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Abstract. The novel concept of total generalized variation of a function w is introduced, and some of its essential
properties are proved. Differently from the bounded variation seminorm, the new concept involves
higher-order derivatives of u. Numerical examples illustrate the high quality of this functional as
a regularization term for mathematical imaging problems. In particular this functional selectively
regularizes on different regularity levels and, as a side effect, does not lead to a staircasing effect.
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1. Introduction. Most mathematical formulations of inverse problems and, in particular,
of mathematical imaging problems are cast in the form

(1.1) min F(u) + R(u),

where F represents the data fidelity and R the regularization term. If G denotes the forward
modeling operator, then the most common fidelity term is of the form

(12) Flu) = 3G (w) — =P,

where z stands for the possibly error-prone data and ||-|| denotes an appropriately chosen
Hilbertian norm. Similarly, the most frequently chosen regularization term is given by

(1.3) R(w) = Zlul’,

where « is the regularization parameter and | - | again denotes a Hilbertian norm or seminorm.
It is now becoming well accepted that the mathematical and computational simplicity of the
norm-of-squares terms must be put into perspective noting some serious shortcomings. If
the errors in the data contain outliers or if the error is of impulsive type, the fidelity terms
suggested by methods from robust statistics should be preferred over (1.2). Similarly (1.3)
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is frequently not an appropriate choice. In fact, the regularization term penalizes a certain
property of u, which is quantified in the choice of the norm |- |, and the natural proportionality
by which this should enter into R would be 1-homogeneous rather than quadratic.

In the present paper the focus will be on the choice of R. One of the early proposals for
a refined choice was given in [ROF]. It uses the bounded variation seminorm

(1.4) R(u) = a/Q | Dul,

where u is defined on the bounded domain @ C R? This choice is highly effective when
compared to, e.g., R(u) = § [, ]Vu\z dz if the data z to be reconstructed are piecewise
constant, since it is more apt to preserve corners and edges. The bounded variation seminorm,
however, also has some shortcomings, most notably the staircasing phenomenon. To briefly
explain this effect, we assume that G = I so that (1.1) describes the imaging denoising
problem. If the true image contains not only flat but also slanted regions, then the image
reconstructed on the basis of the bounded variation seminorm tends to be piecewise constant
(staircasing). This staircasing effect was rigorously established in [Ni, CNN, R}, for example.
For various other aspects on the topic of constructing appropriate regularization or filter
functionals in image reconstruction, we refer the reader to [SGGHL] and the references given
there.
In this paper we propose and analyze the regularization term of the form

(1.5) TGVE(u) =sup {/ udivf v dz | v € C¥(Q, Sym*(R?)),
Q
|divivllee < g, 1=0,...,k— 1},

where Sym” (RY) denotes the space of symmetric tensors of order k with arguments in R?, and
ay are fixed positive parameters. For the definition of the remaining quantities, we ask for the
reader’s patience until section 2. Suffice it to say at this moment that for k = 1, ag = 1 the
seminorm TGV¥ coincides with the bounded variation seminorm. We refer to TGVE as total
generalized bounded variation of order k with weight o € R¥. From the definition of TGV’;
it is immediately clear that it involves (generalized) derivatives of u of order ¢ = 1,...,k, and
that the kernel of TGV’; is the set of polynomials of degree less than k. Intuitively the total
generalized bounded variation further automatically balances the first to the kth derivatives
of u among themselves. It will be shown that TGV'; shares some properties of TV: It is also
rotationally invariant and for k = 2, the total generalized variation of the indicator function
of a smooth set Q' CC Q equals ag Perqy = a3 TV(xqr), where Perqs denotes the perimeter
of Q. Tt differs, however, for functions which are not piecewise constant.

As a further preview we point out that in dimension 1, with =10, L[, k¥ = 2, ag, a1 > 0,
we have for

2
u(x) = Zpi(x)XQw with pz(x) = a;x + b;,
i=1

for each a1, az,b1,by € R and Q1 =10, ¢, Q2 = ¢, 1] that
TGV (u) = ailpa(c) = pi(e)] + aolpi(c) = ph(e)],
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provided that the jump point ¢ is not near the boundary, i.e., ¢ € [ag/a1, L — ap/c1]. In
particular, TGVi(u) does not penalize the derivative of order [ = 0,1 unless it jumps at c.

As already mentioned, our motivation for studying TGV?(u) is based on the fact that it
involves and balances higher-order derivatives of u. As a consequence, it reduces the stair-
casing effect of the bounded variation functional. This will be demonstrated in our numerical
experiments. The use of higher-order derivatives with the aim of reducing staircasing is not
new. In [CL] the infimal-convolution functional

min / V| + a|V(Vus)| da
ul1tus=u Q

was proposed and proved to be practically efficient, eliminating the staircasing effect, for

denoising problems with images which contain various grey levels as well as edges and corners.

This idea was followed in a modified form in [CEP], where the regularization term is of the

form

min /|Vu1|—|—oz|AuQ|d:E;
Q

ul1tus=u

i.e., the second derivative is replaced by the Laplacian, and a dual method for its numerical
realization is derived.
A different functional was proposed and tested in [CMM]. It is given by

/Qyw 4 a®(|Vu]) (£(w)? de,

where ® is a real-valued function that reflects the presence of edges in the sense that its value
approaches 0 when the gradient |V (u)| is large, and £(u) is an elliptic operator. For this choice
of regularization functional the absence of the staircasing effect was verified in [DFLM]. In
[PS] regularization terms of the form

Y

R(u) = /Q DV ()

where [, |DV'~!(u)| denotes the total variation of the (I — 1)th derivative of u € W' =t1,
were considered, and special structures of minimizers of the resulting problems (1.1) were
investigated. Higher-order regularization functionals in the discrete setting which are related
to our computations for the second-order case were further proposed and tested in [SS].

As we shall see in section 3, even for the case k = 2 the proposed functional TGVI; does not
agree with those regularization functionals which were considered earlier in the literature. In
particular, although convex, it is structurally different from any infimal-convolution functional,
especially the approaches of [CL, CEP].

Let us give a brief outline of the following sections. Section 2 contains a compact treatise
of tensor and, in particular, symmetric tensor analysis in a manner that is useful for the
variational analysis context. The definition of total generalized variation norms and some
of their basic properties are given in section 3. Based on Fenchel duality, an equivalent
description of TGVI;(U) is derived for w sufficiently regular. Moreover, the relationship to an
appropriately defined k-fold infimal convolution is obtained. A subsection is devoted to the
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special case k = 2. The description of the numerical procedure that was employed, as well
as carefully selected numerical denoising experiments, is contained in section 4. Appendix A
contains some basic results involving symmetric k-tensor fields.

2. Spaces of symmetric tensor fields. This section is mainly devoted to the introduction
of the notions we are going to utilize in the main parts of this article. For many of the
considerations which are going to follow, the concept of symmetric tensor fields plays a central
role. Therefore, we give a rather extensive introduction to make this paper more self-contained
and also for the convenience for those readers who are familiar with tensor analysis. Most of
the results, although scattered in several chapters, can also be found in the books [BG, S].

We restrict ourselves mainly to a general introduction of symmetric tensor fields. Some
more specific results can be found in Appendix A.

Throughout the paper, d > 1 denotes the dimension, which is typically 2 or 3, in applica-
tions. Let

TERY = {€: R x --- x RY - R | ¢ k-linear},
—_—————
k times
Sym*(R?) = {5 ‘RIx.-- xRS R ‘ ¢ k-linear and symmetric}
—_———

k times

be the vector space of k-tensors and symmetric k-tensors, respectively (actually, these are
spaces of (0, k)-tensors, but since we deal only with covariant vectors, we omit the 0). Here
€ € TF(R?) is called symmetric if &(ay,...,a;) = §(ar(rys -+ any) for all m € Sk, where Sy
denotes the permutation group of {1,...,k}.

The case k = 0 corresponds to scalar values; for £ = 1, Sym! (RY) = RY; and for k = 2,
Sym?(R%) = §9%4; ie., the space corresponds to symmetric matrices.

Note three basic operations for k-tensors. For ¢ € T*(RY) and n € T'(R?) the tensor
product

(E@n)(ar,...,apq) = (ar, ... ap)n(agsr, - - - akrr)

yields an element of T#+(RY). We define the trace tr(¢) € TF 2(RY) of £ € TF(R?) with
k> 2 by
d

tr(§)(as,...,ap—2) = ZE(% at,...,05-2,¢;),

i=1

where e; denotes the ith standard basis vector. This operation can be iterated; for example,
trl(€ @ n) for € € Sym* ! (R?) and n € Sym!(R%) yields a symmetric k-tensor. Every k-tensor
¢ € TF(RY) can be symmetrized by

1
(1§) (a1, ..., ax) = i Z E(An(rys -+ Qni))-

) TESK

The symmetrization is a projection, i.e., [||%¢ = ||
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The spaces T*(R?) and, consequently, Sym* (R?) will be equipped with the scalar product

fn:trk(f_@’n): Z g(eplw"7epk)77(ep17"'7epk)7

pe{l,...,d}*

&(ay,...,ax) =&(ag,...,a1),

leading canonically to the norm [£] = /£ - £. Again, this is the absolute value for k£ = 0, for
k = 1, this corresponds to the Euclidean norm in R? and in case k = 2, we can identify
¢ € Sym?(R?) with

1/2

i1 o & d
E= | =D g2 g
C1a - Ead i=1 i<j
The scalar product, moreover, possesses the property that the symmetrization of a k-tensor

becomes the orthogonal projection onto Sym*(R%). Indeed, for & € T#(R?) and 5 € Sym*(R?)
we have

1
|H§77 = H Z Z g(epﬂ(l)wu7ep7r(k))n(ep17'”7epk)

" mESK pefl,...,d}F

1
~ R Z (e epy) Z N(€prays s €prgy) =& 10-

Cpe{l,...d}k TES)
In order to describe the structure of Symk(Rd) as a vector space, it is useful to consider the
following relation o from p € {1,...,d}* to multi-indices 8 € N¢ U {0} with |3| = Zle Bi =

k, which denumerates the number of linearly independent symmetric tensors in Sym” (RY)
compared to all tensors of order k. It is given by

o {l,...,d}* 5N, o(p)=#{j | pj =i}

For each 8 € N with |3| = k, one can associate a p € {1,...,d}* by

o H(B); = min{m ‘ > B j},
n=1

which is only a right inverse of 0. In fact, there are several p for which o(p) = 8 with |3| = k.
The cardinality of the set containing those p is known to be

k! k!

TR Bl B

The multi-index notation reflects the fact that the order of elements does not matter for the
symmetry we are considering. It is known that a basis of Symk(}Rd) can be obtained by

#{p|olp) =B}

k
B e N 1B =k :eglar,...,ar) = Z Hajmj.

a(p)=8
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In this basis the representation of a symmetric tensor is given by

£E= Z Eses,  where €5 = E(epy, ..., ep,) and p = o 1(J).

BEN
|Bl=k

The tensor product of some £ € Sym* (R%) and n € Syml(Rd) can, moreover, be expressed
by
Eom = > (E@nsla®ey), (@M, = Eony.

BENT N4
8=k |v|=l

Hence, counting multiplicities, the I-trace of & € Sym**/(R?) and n € Sym'(R%) obeys

trl(g ® 77)6 = Z EB-{-J(p)UJ(p Z gﬁ—l—'y'r/’y

pe(L, .} =t !

for the basis coefficient associated with a 8 € N¢ with |3| = k. In particular, the scalar
product on Sym*(R?) is £ -n = > 181=k %fﬁnﬁ.

Next, let Q C R? be a fixed domain. We define symmetric k-tensor fields as mappings
£E:Q— Symk(Rd) and associate Lebesgue spaces with them:

LP(Q, Sym*(R%)) ={¢: Q- Sym*(R?) measurable, identified a.e. |||£||p < oo},
1/p
lelo = ([ leoP az) " for1<p<oe, el = essup o)l
BAS

Let the spaces LY (€2, Sym*(R%)) be defined through the usual modification:

loc

(22, Sym (Rd = {f Q= Symk(Rd) measurable, identified a.e. |
1€]qr ||, < oo for each Q' CC Q}

loc

with £|qr denoting the restriction of £ to €. Note that, since the vector norm in Sym” (RY) is
induced by a scalar product, the usual duality holds: LP(Q, Sym*(R%))* = LP"(Q2, Sym*(R?))
forl<p<ooand1l/p+1/p* =1

Moreover, denote by C(, Sym” (R4)) the usual space of continuous functions equipped
with || - ||oc as well as

C.(Q, Sym*(RY)) = {¢ eC
Co (€2, Sym* (RY)

) | supp& CC Q},
= C.(©, Sym*(R?)),

(@
)
where the closure is taken in C (2, Sym”*(R%)).

For spaces incorporating the (covariant) derivatives of a symmetric k-tensor field, the
description is somewhat more involved, since the [th derivative, provided that it exists, is, in

general, not symmetric with respect to all arguments. Nevertheless, it is a tensor field, for
which we will use the notation

(Vl X §)(x)(a1, e ,ak+l) = (le(az)(al, e ,al)) (al+1, e ,akH),
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where D¢ : Q — £} (Rd, Sym* (Rd)) denotes the Ith Fréchet derivative of ¢ and £} (X , Y) is
the space of [-linear and continuous mappings X! — Y.

As is also done in the mathematical theory of elasticity, for example, we are particularly
interested in symmetrization of the derivative, i.e.,

g\e) = I(V' &) = (I(Ve))'e.

The last identity follows from the following observation for differentiable mappings £ : Q2 —
Tk (RY):

o€
(V@& (a,...,akt1) /<;+1 > Z i D (Qr(2)s -+ s n(it1))

TESK41 =1
k+1

k+1zk' > Z Ui g (Gn(2)s - An(t1))

WGS}C+1 i=1
m(1)=j
k+1 d

a([ll)
k—i—lzz ]Zlﬁ' Z (9.7111 (aﬂ(2)7’”7a7r(k+1))

Jj=11=1 TESK41
m(1)=j

/<;+1 2 Z“

TESK41 =1

= IV e llé)a, - .., arsr)-

Spaces of continuously differentiable functions in this sense are defined as

a7‘(‘(2)7 s 7a7r(k+1))

CY(Q, Sym* (R?)) = {¢:Q— Sym*(R%)
| V™ ® ¢ continuous on ,m =0,...,1},
€l = max 1€ (E)l|oo-

) 7

We also use continuously differentiable symmetric k-tensor fields with compact support in €2:

CL(Q, Sym"(RY)) = {¢ € C*(Q, Sym*(RY)) | suppé cC Q},
C (9, Sym™(RY)) = () CL(Q, Sym* (RY)).
1>1
One has, moreover, the notion of [-divergence of a symmetric (k + [)-tensor field &:
sl ! l . .1 ! 8l€g+ﬁ/
(2.1) (divig) =tr'(V'®¢&), with (div'&)g = Z PRy

1 Oz
yeEND, |y|=l 7

where € N9, |B] = k. Note that this divergence operator corresponds to changing, via the
standard metric, some index to a contravariant vector, taking the covariant derivative and con-
tracting this index with the covariant index arising from differentiation. For the [-divergence,
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this procedure is simply iterated; hence div* div! ¢ = divF*" ¢ whenever the expression makes
sense. Let us point out, moreover, the special case k = 2 with the interpretation as symmetric

matrix: .
0&;; 9%&i;
leEZ_Z&EJ z:: Ox? +Z Ox;i0xj

For k = 0, this is the identity, while for k¥ = 1, the divergence for mappings 2 — Syml(}Rd)
coincides with the usual divergence.

With the definition of the divergence according to (2.1), the validity of a respective diver-
gence theorem can be verified.

Proposition 2.1. Let  be a bounded Lipschitz domain and let & € C*(€, SymFH1(R%)) be
a smooth (k + 1)-symmetric tensor field. Then, for each smooth symmetric k-tensor field
n: Q — Sym*(RY) we have

(2:2) /dwé ndx—/ £ i) dHi I (a /5 E(n

with v denoting the outer normal on 0f).

Proof. We just need to show that this statement corresponds to the usual integration by
parts. We use again that p € {1,...,d}* and i = 1,...,d yields each (p,i) € {1,...,d}**!, so
we can express o((p,i)) = o(p) + e;. Therefore, with integration by parts and remembering
that the symmetrization is the orthogonal projection onto the space of symmetric k-tensors,

/divg-ndx:/trk(tr(V®§)®7]) dx
Q Q

085 (p)+e;
= > ﬂ%(p) dx

. (pyi)E{1,...,d}k+1 Ox;

:/ Z Eo(p)+e:ViMlo(p) dH" ()
89

(p,i)e{1,..., YR+

Mo (p)
/ Z ga( (p,3) 8a:p dz

(pi)ed{l,...,d}r+1

/617@)%‘“ /5 (Ven d

- [ elmsy) de‘l(x)—/é'é’(n) da
o0 Q

yielding the desired identity. [ |

Remark 2.2. Tt is easy to see that if & has compact support in €2, then (2.2) holds with the
boundary term being zero and for arbitrary domains.

Having the device of integration by parts (2.2), we can define weak derivatives of symmetric
k-tensor fields.

Definition 2.3. For a given symmetric k-tensor field & € LIOC(Q,Symk(Rd)), a symmetric
(k +1)-tensor field n € Ll _(Q,Sym* ! (R?)) is called the Ith weak symmetrized derivative of
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& if the identity

/n-gdxz(—l)l/g.divlgdx
Q Q

is satisfied for all ¢ € CL(Q, Sym* ' (R9)). In this case, we denote EL(E) = 1.

Note again that since we test only with symmetric (k + [)-tensor fields, we are able to
determine only the symmetrized gradients. The Sobolev spaces associated with this notion of
derivative are then given by

H"(Q, Sym*(R?)) = {¢ € LP(Q, Sym"(R?))
| E™(€) € LP(Q, Sym* ™ (RY)),m = 0,...,1},

=U,...,

1 1/p
€]l = (Z ||5m(§)||§> for 1<p<oo, [[llieo= max [IE™(E)lloo,
m=0

HEP(Q, Sym* (RY)) = CL(Q, SymF(R?)) ¢ HY?(Q, Sym* (R?)).

3. Total generalized variation seminorms.

3.1. Basic properties. We are now able to formulate the definition of the total generalized
variation.

Definition 3.1. Let Q C R% be a domain, let k > 1, and let ag,...,a_1 > 0. Then, the
total generalized variation of order k with weight o for u € L%OC(Q) is defined as the value of
the functional

(3.1) TGVE(u) =sup {/ wdivF v dz | v € CF(Q, Sym* (RY)),
Q
|divl vl|oe < g, 1=0,... k- 1},

where the supremum admits the value co where the respective set is unbounded from above.
The space

BGV(Q) = {u e LY(Q) | TGVq(u) < oo}, lullpgys = llulli + TGV (u)

is called the space of functions of bounded generalized variation of order k with weight .
Remark 3.2. For k =1 and a > 0, we see that

TGV! (u) = asup {/ udive dz ‘ v € CH(, Sym! (RY)), [Jv]leo < 1}
Q
=aTV(u).

Thus one can indeed speak of a generalization of the total variation.
In the following, we will derive some basic properties of the total generalized variation.
Proposition 3.3. The following statements hold:
1. TGVE is a seminorm on the normed space BGVE(Q).
2. Foru e L%OC(Q), TGV’;(U) =0 if and only if u is a polynomial of degree less than k.
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3. For fized k and positive weights o, & € R¥, the seminorms TGV'; and TGVg are
equivalent.

4. TGV'; 1s rotationally invariant; i.e., for each orthonormal matriz O € and u €
BGVE(Q), we have that & € BGVE(OTQ) with TGVE (@) = TGVE (u), where (z) = u(Ox).

5. Forr >0 and u € BGVE(Q), we have, defining i(x) = u(rz), that & € BGVE (r~1Q)
with

Rdxd

TGVE (@) = r 4 TGVE(W), a5 = ogrt=

Proof. Let us begin by proving statement 1. Note that TGV can be interpreted as the
dual seminorm in which the set

(3.2) K5Q) = {divkv v € CH(Q, Sym*(RY)), [|diviv]je < a1, 1=0,... k- 1}
is taking the role of the “predual unit ball”:

(3.3) TGV (u) = sup /Quw dz.

wekKk

It is easy to see that K¥(Q) is balanced and convex. The former implies that TGV is
positively 1-homogeneous, while the latter yields its convexity and, consequently, the triangle
inequality. This proves the seminorm property as well as the assertion that BGVE(Q) is a
normed linear space.

For statement 2, suppose u is a polynomial of degree less than k, which means that
VFu = €¥(u) = 0. Using the defining integral (3.1) and the divergence formula (2.2) therefore
yields, for v € C¥(Q, Sym*(R%)),

/ udivf v dz = (—1)k/ Vku-v dz =0 implies that TGV (u) = 0.
Q Q

Now suppose that TGV (u) = 0 for some u € L (). For each v € C¥(Q, Sym*(R%)), one can

loc

find a A > 0 such that Av € K¥(Q2), and test with Av and —\v to get
/ udivFv dz =0 for all v € C¥(Q, Sym*(RY)).
Q

Hence, VFu = 0 in the weak sense, which immediately implies, via induction, that u is a
polynomial of degree less than k since €2 is connected.
The asserted equivalence of norms according to statement 3 can be proved by the following
observation:
ming &
c=—2>"F o KEQ)CKEQ) = ¢TGVE(u) < TGVE(w)

maxyg,

for each u € LL (Q). Interchanging the roles of v and @& leads to the desired equivalence.

For proving the rotational invariance as stated in statement 4, we use (A.4) to see that
for orthonormal O € R%*¢

ve 0T, symFRY) < o= @wo0T)0OT e CF(Q, Sym*(R?))
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with divi o = ((divl v) o OT)OT. Hence,
[div! §]|oe = [|((divt ) o OT)OTHOO = ||[(divt v) 0 O | oo = ||div! v]| oo,

implying that v € K*(OTQ) if and only if 7 € K¥(Q). Eventually, for each v € K¥(0OTQ) we
have

uw(Oz) divF v(z) dz = /

v T = | w(x)divt o(z) dz
Qu(:v)dlv v(O" z) da:—/ (x)d (x) d

oTQ Q

and, consequently, TGV® (u 0 Q) = TGVE (u).
The scaling behavior asserted in statement 5 can be seen as follows. Observe the identity

divi(v o r 1) = rH(diviv) o r 71T

such that for v € CL(r=1Q, Sym*(R%)) and © = r*v o 7~ 1T we have ||div! 0]|oo = 7*7|div! v]| 0.
Consequently, v € K¥(r~1Q) if and only if o € K¥(Q) as well as

u(re ikauaz x——r_d u(x ivkvrlx x
/T1 ( )d ()d / ()d ( )d
= w(z) divF o(x) da:

hence TGVE (worl) = r~¢ TGVE(u). [ ]

Remark 3.4. Because of statement 3 of Proposition 3.3, we write BGV*(Q) instead of
BGVE (Q), since the spaces are equivalent.

Proposition 3.5. Each BGV*(Q) becomes a Banach space when equipped with || - || ggyr for
some weight a > 0. :

Proof. Due to Remark 3.4 we have to prove only that BGVF = BGV’; is complete for
some weight a.

To achieve this, we first show that TGV’; always gives a lower semicontinuous functional
with respect to L'(Q). For that purpose, let the sequence {u"} be in BGV¥(Q) such that
u™ — u in L'(Q). Then, for each v € C¥(Q, Sym*(R%)) with ||div’ v < oy, it follows that

/ w-divFo dz = lim [ " - divFo de < liminf TGVE (u™).
Q

n—o0 0 n—oo

Taking the supremum thus yields

TGVE (u) < liminf TGVE (u™),
n —oo

meaning that TGV is indeed lower semicontinuous as stated.

Now, let {u"} be a Cauchy sequence in BGV¥(Q). It follows immediately that {u"} is a
Cauchy sequence in L'(Q); hence a limit u € L!({2) exists for which the lower semicontinuity
yields TGV (u) < liminf, o TGV (u?). Consequently, u € BGV*(Q), and it remains only
to show that u is also the limit in the corresponding norm. But this follows again from the
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lower semicontinuity of TGV® on L(Q): For each ¢ > 0 one chooses an n such that for all

n' > n it holds that TGVE (u® — u™) < ¢, so letting n’ — oo gives

TGVE (u" — u) < liminf TGVE (u® —u™) <,

n/—o00

implying that v” — u in BGV*(Q). |
Proposition 3.6. Let k > 1, ag,...,ap_1 > 0, and let u: Q@ — R be such that

n
= xa.0(x)
i=1

where Q; C Q are disjoint Lipschitz domains and q; are polynomials of degree less than k.

Then,

(3.4) TGV (u <-—§:L/ E:aAMYﬂ g — qj) @) | dH ()

1,7=0 UlO

where Qo = Q\ U7, Qi qo=0; Iyj = 0Q; N 0Y N QY and v; is the outer normal to €.

In Proposition 3.11 a special case where equality holds in (3.4) is given.

Proof. Fix a v € CF(Q,Sym”*(R%)) for which ||div!v||s < o; and integrate over Q; for

i =0,...,n. Using the divergence theorem (2.2) k times, we deduce that

k-1

/ udivF v do = Z(—l)l/ H\(Vk_l_lq,' ® v;) - divt v d’Hd_l(a:).
Q;

=0 99,00

Since all §; are disjoint, it is possible to write

0N =00 noQ\Q)Ne=00n0 || | na= ] 02no,;n;

i#i j=1,ji

hence, summation over the corresponding integral for i, j € {0,...,n} gives, after rearranging

and filling in zeros for i = j,

n k-1

/udlv vdr = Z Z / IN(VE g — q5) @ 1) - divi o dHT ()

1,7=0 [=0

since each boundary part is counted twice. Now, on the respective boundaries, ‘divl v(x)‘ < oy,

leading to

/udlv vdr < = Z/ ZalHH Vk g ¢ — qj) ®7/z)‘d7’ld !

4,j=0 UIO

and, consequently, to the desired estimate. [ |
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Remark 3.7. Estimate (3.4) tells us that the total generalized variation measures piecewise
polynomial functions in terms of the jumps of the derivatives at the respective boundaries of
Q;. In particular, TGV’; will not penalize if some Viu, [ = 0,...,k — 1, does not jump on
some part of the boundary of ;.

Remark 3.8. In an informal sense one can, for smooth functions, interpret T GV’; as a
k-fold infimal convolution of inf-L'-type functionals evaluated at V*u. Indeed, defining for
[=0,...,k—1and & > 0 the sets

KL = {v | v e CHO,Sym*(BY), [divl ol < a},

one can see, for « = (ap, ..., ax_1), that in terms of indicator functionals and Fenchel duality,

TGV (u) = sup {/ v(=V)*u do ‘ ve K]
Q

k-1 *
= (ZIK}”) ((—V)ku)
=0

Hence, informally employing the Fenchel-Rockafellar duality formula, we have

k:O,...,k—l}

gi(w)= sup B / (—w) v do = Ijjg).<ap (div' )
* vECK (Q,Sym* (R4)) Q
= inf I{w}((—g)l(ul)) +

u €CH(Q,SymF~H(RD))
inf d”ulHl,

w €C! (2, Sym* ! (RY))

Eup)=w

where I denotes the indicator function of the set specified by the subscript in the respective
space. By k-fold infimal convolution this implies that

k—1
3.5 TGV’; u) = inf ag||ug -
35) W= Sl
A (1T

Note that the infimum in each Iy, is absorbed by the infimal convolution. The resulting

functional can therefore be called an infimal convolution of nontrivial infimal L'-type func-
tionals which is structurally different from each straightforward infimal convolution of L'-type
norms.

Unfortunately, the representation is hard to interpret since it operates on the decompo-
sition of V*u into the ranges of &' for all orders from 0 to k — 1, i.e., on the highest level of
differentiation. We therefore derive, in the following, a different representation which is based
on successive differentiation performed k times.

Remark 3.9. The “dualization” in the definition of the functional TGV® can also be infor-
mally interpreted in terms of iterated Fenchel duality.
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To see this connection, let Kk = 1,...,k and introduce the functionals

GVE (Wg—k+1) = sup {—/ Wi—pt1 - divi ™t o dz | v € CH(Q, Sym*(RY)),
Q
|divl v)joe < g, 1=0,..., 5 — 1},
where wy_.11 : © — Sym* *+1(R) is locally integrable. Note that TGV (u) = GVE(Vu)
for sufficiently smooth u. With the sets
={ve ck(Q, Sym*(RY)) ) | |divt v|se < o},

and k — 1 times integration by parts, the functional becomes

GV (wr—r+1) (ZIKI) DR N wp—yt1))-

Thus, for smooth ug_, : Q@ — Symk_“(Rd), we deduce with the help of the Fenchel duality
formula (for the operator div®~1) that

GVZ (5 (uk_ﬁ))

= sup —/ Elup_y) - divi o doz — I, ( ZIKz
F(RY)) /0

veCk(Q,Sym

= sup —(I{” Nloo<an—1} T (E(up—r), .>)(divﬁ_1 v) — (Z IK;) (v)
=0

vECH(Q,Sym* (RY))

= inf Q1 ||€ (Uup—r) — Ur—r+1l)1

U — g1 €CH1(Q,SymP 1 (RD))
(z le> P )

— inf 1 ||E (Up—y) — Up—g +GVZ_1 &gy ‘
uk7,§+1Ecﬁfl(ﬁ,Symk*’ﬁLl(Rd)) 1|| ( k ) k +1||1 ( ( k +1))

Iterating this procedure through « = k,...,2 and observing the identity GV}I (5 (uk_l)) =
ao||€(uk—1)]1 leads to

k—1
k _ _
VA = e (3 o) = i) + ool el
L -
and, consequently,
(3.6) TGVE (u) = inf Zak € (w—1) — w1

w €CF~H(Q,Sym! (RY))
I=1,....k—1, up=u, uk—
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Note that the tensor fields u; are in different spaces for varying [. Moreover, the operators
& (for different tensor orders) are involved, in contrast to a straightforward k-fold infimal
convolution where the corresponding operator is the identity. Again, this implies that regu-
larization with TGV’; differs significantly from all straightforward infimal-convolution based
L'-type regularization approaches.

The representation (3.6) can be seen as a balancing between the derivatives of order
1,...,k. For simplicity we restrict our argumentation to k = 2: The gradient £(ug) = Vu
is decomposed into &(ugp) — u1, and TGV2(u) involves the 1-norm of &£(ug) — uy and &(u)
with appropriate weights. So, with £2u = £(Eug — uy) + Euy in mind, if locally, i.e., on some
subdomain Q" with Q' CC , it holds that ||[VZu|; > ||Vu||1, then choosing u; =~ 0 locally
might already minimize (3.6), and hence, the functional locally resembles the total variation.
If, on the other hand, £(up) is locally flat, then it is favorable to choose u; =~ E(ug) since
1€ (u1)|l1 = [|E2(up)||1 = [|[V2ull1 will be locally much lower than ||€(ug) — u1||1. In this case,
the functional behaves more like the 1-norm of the second derivative. Arguing recursively,
one can again say that TGV¥ adapts to the smoothness of u (up to the order k) in a certain
sense.

Remark 3.10. From (3.6) it also becomes clear how the symmetry of the test functions,
i.e., the space CF(Q, Sym*(R%)), influences the functional. If we had taken C*(Q, 7*(R%)) in
Definition 3.1 instead, i.e.,

- symTGVE (u) = sup {/ udivF v dz | v e CF(Q, TF(RY)),
Q

|divivllee < g, 1=0,...,k— 1},

we would have ended in

k
—symTGVF (u) = . linf o Zak_lHVul_l — w1,
ulec B (Q7T (R )) =1

1=1,....k—1, uo=u, ur=0

where the norm of the full derivative instead of the symmetrized derivative is taken.

Another possibility for modifying (3.6) is to restrict the functions u; to ith gradient fields
of C*(Q) functions which are clearly in C¥~!(Q, Sym!(R?)). Such an approach leads to

k
radTGVE (u) = inf E 1| Vi (w—1 — w)]|.
& o) weCk(Q), I=1,..k—1 1= IV (s I

up=u, ur=0 -

Since w; are now functions in the same space for all I and the operator V! can be integrated
into the functional, this is exactly the k-fold infimal convolution of ay,_;||V!- ||y for Il = 1,... k.

In particular, for k = 2, this corresponds to the infimal-convolution of || Vu||; and ||V?ul|;
as proposed in [CL] as a regularization term for image denoising, which also reads as the dual
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functional

sup {/ uvy dx
Q

v € Cé(Q,Syml(Rd)), 1=0,1,2, v = dive, = divZ v,

Mﬂw3mbmmm3m}

The functional considered in [CEP], in its dual formulation corresponding to

sup {/ uvy dx
Q

vy € C.(Q), v1 € CHARY), vy € CXNQ),

wzﬁmzAwHMM<%wMM<m}

also fits into the latter framework, with different differential operators involved.

3.2. Second-order total generalized variation. In order to gain more intuition on how
the total generalized variation measures functions, we make some observations for the case
k = 2. Specifically, TGVi for characteristic functions on some compactly embedded smooth
set in arbitrary dimensions is computed. We also examine the one-dimensional case, i.e., some
classes of functions on the interval |0, L|.

Proposition 3.11. Let () # Q' CC Q have CY' boundary, with ag, o1 > 0. Then u = xq is
of bounded total generalized variation (of order 2) and

TGV2(u) = ay TV(u) = ay Pergy .

Proof. First observe that (3.4) immediately gives that

TGV (u) < oq/ 1 dH4! = a; TV(u) = oy Pergy,
oY

so we only have to construct a sequence of feasible v® such that the right-hand side is attained.

Choose ¢ such that 0 < e < dist(2/,092)/2 and denote by o :  — R a compactly supported

signed distance function associated with €, i.e.,

o (z) = (1 — 2xq) dist (2, 09" U C(8Q' + B-(0))),

where B.(0)) = {z : |z| < }.

See Figure 1 for an illustration of this construction. It is known [DZ, Theorem 5.4.3] that
each o¢ is continuously differentiable in a neighborhood of 9 since € has a C'! boundary.
Also, each gradient coincides with the outer normal on 9, i.e., Vo (z) = v(z) for z € 0Q.
Eventually, suppo® CC Q and |[Vo®(z)| < 1 ae. in Q. Choosing a standard mollifier G €
C5°(B1(0)) and denoting by G its dilated versions, it is immediate that v§ = a10° x G, 4
satisfies v € C5°(92).

One can then compute that v§ — 0 uniformly in Q as well as Vu§(z) — aqjv(z) for
x € 9 as € — 0. Consequently, choosing & small enough yields [|v§]/eo < ao/v/d and, since
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T - 99+ B(0)
\\/

; o
{\ — AN
* { A2

00 + B.(0)

Figure 1. Illustration of the construction of the signed distance function . On the left-hand side, the
smooth set Q' , its boundary, and the corresponding e-tube OQ' + B.(0) are depicted. On the right-hand side one
can see, qualitatively, the values of o for the indicated section.

the Lipschitz constant of o° is 1, ||[Vv§|l«c < 1. Defining the symmetric 2-tensor field (in
matrix form) according to

v (x) = vgy(x)l

yields divv®(z) = Vuf; hence v° are valid test functions for (3.1). Using the divergence
theorem (2.2) then gives

/ udiv?vf do = / dive® v de_l(x) = Vg - v der_l(fE)-
Q o0 oY

As e — 0, we have Vuv§ — ajv on 99; it indeed follows that TGV?Z(u) > a; TV(u), which
completes the proof. |

The following considerations are concerned with the one-dimensional case.

Example 3.12. Consider the interval 2 = |0, L] for some L > 0 and fix k¥ = 2, o, a1 > 0.
To avoid boundary effects, we assume, moreover, that ag/ay < L/2. Let u : ]0, L] — R be

2
(3.7) u(@) =Y pi@)xa,  ple) = aw+b,
i=1

with aq,a9,b1,bs € R and Qy =0, ¢[, Q2 = ]e, L] for some ag/a; < ¢ <L —ap/a.
We compute TGV? for some ag,a; > 0. For this purpose, choose a v € C2(]0, L[) and
apply integration by parts twice to get

L
(3.8) /0 w” dz = (p2(c) — pi(c))v'(c) + (pi(c) — ph(c))v(c).
By Proposition 3.6 we already have

TGV (u) < ailpa(e) — pie)] + aolph(c) — pi(e)]-

Assume that pa(c) — pi(c) > 0 as well as p}(c) — ph(c) > 0. Consider, for sufficiently small
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Figure 2. Schematic illustration of the functions vyg.

e > 0, the sequence of functions {v§} according to

0 for 0 <z <e¢,

(g —e)(x —¢)/(co —€) for e <z < ¢y,
(3.9) vo(z) = ¢ ag — e+ ai(z — o) for ¢ <x < ¢y,

ag(x+e—L)/(c1r+e—L) forey <z <L-—¢,

0 for L—e<z<L,

where ¢g = ¢ — ¢/(2a1) and ¢; = ¢+ ¢/(2a1); see Figure 2 for an illustration.

One can easily convince oneself that [[vf] < ap as well as [|(v]) ||coc < a1, the latter
taking the choice of ¢ and the assumption on «g/a; into account. Moreover, v§(c) — g as
e — 0 and (v§)'(¢) = ag. Choosing a mollifier G € C§°(]—1, 1[) and denoting by G, its dilated
versions, the functions v® = v§ * G5 satisfy v* € C2(]0, L[) with

[v]loe < a0, (0%)[loc < 01, v7(c) = a0, (v%)(c) »on as & —0.

Thus, plugging the sequence into (3.8) gives that the estimate is sharp; i.e.,

TGV (u) = arlpa(c) — pi(e)] + aolpi(c) — ph(c)]-

With analogous constructions for the cases where pa(c) — p1(c) < 0 or pi(c) — ph(c) <0, this
follows for all u of the form (3.7). Figure 3 depicts some cases of u and how the values of
TGV2(u) can be expressed.

Let us finally note the role of the restrictions ag/a; < L/2 and ap/ag < ¢ < L — ap/ay.
An arbitrary test function v € C2(]0, L[) with ||v]|ec < ap and ||v/]ls0 < a1 necessarily satisfies

LT for 0 <z < o/,
[v(2)| < Vmax(x) = < ag for ag/an <z < L —ap/aq,
o1 aof;f_L for L —ap/a; <z < L.

In the general case for ag, a, and ¢, we get a similar upper bound for TGV? (u) with vyax(c)
instead of g for which the sharpness can be obtained by a construction which is analogous
to the above. This yields the more general identity

TGV (u) = a1lpa(e) — pr(0)] + vmax(€) [P (c) — Pi (c) -

Consequently, the above assumptions therefore exactly reflect the case where vpax(c) = ayp.
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u
. Jih
Jo
h
0 # ‘ iy . .
¢ 1 TGVi(U) = 10 + @1
u
Jo
# X
o 1 TGVZ (u) = aijo
u
Jih
0 c 1

TGVZ(u) = aoj

Figure 3. Illustration of some piecewise affine functions and the corresponding values of TGVZ.

4. Numerical methods. In this section we present numerical methods in order to solve
total generalized variation based regularization models. In doing so, we will mainly concentrate
on a TGV%C regularization functional with a quadratic L? data fidelity term. We have two
reasons for this. First, the TGVi—term is just simple enough to give a compact description
of the numerics. On the other hand, it is general enough to enable the reader to apply the
numerics to TGV models with a higher order, e.g., TGVg.

2 . .. . .
The TGV?2-L? image denoising model is given by
. u—fl3
4.1 min  TGV2(u —i—Hi
(4.1) ueL2(Q) o) 2
for some positive a = (g, 7). The solutions of this nonsmooth minimization problem can
be obtained by solving the Fenchel predual problem, an approach which has recently become
popular in the image processing literature [Ca, CGM, Ch, HK]. As usual, the predual problem
can be rewritten as a projection problem, for instance, as

If — div? |3

(4.2) min 5 + I{||v||o<>§a0}(v) + I{||divv||oo§a1}(v)’

UEHgivyc(Q,SdXd)

Solutions u* and v* of (4.1) and (4.2), respectively, satisfy u* = f — div? v*, so one can solve
the predual problem in order to obtain the unique solution of the denoising problem. For the
minimization of (4.2) we will adapt the accelerated first-order method of Nesterov [Ne].
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The subsequent section then shows numerical experiments we carried out using this algo-
rithm. As expected, the proposed TGV?X—L2 image denoising model is able to restore piecewise
affine functions, and in contrast to the usual total variation denoising model [ROF] (TGV.-L2
in our terms), it does not exhibit the staircasing effect. Furthermore, we will show that re-
placing TGV? in (4.1) by a TGV?3 regularization restores piecewise smooth images and leads
to further improvements.

4.1. Discrete setting. In order to implement (4.2) on a digital computer we need to in-
troduce the discrete setting. For clarity of presentation we consider only the case d = 2, i.e.,
the case of two-dimensional images. Our approach will be based on finite-difference discretiza-
tions which are commonly used in image processing. We will utilize a two-dimensional regular
Cartesian grid of size M x N:

Q" = {(ih, jh) | (0,0) < (i,5) < (M,N)},

where h denotes the grid width and the pairs (4, j) € N? are the indices of the discrete locations
(¢h, jh) on the grid. In what follows we will denote the discrete quantities by the superscript h.
Denote by U" the Euclidean space RMY | by V" the Euclidean space R3MN  and W = R2MN
equipped with the scalar products

ul ph e UM Wl py = Y "l pl,
i7j

h _h h h h h h h h
Ve VIl why = ()i (ah) i + (08)ig(dh)i
i7j

h h
+2(v3)i,(a3)i g5

whnt e W, ")y = ()i ()i + (wh)i s (1)
i.J
respectively. Further, let u” € U" be the finite-dimensional approximation of the unknown
function u in (4.1) and let v = (v, vB, v%) € V" be the finite-dimensional approximation of
the symmetric matrix field v in (4.2). Note that since we are dealing with symmetric matrices
we need only store the entries of the upper triangle matrix. Here, fu?, vg stand for the diagonal
entries, while vé‘ models the off-diagonal entry (which is also reflected by the scalar product).

The discrete analogue of (4.2) is given by

(4.3) in {E(Uh) I — (vt }

vheKh 2

where || - || denotes the standard L? vector norm, f” is the discretized input image, and the
convex set K" is given by

K" = {vh cevh | [v"]loo < a0, [|divv"]e < o}
The Fenchel dual problem is, of course, a discrete version of (4.1), whose solution we take as
the discrete TGV?2-L?-denoised version of f. It can be equivalently formulated as
£ — "

4.4 i - divh)2oh, uhy b,
(44) m{ 7t e (v )
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The discrete oo-norms on V" and W can be expressed by
hoovh . (o hy2 hy2 n2 \V?
v eV [v"oo = Hzlf;x <(Ul)i,j + (v3);, + 2(”3)i,j) )

1/2
wh e Wh: |Juh||e = max <(w?)22,j + (wg)i]> :

Moreover, for the discretization of the divergence operator we use a recursive application of
forward and backward differences in such a way that the outermost divergence operator is
based on backward differences with homogeneous Dirichlet boundary conditions. Hence, the
discrete versions of the first- and second-order divergence operators are given by

oh + (8
dth : Vh - Wh7 (dth Uh)ij ( h+v1) ( y+U3) )
(5;c+7)3 )z (5y+v2)

and (div?)?: VP — U" with
((div")?"), . = (div*(div" o)), .
= (S50t )iy + (g0 v)i + ((Oy_0% + 54—y )vs), .,
where the forward and backward differences are defined as

h h . .
(5h+”0h)i7j = { ( Z-‘rl,j B vi,j)/h if 0 <1< M — 17

z 0 if i=M—1,
(o1 o™ (VP —vf)/h if 0<j<N-1,
A A N if j=N-1
and
—vf /b if i=M—1,
OF vy =19 (Wb =l /b i 0<i<M -1,
i /b if =0,
—vf; 1 /h if j=N-—1,
(O oMy =1 (W} —ol )/h if 0<j<N-1,
i /b if j=0.

Furthermore, we need to introduce the discrete version of the symmetrized second-order
derivative operator (£7)2. We choose it in such a way that it is adjoint to the discrete
divergence operator; that is, (£")2 = ((div")?)*. By computing the adjoint of (div?)? and

taking into account the symmetry of v, we arrive at

((h_6h + ot st yuh), .

B (0203 uM)i g 5 =
A (G T
5 o] (5h_5y+u )i

((5h)2uh)
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Note that, by our choosing that the outmost divergence is based on backward differences with
homogeneous Dirichlet boundary conditions, the innermost derivative of the symmetrized
derivative operator is now based on forward differences with Neumann boundary conditions.
For example, for TGV, the (div")3v" operator is computed as 67_ 5" _,_(52_1)? + ---. This
corresponds to a natural replication of the image data, which is a common choice in image

processing.

4.2. A first-order minimization algorithm. Problem (4.3) poses a quadratic optimization
problem with pointwise quadratic constraints. Hence, many algorithms can be used to com-
pute the solution [A]. Here we employ the accelerated first-order method of Nesterov [Ne, BT],
which shares a convergence rate of O(1/k?) in terms of the functional values. This means
that one needs O(1/+/¢) iterations to compute an approximate solution which minimizes the
functional up to accuracy €. Nesterov’s method is easy to implement and can be efficiently
parallelized, e.g., on recent graphics processing units. The outline of Nesterov’s method ap-
plied to (4.3) is as follows: We choose v(}} = 0, ﬁg =0, and t9g = 1. Then, for £ > 0 we let

Ui = Tgen (5 + 7 (€M7 (F" = (dv")*5)))
(4.5) o = S5
Q_’l};—rl = Ul}cl+1 + (ﬁ) (V1 — v

where 7 > 0 is some prescribed step-size and Il denotes the Euclidean projector onto the
convex set K",

Proposition 4.1. Let 7 = %, where L? = % > ||(div™)?||2.  Then, the sequence {v}'}
generated by algorithm (4.5) is such that for any k > 0

2 'Uh— 'Uh *|2
(4 0 < B - B(wy) < =0T

with (V")* € V! being a solution of (4.3). Moreover, ull = fh — div? vl — (u)*, where (u")*
is the solution of (4.4).

Proof. We begin with estimating the Lipschitz constant of v — (EM)2(f" — (div")2v")
with respect to the associated norms in V" and U”. This amounts to estimating the operator
norm defined as

s hN\2,) h12

(4.7) 2= @vh? P = sup  MAVDOR
h||2
vheVh vh=£0 [[0"]

In order to write (div")? in terms of finite-difference schemes, we agree to set

h h h
(Ul)—l,y = (Ul)o,ja (Ul)M,j = (Ul)M—lm
()i 1 = ()0, (Wh)in = (Vh)in-1,
(v)i—1 = (v§)-1,; =0, (v§)in = (V§)n; =0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/29/14 to 143.50.47.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

514 KRISTIAN BREDIES, KARL KUNISCH, AND THOMAS POCK

Moreover, one can see that (div")?v" does not depend on the values (v8)as_1; and (vh); n—1,
so we assume them to be zero in what follows. Then, (divh)2 amounts to the application of
the following finite difference scheme:

s hN\2, h 1 h 1 ! h 1 0 ! = h
(div™)?v :ﬁh -2 1]v1+ﬁ 2|tz | L -2 1
— 1 -1 1 0
Dy
D2 DS

Let us estimate, by multiple use of (a + b)? < 2a® + 22,

1Dy |13 <Z (201)is)" +4((01)i-1)” +4((@ir1)” < 16]01]13

and, analogously, ||D2v} || < 16][v%|]3. For the third term, consider

0 1 -1 2 o o o] |
|Dsv|3 <20 =1 1 [of|| +2||1 -1 oo}
0 0 0 ) -1 1 0] |,
i)+ (W0)ic1) + (i) + (W)ig-1)”

3822
i.j

+ ((Ug)z‘,j+1)2 + ((U:}f)z‘—l,jﬂ)z + ((Wh)is1,5-1)
< 64][v 3.

2

Together, we find
. 1
I(@ivh) 2" P < — (401t 3 + 41 D203 + 2uD3v§:u%)

64
< o (1 + 10413 + 20 1) = gt

Then, by substitution into (4.7) we get L? < %. The proof of convergence for the functional
values and the efficiency estimate of algorithm (4.5) are both presented in [BT, Theorem 4.1].

Finally, note that since K" is bounded, each subsequence of {vk} has a convergent sub-
sequence {vzl} with some limit (v")*. As the discrete divergence operator is continuous, we
know, moreover, that the corresponding sequence {uzl} converges to some (u)* = f"—(div")?
(v")*. By the estimate (4.6), each subsequence is a minimizing sequence, and, hence, (v")* is
a solution of (4.3). Consequently, as the solutions of (4.3) and (4.4) are in duality, (u)* is
a solution of (4.4). Since the latter has to be unique by strict convexity, we deduce from the
usual subsequence argument that the whole sequence satisfies uﬁ — (uM)*. |

4.2.1. Computing the projection. The most costly part in (4.5) is the computation of
the Euclidean projection of the dual variable onto the convex set K”. Basically, the projection
of a variable o" is given by the minimizer of

-h | =P
(4.8) Mpen(0") = argmin ————
vheKh 2
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Since the convex set K" involves inequality constraints on both v" and div” v", we may also

write

~h o = o) h
IIpn(0") = argmin + Ipn (AV")
vhevh 2

with A : VP — V" x W given by Av" = (v", div? v") and

K" = {0 ") e VEx W | 0"l < a0, [0 < 1}

Applying Fenchel duality to this minimization problem yields the equivalent problem

: ||qh—<5’h(77h)—f)hH2 h h
(4.9) . 5 + aollg” Iy + axlln™l

where we used A*(¢",n") = ¢" — £"(n") and employed the following choices for the L!-norms:

1/2
e VP = 30 (a2 + @2+ 2
i,
h h ik hy2 m2 \?
nte W n' = Z((m)m + (772)i,j) :
irj
The projection (4.8) can hence be computed by obtaining a solution pair ((¢")*, (n)*) of (4.9)
and setting
pen () = 8" — A*((¢")*, (")) = 0" = (¢")* + € ((n")").
For minimization of (4.9) we adopt the fast shrinkage thresholding algorithm (FISTA) recently
proposed by Beck and Teboulle in [BT] as a variant of Nesterov’s method [Ne]. We exploit
the fact that minimization with respect to ¢" is straightforward to compute using shrinkage
operations. The outline of the algorithm is as follows: We choose ng,ﬁg € W' and ty = 1.
Then for each k > 0 we let

QZ+1 = Soco (ﬁh + gh(ﬁlf;)) )

M1 = Soar (7 + o div? (8" + EM@) — qt,1))
14+/1+412

thy1 = —5—F,

“h _ . h ti=1\ (b h
([ Te+1 = M1 T (tIZH) (1 — ) s

(4.10)

where 0 = %2 < ||div"|| =2 denotes the step-width and Sy(t) denotes the generalized shrinkage
+ ‘ti,jl

ti,j
each projection, we run the iterative projection algorithm until the maximal feasibility error
of M yen (9") is below a threshold &,,.

formula, which is given by Sx(t); ; = (|t; ;| — A) with the respective absolute values. For

5. Experimental results. In the following, we present numerical results of our total gen-
eralized variation models. We start by studying the efficiency of our first-order minimization
algorithm. Then we present experimental results of synthetic and real images. It turns
out that our second-order model (TGV2-L?) consistently outperforms both the standard TV
model of [ROF] (which is equivalent to the TGV!-L? model) and the Inf-Conv model of [CL)].
Finally we show that a third-order model (TGV?2-L?) can further improve the results in cases
where the image intensity function cannot be well approximated by piecewise affine functions.
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5.1. Efficiency of the first-order algorithm. In our first experiment, we compare the the-
oretical efficiency estimate of Nesterov’s method for the functional values with the practical
implementation using a simple synthetic input image. As already stated in section 4, Nes-
terov’s first-order method allows us to compute a bound on the accuracy ¢ of the functional
values for a given number of iterations. According to Proposition 4.1, the bound is given by

2 'Uh— ,Uh * |2
6.1 = B - B(h) < BT

where k is the number of iterations. Hence, in order to compute a bound on ¢, it remains to
estimate the quantity [[o — (v")*||2. Since we have that v = 0 and |[v"|| < g, we simply
deduce that

2
(5. . o 128afMN
ht(k 4+ 1)2

Figure 4(d) shows the denoising result of TGrVgl-L2 applied to the noisy input image
shown in Figure 4(c). We set (ag, 1) = (0.1,0.05), h =1, £, = 10~* and run algorithm (4.5)
for k = 1500 iterations. This results in a theoretical accuracy of ¢ ~ 1072. Note that the
proposed method almost perfectly reconstructs the piecewise affine input image. Figure 4(a)
shows the accuracy ¢ = E(v}) — E((v")*) of Nesterov’s first-order minimization algorithm.
The true minimal function value E((v")*) was determined by running the algorithm for a very
large number of iterations. One can see that the theoretical bound on the accuracy is clearly
outperformed in practice but shows a similar asymptotic behavior.

Finally, let us comment on the running times for TGV models of different order. Clearly,
the running time increases with increasing order of the models. This is mainly due to the fact
that computing the projection onto the set K" is much more complicated for TGV* models
of order k£ > 1. In our nonoptimized MATLAB implementation, it turns out that the relative
running times between TGV!, TGV?, and TGV? regularization behave roughly like 1 : 10 : 35.
However, as mentioned above, Nesterov’s method can be easily parallelized. Therefore, we
have also implemented a parallelized version of Nesterov’s method for the TGV2-L? model.
On a Nvidia Tesla C1060 graphics processing unit (GPU), it takes only 1.4 seconds to perform
1500 iterations for the test image shown in Figure 4(a) (which ensures the accuracy ¢ ~ 1072
in terms of functional values). This includes all data transfers to the GPU and back.

5.2. Synthetic images. In our second experiment we evaluate the performance of the
TGV2-L? model using a piecewise affine test image. We compare our model to the stan-
dard Rudin—Osher-Fatemi (ROF) model and the Inf-Conv model (see Table 1). The pa-
rameters of each model were optimized to achieve the best reconstruction with respect to
the root mean squared error (RMSE). Furthermore, for all regularizations, the number of
iterations has been chosen according to (5.2) or an analogous estimate to ensure a compa-
rable accuracy in terms of the functional values. Figure 5 shows the input images and the
reconstructed images. For better visualization we additionally provide three-dimensional ren-
derings of the upper left region. One can clearly see that the ROF model performs worst
since it exhibits the well-known staircasing effect. The Inf-Conv model performs better but
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== Bound
e NeSterov

Accuracy

(b)

(d)

Figure 4. Convergence of our first-order minimization algorithm applied to the restoration of a piecewise
affine image. (a) Theoretical bound of Nesterov’s method versus the empirical observation. The theoretical
bound provides a useful estimate sharing the same asymptotic behavior, but is still outperformed in practice.
(b) Input image of size 128 x 128. (c) Degraded image containing zero mean Gaussian noise with standard
deviation o = 0.05. (d) Reconstructed image using the proposed TGV?Z-L? model. Note that the proposed
method almost perfectly reconstructs the input image.

Table 1
Quantitative evaluation of different image regularization models applied to piecewise affine and piecewise
smooth image reconstruction (see Figures 5 and 6, respectively). The numbers represent the root mean squared
error (RMSE) of the reconstructed images with respect to the clean input images.

Test image
Model Piecewise affine  Piecewise smooth
ROF 0.0147 0.0176
Inf-Conv 0.0131 0.0125
TGV2-L? 0.0107 0.0080
TGV3-L? — 0.0074
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(a) Clean image (b) Noisy image

(c) ROF (d) Inf-Conv (e) TGV2-L?

Figure 5. Reconstruction of a piecewise affine image using different image regularization models. (a) and
(b) show the 128 x 128 input image with a marked close-up region and the noisy version containing zero mean
Gaussian noise with standard deviation o = 0.05. (c)—(e) show the results of ROF, Inf-Conv, and TGVZ2-L?
image regularization, and (f)—(h) are the respective three-dimensional close-ups. Note that TGVZ-L? is the
only model which is able to reconstruct the piecewise affine structure of the image.
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also has some staircasing near discontinuities. The proposed TGrVgl-L2 model performs best.
It leads to a natural piecewise affine approximation of the noisy data with sharp discontinuities
in between. The quantitative evaluation of the reconstruction emphasizes the visual impression
of the results. See Table 1 for the exact RMSE values. We point out that in [SS], a finite-

difference approximation of the regularizer
- P Q d%x1 0% Oxq’ Oxg o !

is utilized, leading to similar numerical results. In particular, a suppression of the staircasing
effect is also observed.

vE CE(Q,R2), HUHoo < o,

In our third experiment, we apply total generalized variation regularization up to order 3
for the reconstruction of a piecewise smooth test image. Again, we compare our models to the
ROF and Inf-Conv models and, as in the previous experiment, all parameters were optimized in
order to meet the lowest RMSE values. Figure 6 shows the input images and the reconstructed
images. One can see that the ROF model does not capture well the smooth parts of the image.
The Inf-Conv model performs better in the smooth regions but exhibits some staircasing near
discontinuities. The proposed TGV2-L? and TGV3-L? models perform significantly better.
Qualitatively, both models perform equally well, but the quantitative evaluation shows that
the third-order model has a slightly lower RMSE value (see Table 1). The reason is that the
piecewise smooth image shown in Figure 6 contains curvilinear functions. While the second-
order model tries to approximate the image based on affine functions, the third-order model
additionally allows for quadratic functions, which is clearly better in this case.

5.3. Natural images. Finally, we apply our total generalized variation models to denoising
of natural images. Figure 7 shows a noisy image of a penguin in front of a blurry background.
While the textured parts (e.g., the rock) of the image are equally well reconstructed by all
three models, the total generalized variation models perform significantly better in smooth
regions (e.g., the penguin or the blurry background). Furthermore, the close-ups make clear
the characteristics of the three models. ROF denoising leads to a piecewise constant, TGVi—
L? denoising leads to a piecewise affine, and TGV‘Z’C—L2 denoising leads to a piecewise quadratic
approximation of the image function (see also the close-ups in Figure 8).

Figure 9 shows the denoising capabilities of the proposed models in the case of severe
noise. While ROF and Inf-Conv denoising leads to very blocky results, the proposed total
generalized variation models lead to significantly better results. The close-ups show that in
regions of high curvature, the third-order model leads to further changes compared to the
second-order model. The shape of the edges is less blocky at the expense of possibly more
regularized transitions (see also the close-ups in Figure 10).

6. Conclusions. We have proposed a structurally transparent regularization functional
which involves, in a weak sense, derivatives of order up to k of the desired object. It has
the convenient properties of convexity and weak lower semicontinuity. Due to the fact that
k is arbitrary, the framework allows us to adjust to a priori known regularity properties.
A particularity of the notion of total generalized variation relates to the fact that the test
functions are restricted to symmetric tensor fields. Such a restriction is natural in view of the
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(a) Clean image (b) Noisy image (¢) ROF

Figure 6. Reconstruction of a piecewise smooth image using different image regularization models. (a)
and (b) show the 128 x 128 input image with a marked closeup region and the noisy version containing zero
mean Gaussian noise with standard deviation o = 0.05. (c)—(f) show the results of ROF, Inf-Conv, TGVZ-L?,
and TGV3-L? image regularization, and (g)-(j) are the respective three-dimensional close-ups of the region
containing the discontinuity. Note that the ROF model exhibits strong staircasing and the Inf-Conv model
exhibits some staircasing near the discontinuities as well. The TGVZ2-L? and TGV3-L? models are both able
to faithfully restore the image.
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(a) Clean Image (b) Noisy Image

(c) ROF (d) Inf-Conv

(e) TGV2-L? (f) TGVE-1?

Figure 7. Denoising of a natural image (a). (b) shows the 481 x 321 noisy input image containing zero
mean Gaussian noise with standard deviation o = 0.05. (c)—(f) show the results of ROF, Inf-Conv, TGVZ-L?,
and TGV -L? image denoising (see also Figure 8).
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(a) Clean Image

(e) Inf-Conv

Figure 8. The close-ups of the blurry background regions show that ROF denoising leads to piecewise
constant, TGVZ2-L? denoising leads to piecewise affine, and TGV3-L? denoising leads to piecewise quadratic
results.

symmetry of derivatives, provided that they exist. In case of nonsmoothness, the proposed
cost functional provides a weaker measure when compared to the nonsymmetric analogue.

The numerical examples show appealing properties of reconstructed test images. In par-
ticular, with the use of third-order regularization, further improvements over second-order are
obtained. Besides the denoising application, we expect that the proposed approach would
lead to a similar advance for a wider class of problems.

Further analysis including geometric properties of TGV and strategies for adapting the
weights « should be the focus of future research. Another line of research will concentrate on
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(a) Clean image (b) Noisy image

(c) ROF (d) Inf-Conv

(e) TGV2-L? (f) TGVE-1?

Figure 9. Denoising of a natural image. (a) shows the 512 x 357 clean input image. (b) shows the noisy
image containing zero mean Gaussian noise with standard deviation o = 0.1. (c)—(f) show the results of ROF,
Inf-Conv, TGVZ-L?, and TGV3-L? denoising. One can see that ROF and Inf-Conv lead to blocky results
in smooth image regions. TGVZ-L? and TGV2-L? models lead to piecewise smooth reconstructions (see also
Figure 10).
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\

(a) Clean image

160 240 160 240 160 240

(e) Inf-Conv (f) TGVZ-L? (g) TGVE-1?

Figure 10. (a) shows the clean image with a marked smoothly shaded region. (b)—(g) show three-dimensional
representations of the marked region for the ROF, Inf-Conv, TGV2-L?, and TGV?S-L? models. In this repre-
sentation one can clearly see that the TGV models lead to significantly better results.

developing faster algorithms. The representation (3.6) depends only on first-order derivatives
and hence serves as a good starting point for further investigations.

Appendix A. Tensor field calculus. In this section, we collect some basic results concerning
the various operations one can perform on symmetric k-tensors and symmetric k-tensor fields,
respectively, such as transformations or taking the I-gradient or [-divergence. As many of these
results can be deduced by easy, but sometimes lengthy, computations, they are presented here
mainly for the reader’s convenience.

First, let us note that for a & € T*(R?) and a linear transformation O € R¥*?  the
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right-multiplication
(§O)(a1, e ,ak) = f(Oal, ey Oak)

also gives a k-tensor for which one can see that with p = 0~1(f3), the coefficients obey

k
(A1) €0 = > lowméw-

Moreover, if ¢ € Sym®(R%), then €O € Sym*(R?). Furthermore, let us note that right-
multiplication with an orthonormal O € R4 commutes with the trace of a ¢ € T#(R?) with
k> 2:

d
tr(€0)(ay, ..., a5—2) = Z 0;i0j1i&(ej,0ar, ..., Oag_2,€;r)

i,5,'=1

d
= Zg(ei, Oay,...,0ak_2,€;)
i=1

(A.2) = (;r(g)O) (a1,...,a5—2).

Hence, right-multiplication respects orthonormality, as shown in the next lemma.

Lemma A.1. If O € R¥9 js orthonormal, the operation & — €O is an orthonormal trans-
formation mapping Sym*(R?) — SymF*(R9).

Proof. Applying (A.2) k times to (€0 @ n0O) = (£ ® n)O yields

€0 -0 =" ((€@n)0) =tr*(¢@nO0=¢-n. ™

It turns out that the right-multiplication is, moreover, an appropriate notion for describing
the transformation behavior under linear coordinate changes.

Lemma A.2. Let O € R™*? and let € : Q — TH(R?) be an | times continuously differentiable
mapping. Then
(A.3) Ve ((€00)0) = ((V'®¢)00)O0.

Proof. Set n(z) = £(Oz)O and compute

(V'@n)(z)(a1,...,akst) = (DH(E0 O)(@)(ai,...,a))(Oat1,. .., Oaky)
= (le(Ox)(Oal, ‘o ,Oal)) (Oal+1, ‘o ,OakH)
— (V' ®)0)(0x)(ar,-..,aryr). W
In particular, for invertible O and n(z) = £(Ox)O, we have that € C*(O~1Q, Sym*(R%)) if
and only if & € C'(Q, Sym*(R?)). The behavior of the I-divergence of a ¢ € C/(Q, Sym*+!(R%))
under coordinate change with an orthonormal O € R%*? follows, consequently, by combin-
ing (A.3) and (A.2):
div!((£00)0) = t2'(V' ® ((€20)0)) = tr' (((V' ® €) 0 0)0)
(A.4) =t/ (V! ®€) 0 0)O = ((div' €) 0 0)O.
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