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Some first and second order algorithmic approaches for the solution of PDE-constrained opti-
mization problems are reviewed. An optimal control problem for the stationary Navier-Stokes
system with pointwise control constraints serves as an illustrative example. Some issues in
treating inequality constraints for the state variable and alternative objective functions are also
discussed.
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1 Introduction

In this paper we review a number of algorithmic approaches for solving optimization problems
with PDE constraints. Most of these methods were originally developed for finite dimensional
problems. When applied to optimization problems with PDE constraints, new aspects become
important. For instance, (discretized) PDE-constrained problems are inherently large-scale.
Some aspects, like mesh independent convergence behavior, can only be explained by in-
corporating the infinite dimensional point of view, which is not present in finite dimensional
problems. Moreover, discretization and solution of PDE-constrained optimization problems
should not be viewed as independent. Rather, they must be intertwined to yield efficient algo-
rithms.1

In this article, we provide a unified treatment of algorithms, which proceeds on a formal
basis and does not distinguish between infinite dimensional and discretized problem settings.
To make the presentation more concrete, we consider the solution of an optimal control prob-
lem for the stationary Navier-Stokes system as a prototypical example. The volume force acts
as the control function, and the corresponding state is given by the velocity and pressure com-
ponents of the solution to the Navier-Stokes equation. Clearly, this is a rather artificial setting
from an engineering point of view, although a certain possibility to control the Lorentz forces
exists in electrically conducting fluids (see [Davidson(2001), Griesse and Kunisch(2006)]).
All algorithms will be explained in this setting.
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1.1 Black-Box versus All-at-Once Methods

When applied to PDE-constrained problems, the distinction of black-box vs. all-at-once opti-
mization methods becomes important. The first class of methods builds upon existing solvers
for the (discretized) PDE and is also known as simulation-based optimization. In other words,
an existing algorithm for the solution of the state equation is embedded into an optimization
loop. Since efficient optimization requires gradients, the solver for the state equation has to
be augmented with a routine which provides the gradient of the state w.r.t. the optimization
variables. Employing a finite difference approximation of the gradient may seem attractive
due to its ease of implementation, but it has limited accuracy and it is costly in the presence
of many design variables. And thus it is usually preferable to calculate the gradient using a
sensitivity or adjoint approach, which may even be available more or less automatically by
Algorithmic Differentiation (AD).2 Note, however, that while black-box approaches are con-
ceptually appealing, their main drawback is that they require the repeated costly solution of
the (nonlinear) state equation, even in the initial stages when the design variables are still far
from their optimal value. This drawback can be partially overcome by carrying out the early
optimization steps with a coarsely discretized PDE, by using reduced-order models3, or by the
use of semi-implicit discretization strategies in the case of time-dependent equations (see the
discussion in Remark 3.1).

By contrast, all-at-once methods treat the design and state variables as independent op-
timization variables, which are coupled through the PDE constraint. From the optimization
perspective, this constraint need only be satisfied at the final iterate. The obvious advantage
of this point of view is that the repeated solution of the (nonlinear) state equation is avoided.
Typically, optimization algorithms of this class still require the solution of linearized state
equations.

The algorithms presented in this paper can be categorized as follows:

black-box all-at-once

1st order steepest descent
nonlinear CG

2nd order Newton SQP

For brevity of presentation, we address only the very basic variants of these methods. We
refer to the general literature on numerical optimization, such as [Nocedal and Wright(1999),
Fletcher(2001)], for more details. We also refer to [Hinze and Kunisch(2001)] for an overview
on second-order methods for a time-dependent version of our model problem presented in
Section 1.3 below, albeit in the absence of inequality constraints.

1.2 Outline of the Paper

In Section 2 we address gradient-type methods. These methods are attractive in view of their
simplicity of implementation and global convergence properties. In particular, we discuss
the steepest descent and nonlinear conjugate gradient methods. As a drawback, gradient-
type methods exhibit only linear convergence. Therefore, we turn to higher-order methods

2 see the article by Gauger and Griewank in this issue
3 see the article by Sachs and Volkwein in this issue

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 5

in Section 3 and discuss Newton and SQP approaches. Most of the aforementioned methods
deal rather naturally with inequality constraints on the control (design) variables, which are
present in most practical applications. In Section 4, we comment on possibilities of treating
other, more involved types of inequality constraints and objective functions.

1.3 Model Problem

As a prototypical example, we consider the following optimal control problem for the station-
ary Navier-Stokes system

−ν4y + (y · ∇)y +∇p = χωu in Ω

∇ · y = 0 in Ω

y = 0 on Γ = ∂Ω

 (1.1)

on a given bounded domain Ω ⊂ Rd, d ∈ {2, 3}, occupied by a fluid:

Minimize J(y,u) :=
1

2

∫
Ω

|y − yd|2 x. +
α

2

∫
ω

|u|2 x.

subject to (1.1)
and ua ≤ u ≤ ub in Ω.

(OCPcc)

The velocity y and the pressure p of the fluid are the state variables of the problem, while
the right hand side u (volume force on a subdomain ω ⊆ Ω) acts as the control (design)
variable. The control constraints are understood in a component-wise sense. From an opti-
mization point of view, the unknown optimization variables in (OCPcc) are (y, p,u). Here
and throughout, vector valued quantities are denoted by boldface symbols, and χω denotes
the characteristic function of ω.

While we proceed on a completely formal basis, we refer to [Gunzburger(2003), Gun-
zburger and Manservisi(1999), Hinze and Kunisch(2001)] for a mathematical analysis of a
time-dependent version of this problem. Note that we have assumed no-slip boundary condi-
tions on the boundary Γ only for simplicity of the presentation. More general optimal control
problems for the Navier-Stokes system are considered, for instance, in [Gunzburger(2003),
Abergel and Temam(1990)].

The objective function, or performance measure, in (OCPcc) is typical and it contains two
terms. The first term measures the departure of the obtained velocity profile from a desired
profile yd in a least-squares sense. The second term involves a parameter α ≥ 0. It describes
the cost of the control. In the presence of upper and lower bounds ub and ua, the choice
α = 0 is an admissible and does not jeopardize the existence of a solution. Positive values of
α stabilize the solution and therefore also increase the stability of numerical algorithms.

As was already mentioned, black-box algorithms make use of the fact that for every given
control function u, there exists a unique solution of the state equation. In the context of the
stationary Navier-Stokes system (1.1), a unique pair of state variables (y, p) exists at least
for sufficiently small control functions u, see [Girault and Raviart(1986), Theorem IV.2.2].
Since we do not consider pressure dependent objective functions here, we use the notation
y = S(u) to denote the unique velocity associated with the control function u. We can
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thus formally eliminate the state equation from our problem (OCPcc) and obtain the following
reduced optimal control problem.

Minimize Ĵ(u) :=
1

2

∫
Ω

|S(u)− yd|2 x. +
α

2

∫
ω

|u|2 x.

subject to ua ≤ u ≤ ub in Ω.
(ROCPcc)

Note that in the reduced problem, only the control function u appears as the optimization
variable. Black-box algorithms will consider the reduced problem (ROCPcc), while all-at-
once methods address (OCPcc) where the PDE constraint is kept as an explicit side constraint
to the optimization problem.

2 Gradient-Type Methods

Gradient-type methods are black-box methods. They are among the simplest deterministic
optimization methods for the solution of (ROCPcc) and rely solely on gradient information for
the reduced objective Ĵ . We begin by computing the directional derivative of Ĵ at u

〈Ĵ ′(u), δu〉 =
(
S(u)− yd,S ′(u) δu

)
Ω

+ α
(
u, δu

)
ω

=
(
S ′(u)?(S(u)− yd) + αu, δu

)
ω

(2.1)

for arbitrary directions δu. Here and throughout, (u,v)Ω denotes the inner product
∫

Ω
u ·v x.

and similarly for (u,v)ω . From (2.1) we infer the gradient of the reduced objective, which
involves the characteristic function χω of ω and is given by

∇Ĵ(u) = χω S ′(u)?(S(u)− yd) + αu. (2.2)

Above, the linearized solution map S ′(u) and its adjoint S ′(u)? appear. The evaluation of
δy = S ′(u) δu can be realized by solving the linearized Navier-Stokes system,

−ν4δy + (δy · ∇)y + (y · ∇) δy +∇δp = χωδu in Ω

∇ · δy = 0 in Ω

δy = 0 on Γ = ∂Ω

 (2.3)

with coefficients y = S(u). The adjoint can be evaluated by solving the corresponding
adjoint system, e.g., z = S ′(u)?(y−yd) is given by the velocity component (restricted to ω)
of

−ν4z + (∇y)>z − (y · ∇) z +∇q = y − yd in Ω

∇ · z = 0 in Ω

z = 0 on Γ = ∂Ω.

 (2.4)

The evaluation of the gradient ∇Ĵ ′(u) for a given control function u according to the repre-
sentation (2.2) is described in Algorithm 2.1.
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Algorithm 2.1 Evaluation of the reduced gradient∇Ĵ(u)

1: Solve the Navier-Stokes system (1.1) for (y, p)
2: Solve the adjoint Navier-Stokes system (2.4) for (z, q)

3: Return∇Ĵ(u) := χωz + αu

2.1 Projected Gradient Method

The projected gradient, or steepest descent method, uses the negative reduced gradient as a
search direction and then computes a step length in this direction (Algorithm 2.2). Due to the
presence of bounds ua and ub for the control variable, a projection onto the set of admissible
controls is needed, which is given by the cut-off function

P[ua,ub](v) = max{ua,min{ub,v}},

understood component-wise.

Algorithm 2.2 Projected gradient algorithm
Require: initial guess u0 satisfying ua ≤ u0 ≤ ub

1: Set k := 0
2: while stopping criteria are violated do
3: Evaluate dk := −∇Ĵ(uk)
4: Obtain step length tk, e.g., from Armijo’s rule
5: Set uk+1 := P[ua,ub](uk + tk dk) and increase k
6: end while

The step length tk is obtained from a suitable line search strategy such as Armijo’s rule:
for given parameters β, σ ∈ (0, 1), we accept the first step length t ∈ {β` : ` = 0, 1, . . .}
which satisfies the descent criterion

ϕ(t) ≤ ϕ(0) + σ tϕ′(0).

The line search function ϕ and its derivative are given by

ϕ(t) = Ĵ
(
P[ua,ub](uk + tdk)

)
, ϕ′(0) =

(
∇Ĵ(uk), d̃k

)
ω
,

where d̃k is a modification of the negative reduced gradient dk (in a component-wise sense):

d̃k =

{
0 where uk 6∈ [ua,ub] or (uk = ub and dk ≥ 0) or (uk = ua and dk ≤ 0)

dk elsewhere.

A typical feature of gradient based methods such as Algorithm 2.2 is their good progress
in reducing the objective in the initial iterations, while they slow down significantly in later
iterations.

2.2 Nonlinear Conjugate Gradient Method

The conjugate gradient (CG) method is known as an iterative method with attractive conver-
gence properties for the solution of linear systems of equations with symmetric and positive
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definite coefficient matrix. A nonlinear version can also be employed to find minimizers of
unconstrained optimization problems. In this section, we neglect the control bounds ua and
ub in (ROCPcc).

A nonlinear CG method is stated as Algorithm 2.3. In step 4, a search procedure is needed
to determine an appropriate step length which minimizes ϕ(t) = Ĵ(uk + tdk), or finds a
zero of ϕ′(t) =

(
∇Ĵ(uk + tdk),dk

)
ω

. In principle, Newton’s method can be used for this
purpose, but it requires the repeated evaluation of the Hessian of Ĵ , which is prohibitive in
the context of nonlinear CG methods (but see Section 3.1). As a remedy, one can resort to a
secant method in which ϕ(t) is approximated by

ϕ(t) ≈ ϕ(0) + ϕ′(0) t+
ϕ′(σ)− ϕ′(0)

2σ
t2

with some σ > 0. Minimization of the right hand side then leads to

t = − ϕ′(0)

ϕ′(σ)− ϕ′(0)
= −

(
∇Ĵ(uk),dk

)
ω(

∇Ĵ(uk) + σ dk,dk
)
ω
−
(
∇Ĵ(uk),dk

)
ω

. (2.5)

Typically, only few iterations of (2.5) are carried out which generate a sequence of step lengths
ti and linearization points σi+1 = −ti, starting from an arbitrary initial value σ0 > 0. Such
inexact line searches, however, may lead to search directions which are not descent directions
for the objective Ĵ . A common solution is to restart the method by setting d to the negative
reduced gradient whenever (r,d)ω ≤ 0 holds. This is the purpose of step 8 in Algorithm 2.3.
An alternative step length selection strategy in step 4 based on Wolfe conditions is given
in [Nocedal and Wright(1999), eq. (5.42)].

Algorithm 2.3 Nonlinear conjugate gradient algorithm
Require: initial guess u0

1: Set k := 0
2: Evaluate dk := rk := −∇Ĵ(uk)
3: while stopping criteria are violated do
4: Obtain step length tk satisfying

(
∇Ĵ(uk + tk dk),dk

)
ω

= 0
5: Set uk+1 := uk + tk dk
6: Set rk+1 := −∇Ĵ(uk+1)
7: Determine step length βk+1

8: Set dk+1 := rk+1 + βk+1 dk and increase k
9: if (rk,dk)ω ≤ 0 then

10: Set dk := rk
11: end if
12: end while

Several common choices exist for the selection of the step length βk+1 in step 7. Among
them are the Fletcher-Reeves and the Polak-Ribière formulas

βFR
k+1 :=

(rk+1, rk+1)ω
(rk, rk)ω

, βPR
k+1 :=

(rk+1, rk+1 − rk)ω
(rk, rk)ω

, βPR+
k+1 := max{βPR

k+1, 0}.

Copyright line will be provided by the publisher



gamm header will be provided by the publisher 9

We mention that nonlinear CG methods generally outperform the steepest descent method,
and refer to [Nocedal and Wright(1999)] for a comparison of the various step length selection
strategies. For an application of nonlinear conjugate gradient methods for the solution of
optimal control problems, we refer to, e.g., [Volkwein(2004), Volkwein(2003)].

3 Higher-Order Methods

The methods presented previously in Section 2 typically exhibit only first order convergence
because they solely rely on first order (gradient) information about the objective function. As
a remedy, one resorts to methods which employ higher-order approximations.

3.1 Newton’s Method

Newton’s method falls into the category of black-box methods. In the absence of control con-
straints, a necessary optimality condition for (ROCPcc) is that the gradient ∇Ĵ(u) vanishes.
The application of Newton’s method then results in the iteration

∇2Ĵ(uk) δu = −∇Ĵ(uk), uk+1 := uk + δu, (3.1)

where∇2Ĵ denotes the Hessian of the reduced objective (the reduced Hessian).
The reduced Hessian matrix is usually not formed explicitly due to the tremendous com-

putational effort to do so. By contrast, (3.1) is solved iteratively, using a Krylov method such
as MINRES or CG which take advantage of the symmetry of ∇2Ĵ(uk). Every iteration then
requires the evaluation of one matrix-vector product ∇2Ĵ(u) δu. Algorithm 3.1 describes
how to achieve this.

Quasi-Newton methods, such as BFGS, offer an alternative to the exact evaluation of the
Hessian matrix. By constrast, they store and accumulate gradient information from iteration
to iteration as a substitute for second derivatives. Due to the high dimension of discretized
optimal control problems, limited-memory versions such as LM-BFGS, should be employed.

Algorithm 3.1 Evaluation of the reduced Hessian times a vector∇2Ĵ(u) δu
a
Require: y is the velocity obtained from (1.1), and z is the adjoint velocity obtained from

(2.4)
1: Solve the linearized Navier-Stokes system (2.3) for (δy, δp)
2: Calculate δr = δy + (∇δy)>z − (δy · ∇) z
3: Solve the adjoint Navier-Stokes system (2.4) for (δz, δq) with right hand side δr instead

of y − yd

4: Return∇2Ĵ(u) δu := χωδz + α δu

In the presence of control constraints ua ≤ u ≤ ub, the condition ∇Ĵ(u) = 0 must be
replaced by the variational inequality (∇Ĵ(u),v − u)ω ≥ 0 for all admissible v (satisfying
the same inequalities as u does). An alternative representation of this condition uses Lagrange
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10 Roland Herzog and Karl Kunisch: Algorithms for PDE-Constrained Optimization

multipliers and takes the following form:

∇Ĵ(u) + µb − µa = 0 (3.2a)

µa ≥ 0, ua − u ≤ 0, µ>a (ua − u) = 0

µb ≥ 0, u− ub ≤ 0, µ>b (u− ub) = 0.

}
(3.2b)

All of the above have to be understood in a pointwise almost everywhere sense in ω. For
an algorithmic treatment, it is useful to combine the Lagrange multipliers into one by setting
µ = µb−µa, and to convert the complementarity conditions (3.2b) into one equation, which
results in

∇Ĵ(u) + µ = 0 (3.3a)

max{0,µ+ c (u− ub)}+ min{0,µ+ c (u− ua)} − µ = 0. (3.3b)

Note that (3.3) is equivalent to (3.2) for any value of c > 0, and max and min have to be
understood again in a component-wise and pointwise sense.

Although equation (3.3b) is not differentiable in the classical sense, it enjoys a property
called Newton differentiability in the case c = α. Thus, a so-called semi-smooth Newton
method can be applied and it is well posed, not only in a discretized setting but also in function
space, see [Hintermüller et al.(2002)Hintermüller, Ito, and Kunisch, Ulbrich(2003)]. Other
choices c 6= α are justified as well [Bergounioux et al.(1999)Bergounioux, Ito, and Kunisch].
Naturally, the Jacobian of (3.3) depends on the subsets of the control domain ω where the
max and min is attained by either of the two expressions. These so-called active and inactive
sets at an iterate (uk,µk) are defined as

A+,`
k := {x ∈ ω : µ`

k + c (u`k − u`b) > 0}, A`
k := A+,`

k ∪ A−,`k

A−,`k := {x ∈ ω : µ`
k + c (u`k − u`a) < 0}, I`k := ω \ A`

k.
(3.4)

Here, u` denotes ones component of the velocity vector u, with ` = 1, . . . , d. Due to the de-
pendence of the active sets on both primal and dual variables u and µ, the resulting algorithm
(Algorithm 3.2) is called a primal-dual active set method.

The Newton direction for (3.3) at an iterate (uk,µk) is found to be[
∇2Ĵ(uk) I
c χAk −χIk

](
δu
δµ

)
= −

(
∇Ĵ(uk) + µk

c χA+
k

(uk − ub) + c χA−
k

(uk − ua)− χIkµk

)
,

(3.5)

with the appropriate component-wise interpretation of A±k etc. Equation (3.5) is solved iter-
atively, and matrix-vector products with the matrix in (3.5) can be easily formed using Al-
gorithm 3.1. For algorithmic purposes, it is beneficial to convert (3.5) into its equivalent
symmetric form,[

∇2Ĵ(uk) χAk
χAk 0

](
δu

δµ|Ak

)
= −

(
∇Ĵ(uk) + µk

χA+
k

(uk − ub) + χA−
k

(uk − ua)

)
, (3.6)

where δµ|Ak denotes the restriction of δµ to the active set, and µk+1 is set to zero on the
inactive set. We summarize the resulting algorithm as Algorithm 3.2.
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Algorithm 3.2 Newton’s method with primal-dual active set strategy
Require: initial guess u0 and µ0

1: Set k := 0
2: while stopping criteria are violated do
3: Evaluate the reduced gradient ∇Ĵ(uk) (Algorithm 2.1)
4: Compute the active sets A±,`k for ` = 1, . . . , d
5: Solve the Newton system (3.6) iteratively
6: Set uk+1 := uk + δu, µk+1|Ak := uk|Ak + δu|Ak , µk+1|Ik := 0 and increase k
7: end while

In a practical implementation, the Hessian ∇2Ĵ(u) in (3.6) is often replaced by a quasi-
Newton approximation which was already mentioned above. Moreover, it may be necessary
to globalize Algorithm 3.2 in order to achieve convergence from arbitrary starting points. This
can be done, for instance, by carrying out a few gradient steps (Algorithm 2.2) beforehand.

Interior point methods offer an alternative way in dealing with the complementarity sys-
tem (3.3b). We refer to [Weiser(2005), Weiser et al.(2008)Weiser, Gänzler, and Schiela] for
their application to optimal control problems with control constraints, and to [Bergounioux
et al.(2000)Bergounioux, Haddou, Hintermüller, and Kunisch] for a comparison with Algo-
rithm 3.2.

3.2 Sequential Quadratic Programming Methods

In contrast to Newton’s method, sequential quadratic programming (SQP) methods treat the
design and state variables as independent optimization variables and thus they fall into the
category of all-at-once methods. Their explanation requires additional notation. From an ab-
stract point of view, our problem (OCPcc) is an optimization problem with equality constraints
(the Navier-Stokes system) and inequality constraints for the control variable, i.e.,

Minimize J(y,u) subject to e(y,u) = 0 and ua ≤ u ≤ ub. (3.7)

Here e(y,u) = 0 denotes the equality constraint given by the Navier Stokes equations
(1.1). To avoid notational burden, we take the point of view that the divergence-free and the
boundary condition are incorporated into a solenoidal space Y , so that

e(y,u) = −ν4δy + (y · ∇)y − χωu.

We can take Y = {y ∈ (H1
0 (Ω))d : ∇ · y = 0} and denote by Y ∗ its dual. With z ∈ Y ∗ we

introduce the Lagrangian associated with (3.7) as

L(y,u, z) = J(y,u) + 〈e(y,u), z〉Y ∗,Y .

SQP methods solve in every iteration a quadratic programming problem, obtained by building
a quadratic approximation of the Lagrangian and by linearizing the equality and inequality
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12 Roland Herzog and Karl Kunisch: Algorithms for PDE-Constrained Optimization

constraints:

Minimize
1

2

(
y − yk

u− uk

)> [Lyy Lyu

Luy Luu

](
y − yk

u− uk

)
+ Jy(yk,uk)(y − yk) + Ju(yk,uk)(u− uk)

subject to ey(yk,uk)(y − yk) + eu(yk,uk)(u− uk) + e(yk,uk) = 0

and ua ≤ u ≤ ub.

(3.8)

The Hessian of the Lagrangian is evaluated at the current iterate (yk,uk, zk), and the solution
(y,u) and the adjoint state z for (3.8), i.e. the Lagrange multiplier associated with the equality
constraint in (3.8), serve as subsequent iterates (yk+1,uk+1, zk+1).

Due to the presence of inequality constraints in (3.8), its optimality system becomes nonlin-
ear, and it cannot be solved in one go. We describe here the solution of (3.8) by a semi-smooth
Newton (primal-dual active set) method and we use j to denote the iterations with respect to
this inner loop. At a given iterate (yk+1,j ,uk+1,j , zk+1,j), a Newton step amounts to finding
the active and inactive sets

A+,`
j := {x ∈ ω : µ`

j + c (u`j − u`b) > 0}, A`
j := A+,`

j ∪ A−,`j

A−,`j := {x ∈ ω : µ`
j + c (u`j − u`a) < 0}, I`j := ω \ A`

j ,

for ` = 1, . . . , d, compare (3.4), and then solving
Lyy Lyu e?y 0
Luy Luu e?u χAj
ey eu 0 0
0 χAj 0 0



yk+1,j+1 − yk

uk+1,j+1 − uk

zk+1,j+1

µj+1|Aj

 = −


Jy(yk,uk)
Ju(yk,uk)
e(yk,uk)

χA+
j

(uk − ub) + χA−
j

(uk − ua)

 .

(3.9)

All terms in the left hand side matrix are evaluated at (yk,uk, zk). For convenience of the
reader, we summarize the basic SQP algorithm as Algorithm 3.3.

Algorithm 3.3 Basic SQP method with primal-dual active set strategy
Require: initial guess u0

1: Set k := 0
2: while stopping criteria are violated do
3: Set j := 0
4: while stopping criteria are violated do
5: Compute the active sets A±,`j for ` = 1, . . . , d
6: Solve the Newton system (3.9) iteratively
7: Set µj+1|Ij := 0 and increase j
8: end while
9: Set yk+1 := yk+1,j , uk+1 := uk+1,j , zk+1 := zk+1,j and increase k

10: end while

There are many similarities between the steps (3.6) and (3.9) in the Newton and SQP
methods. In fact, the matrix in (3.9) can be symmetrically reduced to the one in (3.6) in view
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of

[
∇2Ĵ χA
χA 0

]
=

[
−e?ue−?y I 0 0

0 0 0 I

]
Lyy Lyu e?y 0
Luy Luu e?u χA
ey eu 0 0
0 χA 0 0



−e−1

y eu 0
I 0
0 0
0 I

 .
Note that

[
−e−1

y eu
I

]
is the projection onto the kernel of the linearization of e(y,u). The main

difference between Algorithm 3.2 and 3.3 is that the iterates of the former satisfy the nonlinear
Navier-Stokes system (1.1), while the iterates of the latter satisfy the linearized system as can
be seen from the third equation in (3.9). The nonlinear Navier-Stokes system is satisified only
in the limit.

Remark 3.1 (Newton vs. SQP for time-dependent problems) One may argue that the solu-
tion of the nonlinear Navier-Stokes system in every step of Newton’s method (Algorithm 3.2)
is a disadvantage compared to the SQP Algorithm 3.3, which requires only linearized equa-
tions to be solved. However, this gap can be closed for time-dependent problems. In this
case, the nonlinearity of the Navier-Stokes equation may be treated as an explicit term in the
time-stepping routine. As a consequence, the effort for solving the nonlinear and linearized
Navier-Stokes system become essentially the same.

Remark 3.2 (Preconditioning) Both the Newton and SQP approaches presented in the
previous sections require the repeated solution of linear systems (3.6) and (3.9), respectively.
These systems feature a saddle point structure, and they are inherently large scale and ill-
conditioned. Their efficient solution thus calls for preconditioned iterative solvers. Due to
space restrictions, we refer to [Hintermüller et al.(2009)Hintermüller, Kopacka, and Volk-
wein, Battermann and Heinkenschloss(1998), Battermann and Sachs(2001), Biros and Ghat-
tas(2005), Ito et al.(2010)Ito, Kunisch, Gherman, and Schulz, Mathew et al.(2007)Mathew,
Sarkis, and Schaerer,Rees and Stoll(to appear),Herzog and Sachs(to appear)] for more on the
issue of preconditioning.

4 State Constraints and Alternative Objective Functionals

In this section we comment on extensions of previously considered problems in two directions.
We first consider a prototypical example for a problem involving state constraints:

Minimize J(y,u) :=
1

2

∫
Ω

|y − yd|2 x. +
α

2

∫
ω

|u|2 x.

subject to (1.1) and My ≤ ψ in Ω,
(OCPsc)

where ψ ∈ Rm, M ∈ Rm×d and the inequality is considered in the almost everywhere
sense. We may be tempted to treat these inequalities in a similar manner done for the control
constraints in Algorithm 3.2. Upon discretization, the resulting algorithm, however, would
not have the same, mesh-independent super-linear convergence properties as in the control
constrained case. This is due to lack of Newton differentiability of the underlying optimality
system. As a consequence we introduce the family of regularized problems

min J(y,u) +
γ

2
‖(My −ψ)+‖2 such that (1.1) holds, (OCPscγ )

Copyright line will be provided by the publisher
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where γ > 0, and (My − ψ)+ is defined coordinate-wise: (My − ψ)+
i = max{M>i y −

ψi, 0}, for i = 1, . . . ,m. The optimality system for (OCPscγ ) is given by

− ν4y + (y · ∇)y +∇p = χωu in Ω

∇ · y = 0 in Ω, y = 0 on ∂Ω

− ν4z + (∇y)>z − (y · ∇) z +∇q +M>λ = y − yd in Ω

∇ · z = 0 in Ω, z = 0 on ∂Ω

αu = zχω, λ = γ (My −ψ)+.


(4.1)

Considering (y, z) as a function of (u,λ) this optimality system can be expressed asF (u,λ) =(
αu−zχω, λ−γ (My−ψ)+

)
= 0. Interpreting the equation λ = γ (My−ψ)+ in L2(Ω)

we note that the max operation acts on the variable y which is inH1(Ω). This extra regularity
is necessary to argue that the mapping F is Newton differentiable so that the semi-sooth New-
ton algorithm applied to (4.1) is locally super-linearly convergent, provided that the viscosity
ν is large enough. For elliptic systems this argument with d = 2 was carried out in detail
in [Kunisch et al.(2010)Kunisch, Liang, and Lu].

The semi-smooth Newton step amounts to a Newton step on the system (4.1) where the
generalized derivative DF̃ (y) of y 7→ F̃ (y) = (My −ψ)+ at y is determined according to

D F̃ (y) δy =

 M1χA1

...
MmχAm

 δy−

 ψ1χA1

...
ψmχAm

 with M =

M1

...
Mm

 , ψ =

ψ1
...
ψm

 ,

Ai = {x : Mi y(x) > ψi(x)} and χAi is the characteristic function of Ai. A chain-rule
argument then allows to determine the Newton derivative of F .

Let us now comment on the choice of the cost functional. In (OCPcc) we considered a
quadratic tracking functional with quadratic cost for the control. Obvious advantages of
quadratic functional include the simplicity of obtaining derivatives and the stochastic interpre-
tation in case of linear dynamics in terms of the Gaussian regulator problem. Recently atten-
tion was given toL1(Ω) type costs, i.e., functionals including the term

∫
ω
|u| x. . This cost is at-

tractive since it can be interpreted as being proportional to the actual control action. Moreover
the optimal L1(Ω) cost typically has a sparse support which suggests the use of L1(Ω) formu-
lations for the determination of optimal actuator placement strategies. Disadvantages include
the lack of differentiability and the fact that without further modifications L1(Ω) formula-
tions do not admit solutions, in general. One has to either employ some type of regularization
or use a problem formulation where the controls are measures, see [Stadler(2009), Herzog
et al.(2010)Herzog, Stadler, and Wachsmuth, Clason and Kunisch(to appear)].

Next we turn our attention to that part of the cost functional which involves the state y and
consider the time-dependent version of the state equation as in (1.1) with some additional forc-
ing either in the interior of the domain or on its boundary, which creates vortices in the fluid.
The control objective consists in suppressing these vortices. In the context of the quadratic
cost in (OCPcc) one may consider to choose yd as the solution of the Stokes equation with
the same forcing. Then yd will not contain vortices, but otherwise retain some of the global
features of the forced solution y. One of the objections against this functional is that is not
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Galilean invariant, i.e. it is not invariant under transformations of the form Qx + d t of the
flow field y, where t denotes time, Q is a time-independent matrix and d is a constant vector.
Another frequently used functional is∫ T

0

∫
Ω

|curly(t, x)|2 x. t..

Just as the tracking functional this functional is again not Galilean invariant. Another short-
coming of using curly for measuring vorticity is given by the fact that it does identify vortex
cores in shear flow, especially if the background shear is comparable to the vorticity within
the vortex.

In dimension two a Galilean invariant quantity will determine a region to be a vortex if
∇y(x) has complex eigenvalues, or equivalently if det∇y(x) > 0. This suggests the use of∫ T

0

∫
Ω

max{0,det∇y(t, x)} x. t.

for vortex suppression and raises interesting questions concerning efficient algorithmic treat-
ment of this cost functional. For a discussion of these issues we refer to [Kunisch and
Vexler(2007)].
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