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Abstract

In this work adaptive and high resolution numerical discretization tech-
niques are demonstrated for solving optimal control of the monodomain
equations in cardiac electrophysiology. A monodomain model, which is
a well established model for describing the wave propagation of the ac-
tion potential in the cardiac tissue, will be employed for the numerical
experiments. The optimal control problem is considered as a PDE con-
strained optimization problem. We present an optimal control formulation
for the monodomain equations with an extra-cellular current as the control
variable which must be determined in such a way that excitations of the
transmembrane voltage are damped in an optimal manner.

The focus of this work is on the development and implementation of an
efficient numerical technique to solve an optimal control problem related
to a reaction-diffusions system arising in cardiac electrophysiology. Specifi-
cally a Newton-type method for the monodomain model is developed. The
numerical treatment is enhanced by using a second order time stepping
method and adaptive grid refinement techniques. The numerical results
clearly show that super-linear convergence is achieved in practice.
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1 Introduction

Optimization problems governed by partial differential equations arise in many
application areas of natural science and engineering. These problems, now called
PDE constrained optimization problems, due to their problem size and/or com-
plexity still present a significant challenge to efficient numerical realization. One
such interesting application is the optimal control of the bidomain model equa-
tions in cardiac electrophysiology. The bidomain model [B, IR, 22| describes the
electrical behavior of the cardiac tissue by a reaction-diffusion system coupled
with an ordinary differential equations which model the ionic currents associated
with the reaction terms. The equations model the fact that currents leaving the
extracellular space by traversing the cellular membranes are the sources of the in-
tracellular current density and vice versa. That is, currents leaving the intracellu-
lar space are acting as sources of the extracellular current density. The numerical
solution of the bidomain equations is computationally expensive, see [23, 24|, due
to the high spatio-temporal resolution required to resolve the fast transients and
steep gradients governing wavefront propagation in the heart. Assuming that the
anisotropy ratios of the two spaces are equal leads to a reduced model, referred
to as the monodomain model, which can be solved at a much lower computa-
tional expense by avoiding the time consuming solution of an elliptic PDE 4.
Under many circumstances of practical relevance the monodomain model can be
considered to approximate the bidomain model fairly well [[9, [3].

Cardiac arrhythmia refers to sudden, irregular patterns in the heart rhythm
that may cause the heart to stop beating completely or slow down to the point
where life is unsustainable. This must be treated immediately to avoid sudden
cardiac death. The only way to reestablish a normal rhythm is to apply a strong
electrical shock, a process called defibrillation. During defibrillation extracellular
currents are injected via electrodes to establish an extracellular potential dis-
tribution which acts to reduce the complexity of the activity. This is achieved
either by extinguishing all electrical activity, i.e. the entire tissue returns to its
quiescent state, or gradients in V,,, are smoothed out to drive the system to a less
heterogeneous state which reduces the likelihood of triggering new wavefronts
via “break” mechanisms when switching off the applied field. In the context of
optimally control cardiac arrhythmias, it is essential to determine the control
response to an applied electric field as well as the optimal extracellular current
density that acts to damp gradients of transmembrane voltage in the system.
The main objective of this work is the development and computer implemen-
tation of an efficient numerical technique to solve optimal control problems for
monodomain equations.

The optimal control approach is based on minimizing a properly chosen cost
functional J(v, I.) depending on the extracellular current /. as input and on the
transmembrane potential v as one of the state variables. First- and second-order
derivatives of the reduced cost are derived using a Lagrangian based formalism.



Numerical technique for solving the optimal control problems requires combining
a discretization technique with an optimization method. A traditional method to
solve such problems is by using the optimize before discretize approach. In this
case one expresses the continuous optimality system first before discretizing it. A
second approach is to first discretize the differential equations and the cost and
to solve the resulting nonlinear programming method with an efficient method.
Clearly it is desirable to follow an approach were these two strategies commute
or at least lead to very similar results. For the problem class under consideration
here we carried out a detailed comparison for the 1D case in Nagaiah et.al [[4].
In this present work we stick to the optimize before discretize technique.

In the numerical simulations there are many important factors which put
a high demand on the computing time. These include different length and
time scales of the reaction terms, strong nonlinearities caused by ionic currents,
anisotropy related to the fiber orientation, and rapid changes of the potentials
(@, 4] . We have chosen the finite element method for the spatial and higher
order linearly implicit Runge-Kutta time stepping methods for the temporal dis-
cretization. The mesh has to be adapted, during the primal and dual solves, at
each time step in all regions in order to preserve the accuracy of the solution.
To control the spatial discretization error, a-posteriori error estimators are com-
puted to steer the mesh improvement by refinement and coarsening in each time
step during the primal and dual solves in optimization algorithm. The adaptivity
strategy is based on the ZZ-error estimator [P8] in our work. Various other forms
of adaptive mesh refinement techniques were applied successfully for excitable
media by varying the spatial or temporal resolution or both [B, @, [, EI]. At
present our numerical experiments are based on allowing adaptivity in the spa-
tial grids, while the time step is kept constant during the primal and dual solves.
More details will be given in subsection E=3. Our numerical realization is based
on the public domain software package DUNE |[I].

The article is organized as follows: in the next section the governing equations
for the action potential and the behavior of the ionic current variables using
ionic models are described. In section B the control problem is posed for the
monodomain equations and the first and second order derivatives of the reduced
cost are characterized. Also a brief description of a Newton’s algorithm is given.
The numerical approach for solving the primal and the adjoint state equations
is presented in section . Numerical results for two test cases are discussed in
section H. Finally concluding remarks are given.

2 The governing equations

The monodomain model consists in a parabolic reaction-diffusion equation for
the transmembrane potential v coupled with a system of ODEs for the gating
variables. We set Q = Q x [0, T], where Q C R?, d = 2, denotes the cardiac tissue



sample domain with Lipschitz boundary 9€). The system is given by

% = V-a,Vv— Lign(v,w)+ l(x,t) inQ (1)
ow .
E - g(v,w) m Q7 (2)

where v : () — R is the transmembrane voltage, w : () — R"™ represents the
ionic current variables, &; : 8 — R%9 is the intracellular conductivity tensors,
I.(x,t) is an extracellular current density stimulus, I;,,(v,w) is the current den-
sity flowing through the ionic channels and the function g(v,w) determines the
evolution of the gating variables.. The above mentioned Eq. (O) is a parabolic
type equation and Eq. (B) is a set of ordinary differential equations which can be
solved independently for each node.

In the absence of a conductive bath both intracellular and extracellular do-
mains are electrically isolated along the tissue boundaries and homogeneous Neu-
mann boundary conditions are appropriate to reflect this fact. The initial values
of transmembrane voltage and ion current variables are prescribed by given con-
stant values. Here the initial and boundary conditions are chosen as

aVu-n = 0 on 9Q =00 x [0,T] (3)
v(x,0) = vy and w(x,0) =wy on £, (4)

where vy : € — R? denotes the initial transmembrane potential and wy : Q — R¢
is the initial ionic current variables at time ¢ = 0.

Ionic model

In our numerical experiments, we considered a phenomenological model, namely
a variant of the Fitzhugh-Nagumo (FHN) model [P0}, which is constructed to
reproduce the macroscopically observed behavior of the cells. The ionic activity
is modeled by an ordinary differential equations. In this case, the I;,, (v, w) term
is a cubic polynomial function in terms of the transmembrane potential v and
linear in terms of the gating variable w:

Tion(v, w) = Go(1 — v%)(l - Uﬁp) +ow, (5)
g(v,w) = n2<§p — ) (6)

where G, 11,12, 13 are positive real coefficients, vy, is a threshold potential and v,
the peak potential.



3 Optimal control problem

In this section we specify the optimal control problem that is under consideration.
We consider

min J(v, I.),

(P) (7)
e(v,w,l.) =0 in @,

where v and w are the state variables, and [, is the control variable of the optimal
control problem. Here Q = Q x (0,7") denotes the space-time cylinder and the
coupled systems of PDE and ODE constraints is expressed as e(v,w, I.) = 0,
where
V- (6:Vv) = 2 — Lipn(v,w) + L(z,1)
e(v,w,I.) = . (8)
ow

L —g(v,w)

The initial conditions in (@) are explicitly enforced and the homogenous Neumann
boundary condition in (B) will be realized in the variational setting of the FE
discretization. We refrain here from entering a function space setting. This
requires independent investigations which will be reported elsewhere.

The control variable I, is chosen such that it is nontrivial only on the con-
trol domain Q.,, of Q, ie. I, : Qun X (0,7) — R, and I, is extended by zero
on (2 \ Qeon) x (0,7). It will not be necessary to introduce extra notation for
this purpose. It can be argued that for each I, € L*((0,T) X Qeon; R) there ex-
ists a unique (v, w) € L*(0,T; H(Q))NC(0,T; L*(Q))NLYQ) x L*(0, T; H ()N
C(0, T; L*()) with uy, wy € L2(0, T; HY(Q)*+L3 (Q) such that e(v(1.), w(l,), ) =
0, see [@]. With v(I,) thus defined we introduce the reduced cost functional

J(I) = J(v(I.), I.). (9)

Next we turn to the choice of the cost functional. For this purpose we intro-
duce the observation domain Q. C 2. The control objective consists in damp-
ening out the excitation wave of the transmembrane voltage €2,,,. We therefore

set
I 2 2
J(v, 1) = 5 lv — 2] dQups + @ |Ie|* dQ¢on | dt,  (10)
0 Qobs con

where « is the weight of the cost of the control, which is used to determine the
influence of the corresponding components, €2, is the observation domain. In
this paper the numerical experiments are conducted with z = 0 which corresponds
to the desire to dampen the wave in €2,,s. The inclusion of the tracking type term
z in the cost functional serves code-validation purposes, see Nagaiah et al. [I3]
for more numerical results.



To derive the first derivative of the reduced cost we use the Lagrange func-
tional

T ow
‘C(U?w?[eap?q) = J(vaje)+ -, ('U,'LU> q dQ2dt,
o Jo \ Ot

T ov
+ / / (V VU — — — Ligp(v,w) + Ie) p dQ dt.
o Ja ot

The first order optimality system is obtained by formally setting the partial
derivatives of £ equal to 0. We find

Ev : Ulﬂobs +V. szp + pr — (Iion)vp — Gvq = Oa (11)
Ly : —(Lion)wp — @ — Gu(v,w)qg =0, (12)

where the subscripts v and w denote the partial derivatives with respect to these
variables. Further we obtain the

terminal conditions: p(T) =0 ¢(7T) =0, (13)
boundary conditions: ;Vp-n=0 on 0Q, (14)
and the optimality condition: £, : al.+p=0, on Q.,. (15)

The first order necessary optimality conditions consist of the coupled system of
primal equations (IM2), adjoint equations (IIHIA), together with initial conditions
(@), terminal conditions (I3) and the optimality condition (I3).

3.1 Newton’s method

In this subsection, we present the inexact Newton method for solving the reduced
optimization problem. In our case it is infeasible to set up the Hessian matrix.
Rather we explain the necessary steps for the computation of “the action of the
Hessian of the reduced cost” on a given vector. Once this is achieved approximate
Hessian directions of appropriately discretized problems can be computed. This
procedure was advocated e.g. in [H]|, Hinze et.al [[M] for solving optimization
problem governed by evolutionary partial differential equations.

We use the Lagrangian functional based approach to derive the second deriva-
tive of the reduced cost functional. Proceeding in formal terms it can be expressed
as follows [I[:

J' = Lo +6u*Lor, + Liu0u~+ 0u*Lyou,

where du = —e;'es,. In this case e;' is only formal since it requires to invert

a differential operator. Here, for brevity, we denote u = (v,w) and y = (u, I..).
We now introduce the matrix operator 7'(1.) and the second derivative of L as

follows,
_6;1615 _ Euu ['uIe
T(x) = ( Id; ) and L, = ( Liw Lir )



where Id;, is the identity operator in the control space. From these quantities the
representation of the Hessian can be constructed by using the following formula

JNUe) = T*(Ie>£ny([e>a (16)
where T%(I.) is the adjoint operator to T'(I.). Now we carry out these steps for
the calculation of the second derivative of the reduced cost functional associated
to the monodomain problem. In this process we have to evaluate the first deriva-
tives, i.e. the sensitivities. We calculate these derivatives w.r.t state and control
variables as follows:

A5 _ _II I
(00,0, 0L) = (V (a;Vév) — vy — [Lion]pdv [wn]wéw) (17)

ow — Z—idv + nanzdw

and ey (01,) = ( (5(1).6 ) (18)
where
G
[Lion], = [(ver, — v)(vy — V) — v(v, — V) — V(vy, — V)] + Mw,
UpUth
[[ion]w = mv.

The computation of the second derivative operator £ applied to the vector
(0v, dw, d1.) can be expressed as

5U|Qobs - [Iion]vvp - UléwP
Ly, (0v,0w,01.) = —n10vp (19)
adl
where [Iipn]pw = 2G v v — (v, —v) — (v, — v)].
VpUth,

We note that in order to obtain the action of the Hessian on a given vector,
one linearized primal problem and one linearized adjoint equation have to be
solved. The basic steps to compute the action of the Hessian are summarized
next.

1. Compute the first derivative .J' (u") = al.(z,t) + p, which requires one
primal and one dual solve.

2. In each step iteratively evaluate the action of J (u™) on 0™ which is done
using the following sequence of computations.

(a) solve the linearized primal equation for dv, dw using 5%

V- (OTlV(S’U) — (51),5 + [[ion]v ov + [Iion]w 5'[[]) . —5]5
ow; — Z—i&) + Mamzow N 0



(b) evaluate (21, 22) := Ly, (6v, dw, 61.) from eq. (IU)

(c) solve the adjoint equation with (z1, 2z2) as r.h.s i.e.

( V- (fiVun + w1, — []ion]vwl - Z_;UJ? > . ( <1 >

—[Lion|ww1 — wa, + Manzws B

d) finally compute the action of J”(u*) on 61% i.e —wy + adl,
( y c

In this way one can compute the action of the Hessian of the reduced cost.
Consider the system of step (7) in Algorithm O, given in the Appendix. Its
dimension is that of the control space dimension. To evaluate this step one must
use an iterative method, e.g. a linear conjugate gradient method.

4 Numerical discretization

For the approximation of the optimality system (I-2) and (I-IA) we use a finite
element method for the spatial discretization. This results in an initial value
problem for a system of ordinary differential equations. The time discretization
is based on an explicit Euler method for the ODE equations and a linearly implicit
Runge-Kutta method for the parabolic equations.

4.1 Space discretization using FEM

In this subsection we give a brief description of the piecewise linear finite element
discretization to solve the monodomain equations. We commence with the primal
problem in variational form: find v : [0,7] — H'(Q) and w : [0,T] — L*(Q) such
that for a.e. t € (0,7)

(V- 5,Vv, ) = <<% + /inon(v,w) - Ie) ,g0> for all p € HY(Q)  (20)

(Gie) = ot

Let V;, € H'(2) be the finite dimensional subspace of piecewise linear basis
functions with respect to the spatial grid.

The approximate solution v is expressed in the form v(t) = Zio viw; where
{w;}¥, denote the basis functions. This results in the following system of non-
linear ordinary differential equations:



ME = —A;v — Lign(v,w) + I, (21)
T —glv.w). (22)
v(0)=0, w(0)=0, (23)

where A; is the stiffness and M is the mass matrix, and I;o, and I, are vectors
defined by Lion = {(Zion, w;) }2L, and I, = {(I,, wj>}§V:1, respectively.

J=1

Space discretization of dual problem

We use an analogous derivation as for the primal problem and obtain the following
semi-discrete form of the dual equations:

0
Ma_lt) = —MobSV -+ A,p + M(Lon)vp + ngv s (24)
0
a—(tl = —gg(v, w)q - ([ion)wp> (25)
p(T)=0, q(T)=0, (26)

where M, is a mass matrix in observation domain.

To solve the semi-discretized primal and the dual problems (EI-23) and (22-
28), we first approximate the ODE system solution at the current time step.
This gives the ionic current variable update w while solving the primal problem,
which is subsequently used to update the equation (2I). Analogously, the adjoint
varible update ¢ is used in the equation (E4). In our numerical computations the
primal problem is solved by decoupling the system as follows:

step-1:  w™™ =w" + Atg(v*,w"), (27)
step-2 : 1\/_[8(;; = —Aiv" — (Tign(vV™, W) — L) . (28)

Analogously, the dual problem is decoupled as follows:

step-1: q* = (1 — At nans)g™™ + At v Hp™Ht, (29)

a n
step—2 . M ; = — (MObSVn+1 - Aipn) + M(Lon)vpn + gqun+1 . (30)

4.2 Time discretization using linearly implicit RK meth-
ods

In this subsection we give a brief description of the time discretization for solv-
ing the systems of ordinary differential equations which we now express in the

9



following form:

Ou o .0
ME = F(u), u(t’) =u". (31)

To solve (B), we introduce discrete steps in the time interval [0, T7):
0=t%¢,. .. t"=T,

which are not necessarily equidistant. We further set 7° = t**1 — ¢* and denote
by u’ the numerical solution at time t'. For time discretization linearly implicit
Runge-Kutta methods, specifically Rosenbrock methods, are used. These belong
to a large class of methods which try to avoid the nonlinear system and replace it
by a sequence of linear ones. For the construction of the Jacobian matrix we used
exact derivatives of the vector F(u). For our computations the ROS2 method
was employed which has two internal stages to solve in each iteration see [[].
After the time discretization one ends up with a system of linear equations. For
solving this linear system the BICGSTAB method with ILU preconditioning is
used.

4.3 Spatial grid adaptivity

The adaptive mesh refinement(AMR) algorithm uses a hierarchy of properly
nested levels. It automatically refines or coarsens the mesh to achieve a solu-
tion having a specified accuracy in an optimal fashion. Here we used the AMR
technique based on the Z? error indicator of Zienkiewicz and Zhu [28]. See also
[23] for a more detailed description of error estimators. The full spatial and tem-
poral discretization leads to an approximate solution v} with v%(-,¢;) € Vj, at
the discrete time points ¢;, © = 0,..., M where the time integration scheme is
evaluated. To recall the Z2 error indicator, let v; be the exact solution of the
given problem.

7?77 in v; what is the 7, vt??777

We denote by W), the space of all piecewise linear vector-fields and set X}, :=
W,NC(£2,R?). Denote by v and vy, the unique solution of problems (I ) and (20),
respectively. In this case [[Gvy — Vupl| 27y can be used as an error estimator,
where Gvy, is an easily computable approximation of Vuy,.

Let Guy, € X, be the (-, -),-projection of Vuy, onto Xj,. It can computed by a
local averaging of Vuyp(x;) as follows

G’Uh(Xi) = Z g| V/Uh|T(Xi) . (32)

TCD, | Dal

Here, D, is the union of the triangles having = as a vertex. We finally set the
error indicator locally and globally respectively as follows

nzr = ||Gun — VUh||L2(T) g (33)

10



and

1/2
Nz = {Z U%,T} - (34)

TeT,

The Z? indicator 7zr is an estimate for [|[Vvj, (-, ;) — Vo'(-, )| 12 (g, see Verfiirth
(23] for complete details. Let \(T") € Ny be the refinement level of triangle T' € T,
Amaz € N be a given maximum refinement level, and ¢1,...,¢,,,,, be given
real numbers satisfying 0 < ¢1... < ¢y,.... We set oo = 0 and ¢, = oc.
With the choice of ¢4,..., ¢y, . one controls the structure of the grid. If we set

¢1 = ...= ¢y, =0 this leads to a uniform triangulation of level \,,,.. We set
¢1 =...= ¢x,.. = 1072 in our numerical computations. Here we used the scaled
indicator

¢r =122/ (35)

Suppose that an initial coarse triangular grid is constructed using a grid gen-
erator. A triangle T' is marked for

L. refinement if ¢ > drry and A(T) <@ for i =0,..., Apaa,

2. coarsening if ¢ < % and A(T) >i fori=0,..., \naz,

where ¢r is calculated according to Eq. (B3).

So far we explained adaptivity for the direct problem. Let us turn to the
optimal control problem next. One prominent approach in the literature is the
dual weighted residual methodology as presented in [B] as a technique to derive a
posteriori error estimates for both time dependent and stationary problems gov-
erned by partial differential equations. Another approach uses grid adaptivity
based on a posteriori error estimate of the cost functional [B, B]. In our compu-
tational work we proceeded as follows. We used AMR in space only and assume
that, during the optimization iterations, the control variable lives always on the
coarse grid dimension where we start the simulations. This can be related to the
fact that in practice in is difficult to manipulate the control mechanism spatially.
The initial coarse grid, denoted by Ly is constructed by a grid generator. Finer
levels L; for ¢ > 0 are constructed recursively from the coarser levels L; ;. The
tolerance for spatial grid refinement is set tol, = 1072. The Z? error estimator
is called for every 3 time intervals during the primal solve. It adjusts the spatial
grid by refining and coarsening, depending on the estimated spatial solution error
of the elements. Accordingly, the control variable is interpolated based on the
new grid construction. We used the same strategy to solve to adjoint problem
with the spatial grid being adjusted according to the adjoint solution. In the
Newton optimization algorithm, to evaluate the matrix-vector product in each
iteration of the inner loop, see algorithm (M), the coarse grid dimension is used
to up-date the control solution. Thus our Newton direction is an inexact one: it

11



is determined from solving the Newton system on the coarse grid iteratively up
to a certain tolerance tolney,. We set tolyey, = 10_3|j/(]e,k)|. Since |j’(]e,k)| — 0
in case of convergence to a critical point we can expect to obtain superlinear
convergence of the overall numerical optimization strategy. Of course, this can
be achieved only if function and gradient evaluations are sufficiently accurate.

For our numerical experiments, we developed an optimization code based on
the public domain software package DUNE [0.

5 Numerical results

In this section we present numerical results based on the adaptive and second
order methods. We shall see that the proposed methodology is capable of damp-
ening an excitation wave of the transmembrane potential by properly applying
an extracellular potential, even if the control domain is relatively small. The
numerical experiments were carried out using different static grid sizes and as
well as the AMR technique. Here we consider 4 msec of simulation time. The
computational domain 2 = [0,1] x [0,1] and various relevant subdomains are
depicted in Figure M. The excitation domain and control domains are €).,; and
Qeon = Qeont U Qeonz. Further 41, Q9 are neighborhoods of 2¢,1, eon2 and the
observation domain is Qg = Q\ (251 U Qfa).

In the computations equidistant time steps are used. For the spatial adaptive
grid refinement, a uniform 60 x 60 triangular grid is considered as coarse grid
and the subsequent multi level grids are constructed based on the primal or
adjoint solution. In simulations the weight of the cost of the control is fixed to be
« =1-10"% and the iterations were terminated when ||VJi|| < 1072(1+ |J]),
is satisfied or the difference between two successive optimization iterations of cost
functional minimization value is less than 1073, If this condition is not met within
the prescribed iterations, let us say 100 optimization iterations, then we terminate
the simulations. The line search algorithm starts with initial step length @ = 1
for the inexact Newton method and is reduced by a factor of 2 for subsequent
rejected step sizes, see Nocedal and Wright [[@]. For the computational set up, we
considered the domains Q,; = [0.498,0.502] x [0.498,0.504], Qeon1 = [0.3,0.4] x
0.45,0.55], Qeon2 = [0.6,0.7] x [0.45,0.55], 2p; = [0.28,0.42] x [0.43,0.57] and
Qo = [0.58,0.72] x [0.43,0.57] .

Parameters used in the simulation

The following parameter values [@] are used for our numerical experiments: o; =
31073 Q7 tem ™, 0y = 3.1525-1071 Q~tem ™ G = 1.5 mS/em?, vy, = 13 mV, Up =
100 mV, my = 4.4 mS/em?, 9, = 0.012, n3 = 1.

12
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Figure 1: Control and excitation region at the cardiac domain

Test case 1

First we discuss the results based on different static grid sizes and the AMR grid.
We use a 60 x 60 triangular grid, consisting of 13,924 elements and 7,081 nodal
points, an 80 x 80 triangular grid, consisting of 24,964 elements and 12,641 nodal
points, a 100 x 100 triangular grid, consisting of 40,000 elements and 20,201 nodal
points, and AMR coarse grid which is a 60 x 60 triangular grid.

The corresponding L? norms of the gradients of the cost functional and the
minimum values of the cost functional themselves are depicted in Figure B. A
logarithmic scale is considered for the presentation of L? norms of the gradients
of the cost functional . As expected for a Newton method, the optimal solutions
are obtained within a rather small number of iterations. For each one of the
respective grids convergence was obtained within 8 or 9 iterations. The values
of the two additive terms of the cost, 1 [||V;,[|*dzdt and § [ ||L.||° dzdt, are
depicted in Figure B. Note that the two terms are of approximately the same
order of magnitude. We observed that the control action has a strong impact at
the beginning of iterations where the excitation of the wave front is dampened
out and decreases with time, see Figure B.

13
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Figure 2: The norm of the gradient and minimum value of the cost functional
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Table 1: Computational time and an average inner CG iterations in Newton’s

optimization iterations

grids CPU time primal dual opt. | avg inner
solves(s) | solves(s) | solves(s) | CG iters

60 x 60 58min Hlsec 93.64 87.24 | 3264.63 15.7
80 x 80 | 2h 2min H4sec 197.03 180.46 | 6813.89 17.7
100 x 100 | 3h 13min 14sec 323.89 292.27 | 10759.4 20
AMR grid | 1h 13min 19sec 598.52 551.26 | 3187.07 17

algorithm are presented for all grids.

The total CPU time for solving the optimization problem, as well as the CPU
time for all primal solves, all dual solves, and for all setup and evaluation times
of the Hessian steps is given in the first 5 columns of Table M. The last column
contains the average number of CG-steps required for obtaining the inexact New-
ton algorithm. We note that the computational time for the gradient of the cost,
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which requires one primal and one dual solve per iteration, is much cheaper than
updating the control variable on the basis of second order information. For all
grids, updating the control variable on the basis of the second order system, needs
approximately 18 times more CPU time than computing the first derivative. This
is the expensive step in our calculations.

However, as we experienced in our earlier work, minimization on the basis
of only first order information requires at least several hundred iterations before
comparable accuracy can be achieved. Let us also mention that additional New-
ton steps, beyond those which are documented, allow to further decrease V.J
which we could not observe with the nonlinear CG algorithm [[3].

The AMR technique takes 598 seconds to solve the primal problem, out of
which it needs 96.87 seconds for grid adaption. For the dual solve the grid
adaption process takes 81.96 seconds. We can observe that AMR takes less overall
CPU time and achieves results comparable to the 100 x 100 grid. Obviously the
AMR technique shows a good improvement over the static grids for the current
problem.

60 x 60 80 x 80 100 x 100 AMR grid
V11| e | IV B | IVl e | 9| e
59.9128 — | 62.5567 — | 59.3120 — | 66.5305 -

27.9293 | 0.4661 | 25.8370 | 0.4130 | 18.9710 | 0.3199 | 30.5083 | 0.4586
19.8697 | 0.7114 | 18.8618 | 0.7300 | 5.0035 | 0.2637 | 5.8358 | 0.1913
3.40178 | 0.1712 | 3.20784 | 0.1700 | 2.64203 | 0.5280 | 3.07498 | 0.5269
3.47448 | 1.0213 | 2.62626 | 0.8187 | 2.31805 | 0.8774 | 0.67403 | 0.2192
1.60263 | 0.4612 | 1.23709 | 0.4710 | 1.95699 | 0.8442 | 0.05105 | 0.0758
0.31174 | 0.1945 | 0.22913 | 0.1852 | 0.18502 | 0.0945 | 0.00180 | 0.0353
0.02236 | 0.0717 | 0.01267 | 0.0553 | 0.00700 | 0.0378 | 0.00010 | 0.0556
0.00050 | 0.0226 | 0.00024 | 0.0191 - - - -

Table 2: Optimization iterations, norm of gradient of cost functional and order
of convergence for the different grid constructions are presented using inexact
Newton’s algorithm.

Table B confirms superlinear convergence of the inexact Newton method for
all grid constructions at the end of iterations. The line search algorithm takes
small step lengths during the initial iterations and full step lengths after 3 or 4
iterations which leads to superlinear convergence.

The 2D contour snap shots of the uncontrolled solution, and of the optimally
controlled solutions are shown in Figures B, and B at times 0.3 msec, 2 msec and 4
msec for the 100 x 100 mesh. We can see that the uncontrolled wave front of the
transmembrane voltage spreads almost over the entire domain during the time
interval from 0 msec to 4 msec, see in Figure B. The corresponding controlled
action potential is first slowly dampened at 0.3 msec and is almost completely
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'IDI DDD IDI DDD IDI DDD
75 7500 75 7500 75 7500
50.5000 50.5000 50.5000
25.2500 25.2500 25.2500

0.00000 0.00000 0.00000

Figure 4: Uncontrolled solution (V;,) at 0.3 msec, 2 msec and 4 msec of simulation
time respectively.
V_m V_m
'ID'ID I'ID'I.D I'ID'I.D

75 75 75.75 75.75

25.25 25.25 25.25
L

0.000 0.000 0.000

Figure 5: Controlled solution ((V,)op) at 0.3 msec, 2 msec and 4 msec of simu-
lation time respectively.

I_e I_e I_e
I 18.2064 I 18.2064 I 18.2064
-5237.0C -5237.0C -5237.0C
-10492.2 -10492.2 -10492.2
-15747.¢ -15747.L -15747.¢
L L. L
-21002.¢ -21002.¢ -21002.¢

Figure 6: Controlled (I.) at 0.3 msec, 2 msec and 4 msec of simulation time
respectively.

damped at 4 msec. The control action has a tremendous effect on the action
potential at the beginning to control and dampens the excitation wave It has
much less effect at 4 msec time, see Figure B. The AMR grid of the uncontrolled
solution can be seen in Figure @. The refinement/coarsening strategy follows the
interface of the wave propagation. For the first optimization iteration the fine
grid for the primal solve consists of 34,038 elements and 17,138 number of nodal
points. At the last optimization iteration the fine grid consists of 21,700 number of
elements and 10,969 number of nodes where the maximum level of refinement is 5.
The AMR grids corresponding to the optimal state solution are shown in Figure B.
We can note that the grid at time ¢ = 4 msec is equivalent to the coarse grid, which
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elements = 18,462; nodes = 9,350

50.50

25.25

0.000

elements = 29,184; nodes = 14,711

V_m
I 101.0

75.75

50.50

25.25

0.000

elements = 42,464; nodes = 21,351

vV_m
I 101.0

75.75

50.50

25.25

0.000

Figure 7: Uncontrolled solution (V;,,) grid view at 0.3 msec, 2 msec and 4 msec
of simulation time respectively for AMR technique.
elements = 16,466; nodes = 8,352 V_m

elements = 20,752; nodes = 10,492 y elements = 13,924; nodes = 7,081 v

Figure 8: Controlled solution (V;,) grid view at 0.3 msec, 2 msec and 4 msec of
simulation time respectively for AMR technique.

we considered as the level-0 grid. This is consistent with the fact that there is no
further wave propagation within the domain. Finally, the presented numerical
results evidently show that the excitation wave propagation is dampened out by
properly adjusting the extracellular potential using the optimization algorithm.
Further, the AMR method shows a good computational improvement over the
static grids.

Test case 2

In this test case the placement of control domain is changed and isotropic con-
ductivity tensors are considered. With respect to the control domains the obser-
vation domains are chosen in an asymmetric manner. More specifically, (2.,,1 =
[0.3,0.4]x[0.45,0.55], Qeona = [0.5,0.6]x[0.53, 0.6], Qpps1 = [0.25,0.45]x[0.40, 0.60]
and Qupso = [0.45,0.65] x [0.47,0.65]. In this test case the weight of the cost of
the control is reduced to o = 5 - 10~ to achieve the dampening of exciting wave
propagation.

The L? norms of the gradient and the minimum value of the cost functional
are depicted in Figure B for different grid constructions. For all static grids 7
optimization iterations are required, while the AMR method takes 6 iterations.
In this case the AMR method shows a clear improvement over the static grids
in terms of fast converging to the optimal solution. The corresponding additive
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values of 1 [ ||V;,||” dzdt and & [ ||I.|* dvdt are depicted in Figure IO.

We observed that the control term has an especially strong impact during
the first minimization iterations, during which the excitation of the wave front is
dampened out. This can be seen on the right hand side of Figure .

10" 45 T T T T :
—+- 60x60 ~ b -60X60
—=—80x80
——100x100
——AMR grid

10° 1

10

il

\
~ \
107k 250\

min J(Vm,le)
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=
o

107

3 4 5
optimization iterations

4
optimization iterations

Figure 9: The norm of the gradient and minimum value of the cost functional
are shown on left and right respectively for 7' = 4 msec of simulation time.
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Figure 10: The minimum value of [ |V,,|?dzdt and [ |I.|*dzdt are on left and
right respectively for 7" = 4 msec of simulation time.

2D contour snap shots of the uncontrolled solution and the optimally con-
trolled solution are shown in Figures [, and IA at times 0.3 msec, 2 msec and
4 msec the 100 x 100 mesh. We can see that the uncontrolled wave front of
the transmembrane voltage spreads uniformly in the x- and y-directions over the
domain during the time interval from 0 msec to 4 msec, see in Figure . In con-
trast to the Test case (1), we can observe that the controlled action potential is
dampened much more rapidly, which is due to the isotropic conductivity tensors,
oy = 0i = 3- 1072 and the fact that the control cost parameter is reduced by a
factor of 2. Also observe that the control domain that is closer to the excitation
domain has much more effect than the other one. We also carried out an experi-
ment with the isotropic conductivity tensor of the form o;; = 0, = 3-107%. In this
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case the excitation wave is not dampened out by the chosen control configuration,
due to the domination of the reaction part.

V_m
101.000

I75.7500
50.5000
25.2500

0.00000

V_m

I 101.000
75.7500
50.5000
25.2500

0.00000

0.00000

Figure 11: Uncontrolled solution (V;,,) at 0.3 msec, 2 msec and 4 msec of simula-

tion time respectively.
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50.50

25.25
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50.50 :
25.25 25.25
L. L.

Figure 12: Controlled solution ((V;,)op) at 0.3 msec, 2 msec and 4 msec of sim-

ulation time respectively.
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Figure 13: Controlled (/) at 0.3 msec, 2 msec and 4 msec of simulation time

respectively.

Again we can observe super-linear convergence of the optimization algorithm.

6 Conclusions

We discussed solution strategies based on the Newton method and adaptive grid
refinement strategies to solve optimal control of the action potential in cardiac
electrophysiology based on the monodomain model. The numerical results show

19



the capability of dampening the excitation wave propagation by properly applying
an extra cellular current as a control variable. The presented optimization algo-
rithm exhibits super linear convergence of the inexact Newton method. Moreover
the overall performance is more efficient when compared to first order methods,
see [[3]. The results motivate us to continue our investigations for the bidomain
model. Adaptive time- stepping should be considered to further save computa-
tional time. We also need to strive for more insight with respect to longer time
horizons, with more realistic geometries, and finer meshes.
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Optimization algorithm

Here is a brief outline of complete a Newton’s optimization algorithm, by utilizing
the spatial grid adaptivity during the primal and dual solves, which is used to
carry out numerical computations.
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Algorithm 1 Line search Newton-CG optimization algorithm.

1: primal variables: v, w.
2: dual variables : p,q.
3: repeat

4:

9:
10:

set v(0) := v%,w(0) := w’ and solve the primal problem to obtain v(t), w(t)
by utilizing the spatial grid adaptation during the intermediate time steps.

solve the dual problem for p(t),¢(t) using terminal conditions p(T") :=
0,¢(T) := 0 by utilizing the spatial grid adaptation during the intermediate
time steps.

update the gradient using the adjoint solution J = p+al,.

solve the system J'oI, =—J by linear conjugate gradient method.

set step length £, := 1.0 and compute optimal [, using backtracking
method by checking the strong Wolfe conditions, see [IH].

update I, , = I, + Brdl. using modified .

k<« FkE+1.

11: until HVJ]C”OO < 10_3(1 + |Jk’)
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