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Optimal control of the bidomain system (I):

The monodomain approximation with the Rogers-McCulloch model

Karl Kunisch and Marcus Wagner

1. Introduction.

The present work opens a series of papers where we will set forth a basic framework for optimal control of the
bidomain equations together with related uniqueness and regularity results. ") The full bidomain system,
which represents a well-established description of the electrical activity of the heart, is given by

Dy,
887:7 + Lion (P, W) — div (Ml V@i) = I, fora.a.(z,t)eQx][0,T]; (1.1)
Py .
887; + Lion (P, W) + div (Me V@e) = —I. fora.a.(z,t) e Qx[0,T]; (1.2)
ow
E—FG(‘I)”,W) = 0 fora. a. (z,t)eQx[0,T]; (1.3)
nTM;V®;, = 0 and n" M, VO, = 0 for all (z,t) € 9Q x [0, T]; (1.4)
Dy (2,0) = Po(z) and W(x,0) = Wy(z) for a.a.z e, (1.5)

together with appropriate specifications of the ionic current I;,, and the function G within the gating equation
(1.3). 92) Within the cardiac muscle, which occupies the spatial domain Q C R?, the anisotropic properties
of the intracellular and extracellular tissue parts will be described by conductivity tensors M; and M,.. The
variables ®; = ®;(x,t) and &, = P.(x,t) represent the intracellular and extracellular electrical potential;
their difference ®4. = ®; — @, is the transmembrane potential. Further, I; and I. model the intracellular and
extracellular stimulation current, respectively. W, the so-called gating variable, is related to the ion transport
through the cell membrane. On a microscopical level, the intracellular and extracellular quantities should be
concentrated on disjoint subdomains 2; and . of 2, whose common boundary represents the total of the
cell membranes. %) After an averaging procedure, ®*) the macroscopic model (1.1) — (1.5) is obtained, where
the superimposed intracellular and extracellular media occupy the same domain ().

The present paper is concerned with the monodomain equations, which arise from (1.1) — (1.5) as a special
case if the conductivity tensors satisfy M, = A M; with a constant parameter A > 0. Then ®. can be
eliminated from (1.1) — (1.5), and we get the monodomain system

0, A 1 .

(M)l W + Izon(q)tra W) - m div (Mz V(I)tr) = m ()\IZ — Ie) for a. a. (I,t) € Q x [0, T} N (16)
%—V;/—FG((P”,W) =0 fora. a (x,t)eQx[0,T]; (1.7)
nTM;V®, = 0 forall (z,t) € 9Q x [0, T]; (1.8)
Dy (2,0) = ®o(z) and W(x,0) = Wy(z) fora. a. .z e (1.9)

For an introduction to PDE-constrained optimal control problems, cf. [ITo/KuNiscH 08] and [ TROLTZSCH 09].

First considered in [TUNG 78]. For a more detailed introduction to the model, we refer to [ SUNDNES/LINES/CA1/
NIELSEN/MARDAL/TVEITO 06], pp. 21 — 56, and the references therein.

See [CoLLI FRANZONE/SAVARE 02], pp. 49 — 52, and [ VENERONT 06] .
Described in [ CoLLI FRANZONE/SAVARE 02], pp. 71 — 75.
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as a considerable simplification of (1.1) — (1.5) which, nevertheless, conserves some essential features of the
full bidomain model as excitability phenomena. For this reason, this system has been deserved considerable
attention for itself.

We are now ready to state the optimal control problem to be investigated:

T T
(P) F(®yu,W,1I.) = / / r(@,t, ®u(x,t), W(x,t)) dadt + g / / I.(z,t)* dx dt — inf! (1.10)
0o Jo o Jo
subject to the state equations (1.6) — (1.9) in its weak formulation (see (2.3) —(2.5) below) and

the control restriction | I.(z,t) | < R for a. a. (z,t) € 2 x [0, T'] (1.11)

with R > 0 and a function r(z,t, ¢, w) to be specified below. A typical choice is a tracking-type integrand
r= %(gp — D () )2 where ®; is taken, for example, from a steady-state solution (@, W) of (1.6) — (1.9).
The control restriction reflects the obvious fact that one cannot apply arbitrary large electrical stimulations
to living tissue without damaging it.

Although the bidomain system has been extensively studied under computational aspects, °® only little work
related to its optimal control is available in the literature as yet. Problem (1.10) — (1.11) was already con-
sidered in [ NAGAIAH/KUNISCH/PLANK 09 ] and [NAGAIAH/KUNISCH 11]. In these papers, the control prob-
lem has been successfully numerically accessed on the base of gradient or inexact Newton techniques, respec-
tively, but the optimality system has been derived only formally without proof. [ AINSEBA/BENDAHMANE/
Ru1z-BAIER 10] study an optimal control problem on a tridomain model. Even here, the optimality condi-
tions have been derived only formally. Another related control problem was investigated in [ BRANDAO/FER-
NANDEZ-CARA/MAGALHAES/ROJAS-MEDAR 08] where the authors study to a tracking-type functional,
restricting themselves in (1.6) — (1.9) to the FitzHugh-Nagumo model for I,,, and G and replacing (1.8) by
Dirichlet boundary conditions. In this particular case, the authors obtain necessary optimality conditions
by means of the Dubovitskij-Milyutin formalism. In the context of defibrillation, [ MUZDEKA /BARBIERI 05 |
pursued a different approach. After disregarding the nonlinearities, the authors perform a spectral approxi-
mation and solve a time-optimal control problem for the ODE, which arises for the lumped mass system
resulting from the eigenmode expansion.

The structure of the paper is as follows. In the next Section 2, we study the existence and uniqueness of
weak solutions to (1.5) — (1.9) for the Rogers-McCulloch and the FitzHugh-Nagumo model. °®) Even for the
monodomain equations, these results may not be available in the literature. In part, they could be deduced
from results on the bidomain system, but then one has to impose additional conditions on the spectral
properties of the conductivity tensors.°”) In our approach, such conditions become unnecessary (Theorem
2.8.). In Section 3, we turn to the study of the related optimal control problems. After confirming the existence
of global minimizers, we prove directly the existence of solutions for the adjoint equations. Then, treating
(P) as a weakly singular problem in the sense of ITO/KUNISCH, 08) we obtain in Theorem 3.7. the following
set of first-order necessary optimality conditions for weak local minimizers (tth,«, W, fe) of (P), consisting of
the variational inequality

T

~ 1 ~

/ / (,ule(x, t) + T Py(x, t)) (Ic(z,t) — Ic(z,t) ) dzdt > 0 for all feasible controls I, (1.12)
o Jao

We refer e. g. to [ COLLI FRANZONE /DEUFLHARD /ERDMANN /LANG /PAVARINO 06 ], [ VIGMOND /AGUEL/TRAYANOVA
02] and [ WEBER DOS SANTOS/PLANK/BAUER/VIGMOND 04].

In a subsequent publication, the linearized Aliev-Panfilov model will be considered as well, cf. [ ALIEV/PANFILOV 96
and [ BOURGAULT/COUDIERE/PIERRE 09], p. 480.

Cf. [BoULAKIA/FERNANDEZ/GERBEAU/ZEMZEMI 08], p. 8, (2.18), and [BOURGAULT/COUDIERE/PIERRE 09],
p- 478 f., Theorem 32.

[ITo/KuniscH 08], p. 17 f.



and the adjoint system

oP OLion , » & oG . - or .~ -
_ aitl ~V-(M;VP) + 3o (4, W) P, = —an(q)t,., W) Py — %(@tr, W) for a. a. (z,t) € Qr; (1.13)
n" M; VP, = 0 for all (z,t) €9Q x [0, T]; Py(x,T) = 0 for a. a. x € Q; (1.14)
6P2 oG | - S alion 2 z or - T .
- W + %((I)tm W) Pg = — Jw (‘I)t'm W) P1 — %(@tra W) for a. a. (J?,t) S QT, (115)
Py(z,T) = 0 for a. a. z € Q (1.16)

for the multipliers P; and P; related to (1.6) and (1.7), respectively. The section is closed with the derivation
of an a. e. pointwise formulated optimality condition. For the conveniency of the reader, we collect some
facts about Bochner integrable mappings in an appendix (Section 4).

Notations.

We denote by LP(Q) the space of functions which are in the pth power integrable (1 < p < o0), or are
measurable and essentially bounded (p = o0), and by whp (Q) the Sobolev space of functions ¢¥:  — R
which, together with their first-order weak partial derivatives, belong to the space L'(Q,R) (1 < p < 00).
For spaces of Bochner integrable mappings, e. g. L2[(O, T), I/V1’2(Q)]7 we refer to Section 4. Qr is an
abbreviation for Q x [0, T']. The gradient V is always taken only with respect to the spatial variables x.
The abbreviation “(V)t € A” has to be read as “for almost all ¢ € A” or “for all t € A except a Lebesgue
null set”, and the symbol o denotes, depending on the context, the zero element or the zero function of the

underlying space.

2. Weak solutions of the monodomain system.

a) The monodomain system.

Let © € R? be a bounded, open set. For the monodomain system (1.6) — (1.9) with Neumann boundary

conditions, we introduce the following notion of a strong solution:

Definition 2.1. (Strong solution of the monodomain system) %) Let T > 0. A pair (®,, W) is called
a strong solution of the monodomain system (M); on [0, T'] iff ;. and W satisfy the equations in (M),
a. e.on Q x [0, T] as well as the initial and boundary conditions on 99 x [0, T'], respectively. Moreover,

the functions belong to the spaces

@, c WH2[(0,T), L*(Q)] n L*[(0,T), W**(Q)]; (2.1)
wewh ?[(0,T), L*()] nC’[[0,T], L*(Q)]. (2.2)

The corresponding weak formulation of the monodomain system, on which the formulation of the optimal

control problems in Section 3 will be based, reads as follows:

oD, A T _ 1 o
(M) /Q( 5 +Iwn(<I>tT,W))z/}da:+/vaw M;V®,.dx = /Qm(/\ll I.) ¢ dx (2.3)

Vi e WHAHQ) (V)te o, T];

99) Slightly modified from [ BOURGAULT/COUDIERE/PIERRE 09], p. 469, Definition 18.



/(%—WJrG((I)mW))de:O Ve L*(Q) (V)telo, T]; (2.4)
Q t
Dy (2,0) = Pp(z) Mz eQ; W(x,0) = Wy(z) V)xze. (2.5)

Definition 2.2. (Weak solution of the monodomain system) '©) Let T' > 0. A pair (®,,, W) is called
a weak solution of the monodomain system (M)g on [0, T'] iff @4 and W satisfy the equations in (M),

on [0, T'] in the distributional sense and obey the initial conditions. Moreover, the functions belong to the

spaces
®, € C[[0,T], L*(Q)] n L*[(0,T), Wh*(Q)] n LP(Qr) with 2 <p <6; (2.6)
wec’[[0,T], L*(Q)]. (2.7)

Assumptions 2.3. (Basic assumptions about the data) About the data in (M); and (M),, the following

will be assumed.
1)QcC R? is a bounded strongly Lipschitz domain.

2) M;: cl(Q) — R**? is a symmetric, positive definite matrix function with L™ (Q)-coefficients, which obeys

a uniform ellipticity condition with uq, pe > 0:

0< mllE)° <EMi(@) € <€)7 VEER® VaeQ (2.8)
3) Lion and G are affine-linear with respect to W with

Lion(p,w) = Fi(p) + Fa(p)w  and  G(p,w) = G1(p) + gaw (2.9)

with continuous functions Fy, Fr, G;: R — R and g» € R.
4) The functions Fy, F5 and G obey the following growth conditions: For all ¢ € R, it holds that

-1

| Fi(p)| < cvtea]e|” (2.10)
21

| Folp)| < estea]o”*7 (2.11)
2

|GL(9) | < es+es|ol” (2.12)

with nonnegative constants ci, ... , cg = 0 and some 2 < p < 6. Further, for all ¢, w € R, it holds that
alpP=b(eolel?+[wl?) —c < A(Fi(p) + Falp)w) - o+ (Gilp) + gow) -w (2.13)

with constants a > 0, o > 0, b, c > 0 and 2 < p < 6 as above.
5) The initial values ®o, Wy belong to the space L*(Q).
6) I; and I. belong to LQ[(O7 T), (W12(Q))*]

Let us remark that the monodomain system is solvable without the compatibility condition [, ( I;(x,t) +
I.(z,t))dz =0 (V)t € (0, T), which is a mandatory assumption in the full bidomain case.

b) The models for the ionic current.

The ionic current through the cell membranes will be described with the help of a so-called gating variable

W, which is coupled with the transmembrane voltage ®- by an ODE. We will consider the following models:

10 See [BOURGAULT/COUDIERE/PIERRE 09], p. 472, Definition 26.
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a) The Rogers-McCulloch model. V)

Lion(p,w) = b-p(p—a)(p—1)+o-w =bp’—(a+1)bp’ +aby +pw; (2.14)
Glp,w) = ew—cky (2.15)

with 0 <a <1,b>0, k>0 and € > 0. Consequently, the gating variable obeys the linear ODE

%—Vtv—i—sw = ek Py, (2.16)

b) The FitzHugh-Nagumo model. %)

Lion(psw) = @(p—a) (p— 1) +w =¢* = (a+1)p* +ap+w; (2.17)
Glp,w) = ew—cKkp (2.18)

with 0 < a < 1, kK > 0 and ¢ > 0. Consequently, the gating variable obeys the same linear ODE (2.16) as
before.

Proposition 2.4. (Analytical properties of the ionic current models) 13) The Rogers-McCulloch
model and the FitzHugh-Nagumo model satisfy Assumptions 2.3., 3) and 4) with p = 4.

c) Existence and uniqueness of weak solutions for the monodomain system.

Theorems 2.5. and 2.6. can be obtained by slight modifications of the arguments presented in [ BOURGAULT/
COUDIERE/PIERRE 09] and [ NAGAIAH/KUNISCH/PLANK 09].

Theorem 2.5. (Existence of weak solutions)'*) Assume that the data within (M)y obey Assumptions
2.8., 1)— 6) with p = 4. Then for arbitrary initial values o, Wy € LQ(Q), the monodomain system (M)
admits on [0, T'] at least one weak solution (P, W) in the sense of Definition 2.2. Consequently, for both

models from Subsection 2.b), weak solutions with p = 4 exist.

Theorem 2.6. (A priori estimate for weak solutions)'®) Assume that the data within (M)s obey
Assumptions 2.3., 1) — 6) together with p =4. If a pair

(@4, W) € (00[[0, T), L* Q)] n L*[(0,T), W) ] n LP(QT)) x C°[[0,T), L*(Q)] (2.19)

forms a weak solution of the monodomain system (M)a on [0, T'] then the following estimate holds:

2

2
H ét"‘ ||00|: } + || @tT ||L2 [(O,T),WLQ(Q)] + || ¢t’l‘ Hip(QT) + || a(ptr/at ||i

[0,T),L%) [0 1), (wr29))" ]

2 2
+ HW”COI:[O,T),LZ(Q)] + ||6W/8t”ll2|:

(0.7). (wh@))"]
2 2 2 2

< O (1410 i) + 1Wo liziey + 1 Wi oy (wrogeny) ]+ e l3a o,y (woey)]) (2200

where ¢ = 4/3. The constant C > 0 does not depend on g, Wy, I; and I,.

The following uniqueness theorem, which is based on an error estimate for the weak solutions, allows to

dispense with the eigenvalue conditions for the Jacobi matrix of the model functions I;,, and G.

[ROGERS/McCULLOCH 94].

[FirzHUGH 61], together with [NAGUMO/ARIMOTO/YOSHIZAWA 62].
[BOURGAULT/COUDIERE/PIERRE 09], pp. 479 — 481.

Compare with [ BourGAULT/COUDIERE/PIERRE 09], p. 473, Theorem 30.
Compare with [ NAGAIAH/KUNISCH/PLANK 09], p. 10, Lemma 3.5.



Theorem 2.7. (Error estimates for weak solutions) Assume that the data within (M)s obey As-
sumptions 2.5., 1)— 6) together with p = 4, and specify within (M)y one of the models from Subsec-
tion 2.b). If two weak solutions (', W'), (@4, W") € (Cg[[(), T], LQ(Q)] N L2[(O, T), Wl’z(Q)]
NLP(Qr)) x C’O[[O, T], LQ(Q)] of (M)y correspond with initial values ®) = ® = &y € L*(Q), W} =
WY = Wy € L*(Q) and inhomogeneities I;', I,', I, and 1. € L[(0,T), (Wl’z(Q))*], whose norms
are bounded by R > 0, then the following estimates hold:

2

2
H (I)t'r', - (I)tr// ||L2 [(O,T),W1*2(Q)] + ” (I’tr/ - (I)t'r'// HCO[[ (221)

0,7, L*(©)]
2

W =W ) HIW =Wl J I = Wil o.). 120

0,7),L*(Q

/ "2
<O (5 - 1"}~

[0,T],L3*(Q)

2
+ HIeI —Iell ||L0<>|:(O,T), (W1’2(Q)>*] ) .

(2.22)

[(o.7), (wh2))" ]

|20~ 2| < ¢ Max (11 = 1l

W1’4/3|:(07T)7(W1’2(Q))*:| [(O)T))(WI,Z(Q))*} )

2 2
[RE HLZ[(O,T),(WIJ(Q))*] L =L ||L2[(0,T),(W1'2(Q))*} N P ”Lz[(O,T),(Wl’z(Q))*] )

Theorem 2.8. (Uniqueness of weak solutions) Assume that the data within (M)s obey Assumptions
2.8., 1)— 6) together with p = 4, and specify within (M)2 one of the models from Subsection 2.b). Then
for initial values @y € L%Q), Wo € LY(Q) and inhomogeneities I, I, € L>[(0,T), (Wl’z(Q))*}, the
monodomain system (M)z2 admits a unique weak solution (P, W) in the sense of Definition 2.2. on [0, T'].

d) Proofs.

Throughout the following proofs, C' denotes a generical positive constant, which may appropriately change
from line to line. C' will never depend on the data ®y, Wy, I; and I. but, possibly, on €2 and p = 4.

Proof of Theorem 2.5. Observe first that the reformulated bidomain system in [ BOURGAULT/COUDIERE/
PIERRE 09], p. 473, Lemma 28, and the monodomain system (M)s have the same structure. In (M)2, however,
the bilinear form M : W"?(Q) x W"*(Q) — R reads as

A
M1, o) = T, Vipi M; Vipy da . (2.23)

Lemma 2.9.'9) The bilinear form M is symmetric, continuous and coercive, satisfying with 8, v > 0

Bl vz < MW, 9)+ B¢l Yo W) and (2:24)
| M1, o) | < v 9wy W2 llnregy Viu, v € wh2(Q). (2.25)

Proof. As a consequence of Assumption 2.3., 2), we have

A 2 A T 1,2
< —— M; = My, (0 2.2
1+A/Q‘V’(/)‘ dx 1+A/ﬂw Vi dx (W, ) YypeW =3(Q) = (2.26)
Ay 2 Ay 2 1,2
T % w2 < M(iﬁﬂﬁ)‘#il_”\ (V]2 YYeW(Q).

The uniform ellipticity of M; implies the second inequality as well. m

Obviously, the form M generates a weak operator on W' (Q) x Wl’Q(Q). Consequently, the existence proof
from [ BOURGAULT/COUDIERE/PIERRE 09], pp. 473 ff., Subsections 5.2.1. — 5.3. can be carried over to (M)

after replacing the bidomain bilinear form by M. m

16) Compare with [ BOURGAULT/COUDIERE/PIERRE 09], p. 464, Theorem 6.



Proof of Theorem 2.6. For the same reasons as in the proof of Theorem 2.5., the arguments from
[NAGATIAH/KUNISCH/PLANK 09], p. 10 f., Lemma 3.5., as well as the underlying estimates from [ BOUR-
GAULT/COUDIERE/PIERRE 09], pp. 474 — 476, may be carried over to the monodomain system (M)s. m

Proof of Theorem 2.7. The proof will be divided in two parts according to the underlying ionic current
model.

Part A. The Rogers-McCulloch model.

e Step Al. The difference of the parabolic equations. The pairs (®4,', W') and (@4, W) satisfy for almost
all t € [0, T'] the equations

<%<I>t/(t), V) + M(®' (), ) Jr/QIl-(m(CI)t/(t),W’(t))wdx = <1j%\ (AL'(t) = I (1)), ¥) (2.27)
Vo e WH(9);
(G5 "0, 0)+ M(2(0), ) + [ L@ (0. W) wile = (155 VL' (O-1"(0) %) (228)
Vip e WH(Q).

Consequently, we obtain the equation

( % Dy, (1) — 4, (), ) + M (P, (t) — B4, "(t), ¥) + / (Iion(@t/(t), W/ () = Lion(®4" (1), W”(t))) o da
Q
= <1+% (A (L'(t) = L"(t)) — (L/(t) er”(t))), ) Yo e WHQ). (2.29)

Since @y, (t), @, (t) € W"?(Q), we may insert ¢ = ®,,/(t) — ®,,” (t) as a feasible test function into these

equations. Using the constant § > 0 from Lemma 2.9., (2.24), we arrive at

d
% H cbtrl(t) - (I)t'r‘//(t) HiQ(Q) + M((I)t?"/ - (I)t'r‘//; (I)tr/ - cbtr”) + 5 || (I)tr/ - (I)tr// ||12(Q)

[N

+ / (Iion(q)tr/; W/) - Iion<(btr”a WH) ) (q)t'r/ - q)tr//) dx
Q

1
= (I (A (L' = 1") = (L = L") ) LBy — @)+ B — @ 12 = (230)
1d
5 % H CI)tr/ N (I)trl/ HQLQ(Q) +6 ” (I)t’“/ - (b”"// ”12/[/1’2(9) * / (Iion((bt?“/a W/) - Iz‘on(q)trﬂa WN)) ((I)tr/ - (I)tr”) dz
Q
1
< ’ ( FY ()‘ (L' =1") = (L'- L") ) , Byl — Dy ) ’ + 6| @’ — o Hi%ﬂ) . (2.31)

The first term on the right-hand side can be estimated through

1

2
ey

1
! _ n _ / _ 1 !/ _ 1 . ! _ n .
(ML = 1"®0) = (10 = L"0) ) @0’ = @0 )| < 52 C (IE O = 10 [{y10)
+I12/ (1) = " () I 4 E e 0) -0 ) sy (252)
e e (Wl*z(Q)) 4 tr tr wi2(Q) .
with arbitrary e; > 0. The second term will be estimated with the help of the following lemma.
Lemma 2.10. For all v1, @2 € R, the following identity holds:

(e —(a+ D) i +apr)— (93— (a+1)p3+aps)
= (p1—p2) (P + o192+ 95 —(a+1)(p1+p2)+a). m (233)



Consequently, we get

/ (Iion((btr/y W/) - Iion((pt'rﬂy W”) ) ((ptr, - (I)tr”) de (234)
Q
:/X@/—@ﬂw(@¢f+@w¢wwwaﬂf+aﬂ¢w—@yﬂm
Q

— ((l + 1) b / ((I)trl - (I)“n//) (q)tr/ + q)trll) (q)t/ - q)trl/) dx + / ((Ptrl W/ - (ptrll WI/) (q)trl — (pt'r’ll) dx .
Q Q

Since @, (z,t)2 + @4,/ (2, ) ®4/ (2, t) + 4" (2, )% > 0 for almost all (x,t) € Qr and a, b > 0, the inequalities
(2.31), (2.32) and (2.34) imply

d 2 2
%nmx—éwwymﬁﬂﬁnﬁx—@wwwmm)<20/}@/—@4%¢@4+@4ﬂW¢;—¢wﬂm
Q

C 2 2
!/ ! 12 " 1" i // / 1
+ 2/9(% W —&," W") (0" — ®p')dx + — (HI L (o) + 11" — L H(Wl,z(m)*)
35 2 2
+ —1 1@’ — @ 120y + 28 @’ — @1 20 - (2:35)

Applying the generalized Cauchy’s inequality with e5 > 0 to the first term on the right-hand side of (2.35),
we get

20 [ |00/ = 0 |- [ @)+ 00" | |04~ 8, | do
Q

€ 2 2 C 2
<c2 / |04/ + @4 | |0 — @4 T dr + o [| 00 — 0" |20 (2.36)
2 Q 252
€ 4 1/2 4 /2 C )
<C ?2 (/ | o, + o, | dgg) (H o, — o, ||L4(Q)) + — H o, — o, ||L2(Q) (2.37)
Q
€ 4 1/2 9
<C 52 (/ | ®, + &, | dg[') | @ — @y, ||W1 2(q) + H o, — ®," ||L2(Q) . (2.38)
Q

The second term on the right-hand side of (2.35) will be estimated through

9 / ((I)trl W'+ (I)trl/ W’ — q)tr// W//) ((bt'r// _ @tr/) dx
Q
-9 /(%’ — 0, YW (D) — ®y,") dx + 2 /(W’ — W e, (9, — ") da (2.39)
Q Q
712 / |2 1 ’ "2
<@AXW)|@T—®T|m+;ﬂ®w—®rhmn (2.40)
1
+é4 / (®4")% | @y — @y [P da+ — | W — W ||2LQ(Q)
Q €4
1/2 1/2 1
< &5 (/(W’)4dx) (Now = @u"llps, )"+ = @0’ = @4 720 (2.41)
Q (Q) 53
4 1/2 1/2 1
e ( / (w’) dr) (120 =@ N1y )+ IV =" 2

2 2
C€3 || W/ ||L4(Q) || q)tr q)trll ||W1 Z(Q) + || q)tr (I)t,,\// ||L2(Q) (242)

N

+Cey || @, ||L4(Q) | @4 — @4 ||W1 2@) T || W' —w" Hi?(g) .



applying the generalized Cauchy’s inequality again with €3, ¢4 > 0. Assembling now (2.35), (2.38) and (2.42),

we arrive at
d ’ "2 / "2
a ” (I)tr - (I)tr ||L2(Q) + 2ﬂ ” (I’tr - (I)tr ||W1’2(Q) (243)

) 4 4 1/2 2 C 2

O3 (H @4’ [|74(q) + | 2o ||L4(Q)) 120" = @0 [yr2g) + 2y [ @0 — @4 120
c W’ 2 o, —d," 2 1 &, " 2
+ Ces | Wil 1 R0 — Po (w2 T || i — P 720
2
+ Ceal| @ g | 26’ — o’ [iy12q +—= || W =W |72

C 2 2
+ a ( || Iil(t) - Ii//(t) ”(Wl,z(Q))* + H Ie/(t) - Ie//(t) H(WI,Z(Q))* )
35
ey - @ ”?/Vla(ﬂ) +283] @ — 04" Hiz(g) :

Analogously to [ NAcA1aH/KuNiscH/PLANK 09], p. 10, (33), with the aid of (2.13) we may derive
L 0ult) Fyraoy + [ alult)? do
Q

t t
<C(M®wwﬁmHW%wﬁm+/dQW+C 1) 1 sy 7 (2.44)

+C/O \|Ie(7)|\2<W172(Q))*dT)+C|Q|+ (||I()II(WI,Q(Q))*+er(t)|\?wlvz<m)*)'

Due to (2.44), the L*-norms of @,/ (), ®,,"(t) are bounded through

A@ywwx<c@+gmme;@+nwmw;m+clﬂumﬂﬁWme
FIL/ ) gy ) + 101+ 25 (IEO 1 o) + 1O W o)) 249
<C (1 + 0l ®oll72(0) + I Wo 720y + I I IILz[(O,T), (wree)'] T |1 IIQLa[(O,T), (wi2e)]
I Wm0,y (wrziey) ]+ I w02 (wiaey)'] ) F (2:46)
A@/mﬂm<cml+w@wmw;@+mvmw;@+cﬁﬁm%ﬂﬁwmﬁy
L) ) ) d7) + €101+ 20 (170 gy ) + 1O ooy ) 247

2 2
<C (1 + o o ||L2(Q) + [ Wo HL2(Q) +15” HLZ[ + 11"

(0,7), (wr2@)"] ez co,m), (wre)]
2 2
+”Ii””LW[(O,T),(W“(Q))*]Jr”Ie”HLW[(O,TL(Wl"ﬁ‘m))*])' (2.48)

Here the assumed L -regularity of the excitations I;’, I/, I;” and I.” has been used. As the unique (weak

or strong) solution of the initial value problem (1.7), (1.9), W’ admits the representation ")

t
/ — — /
) = 0 tr ) y ) .
W'(z,t) = Wo(z)e " +ere Et/ Oy, (z,7) €T dT (2.49)
0

consequently, it belongs to the space C' [(0,T), L2(Q)] N CO[[O7 T], LQ(Q)]. Together with Theorem
2.6., the L*-norm of W'(t) can be estimated through

1 [WARGA 72], p. 192, Theorem I1.4.6.
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/QW’(t)“dx < CIWo ldaqy + Cerll @ sy (2.50)
< O Wo sy +C e (14120 e + 1| Wo i) (2:51)

2 2
I 0,7y, (wrre) ] T 1 [0,y (wrreen )] ).

Inserting now (2.46), (2.48) and (2.51) into (2.43), we may fix the numbers €1, €2, €3, €4 > 0 in such a way
that the terms with || ®;" — ®4,” Hivl,z(m will be annihilated. We arrive at

d 2 C 1 2
& || (I)f,r/ - Qtrﬂ ||L2(Q) < <E + 5 + 25) || (I)tr/ _ (btru ||L2(Q) (252)

1 / "2 ¢ K n 2 ’ " 2
+ a H W' —-Ww HLz(Q) + a (H I; (t) -1 (t) ||(W1'2(Q)) + H L. (t) — I (t) H(Wlﬂ(g)) ) :

e Step A2. The difference of the gating equations. The weak solutions (®,/, W') and (®,,”, W") satisfy for
almost all ¢t € [0, T']

<%W’(t),¢> = —/ﬂ(eW’(t)—em(I)tr'(t))wda: Vi € L*(Q); (2.53)
(%W”(t), ) = —/Q(EWN(t) —ek®,(t))de Yy e LX(Q) = (2.54)
(GWO-W©).0) = =< [ (We) W) v (2.55)

+z—:/<;/Q(@t/(t)—@tr”(t))wdx Vi e L(Q).

Here the test function ¢» = W'(t) — W (t) is feasible; consequently, we get
d
(5 (W@ =W"(@)), W) - W"(@)) (2.56)

- —s/(W’—W”)de+sn/((I)t,.’—tbt,.”)(W’—W”)dm —
Q Q

d 1 2 2

= (§|| W' W ||L2(m) <e|w —w" ||L2(Q)+M/qu>t/(t)_q>t/(t)|.yW'(t)_W"(t)mx —
(2.57)

d

(I =W IGa ) < (2e+en) IW =W T2y +2 81104 = 04" 2y (2.58)

W W

e Step A3. The estimates for the differences || @4’ — @4, ||?;,0[ 2[(0.7). 2@ ]

[0,7],L2(@) ]’ |
and || W' —W" ||Zo [(0.7). 2@ ] After equalization of the constants on the right-hand sides, the inequalities
(2.52) and (2.58) yield together

d
= ( 1o’ = o’ |72 + W = W [[ 7200 ) <C- ( @0’ — D6 |72y + W — W ||‘§2(Q)) (2.59)
C / " 2 ’ " 2

+ g (H IZ (t) — IrL (t) ||(W1’2(Q)) + H Ie (t) — Ie (t) H(Wl,Z(Q)) ) 9

and Gronwall’s inequality finally implies that
2 2 2

[ ®u' (1) = @0 (1) |20 + W' (1) = W (1) |20y < € ( [ @4 (0) = @ (0) 172 (2.60)
C

€1

C 2 2
< T g (HI/ -1" HLQ[(O’T)‘(Wl,z(Q))*] + ”Ie/ -1 HLZ[((),T),(Wl’z(Q))*] ) ’ (2.61)

WO =W O) oy + = [ (E ) =1 ) + 1) = 1) ] ey ) )
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From the last inequality, we get the following estimates:

H(Ptr/_q)tT” ”ZO[[O,TLLQ(Q)] < eCT (”I/ 'HHi}[(O’T))(Wl,z(Q))*]
+II L= 1 ”21:2[(07T)7 (wr2@)"] ) » (262)

W —w"|?

C’ 2
cT ! "
co[ro, 1], 22@)] = € “I L

20,1y, (w2@)" ]
I = G oy (wroey)'] )i (263)

I W <7 S (1 -1

2o, 1), (w2@)"]
+ || Ie/ - Ie// ||i2[(O,T), (W12(Q))*] ) . (264)

] In (2.43), the numbers &1, ... ,

£2[(0,7), L) |

o Step A4. The estimate for the difference || @4, — @4, H

€4 > 0 may be alternatively chosen in such a way that

L[ (0, 7), wh2(Q)

d 2 2 C 1 2
% || (I)tr/ - (btr” ||L2(Q) + 6 || q)trl - (I)tr// leai’(g) < ( E + g + 2ﬁ) H ‘I)trl - (I)trl/ ||L2(Q) (2~65)
1 / " C " 2 ’ 1 2

bW =W ey + = (10 = K0 [y ) + 110 = KO [ ey ) -
This implies the following modification of (2.59):
d 2 2 2 2
pn (H Oy’ — 4" |2 () + W =W ||L2(Q)) + 01’ = i 12 < C- (|| Dy’ — 4" (|72 (0

2 C 2 2
+ | w’'—w" ||L2(Q) ) + a ( I Iz',(t) - Ii//(t) H(W1>2(Q))* + 1l Ie/(t) - Ie”(t) ”(Wl,z(ﬂ))* ) . (2.66)

Together with (2.61), we arrive at: || @4,/ (t) — @4, (¢) H?,[,Lz(m (2.67)

2 2
C(Wy’L”EﬂWJW%W“mUT+”QK*,WHUmTLUW%mY}) —
[EE "

L2 (o, 1), w2 ] < C(HI/—L 20,1, (wie@)]
+||]e/_—[e// ||i12|:(0,T),(W1’2(Q))*])' (268)

e Step A5. The estimate for the difference | W' — W ||? Into equation (2.55), we insert

wh2[(0,7),L2(@)]"
the test function 1 = (W’ (t)/dt) — (W (t)/dt), which obviously belongs to L*(Q7) and is therefore

admissible. Then we get with the generalized Cauchy’s inequality

ow'’' ow" ow'’' ow" ow’ GW”
<6t_ ot ' m__8t>_H8t_ Iz (2.69)
aW//

9
B | ot or HLZ(Q) 2es |w'—w" HL?(Q)

aW/l

ER 2
5 15— o iz + 55, 120 = 20" 2y

for arbitrary €5, g > 0. Fixing the numbers €5 and €4 in such a way that ee5 + e keg = 1, we find together
with (2.62) and (2.63):

ow’  ow”
e

ER
— H W/ W/l ||22(Q) + g || (th/ _ ‘I)tr// Hiz(g) (2.70)

1z ”2

2
(HIZ'/_IiH||L2[(O’T)7(W1,2(Q))*]+HIe/_Ie L2[(O’T)7(W1,2(Q))*j|) -
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T(HI'LI _Ii/l “iz[(()’T),(Wl,z(Q))*]

+HIe/7[eH ||12[(O,T),(W1’2(Q))*]>’ (271)
(2.72)

H ow' 6W” ||
ot

<

2[ (0.7, L2(9) ]

and with (2.64), we get finally: || W' — W" ||W12[(0 ). 19|

/ "2 / "2

C(le *Ii ”LQ[(O,T),(WLQ(Q))*] +HI€ *Ie ||L2[(O,T),(W1’2(Q))*]>'
. Let ¢ = 4/3. Exploiting

e Step A6. The estimate for the difference || @4, — ®4,” le"*/?'[(o . (wiee)']

the definition of the dual norm, we see that
9P, o, (t T 00, 0®y"
") t() B(W *dt:/ swp (=g — ) [t (2.73)
t(we@) 0 I¥lywram=1 O t
(2.74)

T
1 / " / "
<c [ (swl{i5 (MEO-E0) - (10~ 1"®)) 0 |
+Sup’M(q)tr/_(I)tr/law)’q"rsup‘/ﬂ(lion(q)trlvwl)_Iion(q)tr/lvwﬂ)wdx’ )d =

( ” a@tr 8(1;;/’ ”%WM(Q))* dt) /a .
= (/OTS?N (s (0= 100) = (10 = 170) ) ) Par)
1/2

1/q

T
2
+C-(/O sup | M (@' — ", ) | dt)
T I / " i
£ ([ (50 L1 W) = Lon(@"s W) 19" )

We estimate the three terms on the right-hand side of (2.75) separately. For the first term, we get
2

K 1H( (1 )—(fe’<t>—fe"<t>>),w>r
1 A(A B0) = (10 = 100) ) I gy 19 e — (2.76)
sup| (1 (A(Ix )—(fe'<t>—fe~<t>>)7w>|2
5 (MO -10) = (O = 170) ) 1F gy .17)
c ( IO = KO gy + 1O = L O W o)) = @79

r 1
() =l
12 A ATy .
CNE =B Wat g 1y (wroge)] 1 = 2 s [0 0y, (i) ]) (2.79)
For the second term, we obtain from Lemma 2.9. and (2.68)
(2.80)

2 2
| M (@0 =@, )" < AP = 0’ iy 1Y 12 =
(2.81)

T
(/ Sup’M(q}tr, - q)tr”y ¢) |2dt) S C”(I’tr/ - (I)tr// ||L2[(0 T) W1,2(Q)]
0 .. ) )
/ "2 / "2 .
< C(HIZ -1 HL2[(O,T),(W1’2(Q))*]+||I -1 HLZ[(O’T)’(WLZ(Q)) ]) (2'82)
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In order to estimate the third term, we write, relying on Lemma 2.10.,
H Iion((I)tr/7 W,) - Iion((btr”a WN) ||L‘7(Q)

< b ((@0') + @0’ @ + (67) = (a+ 1) (P + @) +a) (26 = 6”) ||

H (@u) = 0" )W || pagey + | (W = W) " [ Lagqy = 1+ T2+ Js.

For J;, we obtain

1/
Jl = (/ bt (((I)trl)2 + (Ptrl (I)tr// + (‘Ptr”)Q - ((l + 1) ((I)trl + (I)trll) + a)q ((I)tTl _ (Ptr” )q dl’) q
Q

< ((/ bSq/2 ((‘Dtr,)z +(I)W/q)”l/ + ((I)tru)Q
Q

- (a + 1) ((I)trl + (I)tr/,) + a)3q/2 d.’L‘)2/3 (/ ((I)trl - (btrll )3q ) 1/3 ) 1/q
Q

4 4 2/3 4/3 4/3
< C (14190 (1) ey + 196" (1) [130) )" - 104" = @0 7510 )
4 4 8/9 16/9
<O (L4120 (0) [0y + 1@ (1) [0y )™ 16 — @0 155 -

Further, with (2.51) we get

T2 = (/Q(‘I’”'_‘I)tr")q(W')qdw)l/q < ((/Q(an’—@tr”fdx)z/g (/Q(W’)‘*dx)l/s)l/q

4/3 a/3 \3/*
= ( H q)tr, - (I)tr// ||L/2(Q) || w’ HL/4(SZ ) = ” (I’trl - ‘I)tr// HLZ(Q) : ” w’ ||L4(Q)

<C || (I)trl - (I)tru ||L2(Q) :

Finally, J3 will be estimated together with (2.48) through

Js = (/Q(W'W“)q(fbt/’)‘wx)l/q < ((/Q(W’W“)zdx)2/3 (/Q(@W”)‘*dx)”g)”"

4/3

L2(Q)

4/3 3/4
N0 1y ) = W =W a0y - @0 [0y

= (Iw' =w"|
S CIW =W |12y

Together, the estimates (2.88), (2.91) and (2.94) imply that

T ’ / " 7 4/3 3/4
( o (Sup || Iion((ptr 7W ) - Iion(q)tr 7W ) ||L4/3(Q) : || 1/} ||L4(Q)) dt)

8/9 16/9

: H (btr/ - <I)tr” ||W1=2(Q)

T
4 4
s¢ (/0 (112’ 5@y + 126" () I 73())

(2.83)
(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

/ " ! 14 4/3 3/4
+H®r—@w|h%m+HW’—W/HHmO ﬁ)

32/27 64/27

@ = @ I3,

T
4 4
< C . (/O (1 + || (I)trl(t) ||L4(Q) + || (I)tT//(t) ||L4(Q)>

T T
4/3 4/3
e e gt [ W W ar

(2.97)

0"
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With (2.46), (2.48), (2.61) and (2.67), we find

’ 1oy "oy 4/3 3/4
([ (500 Bon(@, W) = (@i, W) ey 1 oy ) )

<o ([ (1w -1 + I = L ) ar
= 0 oo,y (whre) ] e —te ll2[ o,y (wh2@)]

r / "2 1 "2 4/3 3/4
+ 2/0 (”I’L 711 HL2|:(O,T),(W1’2(Q))*:| +||I€ 71@ HLZ[(O,T),<W1’2(Q))*:|) dt) (298)

A 16/9 g 16/9
<O Max (I =B ISE 1) ()] 1 = 21 ) ()]

)

!/ " ! 1
[ 1" — 1 ||L2[(0,T),(W1,2(Q))*] e =1 ||L2[(O’T)’(W1,2(Q))*]>o (2.99)
Summing up, we get from (2.79), (2.82) and (2.99)
a(I)tr/ o aétrll

T )
1= = ot a0,y (wiren)'] < CMax (11 =B o oy (wrogey)] (2.100)
’ 7 7 g 16/9 1 g 16/9
e~ L ”LZ[(O,T),(W”(Q))*]’”I’ L ”LZ’[(O,T),(W“(Q))*}’HIE Le ”Lz[(o,T),(W“(Q))*]’

2 2
15— 1" ||L2[(0,T),(w1~2<m)*] IS =L ”LZ[(o,T),(W”(Q))*] )
and, considering (2.62),

| @y — @, | < O Max ( 15 = 1 (2.101)

W1v4/3[(0,T),(W1'2(Q))*] (O,T),(W1,2(Q))*}a

2 2
”Ie/ _Ie// ||L2[(0,T),(W1'2(Q))*] ) ||IZ/ _Ii// ||L2[(O,T),(W1‘2(Q))*j| y ||Ie/ _Ie// ||L2[(0,T),(W1>2(Q))*} )

e Step A7. Conclusion of the proof of Part A. Since L™[ (0, T), (Wl’Q(Q) )*] is continuously embedded
into L*[ (0, T), (W"*(Q))"], we have

L =1, <cln -L"|,. (2.102)

[(0.7), (wh2@)"]
and the proof of Part A is complete.

[0, 1), (wr2@) ]

Part B. The FitzHugh-Nagumo model.
e Step B1. The difference of the parabolic equations. The only differences between the Rogers-McCulloch

and the FitzHugh-Nagumo model are the replacement of the nonlinear coupling term ¢ w by w and the
setting b = 1 within the ionic current. Consequently, proceeding as in Step Al, the first change applies to
(2.34) and (2.35):

/Q (Taonl @0 W) — L (@4, W) ) (@' — 2" ) da (2.103)
= /Q((I)tr/ —®,") ((Pu')” + @4’ 1" + (P'")* + a) (Py' — D4,") da
—(a+1) /Q(%’ — ") (D + D4, ) (Py) — Py'") da + /Q(W’ —W") (@4 — @) d .
Now (2.31), (2.32) and (2.103) imply

d 2 2
@ || (I)tr/ - (th” ||L2(Q) + 25 || (I)tr/ - (btr” ||W1’2(Q) g 20/ | (I)tr/ - q)tru | : ’ (I)tr/ + (I)tru | : | (ptrl - (I)tr” | dl‘
Q

C 2 2
+ Q/Q(W’ ~ W) (@ = @) dr (= By + I W pngay))
3e
+ —21 100 — 0" 1) + 28] @’ — @1 |72 - (2104)
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The first term on the right-hand side of (2.104) will be estimated through (2.38) again; for the second term,

we get
2
2/9(W’ —W") (4" — @) do < 227 By’ — By, ||L2(Q) + || w'—w" 220 (2.105)
after application of the generalized Cauchy inequality with ez > 0. (2.38), (2.104) and (2.105) yield together

d 2 2

@0 = @0 7200y + 28] 26’ = @4 31200 (2.106)
€2 4 4 1/2 2 c 2

O3 (|| @4’ a0y + | 2o [I74 Q)) @4 — @0 12y + 25, [ @4 = P |12

2
+ 267 || @y’ — @1 |72 @t || W =W 2

C , 1 2 / " 2
+ = (1w -1 H(Wl,z(m)* FIL ) = L0 [ yrzgey) )

35 2 2
0 = D4 i) + 281 2u’ — @4 1200 »

which replaces (2.43). Considering (2.46) and (2.48), the numbers €1, €2 and €7 > 0 may be fixed in such a
way that the terms with || ®;" — ®,,” ||§V1,2(Q) on both sides of (2.106) will vanish. Up to a change in the

constants, we arrive at (2.52) again.

e Step B2. The difference of the gating equations. Since the gating equation is the same as in the Rogers-
McCulloch model, Step A2 can be carried over without changes.
| Wl W// ||

e Step B3. The estimates for the differences || @4’ — @4, ||i,

°[1o, 7). 2@ ]" | r2[(0.7), 29|

/ 1”112
a’nd ||W _W |‘CO|:[O7T],L2(Q):|‘
(2.62), (2.63) and (2.64) will be obtained.

e Step B4. The estimate for the difference || ®4,' — @4, ||

and €7 > 0 may be alternatively chosen in order to obtain

Again, Step A3 can be carried over without alterations, and the estimates

T2 [(0 Ty W 2(9)] . In (2.106), the numbers €1, €9

d 2 2 2
i Dy — @4 |20y + B o’ — 0 120y < C ( [ @' = " |12 (2.107)
2 2 2
HIW =W 20y + 1 L7(1) = L7 (1) ||(W1,z(Q))* + L (1) - 1" (t) H(Wl,z(ﬂ))* ) :

Then the remaining part of Step A4 can be carried over, and we get (2.68) again.

e Step B5. The estimate for the difference | W' — W" || . Step A5 may be carried over

wh2[(0,7), L2(@)]
without alterations, and we obtain (2.72).

e Step B6. The estimate for the difference || @4, — @4 || The calculations from

was[ 0,1y, (wh9) ]’
Step A6 may be repeated until (2.82). The estimation of the norm difference in (2.83) ff. simplifies to

H Iion((btr/7 W,) - Iion(q)tr”a WN) ||L4(Q) (2108)
< H ((q)tr/)Q + (I)tr/ q)tr// + ((I)tr//)2 - ((1 + 1) (thr/ + q)tr”) + a) (q)trl - q)tr”) HLq(Q) + || W/ - WH ||LQ(Q)

1/q
= (/ (@) + @1’ @4 + (®4")° — (a+1) (B + @4") +a) (D) — By, )" dm) (2.109)
Q

+ W =W lze0)
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< ([ (@ o0, @0 (2.110)
—(a+1)(®y' + @) + a)sq/Q dx>2/3 (/

1/3\1/q
Q((Dt’l‘/ o q’trﬁ )3(1) ) + H w’ — w" HL‘I(Q)

2/3 4/3

4 4 4/3
<0 ( (L 1®@e' () 12 + 1 2o’ () o)™ - | @0’ — o 150 ) FNW =Wl Laqy (2.111)
8/9 16/9

|| (I)tr - (I)tru ”Wl 2(Q)

4 4
C(L+12u'(t) s + 126" (1) I11(q))

Consequently, (2.96) and (2.97) are replaced by

4 / / " " 4/3 3/4 r / 4
([ (500 1 @ W) = L@ W) iy 16y ) ) < € ([ (11200
0 0

W =W oy - (2.112)

4 8/9 6/9 4/3 3/4
110" () 12 )™ - | B’ — B4 ||;V42 T R U ||L2(Q)) dt) (2.113)
T
4 4 32/27 64/27 4/3
<C(A(1+H®AﬂMﬂm+H@ﬂ@Wﬁmﬂ H¢#—¢#thmyﬁ/HW”IVW§m)) ;

and we arrive again at (2.99) (up to a change of the constant C). The further conclusions of Step A6 remain
unchanged, and we obtain (2.101).
e Step B7. Conclusion of the proof of Part B. By application of (2.102), the proof of Part B will be

completed. m

Proof of Theorem 2.8. In order to confirm uniqueness, apply Theorem 2.7. to I;’ = I’ = I; and I,/ =
1" =1.u

3. Optimal control problems for the monodomain system.

a) Statement of the control problems.

The monodomain system (M)s will be controlled by means of the excitation variables. In practical situations,
the application of an excitation to the intracellular part of the tissue is impossible; consequently, we have
I; = o, and the single control variable is I.. The fact that one cannot apply arbitrary large electrical

stimulations to living tissue without damaging it gives rise to a uniform bound
[ Le(z, )| < R (V) (z,t) € Qrp (3.1)
for the control variable. The objective will not be specified closer here, but we consider a regularization term

with respect to I, which will be considered as an element of the space L™ [ (0,T7), (L2 () )* ] Then the

control problems (P);, i = 1,2, may be formulated as follows:

(P); F(®y,W,1.) = /T/r(gc,t,q)tr(x,t),W(x,t))dmdt—i—l; /T/Ie(x7t)2dacdt—>inf!; (3.2)
0 Q 0 Q

B 1) =0 = [ (P20 @0 W0) + 5 10)) o (33

JFH—A / VT M; VO, (t)de = 0 Yy e W(Q) (V)telo,T];

Ey(®y, W) = 0 /Q(avgt(t) —|—G(f1)tr(t),W(t)))1/)dx =0 VoelL’Q) Vtel0,T]; (34)

E3(®y) =0 <= Du(2,0) = Dp(x) =0 (V)z € (3.5)

E,W) =0 < W(z,0)—Wy(z) =0 (V)zeQ; (3.6)

LeC={ZeL®[(0,T), L*Q)] ||Z(x,t)] <R (V) (a,t) €Qr }. (3.7)
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About the data, we take Assumptions 2.3., 1) — 6). The numbers 7" > 0, A > 0, 1 > 0 and R > 0 are fixed.
The functions I;,, and G will be specified according to the models from Subsection 2.b) as the Rogers-
McCulloch model in (P); and the FitzHugh-Nagumo model in (P)s. Since the monodomain equations have
been included in their weak formulation, the domains of definition and the ranges of the operators will be

identified as follows:

F:X1XX2XX3—>R with (38)
Xy = L*[(0,7), W(Q)]; Xo = L*[(0,T),L*Q)]; Xz =L®[(0,T),L*Q)].

Note that C forms a closed, convex subset of X3 (see Proposition 3.1. below). In view of Theorems 2.6. and

2.7., we may further specify the subspaces

Xi =X n w0, ), (WH@))"] n C°[[0, T], LA(Q)]; (3.9)

Xo = Xo N WH2[(0,T), (L*(Q)"] nc®[[o, T], L*()], (3.10)
which contain all polynomials and, consequently, lie dense in X; and X5, and the target spaces Zi, ... , Z4
for the operators Eq, ... , Ey:

E12 )zl XiQ XX3—>Zl:L4/3[(O,T)7(W1’2(Q))*];
Bo: Xy x Xo— Zo = L*[(0,T), (L*(2)];
E3Z i1—>Z3 = LZ(Q),

E4Z 5{2 —>Z4 = L2(Q)

b) Structure of the feasible domain and existence of global minimizers.

Proposition 3.1. The set C of the admissible controls according to (3.7) forms a closed, convex, weak"-
sequentially compact subset of L™ [(O7 T), LQ(Q) ]

Proof. The convexity of C is obvious. In order to prove closedness, consider a sequence { ZN }, L™ [ (0,T7),
L? (Q)] , which converges in norm to a limit element Z. Then there exists a subsequence, which converges
a. e. pointwise on Qr to Z , and the limit element obeys the a. e. pointwise restriction as well. Then the
weak*-sequential compactness follows from [ ROLEWICZ 76], p. 301, Theorem VI.6.6., together with p. 152,
Theorem IV.4.11. m

Proposition 3.2. Under the assumptions from Subsection 3.a), the feasible domains B; of the problems (P),,
i =1, 2, are nonempty and closed with respect to the following topology in X1 x Xo x X3: weak convergence

with respect to the first and second component, weak®-convergence with respect to the third component.

Proof. The existence of feasible solutions for (P); follows from Theorem 2.5. Assume that a sequence
{(@trN,WN,IeN) }, B; with O, N = Py, WN W oand LY 1, s given. Then, by Proposition 3.1., I
belongs to C, and from the a-priori estimate (Theorem 2.6.) it follows that, together with || I,”¥ x> the norms
| @Y 24z |l @, N I, and | W |, are uniformly bounded. In order to confirm that (@4, W) solves
(M), with right-hand side I., we may repeat now the arguments from [ BOURGAULT/COUDIERE/PIERRE
09], pp. 476 — 478, Subsection 5.4.3. As in the proof of Theorem 2.5., all conclusions may be carried over to
M)2. m

Theorem 3.3. (Existence of global minimizers) We take over the assumptions from Subsection 3.a).

Assume that the integrand r(z,t,p,w): QX [0, T] x R xR is bounded from below, measurable with respect
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to x and t and continuous and convex with respect to ¢ and w. Then the problems (P);, i = 1, 2, admit global

mInimizers.

Proof. Together with r, the objective F' is bounded from below, and the problem (P); admits a minimizing
sequence { (®,, WV, 1.™)},B;. Since || I~ x, is uniformly bounded, Theorem 2.6. unphes the bounded-
ness of || @, x, and H W ||y, as well, and we may pass to a subsequence {(®,N W N )} with
(O N <I>tr, WN W and I N’ —\I By Proposition 3.2., (@mW I ) is feasible. The lower semi-
continuity of the objective may be confirmed as in [DACOROGNA 08], p. 96, Theorem 3.23., and p. 97,

Remark 3.25.(ii). Consequently, denoting the minimal value of (P); by m;, we have
m; = lim y, o F(®,N WY 1YY > liminf g, F(®,N ,WN 1Y) > F(&,, W, 1) > m(3.15)
and (&, W, 1,) is a global minimizer of (P);. m

c) The system of adjoint equations.

For the optimal control problems (P);, i = 1, 2, we introduce the formal Lagrange function
‘C((ptm V[/vlea Pla P27 P37P4) = F((ptm V[/vle) + <P1 I El(étﬁ I}V?Ie) > (316)
+<P27E2((I)t’raW)> + <P37E3(¢'t’r)> + <P47E4<W)>

with multipliers P, € L'[(0,T), W"*(Q)], P, € L*[(0,T), L*(Q)], and P3, P, € (L*(Q))". Dif-
ferentiating £ at the point (Cﬁm W, 1, ¢) in a formal way with respect to the variables ®;, and W, we find the

adjoint equations

DoF (®4, W, 1) + (Py, Do Ey(24, W, 1)) + (P2, Do Ea(®4r, W)) + (P3, Do E3(®,)) = 0 (3.17)

@// 6P1 afwn(q)m )Pl)wddei/ /vaM VP dodt (3.18)

8r A A oG - .
—/0 /Q %(%,W)Jr%(%,W)Pg)wdxdt—/QPgw(x,o)d:c
Ve L2[(0,T), WH(Q)], Pi(z,T) =0;

Dy F(®4,, W, 1.) + (Py, Dy Ey(®4, W,1.)) + (Py, Dy Ex(®p, W)) + (Py, Dy E4(W)) = 0 (3.19)
= / / 8P2 (%, )PQ) W d dt (3.20)

/ / (97’ (B, W a;m(q)m )Pl)q/zdxdt—/Pu/)(x,O)dz
Q

Ve L2[(0,T), L*(Q)], Py(a,T) =0.

In Theorem 3.7. below, we will prove directly that this system is part of the necessary optimality conditions
for (P);. The adjoint system consists of a parabolic PDE in its weak formulation, which is coupled with
a linear ODE. Assuming that P; and P, may be set to zero, the corresponding strong formulation of the

adjoint system reads as follows:

apl aIion = = 0G| - or
- = M; VP, ) P = P Py— —
It V- ( Y% 1) + 9 (@4, W) Py (9(,0( tr) W) 2 g

n'M; VP, =0 Y (z,t) €I x[0,T]; Py(z,T) =0 (V)x€Q; (3.22)

(@4, W) (V) (2,1) € Qr; (3.21)
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E)Pg oG . ~ . aIion 2 T or < T .
— W + %((Dtm W) P2 - = Ow ((ptra W) Pl - %(Qﬁ“a W) (v) (1177 t) € QT7 (323)
Py(z,T) =0 (V)z € Q. (3.24)

In order to prove the existence of a solution for (3.21) — (3.24), we adopt the following stronger set of

analytical assumptions, which corresponds to the assumptions of Theorem 3.10. below.

Assumptions 3.4. (Stronger assumptions about the data) '® About the data in (M); and (M)s, the
following will be assumed.

1)’ © c R® is a bounded domain with C**-boundary, 0 < ¢ < 1.

2) M;: cl(Q) — R**? is a symmetric, positive definite matrix function with W' (Q)-coefficients, satisfying

a uniform ellipticity condition:
0< mll€l° <EMi@)E<pa|[€]° VEER® Yo e (325)

with g1, pe > 0. The boundary values of M; belong even to Cl’g(aQ), 0<e<l.

3)" and 4)" are identical with Assumptions 2.3., 3) and 4).

5)' The initial values belong to the following spaces: ®g € W>?(Q), Wy € L™(Q).

6)’ I; and I, belong to the space L™[ (0, T), L*(Q) ].

Theorem 3.5. (Existence of solutions for the adjoint system) We study the optimal control problems

(P)i, i =1, 2, under Assumptions 3.4., 1) — 6) with p = 4. If (<i>t,., W, fe) is a feasible solution of (P); with

O - o O, o,
5 (B W), 50 (@i W) € L () (3.26)

where 4 < r < 6 then the adjoint system (3.21) — (3.24) admits a unique (weak or strong) solution (Py, Py)
with

Pre L'[(0,T), W™ (@] nw"[(0,T), L"(Q)]; (3.27)
Py € C'[(0,T), L"()] n C°[[0,T], L"()]. (3.28)
The proof will be based on a parabolic maximal regularity theorem (Theorem 3.10. below) and a fixed point
argument.
d) Necessary optimality conditions.

We search for weak local minimizers according to the following definition:

Definition 3.6. (Weak local minimizer) A triple (@Jtr, W,fe), which is feasible in (P);, 1 =1, 2, is called
a weak local minimizer of (P); iff there exists a number € > 0 such that for all admissible (P, W, 1) the

conditions
[ Qo —Porllx, <&, [W-Wlx, <&, [Lle—L|x, <¢ (3.29)

imply the relation F(‘i)m W, fe) < F(®y, W, ).

The existence of at least one weak local minimizer for (P); is confirmed by Theorem 3.3. Treating (P); and
(P)2 as “weakly singular problems”, we may follow the approach outlined in [ITO/KUNISCH 08], p. 17 f. and

%) Note that Assumption 3.4., k)" from the present definition implies Assumption 2.3., k) above, 1 < k < 6.
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pp. 129 ff., 19 and prove the necessary optimality conditions without recourse to the regularity conditions
of Kurcyusz-Zowe or Ioffe-Tichomirow. 2°) Instead, the existence of a solution for the adjoint system will be

ensured by Theorem 3.5., the assumptions of which, consequently, must be carried over.

Theorem 3.7. (First-order necessary optimality conditions for the control problems (P);)
We study the problems (P);, i = 1,2, under Assumptions 3.4, 1) —6) with p = 4. If (‘i)m W,fe) €
Lz[(O, T), Wl’z(Q)] X L2[(07 T), LQ(Q)] x L>[(0,T), LZ(Q)] is a weak local minimizer of (P);
with

or - . O . .
%(qm, ) 5o (B W) € L7 () (3.30)

where 4 < 1 < 6 then there exist multipliers Py € L"[ (0, T), W>"(Q)] n W""[(0,T), L"(Q)] and P €
C'[(0,T), L"(Q)] nC°[[0, T], L"(Q)], satisfying together with (®,, W, I.) the optimality condition

/O /Q(Mfe(x,t)JrH%Pl(x,t)) (I(z,t) = I.(z,t) ) dadt > 0 VI, €C (3.31)

as well as the adjoint equations (3.21) — (3.24). The functions Py and Py solve the adjoint system in the
weak as well as in the strong sense.

Corollary 3.8. (Pointwise formulation of the optimality condition) The optimality condition (3.31)

from Theorem 3.7. implies the following Pontryagin minimum condition, which holds a. e. pointwise:

(u(l—l—)\)fe(a:,t)+P1(q;,t))fe(x,t) = M (u(l—i—/\)fe(x,t)—i—Pl(m,t))n V) (z,8) € Qr. (3.32)

Consequently, we have

-R ‘ Q(xvt) > R;
Io(z,t) = { —Q(x,1) | Q(z,t) € [-R, R]; where Q(x,t) =
R | Qz,t)<—-R

Ty Py(z,1t). (3.33)

We may conclude that an optimal control, which never becomes active, admits the same regularity as the
adjoint variable P;.

Corollary 3.9. (Higher regularity of weak local minimizers) Under the assumptions of Theorem 3.7.,
consider a weak local minimizer (®,,, W, 1,) of (P);, i = 1, 2, with esssup (2.t) € O | I.(x,t)| < R. Then I,
belongs to the space Wl"r[(O, T),L" ()] nL[(0,T), WZ’T(Q)] with 4 < r < 6.

In a subsequent publication, we will prove that this corollary implies an improvement of the regularity of
i)w and W as well.

e) Proofs.

We start with the following parabolic maximal regularity theorem:

Theorem 3.10. (Maximal regularity for the adjoint parabolic equation) 21) Consider the parabolic
initial-boundary value problem

Although the problems (P);, i = 1, 2, do not fit all assumptions of [ITo/KUNISCH 08], p. 18, Theorem 1.17., the
proof scheme of the theorem can be carried over.

Cf. [IoFFE/TICHOMIROW 79], p. 74, Assumption c), and [ITO/KUNISCH 08], p. 5, Definition 1.5.
[WEIDEMAIER 02], p. 50, Theorem 3.2.
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%—f(m,t) -2V (a;,;(z,t) VP(z,t)) + ao(z,t) P(z,t) = f(z,t) (V) (z,t) €Q x (0,T); (3.34)
> ni(z) ai’j(ac,t)%(x,t) = g(x,t) V(z,t) €0Q x (0,T); P(z,0) = Po(x) V)z el (3.35)

with the following assumptions about the data:

a) Q C R" is a bounded domain of the class C**°, ¢ > 0.

b) The matriz function a;j: cl(Q) x [0, T] — R"™™" is symmetric and satisfies a uniform ellipticity condi-
tion. The entries a;; belong to C° [[0,T],C*(cl(R))] and admit boundary values in

B[[0,T], C'™09Q)] nc*2[[0, T], C°(09)] (3.36)

where € > 0, a3 > 1 —1/p and az > 0.5(1 — 1/p). Further, it holds that ag € C’O[[O7 T, L"(Q)] with
r>n/2.

¢) The right-hand side f belongs to L[ (0, T), LP(Q) ] with 3 <p < g < (+00).
d) Py belongs to the Besov space Y1 = 32(1 1/q)( Q), and g to Yo = L[(0,T), Wl_l/p’p((?Q)] N

ng(l 1/p)[(O, T), L?(99Q)] where the second space is a Triebel-Lizorkin space. The coefficients satisfy

3<p<qg<(+00).

P,
Oz
Then the problem (3.34) — (3.35) admzts a unique weak solution

e) For all x € €0, it holds that }_, ; ni(z)a; j(z,0) =— = g(z,0) Vz€0Q.
Pe L0, T), W) nwh[(0,T), L’ (Q)]. (3.37)

Moreover, this solution satisfies the estimate

HPHLqI:(O7T)7W2,p(Q)} +||P||W1’q[(O7T)7Lp(Q):| < C(||f”Lq[(O7T)7Lp(Q)] +|| PO ||Y1 + ||g||Y2) (338)
with a constant C' > 0 depending on p, q and T only.

Proof of Theorem 3.5. The proof will be divided in two parts according to the underlying ionic current

model.

Part A. The Rogers-McCulloch model. Here the adjoint equations (3.21) and (3.23) read as follows:

P ~ o o ~ ~
—%—v (M¢VP1)+(3b(<I>tT)2—2(a+1)b<1>tr+ab+W)P1 = mpz—g—;(%,W); (3.39)
oP. ) ar . .
—a—t2+5P2 = by Py~ 5 (W) (3.40)

e Step Al. Since I, € LOO[(O, T), LQ(Q)], we observe that ®y, € CO[[O, T], W12(Q)] From the proof
of Theorem 2.6., we take the estimate (2.44), which reads after the insertion of I; = o as follows:

08 4 2 !
221 @0 oy < C (2l @2rl0) 1320y + W O) 320 + / c|Qdr (3.41)

+C/ | L(r ||(W129)) dr)+C\Q|+ ||I()H(W172(Q))*

2 2 oC  ~ 2
O(/\” Do [|72¢q) + [ Wo lI72(q) +cT|Q|+C| I ||L2(QT)d7') +c|Q]+ 2% [l Le ||L°<>[(0,T),L2(Q)]

(3.42)

for arbitrary ¢t € [0, T'].
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e Step A2. For any P, € L"[(0,T), LGT/(G#)(Q)], the terminal problem for the adjoint ODE admits a
unique (weak or strong) solution Py € Cl[(O7 T),L"(Q)] N CO[[O7 T], L"(Q)]. It is obvious that the

problem

- % +ePy = -, P — g—r(q)tr, W) (V) (2,t) € Qp, Po(x,T)=0 (3.43)

admits the unique (weak or strong) solution

T
Py(z,t) = —/ ((thPl +g (D4, W)) e =) dr (3.44)
t

which is continuous in time on [0, T'] and even differentiable in time on (0, T'). In order to confirm the

integrability with respect to z, we estimate

[ pi) e < ([ 16atlac)™ ([ 1@ w) " (3.45)

where the right-hand side is finite due to the continuous imbedding ®,(t) € W"?(€2) — L°(Q). Consequently,
P, belongs to the space C'[(0,T), L"(Q)] n C°[[0, T], L"(Q)].

e Step A3. For any ]32 € L"(Qr), the terminal-boundary value problem for the parabolic adjoint equation
admits a unique (weak or strong) solution Py € L"[ (0, T), W*>"(Q)] n W""[(0, T), L"(Q)]. In order to
confirm this claim, we must check whether the assumptions of Theorem 3.10. are satisfied. Note first that the
assertions of the theorem will not be afflicted by the fact that time runs backwards from 7. In consequence
of Assumptions 3.4., Assumptions a) and b) of Theorem 4.4. about ? and a;; = (M;);; hold true. By Step
A1, &, belongs particularly to CO[[O, T], L4(Q)], which implies (@tr)z € CO[[O, T], LZ(Q)]. Since
We C’O[[O7 T], Lz(Q)} as well, we find that

ap = (3b(<i>tr)2—2(a+1)b<i>tr+ab+W> e [0, T], L*(Q)], (3.46)

and Assumption b) is complete. With P, e L"(Qr), 4 < r < 6, Assumption c) is obviously satisfied. Since
Py(z,T) and g(z,t) are the zero functions, Assumption d) holds with p = ¢ = r. Finally, Assumption e)
holds true since M; does not depend on ¢t and P;(z,T) = 0.

e Step Ad. For two functions P{, P{' € L"[(0,T), L5/ 6= (Q)], the corresponding solutions of the
terminal problem for the adjoint ODE satisfy

T
H%w—%ﬁwhm<6%/Hﬂvwfmﬂmwwmmw- (3.47)
t

The solutions of the ODE have been calculated in Step A2. Consequently, applying Jensen’s integral inequa-
lity and Hélder’s inequality, we find

T T
Py(a,t) — PY(2,) :/ by (P~ P)ee T dr — | P)— Pl </ (Gur| - | P — P |dr —> (3.48)
t

! .
PRI < (T —®<T‘?/ | ol | P{ = P’ |dr) <T“{/|¢wr\a Pl['dr = (349)

r/6
/\P2 Py dr < c/ /|q>tr|f" \Pl— PI["dzdr < c/ /\qm dr ) (3.50)

(6-7)/6 5 . .
([ 1Pi=prioar) W:CAH@MNmmWHW*H%Wmmme~@ﬂ)
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From Step A1, we know that &, € C° [[o, 7], Wl’z(Q)} — CO[[O, T], L°(Q) |. Consequently, the norms
(| () ||26(Q) are uniformly bounded with respect to 7, and we arrive at the claimed inequality.

e Step A5. For two functions Py, Py € L"(Qr), the corresponding solutions of the terminal-boundary value

problem for the parabolic adjoint equation satisfy

T
| PL(t) = P/(t) [srrt01 gy < C- / | P3(r) = Py () Iy - (3.52)
t

In their strong form, the parabolic equations read as

oP] . . . or . .
- SL -V (M VP + (3b(<1>tr)2—2(a+1)b<1)tr+ab+W)P1’ - 5/@P2’—£(<I>mW) (3.53)
g (M»VP”)+(3b(<i> 2-2(a+1)bd b W) P = cn by — P (@ W 3.54
ot : i 1 tr) (a+1)bPy+ab+ 1 = ERIy 590( try W) . (3.54)
Subtraction yields an analogous problem for the difference
0
— 5 (PL=P) =V (M;V(P{ = F)) (3.55)
+(3b(<i>tr)2_2(a+1)b<i>tT+ab+W)(Pl’—pl”) =cecr(Py—Py);
n"M;V(P{—-P) =0; (P—P)=T)=0, (3.56)

and from Theorem 3.10. we get the a-priori estimate

T r 1/r
CEK’(/ ||P217P2//HL’"(Q)dT) :CgﬂHPQ/iPQ//HLrI:(t T) LT(Q)] (357)
/ !/ / /!
> C (1P =Pl oy worey] F I P Ty o] ) (3.58)
/ /! / 2
> (1P =Pty woey] F P = B oy oo ] ) (3.59)
=2 HP{_P{IHCO(QX[t,T]) = Max ‘P{(x,t)—P{'(m,t) ) (3.60)
(zt) e x[t,T]
cf. [VENERONI 09], p. 864 f. We find that
6r/(6—r 6r/(6—r) 6r/(6-r)
| L) = PLO 15T ) = /Q | P{(H) — P'(1)| dw < Q|- (Max| Pl(z.t) = Pl(,t)| ) (3.61)

6/(6—7) - T -
= | Pi(t) = P{'(t) [l or/o-m ) < C/t 1Py = Py || g d7 (3.62)

T
<[ 1P=F N i)
e Step AG6. Application of Banach’s fixzed point theorem. We consider the operator

T (L’”[(o, Ty, L/6")(Q)] x LT(QT)) - (LT[(O, T), L) x LT(QT)>, (3.63)

which assigns to a given pair (P, P3) the new pair (ZP;,ZP») arising from the solution ZP; of the adjoint
ODE after insertion of P; and the solution of the adjoint parabolic problem after insertion of ZP;. In
order to prove the contractivity of this operator, we start with two pairs (P[, Pj), (P{,P§) € L"[(0,T),
L7677(Q)] x L™(Qr). By (3.47) and (3.52), it holds that

T
IZP1(6) = IO yors0-0y < € [ 1ZPY(r) = TPY(0) g (3.64)
t

T ,T T
<C / / | P{(9) — PY'(9) [[por/6- gy dO dr < CT - / 1 P{(9) = PY/(0) [ ors6-1 0. (3.65)
t T t
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Defining the functions
F() = | ZP(t) = ZPI(®t) | porso-ny and F(£) = | P{(8) = Py (1) [[ors0-m 0 - (3.66)

this inequality reads as

1) < C/Tf(ﬁ)cm — /Te’\ltf(t)dt < c-/TeM(/wa)dﬁ)dt (3.67)

t 0 0 t
_ C[)\lle’\lt./tTf(ﬂ)dﬂ]oTJrC/OT)\lle’\ltf(t)dt (3.68)
_ i(/OTe*ltf(t)dt—/onw) @) < Acl/OTer(t) dt (3.69)

since the second member within the brackets is positive. Consequently, the operator Z is with respect to
its first component contractive on the space L" [(O, T), L6T/<6_T)(Q)] if this space is equipped with the

equivalent norm

T At - 1/r
1P = ([ POl oy ) (3.70)

with sufficiently large A; > C. Analogously, we may estimate

T
IZP5(t) = ZP3 (t) |- () < C'/t I PL(T) = P (7) [ pors@—n (o dT (3.71)
T T T ,
<c [ [ U - B e dodr < OT- [ 1P0) = B [}y 0. (372
t T t
With the abbreviations
h(t) = |1 ZP5(t) = TP (1) () and h(t) = || P3(t) = P (1) [ (o - (3.73)

the last inequality reads as

0 < A(t) gO/T h(0)d9 — / M tp(t)dt < C’-/Te)‘zt(/TiNL(ﬂ)dﬂ>dt (3.74)

0 t

:C[iem-/ 9) dv +C/ et h(t) dt (3.75)
AQ t

T
9(/ 2 Tu(t) dt — /h d19 7/ A2 (1) (3.76)
A2 \ o

since the second member within the brackets is positive again. This implies the contractivity of the operator

T with respect to its second component on the space L"(Qr) if this space is equipped with the equivalent

norm

r Aot T 1r
122l = (] e 1P oy ) (3.77)

with sufficiently large Ao > C'. Summing up, Banach’s fixed point theorem yields the existence and uniqueness
of a (weak or strong) solution for the adjoint system, which admits the improved regularity guaranteed by
Theorem 3.10. and Step A2 above.
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Part B. The FitzHugh-Nagumo model. In this case, (3.21) and (3.23) read as follows:

OP, N N or . .

_76; ~ V- (M;VP) + (3(<Iw)2—2(a+1)<1>tr+a)P1 = sn&—é(fbmw); (3.78)
0P, or ~ -

- W + EPQ = —P1 — %(@tr, W) . (379)

The proof runs as in Part A with minor alterations. In (3.44) and (3.52) — (3.54), ap must be replaced by
o = (3(<i>tr)2—2(a+l)<i>tr+a>, (3.80)

which belongs to C° ([0, T], L2(Q)] as well. In the derivations in Steps A2 and A4, ®,, is to be replaced
by the constant 1. m

Proof of Theorem 3.7. The proof of the necessary optimality conditions is based on the error estimate
(Theorem 2.7.) and the existence theorem for the adjoint system (Theorem 3.5.).

e Step 1. Assume that (Cﬁm W, _fe) is a weak local minimizer of (P);. If I, € C is an arbitrary feasible control

with || I, — L | ] < ¢ then, by Proposition 3.1., all controls

<[ (0. 7), %)

I(s)=I.+s(.—1), 0<s<1, (3.81)

belong to C as well. By Theorem 2.5., for every I.(s) € L™[(0,T), L*(©) |, there exists at least one cor-
responding weak solution (®4.(s), W(s)) € X; x Xy for the monodomain problem on [0, T']. Consequently,
the triples (®4(s), W(s), I(s)) are feasible in (P); for all 0 < s < 1. On the other hand, from Theorem
2.7. it follows that every feasible triple within the neighborhood K(®,,,C¢) x K(W,C¢) x K(I.,¢) can be

generated in this way.

e Step 2. Lemma 3.11. For all I, € C, || I, — I, || ] < ¢ implies that

L>=[(0,1), L)

. 1 A2 . 1 A2

lim = || @4(s) — P |l, = 05 im — || @4(s) — Pu |z, = 0; (3.82)
s—0+0 S s—0+0 S

. 1 A2 ) 1 L2

lim —[[W(s) —=Wllx, =0 and lim —[W(s)-Wl]x, =0. (3.83)
s—040 S s—0+0 S

Proof. From Theorem 2.7., (2.21), we derive

A 2 2 2 A 2
[ @er(s) = Cerllx, = [ ®er(s) = Curllc2[ 0, 7), wr2)] < O 1Le(s) = Lellz=[(0, 1), (wr2(2))"]

A 2 A 2
< O Le(s) = L[ 0,7y, 12@] = O e = Ll [ 0.1y, 20] = (389)

. 1 P . A2

m = || @4(s) = Qi [lx, < lim Csllle— I ||Loo[(07T)7L2(Q)] =0 (3.85)
5s—040 S 5—0+0
as well as

A2 A2 A 2
[W(s) =Wilx, = IW(s) =Wille2[ 0,7, 1200] S Ol Lels) = Lellp[ 0,7y, (wr2()"]
A 2 ~ 2
<C'Hle(s)_I€HL°C[(0,T),L2(Q)] :052||Ie_IeHL°C[(O,T),L2(Q)] = (3.86)

. 1 A2 ) .2
lim —[[W(s) =W, < lim C’8||IE—IG\|Lx[(07T)7L2(Q)] = 0. (3.87)
s—0+0 S s—040
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The relation with || W (s) — W H%Q can be confirmed analogously. Finally, (2.22) implies that

| 1r(s) = BurlF, = 1 @1r(s) = D g0 0.7 (wren )] (3.58)
< % Max (11 Le(s) = Lol [ (0,7, (wiege) ] 11e() = Lelim [0, 0 (wan) ] ) (3.89)
< C'MaX(S2HIe_je||2L°°[(0,T),L2(Q)]754||I€_j€‘|i°°[(0,T),L2(Q)]) = (3.90)
lim 2 (s) — by [, (3.91)

. T 2 T 4
< SE$OC~Max(sHIe—Ie lz=[(0.7), 2] » 5° ||Ie—Ie|\Lw[(07T),L2(Q)}) —0. u

e Step 3. By Theorem 3.5., there exist solutions P; € (LLL/B[(O7 T), (WlQ(Q))*] )* = L4[(0, T),
Wh(Q)] and P, € (L*[(0,T), (L*(Q))"])" = L*(Qr) for the adjoint system in relation to (®¢, W, I.).
Using these functions, we get the following estimates:

Lemma 3.12. With the notations of Subsection 3.a), it holds that

.1 A . L R
hgno 3 (P1, Do By (94, W, L) (Ryr(s) — Pur) + Dy Er(Pyr, W, 1) (W (s) —W)) (3.92)
s—0+4
+{ Py, Dy, By(®4, W, L) (I. — 1)) = 0;
1 5 by 7 T 2 a S A
lim B <P2 , Do Ex(®@y, W, 1) (D4(s) — @y) + Dy Eo( Py, W, 1) (W(s) — W) > —0. (3.93)
s—04-0

Proof. The proof relies on the principal theorem of the calculus in its Bochner integral version, 22) which
becomes applicable due to our assumptions about the differentiability of r. We start with the feasibility of
(®4r(s), W (s), I(s)) and (D4, W, 1,):
1
0= El(q)tT(S)a W(S)a Ie(s)) - El(q)tra W, Ie) = / D({?‘,W,Ie) El ( (I)tr +7 (@m«(s) - q)tr) )
0
W+ (W(s) = W), L+ 7(Ie(s) = L)) (Ds(s) = Piy, W(s) = W, Le(s) — L) dT = (3.94)
1
0= <P1 ) / (D(<I>,W,Ie) El((I)tr +7 (étr(s) - <I)tr) ) W+ (W(S) - W) ) Ie +T (Ie(s) - 8)) ((I)W(S) - (I)trv
0
W(s) = W, I(s) — L) — Dw.w.1.)Er (P, W, 1) (®4(5) — ®pr, W(s) — W, I(s) — fe)) dr)
+ <P1 ) D(@,W,Ie)El((i)trv W7 je) ((I)tr(s) - (i)tra W(S) - W»Ie(s) - je) > (395)
1
= <P1 s / (D@ El((I)tT +7... 5 W4r.. 5 Ie +7... ) (@tr(s) - (I)tr) - Dq> El(q)tra W,Ie) ((I)tr(s) - ‘I)t'r")
0
+ Dw By 47 WAT. Lo +7..) (W(s) = W) — Dy Ey($y, W, L) (W(s) =W

)
+ DB (by+T WT. o417 )U(s) = 1) = Dy, Ey($y, W, 1) (I(s) — Ae)) dr)
+(P1, Do Er (@i, W, L.)(®r(5) — 1) + Dy Er($pry W, L) (W () — W) + Dr, By (®4, W, L) (Ie(5) — L) ) -

Observe now that 23

|<P1,/01(...)d7>| <A

1 1
ZT-HA () drll,, <Pyl A |l dr. (3.97)

22) |BERGER 77], p. 68, (2.1.11).
23) For the last inequality, cf. [Yosipa 95], p. 133, Corollary 1.
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Consequently, for the first term within the last equation, we have

1 1 1 . " «
lim 7y<p17/ (..)dr)| < lim [Py Z(/ | Do E1(®pp+7.0c W T Lo +7..0) (3.98)
0 s—0+0 tNJo

s—0+4+0 S

A A A 1 A
- D<I’ El(q)trvwale) ||£(i1,Z1) g || q)tr(s) - q)tr Hil dr

1 ~
| W(s) W llg, dr

1
+ / | Dw Ex(®4r+ 7. W T lo+7...) — Dy Ey(®4,, W, L) Hc(%_zl) -
o :

1
~ ~ ~ ~ A~ A~ 1 ~
+/ HDICE1(‘I>W+T...,W+T...,I€—I—T...)—D16E1(<I>W,W,Ie)||L(X3Z1)g||Ie(s)—Ie||X3dT)
A :

1
. . . \ 1 .
< tim Py ( / Lt (1 @u(s) = burlig, + 1 W () = W lg, + 1 1(5) = Lelx, ) £ 1| @ur(s) = Bur i, dr

1
~ ~ ~ 1 ~
+ / Lot (|| @u(s) = ®urllg, + W () = Wlig, + 11e(s) = Lllx, ) S IW(s) = W lig, dr  (3.99)

1
o o o 1 o
[ Lar(190ls) = Bu g, + 1 W) =W lig, + 1 1s) = e, ) 5 17:5) = L, )

with Lipschitz constants Ly, Lo, L3, whose existence is ensured by the twice continuous Fréchet differentia-
bility of E7 with respect to ®, W and I.. With Lemma 3.11., we may further estimate:

lim 3]<P1,/0 (..)dr)| (3.100)

s—04+0 S

. 1 1 N . . 2
< tim P 5 (20 + Lot La) | (1900) = @urllg, + 1) = W, + 11e(s) ~ e, )
S§—

. 1 A2 1 A2 1 A2
< tim Pl © (S 1®u(s) = ullg, + L 1706) = Wk, + S 1) = Lo, ) = 0, (3.101)

which implies that

1 ~ N ~ ~ A
lim ~ (Pi, Dy B (®e, W, 1) (D4(3) — 1) + D Ev (e, W, L) (W (s) — W) (3.102)
s—0+0

+ Dy, By($u, W, 1) (Ie(s) — 1)) = 0.
Analogously, the following equation holds:

0 = Ey(Bu(s), W(s)) — Ey(®y, W) (3.103)
_ /O Dy Ea(bor+ 7 (Do) — ), WA 7 (W(s) = W) (iu(s) — boys W(s) — W)dr =
1
0= (P, /0 (D(@W) By (@4 47 (®u(s) — i), W+ T (W(s) = W)) (Ppls) — Py, W(s) = W) (3.104)
— Diaw) Ba(@r, W) (Byr(s) — By, W (s) — W)) dr )+ ( Py, Digyyy Ea(ips W) (Bir(5) — By W(s) — W) )

= (P, /0 (DCP By(Sp 47, W A7) (Bir(s) — i) — Do Eo (P, W) (®pr(5) — Por) (3.105)

4 Dy Ea(yp 47, WA 7..) (W(s) — W) — Dy Ea(®yy, W) (W (s) — W)) dr)

+ ( Py, Dg Eo(®4, W) (®4(5) — Pyy) + Dy En(Py, W) (W (s) — W) ).
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For the first term, we find

1
lim —|(Ps, .. )dr 3.106
Jim (R (] 3100
1 ~ A A~ A
< SEE%HPQ Iz (/0 | Do Bo(®4y+ 7 ..., W +7...) = Do En(®y,, W Ht %22) 5 || Dy(s) = Por I, dr
1
o o A Al A 1 o
+/ ’|DWE2(<I>t,.+T...,W+T...)—DWE2(<I’t,.,W,Ie)H£&2 Z2)g\|W(s)—WH§2dT>
o :
1 ) ) 1 R
< tim 1Pyl ( / Lot (1 @0(s) = durllz, + W () = W g, ) < [l urls) = Bl dr (3.107)

1
R o 1 -
+ /0 Lo (I @us) = durllg, +1Wis) ~ Wlg, ) W (s) W |5, dr )

with Lipschitz constants L4, L5, whose existence follows from the twice continuous Fréchet differentiability

of Ey with respect to ® and W. Thus the estimate (3.107) may be continued as follows:

1 . . 2
SE$OE|<p2,/O(...)dT>| <SE$0||P2||Z*7(L4+L5) = (1 @us) — bl + W (s) W I, ) (3.208)

. 1 —3 so02
<l Py © (51 2u(s) — eI, + W) - W, ) = 0. (3.109)

This implies that

1 ~ A A ~ ~ A A
lim ~ ( Py, Do Eo(®1y, W, 1) (®4(5) — B4y) + Dy Bo(®yp, W, 1) (W(s) —W)) = 0. m  (3.110)
s—0+0

e Step 4. Choose now £ > 0 small enough in order to ensure that the difference F'(®y-(s), W (s), I.(s)) —
F(®,.,W,1,) of the objective values is nonnegative for all triples (®4.(s), W(s), I.(s)) € K(®y, Ce) x
K(W,Ce) x K(I,,¢). As a consequence of our analytical assumptions about the integrand r, the first

variation may be written as

0 < 6+ F(by, W, L) (®4(1) — By, W(1) = W, I, — 1) = lim % (F(@tr(s),W(s),Ie(s)) — F(&y, W, ;))
s—040

1 ~ a~ A
— lim - (Dq, F(®y, W, 1) (Dy(s) — byr) (3.111)
s—0+0 S

+ Dy F(&4,, W, 1) (W(s) — W) + Dy, F(®y, W, 1) (I.(5) — fe)) .
Together with Lemma 3.12., we obtain

1 ~ a A ~
0< lm - (Dq, F(@y,, W, L) (®4(s) — &u) (3.112)
s—040

+( Py, Do By (D, W, 1) (@) — Dyr) )+ (P2, Do Ey(Q4, W, o) (D4r(5) — i) )
+ Dy F(&4, W, L) (W(s) = W)
+ (P, Dw Ey(®y, W, 1) (W(s) — W) )+ (P2, Dy Ba(Qy, W, L) (W(s) — W) )
+ Dy, P, W, 1) (1() = L)+ ( Py, Dy, Ey(®4, W, 1) (I 1)) )
where the first two parts vanish since P;, P, solve the adjoint equations
OFE, 0E,

Dy F(®4, W, 1) + (Py, == (Pt W, 1)) + (Py, ——2(®,,W)) = 0 and (3.113)
8(btr aq)tr
OF OF

Dy F(®4, W, 1) + (P, awl' (B4, W, 1)) + ( Py, ami (@4, W)) = 0. (3.114)
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25)
26)
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Note that, by Subsection 3.c) above, these equations take the claimed form. Consequently, we arrive at

0< tim (D1, P W00 (1(s) = L)+ ( Py, Di, Bx(®0 W1 (1.~ 1)) ) (3.115)
s—04+0 S
T

:Agé@i@ﬁ+T%ﬂﬂ%0Nk@ﬁ*ﬂ@ﬁ)M“' (3.116)

This implies the claimed optimality condition (3.31), and the proof is complete. m
Proof of Corollary 3.8. The non-Lebesgue points of I, P, 2%
(4N Lelw,t) + Pi(e,t) ) () and (o142 Lole,t) + Pi(a,) ) (3.117)

form null sets for arbitrary n € [—R, R] since the set of Lebesgue points is conserved under linear combina-
tions. Assumption 3.4., 1)’ implies that the boundary 9Qx [0, T'] of Qp forms a null set as well. 2%) Denote by
N the union of all these subsets, which is still a Lebesgue null set, and consider a point (zo, t) € int () \ N
and a number 7y € [—R, R]. From a Vitali covering of Q7, 2% choose some decreasing sequence { ENV } of
closed subsets of Qr with () y EV = { (z0,%0) }. Together with I, all functions

IN(z,t) = Lgn (2,t) 10 + L g\ vy (2, 1) - Le(2,1) (3.118)

belong to C C L™ (Qr) C L™[(0,T), L*(Q) |. Consequently, we may form the Lebesgue derivative

Jim A/ (4 ) el t) + Palart) ) (1N (o) — Lu(a, 1)) ddt

N—oo |EN|
:;T;EN/) p(1+ NI @zﬂ+aﬂﬂuﬂ)(no—f4xi)%ﬂxi) (3.119)
= (14 Le(wo, o) + Pi(wo, o) ) (0 — Le(w0,t0)) > 0, (3.120)

and this implies the claimed conditions (3.32) and (3.33). m

Proof of Corollary 3.9. If (&, W, I..) is a weak local minimizer of (P); with ess sup (z,) € O | I(z,t)| < R
then (3.33) implies that

A 1
ERTEDY

for almost all (z,t) € Qp, and I, and P; belong to the same space VVM[(O7 T),L" ()] nL"[(0,T),
WA (Q)] . -

Py(z,t) (3.121)

4. Appendix: Bochner integrable mappings.

a) Survey of spaces of Bochner integrable functions.

Let X be a Banach space. Then a mapping f: [0, T] — X is called strongly measurable iff there is a
sequence { N} of simple mappings fV: [0, T] — X of the form fN(t) = ST & | 1a, () 2 with 2, € X
and Lebesgue subsets Ay, C [0, T'] such that || fN(¢) — f(t) |x — 0 for almost all t € [0, T'] .7

For the following arguments, cf. [ WAGNER 09], p. 553 {., Proof of Theorem 2.3.
[WAGNER 06], p. 122, Lemma 9.2.

[DUNFORD/SCHWARTZ 88], p. 212, Definition 2.

Here and in Definition 4.1., we follow [ EvAaNs 98], pp. 285 f. and 649 f.
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Definition 4.1. (Bochner function spaces) 1) Let 1 < p < co. Then the space L”[(0,T), X | consists
of all strongly measurable functions f:[0, T] — X with

T 1/p
1o x) = (] 170 1cat) ™ < o, (4.1
2) The space L™[(0,T), X| consists of all strongly measurable functions f:[0, T] — X with
1w fory.] = e55Wecior 170l < oo. (42)

3) The space Wl’p[((), T), X] consists of all functions [ € Lp[(O, T), X], admitting a weak derivative
df /dt, which belongs to L” [ (0,T7), X] as well. The weak derivative is defined by the usual formula wherein
the integrals are interpreted in the Bochner sense.

4) The space c? [[0,T], X] contains all continuous mappings f:[0, T] — X with

17 Do 0.21.x] = Maxeeqo.r) 170 lx < oo (4.3)

b) Imbedding theorems for Bochner spaces.

Proposition 4.2. Assume that Q@ C R™ is compact and 1 < p, q < oco. Then Lp[(O7 T)7Lq(Q)} 18

continuously imbedded into L9 Q7).

Proof. This is a consequence of [ ELSTRODT 96], p. 232, Theorem 2.10. m

Proposition 4.3.%2%) If 1 < p < ¢ < oo then LP[Q, LU0, T)] is continuously imbedded into L[ (0, T'),
Q)].

Proposition 4.4. If 1 <p < ¢ < o0 and X is a Banach space then L? [ (0,7), X} 18 continuously imbedded
into L[ (0, T), X].

Proof. Follows from [ELSTRODT 96|, p. 232, Theorem 2.10., as well. m

Theorem 4.5.2%) If 1 < p < oo and X is a Banach space then Wl’p[(O, T), X] is continuously imbedded
into C’OHO, T],X].

Theorem 4.6. (Aubin-Dubinskij lemma) 30) Consider three normed spaces Xg C€ X C Xy where the
imbedding Xo — X is compact and the imbedding X — Xy is continuous. If p, p' € (1, co) then the space

Y:{feLP[(mT),XO]|%6LP'[(07T),X1]} (4.4)

is compactly imbedded into L[ (0, T'), X| for arbitrary g € (1, o0).
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