) = 1/« instead of (2.15).

If neither short selling nor borrowing are allowed, we would require that the wealth
processes stay positive and the total wealth strictly positive. After reducing the dimen-
sion we have to solve on [0, T') x D an HIB equation based on the same operators as in
Theorem 2.2 with the same terminal condition (2.15). Here D denotes the simplex in
R". On the boundary 9D we have to take care which actions are not admissible and we
may have to exclude the corresponding inequalities, cf. Akian et al. (1995). In that case
the boundary conditions are given by the dynamics of the non-empty neighbouring
region, e.g. by V; + LV =00on dD NINT(z).

Further, we may allow for consumption. Instead of (2.3a) we would have dynamics

dXo(1) = rXo(t)dr — c(r)dt — (1 +y)d(AT L)) + (1 — y)d(1" M (1)),

in the bank account, where c(¢) > 0 is the consumption rate at ¢.
Optimizing consumption and terminal wealth, we then may consider the value
function

T

@ (1, x0,x) = sup E[g/c(s)“ds+§(XO(T)+1TX(T)—y||X(T)||1)°‘

(c,L,M) g

’Xo(l‘—) =x0, X(t—) = x]

instead of (2.5). This yields an additional term % — ¢ @, in the HIB. Inserting the

1
maximzer ¢ = (Cbxo) 1=« and performing the transformation to risky fractions then
yields, instead of (2.14), the HIB

max{V, + 5 @V — y'V))Te + LV, max Ly V. max L5V} =0,

1<i<n <i<n

where the operators and boundary conditions are the same as without consumption.
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