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Abstract

We study properties of solutions to second order Total Generalized
Variation (TGV2) regularized L1-fitting problems in dimension one.
Special attention is paid to the analysis of the structure of the solutions,
their regularity and the effect of the regularization parameters.

Keywords: Total generalized variation, robust data fitting, regulariza-
tion techniques.

1 The L1-TGV2 functional

In this work we study the variational problem

min
u
‖u− f‖1 + TGV2

~α(u) , (1.1)

where f is the input data, u denotes a solution, and ~α = (β, α) > 0 stands for
a vector-valued regularization parameter. The precise definition of TGV 2

will be given below. For the moment it suffices to know that it is a flexible
regularization functional which adapts to first and second order smoothness
of the data. The TGV2

~α-functional is a special case of the TGVk
~α-functional,

where k ≥ 2, which was introduced in [3]. In [3] basic analytical properties
of TGVk

~α and numerical results with an L2 data-fitting term for the cases
k = 2 and k = 3 are provided. One way of interpreting TGVk

~α, consists in
realizing that it regularizes independently on different regularity scales of
the function that it is applied to. Compared to the BV-functional [10] we
recall that constant functions are in the kernel of BV, while polynomials of
degree constitute the kernel of TGVk

~α, see [3].
The reason for focussing on the case k = 2 in spatial dimension one is

given by the fact that we aim at getting detailed insight into the effect TGV2
~α
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on the structure of the solution to (1.1). We expect that generalizations to
k ≥ 3 are possible.

The advantages and differences of the L1 data-fitting term over the L2-
performance criterion are well reported in the literature. From the point of
view of robust statistics L1 should be preferred over an L2 fidelity term, since
the latter magnifies errors introduced by outliers. Geometric features and
scale separation properties of the L1 criterion are reported in e.g. [5, 8, 9, 13].
All of these papers address the L1-BV, as opposed to the TGV case, which
is in the focus of the present paper. The numerical realization of the L1-BV
problem is typically considered in the discrete formulation with L1 replaced
by `1. Among the techniques that were analyzed we mention linear pro-
gramming, generalized reweighted least-squares, and splitting techniques,
see e.g. [6, 12], and semi-smooth Newton methods [7].

The subsequent sections are structured as follows. Section 2 contains
notation that will be used throughout the paper as well as a summary of
useful facts on functions of bounded variation with special attention paid to
the one-dimensional case. The precise problem formulation is contained in
Section 3. Introducing a set-valued generalization of the sign operation that
is applicable to Radon measures allows an elegant description of necessary
and sufficient optimality conditions. In Section 4 monotonicity and staircas-
ing properties of the solution to (1.1), as well as its jump set, are analyzed.
It is shown that zero degree staircasing, well-known for the solutions of BV-
regularized problems, is replaced by staircasing of degree one for solutions
to (1.1). The optimality conditions allow to argue that certain regularity
properties of the data f , like absolute- and Lipschitz continuity, as well as
piecewise affinity are inherited by the solution to (1.1). This is treated in
Section 5. Section 6 focuses on the effect of the regularization parameter
on the solution. The asymptotic behavior of the solution and monotonicity
properties of the performance and complexity summand in the cost func-
tional are proved. Further threshold bounds on the solution in terms of the
regularization parameters are obtained. The paper concludes with examples
illustrating these bounds.

2 Notation and preliminaries

2.1 Measures and functions

For a function u : Ω → R, we denote by |u| the pointwise absolute value:
|u|(x) := |u(x)|.

A function u : (a, b)→ R is said to be piecewise affine, if there are finitely
many disjoint (open) intervals I1, . . . , IN such that (a, b) =

⋃N
i=1 Ii, and u

is affine on each Ii. Here Īi denotes the relative closure of Ii in (a, b).
Let Ω ⊂ Rm be a Borel set and letM(Ω,Rn) denote the space of (vector-

valued) Radon measures on Ω. The total variation measure of µ ∈M(Ω) is
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denoted |µ|, and we define the norm ‖µ‖M(Ω) := |µ|(Ω), see e.g. [11].
For each µ ∈M(Ω,Rn) there exists a polar decomposition µ = sgn(µ)|µ|

with sgn(µ) ∈ L∞(Ω, |µ|) and ‖sgn(µ)‖∞ ≤ 1. The notation µ� ν denotes
the fact that the measure µ is absolutely continuous with respect to the
measure ν.

We denote by Lm the Lebesgue measure on Rm, while Hk denotes the
k-dimensional Hausdorff measure on a suitable ambient space. The Dirac
measure concentrated at x is denoted δx. The restriction of a Radon measure
µ to a Borel set A is denoted µxA, where (µxA)(B) := µ(A ∩B).

Finally, we like to recall what the Radon norm means for distributions.
A distribution u on Ω is a Radon measure (in the sense that there is a
µ ∈M(Ω) such that

∫
Ω v dµ = 〈u, v〉 for all v ∈ C∞c (Ω)) if and only if

‖u‖M = sup
{
〈u, v〉

∣∣ v ∈ C∞c (Ω), ‖v‖∞ ≤ 1
}

(2.1)

is finite. In particular, if finite, the supremum coincides with the norm in
M(Ω).

Therefore, we have, for distributions u and w, the identities

‖Dw‖M = sup
{
〈w, v′〉

∣∣ v ∈ C∞c (Ω), ‖v‖∞ ≤ 1
}

(2.2)

and

‖Du− w‖M = sup
{
〈w, ω〉 + 〈u, ω′〉

∣∣ ω ∈ C∞c (Ω), ‖ω‖∞ ≤ 1
}

(2.3)

where the value ∞ is possibly attained.
If u can be identified with an element in the dual space Ck0 (Ω)∗, then by

density the set of test functions C∞c (Ω) can be replaced by Ck0 (Ω).

2.2 Functions of bounded variation

Following, e.g., [1], a function u ∈ L1(Ω) on a non-empty open set Ω ⊂ Rm
is said to be of bounded variation, denoted u ∈ BV(Ω), if the distributional
derivative Du is a (vector-valued) Radon measure. In other words∫

Ω
udiv φ dx = −

∫
Ω
φ dDu, for all φ ∈ C∞c (Ω,Rm).

In BV(Ω) we define the norm ‖u‖1 + ‖Du‖M and the BV-seminorm by
TV(u) = ‖Du‖M. A sequence {ui}∞i=0 in BV(Ω) converges strongly to
u ∈ BV(Ω) if both ‖ui − u‖L1(Ω) → 0 and ‖Dui −Du‖M(Ω) → 0. Weak

convergence is defined as ui → u strongly in L1(Ω) and Dui → Du weakly*
in M(Ω,Rm).

In the following, let m = 1, Ω = (a, b) and u ∈ BV(Ω). Recall that x ∈ Ω
is called a Lebesgue point if there exists a ũ(x) such that

lim
ρ↘0

1

ρ

∫ ρ

−ρ
|ũ(x)− u(y)| dy = 0.
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The set of points where this limit does not exist is called the approximate
discontinuity set, denoted by Su. In the one-dimensional case, the approx-
imate left and right limits, u−(x) and u+(x) exist for every x ∈ B and are
defined by satisfying

lim
ρ↘0

1

ρ

∫ ρ

0
|u+(x)− u(y)| dy = 0 and lim

ρ↘0

1

ρ

∫ 0

−ρ
|u−(x)− u(y)| dy = 0,

respectively. The set of points x where u−(x) 6= u+(x), which is called the
jump set Ju of u, is known to be at most countable and to coincide with Su.

We can decompose the distributional derivative of a u ∈ BV(Ω) as Du =
Dau+Dju+Dcu, where Dau = u′L1 is the absolutely continuous part, with
u′ the approximate differential, Dju represents the jump part which can be
represented as

Dju = (u+ − u−)H0xJu,

and Dcu is the Cantor part which vanishes on any Borel set σ-finite with
respect to H0. The singular parts of D are denoted by Ds = Dj +Dc. For
u ∈ C1(Ω̄) the approximate differential coincides with the common notion
of derivative.

For u ∈ BV(Ω) we will be mostly working with good representatives as
defined in [1, Theorem 3.28]. These are functions ũ : Ω → R which are
continuous outside Ju and satisfy for some unique cu ∈ R that

ũ(t) ∈ cu +Du((a, t)) + [0, 1]Du({t}) for all t ∈ (a, b).

In this sense, u− and u+ are good representatives of u.

3 Problem formulation and optimality conditions

Assumption 3.1. Throughout this paper, unless otherwise stated, we as-
sume that Ω = (a, b) ⊂ R.

We write problem (1.1) as

min
u∈BV(Ω)

F (u), where F (u) := ‖f − u‖L1(Ω) + TGV2
~α(u) (P)

for ~α = (β, α) > 0 and

TGV2
~α(u) := sup

{∫
Ω
uv′′ dx

∣∣∣ v ∈ C2
c (Ω), ‖v‖∞ ≤ β, ‖v′‖∞ ≤ α

}
,

(TGVsup)
also called the predual or supremum definition of TGV2

~α(u). The existence of
solutions to (P) follows from the lower semi-continuity of the TGV seminorm
shown in [3].
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Here we prefer to work with the minimum characterization of TGV2
~α(u),

expressed as

TGV2,min
(β,α) (u) := min

w∈BV(Ω)

(
α‖Du− w‖M(Ω) + β‖Dw‖M(Ω)

)
. (TGVmin)

Observe that the minimization problem in (TGVmin) is just L1-TV for u′,
as the singular part Dsu cannot be approximated by w. In [3] it was shown
that for u ∈ C∞(Ω), we have

TGV2,min
~α (u) = TGV2

~α(u).

In the following, we will prove this equivalence for general u ∈ L1(Ω) along
with showing the equivalence of ‖ · ‖BV(Ω) to the norm

‖ · ‖BGV2
~α

:= ‖ · ‖L1(Ω) + TGV2
~α .

Proposition 3.2. For u ∈ L1(Ω) the supremum definition (TGVsup) and
the minimum characterization (TGVmin) coincide, that is

min
w∈BV(Ω)

α‖Du− w‖M + β‖Dw‖M = TGV2
~α(u)

= sup
{∫

Ω
uv′′ dx

∣∣∣ v ∈ C2
c (Ω), ‖v‖∞ ≤ β, ‖v′‖∞ ≤ α

}
.

Proof. First observe that the supremum in (TGVsup) can also be written as
the negative infimum

TGV2
~α(u) = − inf

{
−
∫

Ω
uv′′ dx

∣∣∣ v ∈ C2
c (Ω), ‖v‖∞ ≤ β, ‖v′‖∞ ≤ α

}
.

(3.1)
Moreover, by density of C2

c (Ω) in C2
0(Ω) with respect to the C2-norm, C2

c (Ω)
in (3.1) can be replaced by C2

0(Ω). We therefore introduce X = C2
0(Ω),

Y = C1
0(Ω) and the operator Λ : v 7→ v′, for which Λ ∈ L

(
X,Y

)
. Defining

furthermore

F1 : X → (−∞,∞] F1(v) = I{‖ · ‖∞≤β}(v),

F2 : Y → (−∞,∞] F2(ω) = I{‖ · ‖∞≤α}(ω)−
∫

Ω
uω′ dx,

the infimum in (3.1) can be expressed as

inf
v∈X

F1(v) + F2(Λv).

We employ the Fenchel-Rockafellar duality formula for this setting. Accord-
ing to [2] this is justified if

Y =
⋃
λ≥0

λ
(
dom(F2)− Λ dom(F1)

)
,
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where dom(F1) and dom(F2) denote the effective domains of F1 and F2,
respectively, i.e., the set where F1 (resp. F2) admits finite values.

Since each ω ∈ Y can be written as ω = λ(λ−1ω) with λ > 0 such that
‖λ−1ω‖∞ ≤ α and 0 ∈ dom(F1), this is immediately clear. Consequently,
we know that

min
w∈Y ∗

F ∗1 (−Λ∗w) + F ∗2 (w) = − inf
v∈X

F1(v) + F2(Λv) = TGV2
~α(u).

In particular, the infimum on the left is attained. Computing F ∗1 (−Λ∗w)
gives

F ∗1 (−Λ∗w) = sup
{
〈w, −v′〉

∣∣ v ∈ C2
0(Ω), ‖v‖∞ ≤ β

}
= β‖Dw‖M

according to (2.2) and noting that −Λ∗w can be interpreted as an element
of C2

0(Ω)∗. Likewise, (2.3) gives

F ∗2 (w) = sup
{
〈w, ω〉 + 〈u, ω′〉

∣∣ ω ∈ C1
0(Ω), ‖ω‖∞ ≤ α

}
= α‖Du− w‖M.

These considerations yield the desired identity.

Lemma 3.3. There exist constants 0 < c < C <∞ such that for u ∈ L1(Ω),
we have

c
(
‖u‖L1(Ω) + TV(u)

)
≤ ‖u‖L1(Ω) + TGV2

~α(u) ≤ C
(
‖u‖L1(Ω) + TV(u)

)
.

Proof. The inequality

‖u‖L1(Ω) + TGV2
α(u) ≤ max(1, α)

(
‖u‖L1(Ω) + TV(u)

)
is trivial: By Proposition 3.2, we can employ the minimum characteriza-
tion (TGVmin) and take w = 0.

In order to complete the proof we have to show

c
(
‖u‖L1(Ω) + TV(u)

)
≤ ‖u‖L1(Ω) + TGV2

~α(u) (3.2)

for some c > 0. We may assume that ‖Du‖M(Ω) < ∞, since otherwise the
claim is trivial, both sides of the inequality being infinite. We begin by
showing that, for some constant C1 = C1(Ω) > 0,

‖Du‖M(Ω) ≤ C1

(
‖Du− w̄‖M(Ω) + ‖u‖L1(Ω)

)
, for all w̄ ∈ R. (3.3)

Indeed, let us take v(x) := w̄x + h for some h ∈ R such that
∫

Ω v =
∫

Ω u.
By the continuity of the differential operator D : v 7→ v′ on affine functions,
there exists a constant C2 = C2(Ω) such that ‖Dv‖L1(Ω) ≤ C2‖v‖L1(Ω). It
follows that

‖Du‖M(Ω) ≤ ‖D(u− v)‖M(Ω) + ‖Dv‖L1(Ω)

≤ ‖D(u− v)‖M(Ω) + C2‖v‖L1(Ω)

≤ ‖D(u− v)‖M(Ω) + C2‖u− v‖L1(Ω) + C2‖u‖L1(Ω).
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Applying the Poincaré inequality [1, p. 152] to the middle term in the last
expression, where we observe that

∫
(u − v) = 0 by construction of v, we

obtain for a constant C1 independent of u

‖Du‖M(Ω) ≤ C1

(
‖D(u− v)‖M(Ω) + ‖u‖L1(Ω)

)
.

Since Dv = w̄, we may deduce (3.3).
Next we take w ∈ BV(Ω) and let w̄ := (b − a)−1

∫
Ωw(x) dx. Then

another application of the Poincaré inequality shows that there is a constant
C3 = C3(Ω, ~α) such that

‖Du− w̄‖M(Ω) ≤ ‖Du− w‖M(Ω) + ‖w − w̄‖L1(Ω)

≤ C3

(
α‖Du− w‖M(Ω) + β‖Dw‖M(Ω)

)
.

(3.4)

Combining (3.3) and (3.4) and taking the infimum over w ∈ BV(Ω) now
yields (3.2) by Proposition 3.2, concluding the proof.

For stating optimality conditions based on subdifferential calculus, let
us study the subdifferential of the L1-norm and the norm inM(Ω). For this
purpose we need the following generalization of the sign function.

Definition 3.4. Let µ ∈ M(Ω). Then, sgn(µ) denotes the unique element
in L∞(Ω, |µ|) for which µ = sgn(µ)|µ|. Moreover, the set-valued sign is
defined as

Sgn(µ) = {v ∈ L∞(Ω) ∩ L∞(Ω, |µ|)
∣∣ ‖v‖∞ ≤ 1, ‖v‖∞,|µ| ≤ 1,

v = sgn(µ), |µ|-almost everywhere},

with ‖v‖∞,|µ| denoting the |µ|-essential supremum of |v|.
For u ∈ L1(Ω), we moreover define Sgn(u) = Sgn(uL1).

It is obvious that if u ∈ L1(Ω), then v ∈ L∞(Ω) belongs to Sgn(u) if and
only if v(t) = u(t)/|u(t)| almost everywhere in {u 6= 0} and v(t) ∈ [−1, 1]
almost everywhere in {u = 0}. Hence, the set-valued sign of µ ∈M(Ω) can
be regarded as the generalization of the sign to Radon measures.

Having this notion, the subgradient of the norm in L1(Ω) andM(Ω) can
be characterized, for the latter at least for predual elements.

Lemma 3.5. The following identities hold:

(i) If u ∈ L1(Ω), then ∂‖ · ‖1(u) = Sgn(u).

(ii) If µ ∈M(Ω), then ∂‖ · ‖M(µ) ∩ C0(Ω) = Sgn(µ) ∩ C0(Ω).

Proof. For the first part, note that from subdifferential calculus, ω ∈ L∞(Ω)
is in ∂‖ · ‖1(u) if and only if

‖ω‖∞ ≤ 1 and

∫
Ω
ωu dx =

∫
Ω
|u| dx.
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The latter expression is equivalent to
∫
{u6=0}

(
u
|u| − ω

)
|u| dx = 0. Conse-

quently ω = u
|u| almost everywhere in {u 6= 0}, and hence the equivalence

holds as stated.
For the second part, recall that for a given µ ∈M(Ω), v ∈ C0(Ω) implies

v ∈ L∞(Ω) ∩ L∞(Ω, |µ|) with ‖v‖∞,|µ| ≤ ‖v‖∞. Now, v ∈ C0(Ω) satisfies

v ∈ ∂‖ · ‖M(µ) ∩ C0(Ω) if and only if ‖v‖∞ ≤ 1 and 〈µ, v〉 = ‖µ‖M.

By the decomposition µ = sgn(µ)|µ| and ‖µ‖M =
∫

Ω 1 d|µ|, the latter is
equivalent to

‖v‖∞ ≤ 1 and

∫
Ω

(
sgn(µ)− v

)
d|µ| = 0

and this, in turn, to v = sgn(µ), |µ|-almost everywhere. Therefore, the
characterization holds as stated.

Proposition 3.6. A pair (u,w) ∈ BV(Ω)2 is a minimizer for (P) if and
only if there exists a v ∈ H2

0 (Ω) such that

v′′ ∈ Sgn(f − u), (Of )

−v′ ∈ α Sgn(Du− w), (Oα)

v ∈ β Sgn(Dw). (Oβ)

Proof. We will show that the maximization problem

max
{∫

Ω
fv′′ dx

∣∣∣ v ∈ H2
0 (Ω), ‖v‖∞ ≤ β, ‖v′‖∞ ≤ α, ‖v′′‖∞ ≤ 1

}
(P′)

can be regarded the predual problem for (P) and derive the optimality con-
ditions from Fenchel-Rockafellar duality. First, note that (P′) has a solution
v∗ ∈ H2

0 (Ω) since the functional to maximize is weakly continuous and the
constraints correspond to a non-empty, convex, closed and bounded subset
of H2

0 (Ω). Hence, writing the maximum in (P′) is justified.
For the purpose of establishing Fenchel-Rockafellar duality, we introduce

X = H2
0 (Ω)×H1

0 (Ω), Y = H1
0 (Ω)× L2(Ω),

and the linear and continuous mapping Λ : X → Y according to Λ(v, ω) =
(ω + v′, ω′). Furthermore, let

F1 : X → (−∞,∞], F1(v, ω) = I{‖ · ‖∞≤β}(v) + I{‖ · ‖∞≤α}(ω),

F2 : Y → (−∞,∞], F2(φ, ψ) = I{0}(φ) +

∫
Ω
fψ dx+ I{‖ · ‖∞≤1}(ψ).

It is easy to see that (P′) is equivalent to

max (P′) = − inf
(v,ω)∈X

F1

(
(v, ω)

)
+ F2

(
Λ(v, ω)

)
.
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To employ Fenchel-Rockafellar duality in this situation, we again establish
the sufficient condition

Y =
⋃
λ≥0

λ
(
dom(F2)− Λ dom(F1)

)
. (3.5)

Let (φ, ψ) ∈ Y be given. In order to obtain the desired representation of
this part, we have to “split off” a suitable affine part from ψ. Therefore, we
choose ψ0 = h0 + h1x with h0, h1 ∈ R such that∫

Ω
ψ0(x) dx =

∫
Ω
ψ(x) dx,

∫
Ω
xψ0(x) dx =

∫
Ω
xψ(x) + φ(x) dx

is satisfied (this linear system of equations for (h0, h1) can easily seen to be
uniquely solvable). Furthermore, we construct

ω(x) =

∫ x

a
(ψ0 − ψ)(y) dy, v(x) = −

∫ x

a
(φ+ ω)(y) dy.

Note that ω ∈ H1
0 (Ω): Indeed, −ω′ = ψ − ψ0 ∈ L2(Ω), ω(a) = 0 by

construction and

ω(b) =

∫ b

a
(ψ0 − ψ)(x) dx = 0.

Likewise we find v ∈ H2
0 (Ω). In fact, −v′ = ω + φ ∈ H1

0 (Ω), v(a) = 0, and
by Fubini’s theorem it follows that

v(b) = −
∫ b

a
ω(x) + φ(x) dx =

∫ b

a

∫ x

a
(ψ − ψ0)(y) dy − φ(x) dx

=

∫ b

a

∫ b

y
1 dx (ψ − ψ0)(y) dy −

∫ b

a
φ(x) dx

=

∫ b

a
(b− x)(ψ − ψ0)(x)− φ(x) dx

=

∫ b

a
xψ0(x) dx−

∫ b

a
xψ(x) + φ(x) dx = 0.

Therefore, (v, ω) ∈ X with

(φ, ψ) = (0, ψ0)− (ω + v′, ω′) = (0, ψ0)− Λ(v, ω).

By choosing λ > 0 appropriately, we can now achieve that

‖λ−1ψ0‖∞ ≤ 1, ‖λ−1ω‖∞ ≤ α, ‖λ−1v‖∞ ≤ β,

and since λ−1Λ(v, ω) = Λ(λ−1v, λ−1ω), the representation

(φ, ψ) = λ
(
(0, λ−1ψ0)︸ ︷︷ ︸
∈dom(F2)

−Λ (λ−1v, λ−1ω)︸ ︷︷ ︸
∈dom(F1)

)
.
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Since (φ, ψ) ∈ Y was arbitrary, (3.5) is established.
Therefore, we have(

min
(v,ω)∈X

F1

(
(v, ω)

)
+F2

(
Λ(v, ω)

))
+
(

min
(w,u)∈Y ∗

F ∗1
(
−Λ∗(w, u)

)
+F ∗2

(
(w, u)

)
= 0,

in particular the minimum is attained at some (w∗, u∗) ∈ Y ∗. Interpreting
(φ, ψ) ∈ H2

0 (Ω)∗ ×H1
0 (Ω)∗ = X∗ as distributions of order 1 and 0, respec-

tively, the functional dual to F1 can be expressed as

F ∗1
(
(φ, ψ)

)
= sup

(v,ω)∈X,
‖v‖∞≤β, ‖ω‖∞≤α

〈φ, v〉 + 〈ψ, ω〉 = α‖ψ‖M + β‖φ‖M

by virtue of (2.1). Noting that −Λ∗(w, u) = (Dw,Du− w) in the distribu-
tional sense, it follows

F ∗1
(
−Λ∗(w, u)

)
= α‖Du− w‖M + β‖Dw‖M.

Likewise, we deduce

F ∗2
(
(w, u)

)
= sup

(φ,ψ)∈Y
φ=0, ‖ψ‖∞≤1

〈φ, w〉 +

∫
Ω

(u− f)ψ dx = ‖f − u‖1

leading to max (P′) = min (P) as claimed. Moreover, the optimality
conditions can be expressed in terms of subgradients: A primal-dual pair(
(w, u), (v, ω)

)
∈ Y ∗ ×X is optimal if and only if

(v, ω) ∈ ∂F ∗1
(
−Λ∗(w, u)

)
and Λ(v, ω) ∈ ∂F ∗2

(
(w, u)

)
.

Using that ∂0 = {0}, the results of Lemma 3.5 as well as the subdifferenti-
ation rule ∂‖f − · ‖1(u) = −∂‖ · ‖1(f − u), this means{

v ∈ β Sgn(Dw),

ω ∈ α Sgn(Du− w),

{
ω + v′ = 0

ω′ ∈ −Sgn(f − u).

Using ω = −v′ and, consequently ω′ = −v′′, the characterization (Of )–(Oβ)
follows.

4 The structure of the solutions

4.1 First-degree “staircasing” and monotonicity

In the L1-TV case, i.e., for the problem

min
u∈BV(Ω)

‖u− f‖L1(Ω) + α‖Du‖M(Ω),

10



the conditions (Of )–(Oβ) are replaced by the simpler conditions

v′ ∈ Sgn(f − u), (4.1)

−v ∈ α Sgn(Du). (4.2)

These conditions imply the well-known “staircasing of degree zero” phe-
nomenon: u is piecewise constant when it does not equal f . In fact, arguing
formally, if u(x) < f(x) then u < f in a neighborhood I of x and by (4.1)
we have that v′ = 1 and hence v is affine on I. By (4.2) therefore u′ = 0
and hence u is constant on I.

For L1-TGV2 we get a similar staircasing phenomenon “of the first de-
gree”, meaning that u′′ = 0 in a suitable sense when u does not equal f .

Definition 4.1. Let u ∈ BV(Ω) for Ω ⊂ R. For x ∈ Ω, we then set

u(x) = max{u+(x), u−(x)}, and u(x) = min{u+(x), u−(x)}

(equating u+ = u− = ũ on Ω \ Ju).

Observe that u and u are “good representatives” of u. In particular,
they are continuous on Ω \ Ju.

Lemma 4.2. Let f, u ∈ BV(Ω). Then the set of x ∈ Ω with u(x) < f(x)

(resp. u(x) > f(x)) is open.

Proof. Suppose that u(x) < f(x). We may further assume u = u and f = f .
We let d := f(x)− u(x) > 0. We may then find δ > 0 such that

|Df |((x, x+ δ)) + |Du|((x, x+ δ)) < d/3

and
|Df |((x− δ, x)) + |Du|((x− δ, x)) < d/3.

Here we use that 0 = limi→∞ |Df |((x, x + 1
i )) = |Df |(∩i∈N(x, x + 1

i )) and
analogously for u. The characterization of “good representatives” in Sub-
section 2.2, shows that for a constant cu we have

u(t) ∈ cu +Du((a, t)) + [0, 1]Du({t}),

so that, for ε ∈ (0, δ), we have

u(x+ ε) ≤ u(x) + |Du|((x, ε]).

Likewise we find for ε ∈ (0, δ) that

f(x+ ε) ≥ f(x)− |Df |((x, ε]).

Consequently, we obtain u− f ≤ −d/3 on (x, x + δ). A similar calculation
can be performed on (x−δ, x). We find that u < f on I := (x−δ, x+δ).

11



Proposition 4.3. Let f ∈ BV(Ω), and suppose that u ∈ BV(Ω) solves (P)
with the minimum in (TGVmin) achieved by w ∈ BV(Ω). Suppose u < f on
an open interval I ⊂ Ω. Then we have

(i) (Du− w)xI = 0, i.e., u′ = w on I and |Dsu|(I) = 0.

(ii) w′ = 0 on I and 0 ≤ −DwxI � δx for some x ∈ I.

(iii) The function w = u′ is non-increasing on I.

If, on the other hand, u > f on I, then in addition to (i), we have

(ii’) w′ = 0 on I and 0 ≤ DwxI � δx for some x ∈ I.

(iii’) The function w = u′ is non-decreasing on I.

Proof. We consider the case u < f , as the case u > f can be shown with
analogous arguments.

From (Of ) it first of all follows that v′′ = 1 a.e. on I. In particular, v′ is
strictly monotone. Next, it follows from (Oα) that

−v′ ∈ α Sgn(Du− w).

Since v′ is strictly monotone and I is open, we must have v′ ∈ (−α, α) on
I. This forces Du − wxI = 0. Hence u′ = w on I and |Dsu|xI = 0. This
concludes the proof of (i).

On the other hand, (Oβ) gives

v ∈ β Sgn(Dw)

The fact that, v′′ = 1 implies that v is a quadratic function that reaches its
minimum on I at exactly one point x ∈ I. Elsewhere on the open set I we
must have v ∈ (−β, β). This forces −DwxI � δx on I as well as 0 ≥ Dsw.
Therefore also w′ = 0 on I. This concludes the proof of (ii). Property (iii)
is an immediate consequence of (ii).

Remark 4.4. Using the arguments of the proof of Proposition 4.3 it is now
simple to argue rigorously staircasing of degree zero for the L1-TV case.
Iteration of this reasoning implies “staircasing of degree k − 1” for TGVk.

Corollary 4.5. Let f ∈ BV(Ω), and suppose u ∈ BV(Ω) solves (P) with
the minimum in (TGVmin) achieved by w ∈ BV(Ω). Let

Au,f := Ãu,f ∪ Ãf,u, where Ãu,f := {x ∈ Ω | u(x) < f(x)}.

Then w = u′ and w′ = 0 on Au,f . Moreover, |Dsu|(Au,f ) = 0, and the set
Au,f as well as Ãu,f and Ãf,u are open.

Proof. This is an immediate consequence of Lemma 4.2 and Proposition
4.3.

12
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f
uρ

f−(x)

c

u−(x)
δc

ρ

Figure 1: The construction in the proof of Proposition 4.7.

4.2 Structure of the jump set

Proposition 4.3 already tells as that Ju ∩ Au,f = ∅, that is, u has no jumps
on any open set where it does not equal f in a suitable sense. Our next
proposition strengthens this result, in particular showing the behavior on
∂Au,f . It shows that the jumps of u are contained in the jumps of f in the
sense of graphs.

Definition 4.6. For f ∈ BV(Ω), let us define the jump graph as

Gf := {(x, t) | x ∈ Jf , t ∈ [f(x), f(x)]}.

Proposition 4.7. Let f ∈ BV(Ω), and suppose u ∈ BV(Ω) solves (P).
Then Gu ⊂ Gf , and, in particular, Ju ⊂ Jf .

Proof. Again we use the particular properties of BV-functions in the one-
dimensional case as outlined in Section 2.2, in particular the left and right
limits f±(x) always exist and Sf = Jf . We choose x ∈ Ju, and consider
only the case u−(x) < u+(x), the opposite case being similar. To show that
Gu ⊂ Gf , we have to show that f(x) ≤ u−(x) and u+(x) ≤ f(x). Since the
proofs of these two properties are analogous, we study only the first one.

To reach a contradiction, we assume that f(x) > u−(x), which implies
that f−(x) > u−(x). We denote the difference by c := f−(x) − u−(x) > 0
and choose γ ∈ (0, 1/2] such that

cγ ≤ u+(x)− u−(x). (4.3)

We consider the functions uρ := u+ cγχBρ for Bρ := [x− ρ, x]; see Figure 1
for a sketch of the construction. Then∫

Ω
|f(y)− uρ(y)| dy =

∫
Ω\Bρ

|f(y)− u(y)| dy +

∫
Bρ

|f(y)− u(y)− cγ| dy.

(4.4)
We claim that∫

Bρ

|f(y)− u(y)− cγ| dy <

∫
Bρ

|f(y)− u(y)| dy (4.5)

13



for some small ρ > 0.
In Bρ, we have pointwise almost everywhere

|f − u− cγ| ≤ (1− γ)|f − u|+ γ|f − u− c|,

so it suffices to show that∫
Bρ

|f(y)− u(y)− c| dy <

∫
Bρ

|f(y)− u(y)| dy (4.6)

By the definition of approximate limits, (f − u)− = f− − u− = c, and we
get

0 ≤ lim
ρ↘0

1

ρ

∫
Bρ

|(f − u)(y)− c| dy

≤ lim
ρ↘0

1

ρ

∫
Bρ

|f − f−| dy + lim
ρ↘0

1

ρ

∫
Bρ

|u− u−| dy = 0.

This implies that

lim
ρ↘0

1

ρ

∫
Bρ

|(f − u)(y)| dy ≥ lim
ρ↘0

(
c− 1

ρ

∫
Bρ

|(f − u)(y)− c| dy

)
= c.

and establishes the existence of some small ρ > 0 such that (4.6) and conse-
quently (4.5) hold. Moreover, since Ju is at most countable ρ can be chosen
such that x− ρ 6∈ Ju. Recalling (4.4), this implies

‖f − uρ‖L1(Ω) < ‖f − u‖L1(Ω). (4.7)

Observe, finally, that by the definition of uρ, we have

Duρ = Du+ cγ(δx−ρ − δx).

Therefore, by the choice (4.3), a part of the jump of u at x of mass cγ ≤
|Dju({x})| is shifted to x− ρ 6∈ Ju. It follows that

‖Duρ − w‖M(Ω) = ‖Dau− w‖L1(Ω) + ‖Dsu+ cγ(δx−ρ − δx)‖M(Ω)

= ‖Dau− w‖L1(Ω) + ‖Dsu‖M(Ω) = ‖Du− w‖M(Ω).

Consequently ‖Du− w‖M(Ω) in (P), where w ∈ BV(Ω), is not affected by
replacing u by uρ. Minding (4.7), this shows that F (uρ) < F (u), so u cannot
be optimal. Hence we have found the desired contradiction and can conclude
the proof.

Remark 4.8. The same argument works in R1 for general L1-TGVk, (k ≥ 1),
so, in particular L1-TV. For the L2-TV problem

min
u∈BV(Ω)

‖f − u‖2L2(Ω) + α‖Du‖M(Ω),

with f ∈ BV(Ω)∩L∞(Ω) and Ω ⊂ Rn, n ≥ 1, the property Ju ⊂ Jf , up to a
set of Hn−1 measure zero, has already been shown by a different technique
in [4].
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4.3 Summary

We summarize the findings of this section in the following theorem.

Theorem 4.9. Suppose u ∈ BV(Ω) solves (P) for f ∈ BV(Ω). Then there
exists an open set Au,f , union of at most countably many disjoint open
intervals Ii = (ai, bi), (i = 0, 1, 2, . . .), such that

(i) u = f on Ω \Au,f .

Moreover, for each i = 0, 1, 2, . . ., there exist points xi ∈ Ii such that the
following hold.

(ii) f(ai) ≤ u+(ai) ≤ f(ai), and f(bi) ≤ u−(bi) ≤ f(bi).

(iii) Both u|(ai, xi) and u|(xi, bi) are affine. Moreover, u−(xi) = u+(xi),
that is, u is continuous on Ii.

(iv) Either u < f or u > f on Ii. In the former case, (u′)−(xi) ≥ (u′)+(xi).
In the latter case, (u′)−(xi) ≤ (u′)+(xi).

Proof. This is an immediate consequence of Propositions 4.3 & 4.7.

5 Preserved properties

5.1 Continuity

Proposition 5.1. Suppose that f : Ω → R is (absolutely) continuous and
that u ∈ BV(Ω) solves (P). Then u is (absolutely) continuous.

Proof. In the one-dimensional case under consideration, u has a continuous
representative on Ω \ Ju. The preservation of continuity therefore follows
from the fact that Ju ⊂ Jf = ∅ which was established in Proposition 4.7.

Next we show the preservation of absolute continuity. We write Au,f =⋃∞
i=1 Ii, where the intervals Ii are open and disjoint. We then write

f(t) = c+

∫ t

a
f ′(s) ds, (t ∈ Ω).

Such a representation holds thanks to the absolute continuity of f . Minding
that, by Proposition 4.3, u is also absolutely continuous on

⋃j
i=1 Ii ⊂ Au,f ,

we define

gj(t) :=

{
f ′(t), t ∈ Ω \

⋃j
i=1 Ii,

u′(t), t ∈
⋃j
i=1 Ii,

and

uj(t) := cj +

∫ t

a
gj(s) ds.
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x

û

I = (a, d)

(a) Illustration of û

f

u

x′

ū

I ′ = (d, b)

(b) Illustration of ū

Figure 2: Constructions in the proof of Theorem 5.2

Clearly u′j = gj . If a 6∈
⋃j
i=1 Ii, then cj = c. Otherwise cj = u+(a). The

idea is that uj is formed from f by replacing it by u on each of the intervals
Ii = (ci, di), (i = 1, . . . , j), where u(ci) = f(ci) and u(di) = f(di). Thus
uj = f on Ω \

⋃j
i=1 Ii.

We finally let

g(t) :=

{
f ′(t), t ∈ Ω \Au,f ,
u′(t), t ∈ Au,f ,

If we then show that uj → u in L1(Ω) and u′j = gj → g in L1(Ω), it follows

that uj → u in W 1,1(Ω) and u is absolutely continuous with u′ = g.
Firstly, we indeed observe that

lim
j→∞

‖gj − g‖L1(Ω) = lim
j→∞

∞∑
i=j+1

‖u′ − f ′‖L1(Ii) = 0,

thanks to ‖u′ − f ′‖L1(Au,f ) <∞ and L1(
⋃∞
i=j+1 Ii)→ 0.

Secondly, we observe analogously that

lim
j→∞

‖uj − u‖L1(Ω) = lim
j→∞

∞∑
i=j+1

‖u− f‖L1(Ii) = 0.

This concludes the proof.

Theorem 5.2. Let f : Ω → R be Lipschitz continuous with Lipschitz con-
stant L, and suppose that u ∈ BV(Ω) solves (P). Then u is Lipschitz con-
tinuous with Lipschitz constant at most L.

Proof. Observe that the set Au,f is open, and |u′| ≤ L pointwise a.e. on
Ω \Au,f , as u = f on this set. We want to show that |u′| ≤ L pointwise a.e.
on all of Ω.

Let w ∈ BV(Ω) be a function achieving the minimum in (TGVmin). By
Proposition 4.3, we have u′ = w and w′ = 0 on Au,f . Thus |u′| ≤ L a.e. on
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Au,f will follow if we show |w| ≤ L on Au,f . Since ∂Au,f is L1-negligible and
u is absolutely continuous by Proposition 5.1, a referral to the fundamental
theorem of calculus then shows that u has Lipschitz factor at most L, as
claimed.

We may study w separately on the sets Ãu,f and Ãf,u, whose union
constitutes Au,f . Since the proof is analogous (with some sign changes) in
both cases, we concentrate on Ãu,f , i.e., on the case u < f , and show that
|w| ≤ L on Ãu,f . Let I ⊂ Ãu,f be a maximal open interval, that is, there
exists no open interval I ′ 6= I with I ⊂ I ′ ⊂ Ãu,f . (Recall that, Ãu,f ⊂ R
being open, it is the union of countably many disjoint open intervals.) By
Proposition 4.3, 0 ≤ −DwxI � δx for some x ∈ I, so that for some w1, w2 ∈
R, w1 ≥ w2, we have w = w1 on (c, x) and w = w2 on (x, d). Moreover,
since u < f on I, there exists ε > 0 such that u(x) + ε < f(x).

To reach a contradiction suppose that w1 > L. Then

u′ = w1 > L ≥ f ′ on (c, x). (5.1)

It follows that u(y) + ε ≤ f(y) for y ∈ (c, x). By the maximality of I, we
deduce that c = a. Thus, on (a, x], we have u + ε < f and u is affine with
slope w1. Suppose w2 < w1, and set L̂ := max{L,w2} as well as (see Figure
2(a))

û(y) :=

{
u(y), y ∈ [x, b),

u(x) + L̂(y − x), y ∈ (a, x),
ŵ(y) :=

{
w(y), y ∈ [x, b),

L̂, y ∈ (a, x).

Using (5.1) it follows that u < û ≤ f on (a, x). Moreover û′ − ŵ = u′ − w
on [x, b), û′ − ŵ = 0 on (a, x), and

|ŵ+(x)− ŵ−(x)| < |w+(x)− w−(x)|,

where we use that L̂ ≤ w2. It is thus easily seen that F (û) < F (u), contra-
dicting the optimality of u for (P). Hence, if w1 > L, then w2 = w1, so that
u is affine on I = (a, d) with slope w1 = w2.

Let us now assume that d < b. Setting x = d and L̂ = max{L,w+(d)} an
argument by contradiction using the above construction shows that w+(d) ≥
w1. By the maximality of I we have u(d) = f(d). Let h ∈ (Au,f ∩ (d, b)) be
the point closest to d in this set. Then u = f on I0 := [d, h]. Suppose h > d.
The function w then minimises ‖f ′ − w‖1 on (d, h) subject to the boundary
values w+(d) on d and w−(h) on h. Since f ′ ≤ L and w+(d) ≥ w1, it follows
that w ≥ w1 a.e. on (d, h). Indeed, if we had w(y′) < w1, then (see the proof
of Lemma 4.2) there would exist y ∈ (d, y′] and L̃ ∈ [w(y), w(y)]∩ [L,w+(d))
such that f ′ ≤ w̃ < w on (d, y) for

w̃(x) =

{
L̃, x ∈ (d, y),

w(x), otherwise.
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Then also |Dw̃|(Ω) ≤ |Dw|(Ω), which would contradict the optimality of w.
Since now w ≥ w1 > L a.e. on I0, we may actually assume (choosing L̃ = w1

and y = h) that w = w1 a.e. on I0. In fact, if w+(h) < w1 (when h < b), we
could take y = h and L̃ = max{L,w+(h)}, contradicting that w+(d) ≥ w1.
Thus w+(h) ≥ w1 (when h < b) and w ≥ w1 a.e. on I ∪ I0 = (a, h]. The
same conclusion holds already by earlier reasoning when h = d.

Suppose h < b. It now follows from u(h) = f(h) that u > f on an interval
I ′ = (h, e) ⊂ Ω. Indeed, since h ∈ ∂Au,f ∩ (d, b) and w+(h) ≥ w1 > L,
we have the existence of ε > 0 such that B := (h, h + ε) ∩ Au,f satisfies
L1(B) > 0 and u′ = w > L a.e. on B (see again the proof of Lemma 4.2),
while u = f a.e. on (h, h + ε) \ B. From here it follows by integration that
B = (h, h + ε) and u > f on I ′ = B. We may again take I ′ maximal,
in the sense defined above. Using (ii′) of Proposition 4.3 we obtain the
existence of x′ ∈ (h, e) such that for some w′1, w

′
2 ∈ R, with w′1 ≤ w′2, we

have w = w′1 = w+(d) ≥ w1 > L on (h, x′) and w = w′2 on (x′, e). But then
w > L on I ′, which implies that u−(e) > f−(e). By the maximality of I ′,
we thus necessarily have e = b. This implies that Ω = I ∪ I0 ∪ I ′.

When h = b, we take I ′ = ∅.
When d = b, we take h = b and I0 = I ′ = ∅.
Let us now define (see Figure 2(b))

ū(y) :=


u(d) + L(y − d), y ∈ I,
u(h) + L(y − h), y ∈ I ′,
u(y), y ∈ I0,

w̄(y) := L, (y ∈ (a, b)).

Then u < ū ≤ f on (a, d), and f ≤ ū < u on (h, b). It follows that
‖ū− f‖L1(Ω) < ‖u− f‖L1(Ω). Trivially also Dū − w̄ = 0, and Dw̄ = 0, so
that clearly F (ū) < F (u). This provides the desired contradiction to the
assumption w1 > L. Since w2 ≤ w1, it follows that w ≤ L on I. A proof
by contradiction completely analogous to the one above further shows that
w2 ≥ −L, so that |w| ≤ L on I. This concludes the proof.

5.2 Piecewise affinity

Theorem 5.3. Let f : Ω → R be piecewise affine, and suppose that u ∈
BV(Ω) solves (P). Then u is piecewise affine.

Proof. By Proposition 4.3, u is piecewise affine on any open interval I b
Au,f . Trivially this results extends to any open interval I ⊂ Au,f . Clearly u
is also piecewise affine on any open interval I ⊂ Ω \Au,f , since it is equal to
f there. The only problem therefore lies in showing that Au,f is the union
of at most finitely many open intervals. From there the same result follows
for Ω \Au,f .
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Let I ∈ {I1, . . . , IN} be one of the finitely many open intervals on which
f is affine. It then suffices to show that Au,f ∩ I consists of finitely many
open intervals.

Recall that by Proposition 4.7 and continuity of f on I we may assume
that u continuous on I. Let I ′ = (c, d) ⊂ Au,f ∩ I be maximal. In view of
the continuity of u on I this means that for x ∈ {c, d}, either u(x) = f(x)
or x ∈ ∂I. If no such interval exists, then due to Lemma 4.2, we have u = f
on I and there is nothing to prove.

Next we note that there are at most two sub-intervals I ′ ⊂ Au,f ∩ I
sharing a boundary point of I. It therefore suffices to study the number of
subintervals I ′ = (c, d) with c, d 6∈ ∂I. For such intervals, both u(c) = f(c)
and u(d) = f(d), while u 6= f on I ′. Let us assume that u < f on I ′. The
opposite case can be treated analogously. By Proposition 4.3, u is piecewise
affine on I, with at most one point of discontinuity for w = u′. Consequently,
the assumptions u(c) = f(c) and u < f on I yield w+(c) < (f ′)+(c). By
Proposition 4.3, moreover, w is non-increasing, so that w < f ′ = (f ′)+(c) on
I ′. Consequently u(d) = f(d) is impossible. This contradiction shows that
Au,f ∩ I consists of at most two intervals, specifically those with at least one
boundary point meeting a boundary point of I.

Remark 5.4. The proof also shows that u does not oscillate away from f in
the middle of an interval I on which f is affine.

6 The effect of the regularisation parameters

6.1 Convergence

In this subsection, we consider problem (P) with the regularization term
weighted for simplicity with a single parameter λ > 0, that is we consider

min
u∈BV(Ω)

Fλ(u) := ‖f − u‖L1(Ω) + λTGV2
~α(u). (Pλ)

Proposition 6.1. For α, β > 0 fixed, let uλ be a solution of (Pλ) with
λ > 0. Then

(i) uλ → f strongly in L1(Ω) as λ↘ 0.

(ii) Every sequence λi ↗∞ has a subsequence {λij}∞j=0, such that uλij ⇀

f∗ weakly in BV(Ω) as j → ∞, where f∗ is a solution to the L1-
regression problem

min
u affine

‖f − u‖L1(Ω). (6.1)

(iii) The function λ 7→ ‖f − uλ‖L1(Ω) is non-decreasing, while the function

λ 7→ TGV2
~α(uλ) is non-increasing.
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Proof. The proof of (i) is elementary: Suppose that uλ 6→ f in L1(Ω). Then
there exist δ > 0 and a sequence λi ↘ 0, (i = 0, 1, 2, . . .), such that

δ ≤ ‖uλi − f‖L1(Ω) ≤ Fλi(uλi) ≤ Fλi(f).

But Fλi(f)→ 0 as i→∞, which gives a contradiction to the above inequal-
ity.

The proof of (ii) is somewhat more involved. First of all, we observe that
TGV2(u) = 0 for affine functions u. Since uλ solves (Pλ), we find that

min
v affine

‖(f − uλ)− v‖L1(Ω) = ‖f − uλ‖L1(Ω),

and consequently

uλ ∈ X := {u ∈ L1(Ω) | (f − u)∗ = 0}. (6.2)

Note that X is a closed with respect to strong convergence in L1(Ω). In
fact, let {ui} denote a sequence in X with limit u. For arbitrary ε > 0 we
have ‖u− ui‖L1(Ω) < ε/2 for i large enough. Then for such i

‖f − u‖L1(Ω) ≤ ‖f − ui‖L1(Ω) + ‖ui − u‖L1(Ω)

= min
v affine

‖(f − ui)− v‖L1(Ω) + ‖ui − u‖L1(Ω)

≤ min
v affine

‖(f − u)− v‖L1(Ω) + 2‖ui − u‖L1(Ω)

≤ min
v affine

‖(f − u)− v‖L1(Ω) + ε.

Let w = wλ be such that the minimum in (TGVmin) is achieved for u = uλ.
Further, denote the mean

ūλ := [L1(Ω)]−1

∫
Ω
uλ dL1,

and similarly let w̄λ be the mean of wλ on Ω. We define uaλ(t) := tw̄λ + cλ,
where cλ ∈ R is chosen such that ūaλ = ūλ. The Poincaré inequality [1,
Theorem 3.44], applied twice, then gives for a constant C dependent on Ω
alone, and a constant C ′ dependent on ~α and C, that

‖uλ − uaλ‖L1(Ω) ≤ C‖Duλ −Duaλ‖M(Ω)

= C‖Duλ − w̄λ‖M(Ω)

≤ C‖Duλ − wλ‖M(Ω) + C‖wλ − w̄λ‖L1(Ω)

≤ C‖Duλ − wλ‖M(Ω) + C2‖Dwλ‖M(Ω)

≤ C ′TGV2
~α(uλ).

(6.3)

Observe then that {Fλ(uλ)}λ>0 is bounded, because

Fλ(uλ) ≤ Fλ(f∗) = ‖f − f∗‖L1(Ω) <∞.
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Thus TGV2
~α(uλ)→ 0, for λ↗∞, and hence by (6.3)

‖uλ − uaλ‖L1(Ω) → 0, for λ↗∞. (6.4)

Observe now that {uλi}∞i=0 is bounded in L1(Ω) since {Fλ(uλ)}λ>0 being
bounded. Hence {uaλi}

∞
i=0 is bounded by (6.4). Since the functions uaλi ,

(i = 0, 1, 2, . . .), are affine, we may therefore find an unrelabeled subsequence
λi ↗∞, such that uaλi → ua strongly in L1(Ω) for some affine function ua.

Consequently also uλi → ua strongly in L1(Ω). Since uλi ∈ X and since X
is closed it follows that (f − ua)∗ = 0, which by ua being affine implies that
f∗ = ua solves (6.1). This establishes that uλi → f∗ strongly in L1(Ω).

We still need to bound {‖Duλi‖M(Ω)}∞i=0 to get weak convergence in
BV(Ω). Towards this end, we observe from (6.3) and the discussion following
it that ‖Duλi −Duaλi‖M(Ω) → 0. But {‖Duaλi‖M(Ω)}∞i=0 is bounded since

{uaλi}
∞
i=0 is bounded in L1(Ω) and the functions uaλi are affine. Therefore

{‖Duλi‖M(Ω)}∞i=0 is also bounded. This completes the proof of claim (ii).
Claim (iii) follows by a generic argument. Let µ > λ. We then have

‖f − uλ‖L1(Ω) + λTGV2
~α(uλ) ≤ ‖f − uµ‖L1(Ω) + λTGV2

~α(uµ), and

‖f − uµ‖L1(Ω) + µTGV2
~α(uµ) ≤ ‖f − uλ‖L1(Ω) + µTGV2

~α(uλ).

Therefore, summing, we find that

(µ− λ) TGV2
~α(uµ) ≤ (µ− λ) TGV2

~α(uλ),

so that TGV2
~α(uµ) ≤ TGV2

~α(uλ), if µ > λ. This shows that λ 7→ TGV2
~α(uλ)

is non-increasing. Next, we deduce that

‖f − uλ‖L1(Ω) + λTGV2
~α(uλ) ≤ ‖f − uµ‖L1(Ω) + λTGV2

~α(uµ)

≤ ‖f − uµ‖L1(Ω) + λTGV2
~α(uλ),

which shows that
‖f − uλ‖L1(Ω) ≤ ‖f − uµ‖L1(Ω),

concluding the proof of the claim and the lemma.

Remark 6.2. With reference to (ii) above, note that as TGV2
~α(u) = 0 forces

Dw = 0 and thus u′ to be a constant, we find that f∗ is a solution of the
constrained problem

min
u∈BV(Ω)

‖f − u‖L1(Ω) subject to TGV2
~α(u) = 0.

Remark 6.3. In the following we will see that, actually, uλ = f∗ for suffi-
ciently large λ. The convergence proof above remains valid also when λ↗ λ∗

where uλ∗ = f∗ at λ∗.
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6.2 Thresholding

We next derive bounds on ~α ensuring that either u = f∗ or u = f solve (P).
We begin with the L1 regression case.

Proposition 6.4. There exists α∗, β∗ ∈ (0,∞), such that whenever f ∈
BV(Ω), α ≥ α∗, and β ≥ β∗, then (P) is solved by the L1 regression f∗ of
f .

Proof. The proof is based on the Poincaré inequality argument found in
the proof of Proposition 6.1. Let u ∈ BV (Ω) be arbitrary. Then for any
w ∈ BV(Ω)let ua(t) := tw̄ + c where c is chosen such that ūa = ū. Then

‖f − f∗‖L1(Ω) = min
v affine

‖f − v‖L1(Ω)

≤ min
v affine

(
‖f − u‖L1(Ω) + ‖u− v‖L1(Ω)

)
≤ ‖f − u‖L1(Ω) + ‖u− ua‖L1(Ω).

According to (6.3) we have

‖u− ua‖L1(Ω) ≤ C‖Du− w‖M(Ω) + C2‖Dw‖M(Ω),

where C is the constant for the Poincaré inequality in Ω. Now, choosing w
such that it achieves the minimum in (TGVmin) for the chosen u it follows
that

‖f − f∗‖L1(Ω) ≤ ‖f − u‖L1(Ω) + TGV~α(u) for all u ∈ BV(Ω),

provided that α ≥ C and β ≥ C2. Thus α∗ = C and β∗ = C2 satisfy the
claims of the proposition independently of f .

We next derive bounds on ~α that ensure that u = f for the solution of
(P), at least for reasonably simple f . Similar results for L1-TV can be found
in [5, 8].

Notation. Let f : Ω→ R be piecewise affine with I1, . . . , INf the maximal
disjoint ordered (open) intervals on each of which f is affine. We denote

δf := min
i=1,...,N

L1(Ii).

Proposition 6.5. Let f : Ω→ R be piecewise affine with Jf = ∅ and

δf ≥

{
2β/α+ α, α ≤

√
2β,

2
√

2β, α ≥
√

2β.
(6.5)

Then u = f whenever u is a solution of (P).
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Proof. We study when the optimality conditions (Of )–(Oβ) hold with u = f
and w = f ′. For this purpose we need to find v ∈ H2

0 (Ω), satisfying

v′′ ∈ Sgn(0),

−v′ ∈ α Sgn(0), and

v ∈ β Sgn(Djf ′).

Let I1, . . . , INf be the intervals of affinity of f , with Ii = (ai, bi), with
a1 = a, bNf = b, ai+1 = bi, i = 2, . . . , Nf − 1. Also let dai ∈ {−1,+1}
denote the direction of the jump of f ′ at ai, (i = 2, . . . , Nf ). Then the
optimality conditions reduce into

v′′(t) ∈ [−1, 1], (t ∈ Ω), (6.6)

v′(t) ∈ [−α, α], (t ∈ Ω), (6.7)

v(t) ∈ [−β, β], (t ∈ Ω), and (6.8)

v(a1) = 0, v(bNf ) = 0, v(ai) = βdai . (6.9)

Let us set δ∗ := 2β/α + α and suppose δ∗ ≥ 2α. Then (α, δ∗ − α) is a
welldefined open interval and we can set

r(t) :=


t2/2, t ∈ (0, α),

−α2/2 + αt, t ∈ (α, δ∗ − α),

−α2 + αδ∗ − (δ∗ − t)2/2, t ∈ (δ∗ − α, δ∗),
2β, t ∈ (δ∗,∞).

We can check that r ∈ C1([0,∞)) ∩H2
loc((0,∞)). Continuity at δ∗ requires

that r(δ∗) = 2β: the condition for the latter is just −α2 + αδ∗ = 2β, which
suggested the definition

δ∗ = 2β/α+ α.

Moreover we note that r(0) = 0. If α ≤
√

2β, which corresponds to the first
case of (6.5), this implies the requirement that δ∗ ≥ 2α. The derivatives of r
satisfy r′ ∈ [−α, α], r′′ ∈ [−1, 1] almost everywhere in Ω. We now define the
dual variable by assigning its values on each of the interval Ii, i = 1, . . . , Nf ,
according to

v(t) = βdi + cir(t− ai), for t ∈ Ii,

with

ci =


d2,

(di+1 − di)/2 for i = 2, . . . , Nf − 1,

−dNf−1,

with jump directions di at the jump points defined in (6.9). Note that
ci ∈ {−1, 0, 1}. Since, by assumption, δf ≥ δ∗, we have r(bi − ai) = 2β,
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and therefore v ∈ C(Ω̄). Moreover r′(0) = r′(bi − ai) = 0 and this implies
that v ∈ C1(Ω̄). Finally we chose v such that v(a1) = v(bNf ) = 0 and hence
v ∈ H2

0 (Ω). Since ci ∈ {−1, 0, 1} it follows that v′ ∈ [−α, α], v′′ ∈ [−1, 1].
By construction it follows that v(t) ∈ [−β, β]. Thus we find that v satisfies
(6.6)–(6.9).

To cover the second case of (6.5), suppose that α ≥
√

2β. Setting δ̃ :=
2
√

2β, observe that δ̃ ≤ 2α and δ̃ ≤ δ∗ (with equality at α =
√

2β). We now
define

r̃(t) :=


t2/2, t ∈ (0, δ̃/2),

δ̃2/4− (δ̃ − t)2/2, t ∈ (δ̃/2, δ̃),

2β, t ∈ (δ̃,∞).

Then r̃(0) = 0 and r(δ̃) = 2β by the choice of δ̃. Clearly again r̃ ∈
H2

loc((0,∞)) with r̃′(0) = 0 and r̃′(T ) = 0 for any T ≥ δ̃, as well as
r′′(t) ∈ [−1, 1] for a.e. t ∈ (0,∞), and r′(t) ∈ [−α, α] for all t ∈ [0,∞).
Defining v as above with r̃ in place of r, similar reasoning shows that (6.6)–
(6.9) hold.

Remark 6.6. Observe that as the intervals on which f is affine get smaller,
β also has to become smaller to guarantee “locking” u = f by Proposition
6.5. An example illustrating this point is provided by Example 6.12 below.

In the following proposition we consider the case of piecewise affine func-
tions allowing for jumps in the function values as well as in the derivative.

Proposition 6.7. Let f : Ω→ R be piecewise affine with Jf ∩ Jf ′ = ∅ and

α ≤
√

2β and 2α+ 4β/α ≤ δf . (6.10)

Then u = f whenever u is a solution of (P).

Proof. We shall adapt the proof of Proposition 6.5. With (6.10) holding, the
first case of (6.5) holds as well and we can use the function r of the proof
of Proposition 6.5.

The optimality conditions with u = f and w = Daf are satisfied if we
find v ∈ H2

0 (Ω) satisfying

v′′ ∈ Sgn(0),

−v′ ∈ α Sgn(Djf), and

v ∈ β Sgn(DjDaf),

or equivalently if (6.6) - (6.8) hold and (6.9) is replaced by

v(a1) = 0, v(bNf ) = 0, v(ai) = βdai , if ai ∈ Jf ′ ,

v′(ai) = αdai , if ai ∈ Jf , for i = 2, . . . , Nf ,
(6.11)
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where, as above, dai ∈ {−1, 1} if ai ∈ Jf ′ ∪ Jf , with the sign depending on
whether the jump is negative or positive.

The function r needs to be modified to guarantee that the last require-
ment in (6.11) holds. Note at first that r′(δ∗/2) = α. This follows from the
fact that α ≤ δ∗

2 ≤ δ∗ − α, which is implied by α2 ≤ 2β. The idea now
is to add “extra points” to Jf ′ around points of Jf . For I1, . . . , INf , with
Ii = (ai, bi) and bi − ai ≥ δf , denoting the intervals on which f is affine, we
consider intervals

Ĩi := Ii \
⋃
x∈Jf

Ix, (i = 1, . . . , Nf ),

and
Ix := (x− δ∗/2, x+ δ∗/2), (x ∈ Jf ).

Recall here that Jf ∪ Jf ′ = {a2, . . . , aNf }. The condition δf ≥ 4β
α + 2α

guarantees that δ∗ = 2β
α + α ≤ δf

2 and hence L1(Ĩi) ≥ δ∗ and L1(I∗) = δ∗.

The intervals Ĩi and Ix , x ∈ Jf , form a new partition Ĩi = (ãi, ãi+1) of (a, b),
with i = 1, . . . , M̃ , for some M̃ , and ã1 = a, ãM̃+1 = b. Each jumppoint of

f is the midpoint of some interval Ĩi, each jumppoint of f ′ is a boundary
point of some Ĩi. If ãi coincides with some aj ∈ Jf ′ , then v(ãi) = v(aj) is
already defined there. Otherwise, is ãi is an endpoint of some Ix, say the
left endpoint. Then we define the values of v as v(ãi) = −β and for the right
endpoint v(ãi+1) = +β if the jump of f is positive and s v(ãi) = β and for
the right endpoint v(ãi+1) = −β if the jump is negative. Now v on (a, b)
can be defined as in the proof of Proposition 6.5, with ai replaced by ãi, and
Nf = M̃ . For ãi = aj , with aj ∈ Jf ′ , we have v(ãi) = v(aj) = βdaj and for

ãi = aj , with aj ∈ Jf we have that aj is the midpoint of the interval Ĩi and
hence v′(ãi) = v′(aj) = αdaj . Thus this v is our desired dual variable.

Remark 6.8. The “locking” of u to the data f , as studied in Proposition 6.7,
does not necessarily hold for any values of α and β when Jf ∩ Jf ′ 6= ∅. This
point will be demonstrated in Example 6.11 below. Moreover, Example 6.12
below demonstrates that locking may not be achived for functions that are
not (finitely) piecewise affine, even when the function is continuous.

Generally, we have the following “partial locking” result.

Proposition 6.9. Suppose u is a solution of (P) with the minimum in
(TGVmin) achieved by w ∈ BV(Ω). Then we have the following.

(i) If u < f or u > f an open interval I, then L1(I) ≤ 2α.

(ii) If u ∈ BV(Ω) and w < u′ or w > u′ a.e. on an open interval I, such
that f ′ ∈ BV(I), then L1(I) ≤ 2β/α.
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Proof. We first show point (i), considering only the case u < f , as the case

u > f is analogous. We choose arbitrary x, x′ ∈ I with x < x′. By the
necessary optimality condition (Oα), we have v′(x), v′(x′) ∈ [−α, α]. while,
since v′′ = 1 on I by (Of ), we get

v′(x′)− v′(x) =

∫
χ[x,x′]v

′′ dL1 = ±(x′ − x).

We therefore deduce that |x′ − x| ≤ 2α and L1(I) ≤ 2α.
To show point (ii), we simply employ in the above proof, the condition

(Oβ) in place of (Oα), to get v(x), v(x′) ∈ [−β, β]. Then we use the condition
(Oα) in place of (Of ) to get v(x′) − v(x) =

∫
χ[x,x′]v

′ dL1 = ∓α(x′ − x).
Thus we deduce α|x′ − x| ≤ 2β.

Propositions 6.5 and 6.9 imply the following corollary.

Corollary 6.10. Let f : Ω→ R be piecewise affine with Jf = ∅ and suppose
that δf > 2β/α and (6.5) hold. Then the optimal solution satisfies u = f
and w = f ′.

Proof. By Proposition 6.5 condition (6.5) implies that u = f . Since δf >
2β/α, Proposition 6.9 shows that L1(I) < δf for any open interval I such
that w < f ′ or w > f ′. It follows that w(xi) = f ′(xi) at some xi ∈ Ii for
each i = 1, . . . , Nf . But then it is optimal to pick w = f ′.

6.3 Examples

We next study some counter-examples regarding the thresholds on ~α which
guarantee that u = f solves (P). The next example demonstrates that for
general piecewise affine f , (P) may not be solved by u = f for arbitrary
choice of α, β > 0.

Example 6.11. Let us take the domain Ω := (−1, 1) and consider on Ω the
function

f(t) :=

{
0, t ≤ 0,

1− t, t > 0.

We study again the optimality conditions (Of )–(Oβ). The conditions (Oα),(Oβ)
state that for some v ∈ H2

0 (Ω)

−v′ ∈ α Sgn(Du− w), and

v ∈ β Sgn(Dw). (6.12)

These conditions are compatible with v and v′ having zero traces on ∂Ω,
i.e. v ∈ H2

0 (Ω), only if there exists δ > 0 such that w = u′ and w′ = 0 on
(−1,−1 + δ) ∪ (1− δ, 1).
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Figure 3: Function f of Example 6.12.

Suppose then that u = f solves (P). Consider w ∈ BV(Ω) that minimizes

‖w −Df‖M(Ω) + ‖Dw‖M(Ω) = 1 + ‖w + χ(0,1)‖L1(Ω) + ‖Dw‖M(Ω).

From the reasoning above, we have that for some δ > 0, w = 0 on (−1,−1+
δ), and w = −1 on (1 − δ, 1). But then necessarily ‖Dw‖M(Ω) ≥ 1, which
gives w = −χ(0,1) as the optimal choice.

We next show that u = f and w = −χ(0,1) cannot solve (P). The
optimality conditions (Oα),(Oβ) for this choice would state that

−v′ ∈ α Sgn(δ0), and

v ∈ β Sgn(−δ0),

so that v′(0) = −α, and v(0) = −β. But, minding that v ∈ H2
0 (Ω), the

function v is differentiable in the distributional sense with v′ (Lipschitz)
continuous. Since v ≥ −β by (6.12), clearly we cannot then have v(0) = −β
with v′(0) = −α < 0. Thus u = f cannot solve (P).

Our final example concerns functions with countably many affine parts,
but no jumps.

Example 6.12. Let us consider Ω = (0, 1) and the sawtooth function

f(t) :=

∫ t

0

∞∑
i=2

(
χ(2·2−i,3·2−i)(s)− χ(3·2−i,4·2−i)(s)

)
ds

depicted in Figure 3. The function f is absolutely continuous with countably
many affine parts, but Df ′ =

∑∞
i=2(δ2·2−i − δ3·2−i), so that f ′ has infinite

variation on (0, δ) for any δ > 0.
Suppose u and w solve (P) for f . As in Example 6.11 above, there must

exist δ > 0 such that w = u′ and w′ = 0 on (0, δ). If u = f , this would
imply that w has infinite variation on (0, δ), and so clearly cannot minimize
‖Df − w‖M(Ω) + ‖Dw‖M(Ω). We conclude that u = f cannot solve (P).
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