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Abstract. A general Moreau—Yosida-based framework for minimization problems subject to
partial differential equations and pointwise constraints on the control, the state, and its derivative is
considered. A range space constraint qualification is used to argue existence of Lagrange multipliers
and to derive a KKT-type system for characterizing first-order optimality of the unregularized prob-
lem. The theoretical framework is then used to develop a semismooth Newton algorithm in function
space and to prove its locally superlinear convergence when solving the regularized problems. Fur-
ther, for maintaining the local superlinear convergence in function space it is demonstrated that in
some cases it might be necessary to add a lifting step to the Newton framework in order to bridge
an L2-L"-norm gap, with 7 > 2. The paper ends by a report on numerical tests.
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1. Introduction. In the late 1980s and early 1990s a number of research efforts
focused on the existence of Lagrange multipliers for pointwise state constraints in
optimal control of partial differential equations (PDEs); see, for instance, [4] in the
case of zero-order state constraints, i.e., ¢ < y < ¢, and [5] for constraints on the
gradient of y such as |Vy| < 1, as well as the references therein. Here, y denotes the
state of an underlying (system of) PDEs and ¢, ¥ represent suitably chosen bounds.
While [4, 5] focus on second-order linear elliptic differential equations and tracking-
type objective functionals, subsequent work such as, e.g., [22, 23] considered parabolic
PDEs and/or various types of nonlinearities. Moreover, investigations of second-order
optimality conditions in the presence of pointwise state constraints can be found in [24]
and the references therein. In many of these papers, for guaranteeing the existence of
multipliers it is common to rely on the Slater constraint qualification, which requires
that the feasible set contains an interior point.

Concerning the development of numerical solution algorithms for PDE-constrained
optimization problems subject to pointwise state constraints, significant advances were
obtained only in comparatively recent work. In [14, 9, 10], for instance, Moreau—
Yosida-based inexact primal-dual path-following techniques are proposed and ana-
lyzed, and in [17, 20, 27] Lavrentiev regularization is considered which replaces y < 1
by the mixed constrained eu+y < ¥ with u denoting the control variable and € > 0 a
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small regularization parameter. In [11, 12] a technique based on shape sensitivity and
level set methods is introduced. These works do not consider the case of combined
control and state constraints and the case of pointwise constraints on the gradient of
the state. Concerning the optimal control of ordinary differential equations with con-
trol as well as state constraints we mention [3, 16] and references given there. Control
problems governed by PDEs with states and controls subject to pointwise constraints
can be found, e.g., in [1, 6, 15, 19] and the references therein.

In the present paper we investigate the case where pointwise constraints on the
control and the state variable appear simultaneously and independently, i.e., not
linked as in the mixed case, which implies a certain extra regularity of the Lagrange
multipliers. First- and second-order state constraints are admitted. To obtain efficient
numerical methods, regularization of the state constraints is required. Here we inves-
tigate the Moreau—Yosida technique, which turns out to be very flexible with respect
to various types of pointwise state constraints and can combined with pointwise con-
straints on the control variable, which need not be regularized. This flexibility makes
it an ideal candidate for a unifying approach to a wide range of PDE-constrained
minimization problems subject to pointwise constraints of controls and states with
respect to both the proof of existence of Lagrange multipliers and the design of algo-
rithms. Concerning the latter, we show in this paper that for the numerical solution
of the associated subproblems semismooth Newton solvers are available which allow
a function space analysis and converge locally at a g-superlinear rate. In addition,
the path-following technique of [9] (see also [10]) provides an update tool for the reg-
ularization parameter, leading to efficient inexact path-following iterations. Further,
for the proof of existence of multipliers, the Moreau—Yosida approach is based on a
constraint qualification which is weaker than the usually invoked Slater condition. In
[19] such a condition is used for pointwise zero-order state constraints.

The remainder of the paper is organized as follows. In section 2 we introduce the
underlying rather general problem class, a constraint qualification of range-space-type
and the Moreau—Yosida regularized problem. Moreover, the existence of multipliers
for the unregularized problem is guaranteed and an associated first-order optimality
characterization is derived. Section 3 is concerned with the semismooth Newton
method for solving the regularized problems. It turns out that for a certain subclass
of the underlying general problem a lifting step is necessary in order to bridge an
L2-L"-norm gap with r > 2. The gap occurs due to the fact that the natural function
space for the regularization is L? whereas the existence of multipliers requires L”
regularity of the associated control variable. Here “lifting” refers to the fact that the
standard semismooth Newton iteration has to be equipped with an additional step
lifting the Newton updated from L? to L"; see [28] for a related concept. Lifting, in the
context of the present paper, is used for pointwise zero-order state constraints if the
spatial dimension is larger than three, and for pointwise constraints on the gradient.
Section 4 ends the paper by a report on numerical test. The appendix contains a
chain rule result for the composition of two Newton differentiable functions, which is
of interest in its own right.

2. Moreau—Yosida regularization and first-order optimality. In this sec-
tion we derive, in a rather general setting and under a weak constraint qualification,
first-order optimality conditions for the problem

(P)

minimize J(y,u) = Ji(y) + § |u — Ud|iz(§2)
subject to Ay = Equ, u€ Cy, y&€Cy,
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where the control domain € is an open subset of €, and the constraints on the control
variable v and the state variable y are defined by

Cu:{u€L2(Q):gﬁuﬁ@a.e.in@}, Cy={yeW: |Gyl <v¢in Q}.

Here A € L(W, L) with W and L reflexive Banach spaces of functions defined on the
bounded domain Q C R?, satisfying L"(2) C L, with dense embedding, 2 < r < oo
and

(2.1) (vi,v2) 1+ = (vl,vz)LT/(QLLT(Q) for all v; € L*, v € L™(),

with L + L = 1. Further Eg, : L"(2) — L"(9) is the extension-by-zero operator with
adjoint E;fz the restriction-to-Q operator. The quantifiers characterizing the constraint
sets C,, and Oy, satisfy G € L(W,C(Q)!) for some 1 < < d,

(22) ¢, pe LX"D(Q), and ¢ €C(Q), 0<y <4, for some ¢ € R,

| - | denotes the Euclidean-norm in R’ and the inequalities are interpreted in the
pointwise almost everywhere (a.e.) sense. The minor extra regularity that is assumed
by requiring that ¢, ¢ € L2"~Y(Q) rather than ¢, ¢ € L?(€2) will be used in two

ways: first the intermediate extra regularity ¢, @ € L"(Q) is used for the sake of
consistency with assumption (H4) below and, secondly, the Lz(r_l)(f)) bound on
the admissible controls will be required for passing to the limit in a sequence of
approximating problems to (P) in Theorem 2.1 below.

The cost-functional is supposed to satisfy:

J1 € CHY(W,R) is convex and y,, — y in W implies that

(2.3)
J1(yn) — J1(y) and J{(yn) — Ji(y) in W*.

Here and below “—” and “—” indicate strong and weak convergence, respectively.
Moreover we fix

(2.4) a >0 and ug € L3(Q).

In addition to the above technical assumptions, we require the following hypothe-
ses:

(H1) There exists a feasible point for the constraints in (P).
(H2) A: W — L is a homeomorphism.
(H3) G:W—=C (Q)l is a compact linear operator.

There exists a bounded set M C Cyy x C, C W x L"(2) such that
(H4) 0 € int{Ay — Equ : (y,u) € M} C L"(Q2), where the interior is taken
with respect to L"(1).
Conditions (H1) and (H2) are needed for existence of a solution to (P) and the hy-

potheses (H3)—(H4) are used to establish an optimality system. In particular, (H4)
guarantees the existence of a Lagrange multiplier, or an adjoint state, associated with
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the equality constraint. Condition (H4) is weaker than Slater-type conditions. This
can be argued as in [19, pp. 113-122]; see also [25]. In fact, let (g,a) € W x L"(Q)
satisty

(2.5) Ay=FEgu, ¢<u<e, |Gyx)|<y(x)forallxel.
For p > 0 and |n[zq) < p let y, denote the solution to

Ay, = Egu + .
Then

- —1
lyn —9lw < p HA HL(U(Q),W) ‘
Hence, if p is sufficiently small, then y,, € C, and the set

M = {(ynaﬂ) ine LT(Q)v |77|LT(Q) < p}

serves the purpose required by condition (H4). Differently from the Slater condition
(2.5), condition (H4) operates in the range space of the operator A. Note also that
when arguing that (2.5) implies (H4) the freedom to vary v € C, was not used. For
the analysis of the proposed algorithm it will be convenient to introduce the operator
B = GA™'Eg. Conditions (H2) and (H3) imply that B € L£(L"(Q),C(Q)!). The
compactness assumption in (H3) is needed to pass to the limit in an appropriately
defined approximation to problem (P).

To argue existence for (P), note that any minimizing sequence {(uy,,y(un))} is
bounded in L"(€2) x W by the properties of C,, and (H2). The properties of C,, as well
as Cy, strict convexity of J together with a subsequential limit argument guarantee
the existence of a unique solution (y*,u*) of (P).

More general state constraints of the form

Cy={geW: [(G§)(x) — g(x)| < ¢ for all x € Q}

for some g € C(Q)! can be treated as well. In fact, if there exists §, € W with
Gyy = g and Ay, € L7(Q), then the shift y := §—y, brings us back to the framework
considered in (P) with a state equation of the form Ay = u — Ay,, i.e., an affine
term must be admitted and in (H4) the expression Ay — Egu must be replaced by
Ay — Equ — Ay,.

Before we establish first-order optimality, let us mention two problem classes that
are covered by our definition of Cy, in (P).

Ezample 1 (pointwise zero-order state constraints). Let A denote the second-
order linear elliptic partial differential operator

d
Ay = - Z an (a’ijaxz‘y) + apy

i,j=1

with C%°(Q)-coefficients a;j, i,j = 1,...,d, for some § € (0,1], which satisfy
Zijzl aij(x)&&; > K[€]? for almost all x €  and for all £ € RY, and ag € L>°(Q2)
with ag > 0 a.e. in €. Here we have k > 0. The domain 2 is assumed to be either
polyhedral and convex or to have a C'%-boundary I' and to be locally on one side of
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. We choose W = W, *(Q), L = W~'2(Q),p > d, and G = id, which implies [ = 1.
Then

Gyl <dpinQ = —¢p<y<¢in®

which is the case of zero-order pointwise state constraints. Since p > d, condition
(H3) is satisfied. Moreover, A : W — W~=1P(Q) is a homeomorphism [26, p. 179] so
that, in particular, (H2) holds. Moreover there exists a constant C' such that

lu|r < C|u|L2(Q)a for all u € L2(Q),

provided that 2 < dpfg_p. Consequently, we can take r = 2. Here we use the fact that
Wlﬁ(Q) embeds continuously into L?(Q), provided that 2 < ﬁ, and hence
L?(Q) ¢ W=1P(Q). Note that 2 < dpf‘gip combined with d < p can only hold for
d<3.

In case I is sufficiently regular so that A is a homeomorphism from H?(Q) N
H}(Q) — L*(Q), we can take W = H?(Q) N H} (), L = L?(Q2), and r = 2. In this
case again (H2) and (H3) are satisfied if d < 3.

Ezample 2 (pointwise first-order state constraints). Let A be as in (i) but with
C%1(Q)-coefficients a;;, and let Q have a C1'! boundary. Choose W = W?27(Q) N

Wol’T(Q), L=L"(2), r>d, and, for example, G = V, which yields [ = d. Then

Cy={y e W:|Vy(x)| < v(x) for all x € O},

and (H2) and (H3) are satisfied due to the compact embedding of W27 (Q) into C*(2)
if r > d.

An alternative treatment of pointwise first-order state constraints can be found
in [5].

If, on the other hand, G = id, as in Example 1, then it suffices to choose r >
max(%,2) for (H2) and (H3) to hold.

We emphasize here that our notion of zero- and first-order state constraints does
not correspond to the concept used in optimal control of ordinary differential equa-
tions. Rather, it refers to the order of the derivatives involved in the pointwise state
constraints.

For deriving a first-order optimality system for (P), we introduce the regularized
problem

(P»y) {minimize Jl(y) + % |u - ud'iz(fl) + % |(|Gy| - ¢)+ %Q(Q)

subject to Ay = Equ, u € C,,

where v > 0 and (-)* = max(0, -) in the pointwise a.e. sense. In the following sections
we shall see that (P ) is also useful for devising efficient numerical solution algorithms.

Let (yy,u,) € W x L"(Q) denote the unique solution of (P.,). Utilizing standard
surjectivity techniques and (H2), we can argue the existence of Lagrange multipliers

(oot ) € 17 x 17(@) x 17(),
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with % + % =1, such that

Ay, = Equ.,
A'py + G Ay = —Ji(yy),
a(uy — ua) — E&py + iy — H, = 0,
ﬂ7 2 07 uy S @7 /j'y(u’y - @) = 07
po<00 uy 2 p (uy—9) =0,
Ay =Gy, =) T gy,

()} if |Gy ()] > 0
o) < {chﬂ( )bt Gy (0] > 0,

B(0,1)! else,

where B(0,1)! denotes the closed unit ball in R'. Above, A* € L(L*,W*) is the
adjoint of A and G* denotes the adjoint of G as operator in £L(W, L2(2)!). Note that
the expression for A, needs to be interpreted pointwise for every x € Q and Ay (x) =0
if |(Gyy)(x)| —¥(x) < 0. In particular this implies that A, is uniquely defined for every
x € Q0. Moreover, we have \, € L%(Q)!, in fact, A, € C(Q)!. The adjoint equation,
which is the second equation in (P,), must be interpreted as

(2.6) (py: AV L= 1 + (Ay, GU)r2() = —(J1(yy), V)w=w for any v e W,

i.e., in the very weak sense. For later use we introduce the scalar factor of A, defined
by

~y
2.7 A = ——
@7) 7 |Gy,

(IGyy| —¢)* on {|Gy,| >0} and A3 :=0 else.
This implies that
Ay =X Gy

The boundedness of the primal and dual variables is established next.
LEMMA 2.1. Let (H1)—(H4) hold. Then the family

{(y”’ Uy Py Fy TEy )\f’) }7>1

is bounded in W x L™ (Q) x L™ (Q) x L™ () x L'(Q).
Proof. Since u, € C,, for all v > 1 we have by (H2) that

{(¥y,t) }>1 is bounded in W x L"(Q).

By (H3) the family {Gy,}+>1 is bounded in C(€2)! as well. Henceforth let C' denote a
generic constant independent of v > 1. Let (y,u) € M be arbitrary. By (OS,)

(2.8) (D> Alyy —y)) - + (Nys Glyy —y)r2) = —(J1 (W), ¥y — Y)w=w
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and
(A, Gyy — ) r2) = Y((IGyy| — )" a4y, Gyy — Gy) L2 (0
= ’y/ (IGyy| — ) (IGyy | — ) + Ar/ (IGyy| — )" (¥ — gy - Gy)
Q Q

> [ 10681 =)+ [ (Gl )" (0 - Gu
> (1Gy | = ) 120
Therefore
(Prs Ay = 0))1en +7 (G| =) |22y < —(THB3): 47 — Ywew
and
(2.9) Py, — Ay + Equ)r-n +7[(1Gy| = ) [
< (W) Yy — Ywew + (Dy, Eq(u — UV))LT/(Q),LT(Q)'

The first term on the right-hand side is bounded since {y, },>1 is bounded in W and
€ CHY(W,R), and the second term satisfies

(Pys Eg(u = us)) 1o ) 1) = (04(“7 = Ud) + iy = B, u— “v)
SO+ (fiy, u— @"’@_uv)m(fz)

_ U — _ <C
(E’Y umete UW)Lz(Q)*

L™ (€),L7(Q)

Inserting these estimates into (2.9) and utilizing (H4) and (2.1) we have the existence
of a constant C' independent of 7 such that

- is bounded.
{|pV|L (Q)}vzl is bounde

Integrating the third equation of (OS,,) over {x : fi,(x) > 0}, we deduce that {fi,},>1
is bounded in L"'(Q). Similarly {EW}Vzl is bounded in L" (€2). Finally we turn to
estimate the scalar factor AJ. We have

/ /IG Gl = /¢ (1Gyy| =) 1Gys|

¢ (pw Ayy) L (@),Lr @) — w <J W), Yy)wew < C,

where we used that A3 = 0 on {|Gy,| < ¥} and [Ay,|rr) = [Equslrr) < C.
Hence, {\3},>1 is bounded in L'(Q2). n|
The preceding lemma implies that there exists

(Yo Uns P s f1,, A2) € W < L7(Q) x L (Q) x L7 () x L™ (Q) x M (Q) =: X,
where M(Q) are the regular Borel measures on (2, such that on subsequence

(ymuwapmﬂmﬁw)\i) - (y*au*ap*,ﬂ*ag*,)\i) in X,
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which, for the \* component, means that

/)\fyv —>//\iv for all UEC(Q).
Q Q
By (H3) this implies that
. =\1
Gy, — Gy, in C(Q),

and hence

/Q/\VU — (A (Gy*)’U>M,C(Q)Z for all v € C' (Q)l

Passing to the limit in the second equation of (OS.,) we find

(P A’U)LT’(Q),LT(Q) = —(AI (Gyx), GU>Ml(Q),Cl(Q) - <J{ (Y« ) V)w=w

for all v € Dy, where Dy = {v € W : Av € L"(Q)} and (-, )y (0),ci(q) denotes
the duality pairing between C(Q)! and M(Q)!, the space of regular vector-valued
Borel measures on €. Since D4 is dense in W and since the right-hand side uniquely
defines a continuous linear functional on W, a density argument implies that p, can
be uniquely extended to an element in L*, and the left-hand side can be replaced by
(ps, AV) = 1, for all v € W.

We can now pass to the limit in the first three equations of (OS,) to obtain

(2.10) Ay. = Egqu. in L' (),
(2.11) (ps, Av)r L + (AL (Gys), GU) i ay,cr@) = —(J1(Ys), v)w=w for all v € W,
(2.12) a(us —ug) — Efp + (e —p,) =0 in L™ (Q).
Standard arguments yield
(2.13) f, >0, i 20, p<u, <@ ae in
Note that
(2.14) Ji(y) +5 |

This implies that |Gy.(x)| < ¢ (x) for all x € £, and hence (y., u.) is feasible. More-
over, by (2.3)

~ 2 e
Uy _udliz(ﬁ) + D) |(|ny| —¢)+|L2(Q) < Ji(y )+§ |u _udliz(ﬁ)

(215) iy +2

5 s Ud|L2 @ < hm J1(y~) —|—hmbup,y_>OO2 [ty ud|2L2(§2)

< Jl(y )+ 5 |u - ud|L2(Q)

Since (y«, ux) is feasible and the solution of (P) is unique, it follows that (y., u.) =
(y*,u*). Moreover, from (2.15) and weak lower semicontinuity of norms we have that
limy oo uy = u* in L2(Q). From u, € C, for all v, and u* € C,, with C, C
L2=1(Q) by (2.2), together with Hélder’s inequality we obtain

1 1/7r | |(1” 1)/1” <C|’U,,Y |1/T‘ 'YlO)OO

|u’Y —u |LT < |u7 u |L2 () L2(r=1)(Q) L2(€))

with some positive constant C'. This yields the strong convergence of ., in LT(Q).
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Complementary slackness of u., fi. and p , ie.,

(2.16) fo (e — @) =0, (us — f) =0 ae. in

now follows from the fourth and fifth equations of (OS,), respectively, the weak
convergence of (fi, ﬁ»y) to (ﬂ*,ﬁ*) in L7 (£2)2, and the strong convergence of U~ 10 Us

in L7(Q).
Let y € Cy. Then [, A3(|Gy| — ) < 0 and hence

/ X (GW)| - ) <0,
Q

Moreover, [, Afp >0 for all ¢ € C() with ¢ > 0.

For every accumulation point A, the corresponding adjoint variable p, and La-
grange multipliers i, i, are unique. In fact, since y, = y* is unique, the difference
dp of two accumulation points of p., satisfies

(0p, Av) =0 for allve W,

and since A is a homeomorphism we have that dp = 0.
From (2.12) we deduce that

M = (Eap* —a(u* — ud))+, Qo= (E;%p* —au* — ud)) ,

*

where ()~ = min(0, -) in the pointwise a.e. sense.

We summarize our above findings in the following theorem which provides neces-
sary and sufficient first-order optimality conditions for (P).

THEOREM 2.1. Let (2.1)—(2.4) and (H1)—(H4) hold. Then there exists

(o i, AZ) € L 5 L7 () x L7 (2) x M(Q)

such that
Ay* = Egu* in L"(Q),
A*pe + G*(AEGy*) = —J{ (v*) imn W™,
a(u* —uq) — Ep. + (ﬂ* - H*) =0 in L™ (Q),
e >0, u* <@, fi(u*—@)=0 a.e. in S,
p, =0, ut >, H*(U*_E):O a.e. infl,

and [o, Xip >0 for all ¢ € C(Q) with ¢ > 0. Further (pvvﬂwﬁ.y) converges weakly
in L™ () x L™ (Q) x L™ (Q) (along a subsequence) to (ps, fis, 1), (A, v) — (AL, v)

(along a subsequence) for all v € C(Q), and (y-,u,) — (y*,u*) strongly in W x L" ()
as y — 00.

We briefly revisit the examples 1 and 2 in order to discuss the structure of the
respective adjoint equation.

Ezample 1 (revisited). For the case of pointwise zero-order state constraints with

W = W, ?(Q) the adjoint equation in variational form is given by
<p*7AU>W01,p/(Q)7W71,p(Q) + ALY ) Mm@ e = — (W), v)wew

for all v € W.
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Ezample 2 (revisited). Returning to pointwise gradient constraints expressed by
[Vy(x)| < 1(x) the adjoint equation can be expressed as

(Pss AV) 1 () L) + (ALVY, V) ey ey = — (1 (W), v)wew

for all v € W = W27 () N W, ().

Remark 2.1. Condition (H4) is quite general and also allows the case ¢ = 0
on parts of ). Here we only briefly consider a special case of such a situation. Let
Q=Q,r=2L=L*N),W =H*(Q)NHLQ), and G = I; i.e. we consider zero-order
state constraints without constraints on the controls, in dimensions d < 3. We assume
that A: W — L?(Q) is a homeomorphism and that (2.2) is replaced by

22) 0<y, pec().
In this case (H1), (H2), and (H4) are trivially satisfied and C, = {y € W : |y| <
¢ in Q}. The optimality system is given by

Ayy = uy,

Ay + My = = Ji(yn),

a(uy — ugq) —py =0,

Ay =7(yy] = ¥)* gy,

,(x) € {\i_h(x)} if [y,(x)] > 0,

B(0,1) else,

(08))

with (Yy, Uy, Dyy Ay) € W x L2(Q) x L?(Q) x L2(£2). As in Lemma 2.1 we argue, using
(H4), that {(y, U, py)}y>1 is bounded in W x L?(2) x W*. Since we do not assume
that ¢ > 0, we argue differently than before to obtain a bound on {\,},>1. In fact,
the second equation in (OS)) implies that {\,},>1 is bounded in W*. Hence there
exists (y*,u*, pe, Ae) € W x L2(Q) x L*(Q) x W*, such that (y,,u,) — (y*,u*) in
W x L*(2) and (py, Ay) = (p«, As) weakly in L2(Q) x W*, as v — oo. Differently
from the case with state and control constraints, we have convergence of the whole
sequence, rather than subsequential convergence of (p., A,) in this case. In fact, the
third equation in (OS’V) implies the convergence of p., and the second equation the
convergence of A,. Passing to the limit as v — oo we obtain from (OS;)

Ay* =u*,
(08') A*p. + A\ = —J{(y),
a(u* —ug) — ps =0,
and A, has the additional properties as the limit of elements A,. For example, if

1 > 1 > 0 on a subset Q c Qand y* is inactive on Q, then A\, = 0 as functional on

continuous functions with compact support in Q.

3. Semismooth Newton method for (P,). As mentioned earlier, (P,) is
appealing as it can be solved with superlinearly convergent numerical methods. Com-
bined with a suitable update strategy for v, an overall solution algorithm for (P) is
obtained. Here we analyze in detail the superlinear solution process of (P ), for a fixed
value . The constants in this section therefore depend on . For the path-following
strategy with respect to v one may proceed as in [9, 10].
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3.1. Newton differentiability /semismoothness. In [8], see also [7], for a
mapping F : X — Y, with X and )Y Banach spaces, a generalized derivative is
introduced in such a way that g-superlinear convergence of the Newton algorithm
can be guaranteed without requiring that F' is Frechet differentiable. In fact, F' is
called Newton (or slant) differentiable in an open set U C X if there exists a family
of generalized derivatives Gp(x) € L(X,)), x € U, such that

(3.1) ‘h}im . |h|3 [F(x +h) — F(x) — Gp(x + h)h|ly =0 for every z € U.
x—

Note that F' need not be Frechet-differentiable in order to have the property (3.1).
In general, there exists a set of Newton derivatives at x which becomes a singleton
whenever F is Frechet-differentiable at x. We also point out that (3.1) resembles
the concept of semismoothness of a mapping, which was introduced in [18] for scalar-
valued functionals on R™ and extended to the vector-valued case in [21]. The concept
of semismoothness in finite dimensions, however, is linked to Rademacher’s theorem,
which states that locally Lipschitz continuous functions are almost everywhere dif-
ferentiable. This concept is not available in infinite dimensions. But property (3.1)
quantifies one of the essential ingredients for the Newton method to be locally su-
perlinearly convergent. Consequently it is becoming customary now to refer to the
Newton method, in infinite dimensions, as a semismooth Newton method, if (3.1)
holds. As usual the Newton method for finding z* € X' such that F(z*) = 0 consists
in the iteration:

ALGORITHM 1 (semismooth Newton method).

(i) Choose z° € X.

(ii) Unless some stopping rule is satisfied, perform the update step

(3.2) o =ab — Gp (a:k)_l F(z%) fork=0,1....

This iteration is locally g-superlinearly convergent to x=* within a neighborhood
U(z*), if zo € U(z*), and (3.1) as well as

(3.3) ||Gp(x < C, for a constant C' independently of z € U(z™),

)71”,5(3;,2()

hold [7, 8].

The remainder of this subsection is devoted to the analysis of the semismoothness
property (3.1) of the mapping F,, which defines the Newton iteration associated with
(0S,). This is done for X = Y = L"(Q) where the choice of r is dictated by the
need that Gy(u) € C(Q)! for u € L"(Q). In the subsequent subsection 3.3 we address
(3.3) in L?(Q). Superlinear convergence is investigated in the final subsection. In case
r > 2 a lifting step is introduced to compensate the fact that (3.3) is only available
in L2(Q).

Throughout this section it will be convenient to utilize the operator

Bu=GA 'Equ,

which satisfies B € L(L"((),C(Q)") if (H2) and (H3) are satisfied. In particular
B* € L(L*(Q)!,L" (Q)) for every s € (1,00). We shall require the following two
additional hypotheses for some 7 > r:

Ud, P, P € L7(Q), and u — A=*J| (A~ Egu) is continuously

H5 - R
(H5) Frechet differentiable from L?(Q2) — L7(Q),
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and
(H6) B* € L(L™(Q)', L7(Q)) where 1 + L =1.

We interpret the hypotheses (H5) and (H6) in view of the examples 1 and 2 in
section 2.

Ezample 1 (revisited). We have G = id and, hence, B = A~'E5. Note that
A: Wol’rl (Q) — W~ (Q) is a homeomorphism. Consequently, A=* € L(W =17 (Q),
WL (). For every d there exists # > 7 such that W, " () embeds continuously
into L7(Q). Therefore A=* € L(L"(Q),L7(Q)) and B* € L(L"(Q),L7(Q)). Hence,
assumption (H6) is satisfied. The second part of hypothesis (H5) is fulfilled, e.g., for
the tracking-type objective functional J;(y) = %|y—yd|iz(m with yg € L?() given.

Ezample 2 (revisited). Differently to example 1 we have G = V and, thus, B =
VA 'Es. Since G* € L(L"(Q), W=17(Q2)) we have A~*G* € L(L"(Q), W ()).
As in example 1 there exists for every d some # > r such that B* € ES’%A_*G* €
L(L™(Q)!, L7 (). For J; as in example 1 above (H5) is satisfied.

Next we note that fi, and I in (OS,) may be condensed into one multiplier
firy o= [y = [ Then the fourth and fifth equations of (OS,) are equivalent to

(3.4) iy = (py + ey = @))F + (1 + ¢ (uy — 9))

for some ¢ > 0. Fixing ¢ = o and using the third equation in (OS,) results in

(3.:5)  aluy —uq) — Eipy + (Egzp,y + a(ug — @))+ + (Egzp,y +a(ug—yg)) =0.

Finally, using the state and the adjoint equation to express y, and p, in terms of u.,
(O8,) turns out to be equivalent to

Ey(uy) =0, Fy: L(Q) — L"(Q),
with
(3.6) Fy(uy) = a(uy = ua) = Py + (py + aua — @) + (py + a (ua — 9))
and

Py = py(uy) = =yB*(|Buy| = ¥) " q(Buy) — E{A™"J] (A" Equ,) ,

where

BU)(X) if [Bu(x)| > 0,
0 otherwise.
We further set
(3.7) p,(u) ;== —yB*(|Bu| — )" q(Bu), where p, : L"(Q) — L7(Q).

For the semismoothness of F, we first study the Newton differentiability of p,(-). For
its formulation we need

1 if w(x) >0,
Gmax(w)(x) = {0 if ngg z 0;
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which was shown in [8] to serve as a generalized derivative for max(0,-) : L*1(Q2) —
L#2(Q) if 1 < 89 < 51 < 00. An analogous result holds true for min(0, -). Further the
norm-functional | - | : L%1(Q)! — L*2(Q), with sy, so as above, is Newton differentiable
with generalized derivative ¢(-). This follows from Example 8.1 and Theorem 8.1 in
[13]. There only the case [ = 1 is treated, but the result can be extended in a
straightforward way to [ > 1.

We define

Q(Bv) == |Bv|™" (id —|Bv|2(Bv)(Bv) ") .

Throughout this section, whenever we refer to (H3) it would actually suffice to
have G € L(W,C(Q)!).

LEMMA 3.1. Assume that (H2), (H3), and (H6) hold true. Then the mapping
Py L"(Q) — L7(Q) is Newton differentiable in a neighborhood of every point u €
L"(Q) and a generalized derivative is given by

(38) Gy, (u) = —yB* [Guax(|Bu| — ¢)q(Bu)g(Bu) " + (|Bu| — )" Q(Bu)] B
Proof. By (H6) there exists a constant C7(v) such that
VBl 2L, Lr@y < C1(7)-

Let w and h € L"(Q). Then we have by the definition of p., in (3.7) and the expression
for Gy in (3.8)
Py (u+h) —py(u) — Gy, (u+ h)hlLf‘(fz)
<C1((IBu+ h)| = ¥)" q(Bu+h) = (|Bu| — )" q(Bu)
— [Gmax(|B(u+h)| =) q(B(u+h)) ¢(B(u +h))"
(IB(u+h)| = ¥)" Q(B(u+ h))|Bh| -y
NIIB(u + h)| =) " (¢(B(u + h)) — ¢(Bu) = Q(B(u + h))Bh)| Loy
C1() (| B(u+h)| =)™ — (|Bu| = )" )q (Bu)
= [Gmax(| Blu+ h)| = ¥) ¢ (B(u)) ¢ (B(u+ h)) "] Bhl L (qy:
+ C1(7)|Gmax (|B(u+ h)| = ) (¢ (Bu) — ¢ (B(u + h))) q (B(u+h)" Bh|Lr o)
=1+1I+1I1I.

+
<Cy
+

We now estimate separately the terms I-IT1. Let

5= {xcimuto) < Y2}

Then there exists U(u) C L™(Q) and § > 0 such that
|B(u(x) + h(x))| £ ¢(x), forall xe€8, weU(u), |hl (g <6
where we use that B € L(L"(Q), C(Q)!) due to (H2) and (H3). Consequently

1< Cla(B(u+ 1) = a(Bu) = QUB(u~+ 1) Bhl s
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where C' = C(u, ). We check that H : v — % from C(Q\S)! to itself is uniformly

[v]

Fréchet differentiable with Fréchet derivative

1 vul
H(v) = — (id-2Y
®) =g <1d |v|2)’

provided that v(x) # 0 for all x € Q\S. Moreover v — H'(v) is locally Lipschitz
continuous from C(Q\S)! to C(Q\S)*!. Together with B € L(L"(2), C(2)!) this
implies that

(3.9) 1=0 (112, q)

where O is uniform with respect to u € U. We turn to estimate I and consider
u — (|Bu| — )T in the neighborhood U of u. As noted above G : v — |v] is Newton
differentiable from L*1(Q)! to L*2(Q) if 1 < s3 < 57 < o0 at every v € L%(Q)},
with a generalized derivative \_ZI’ if |u| # 0. This, together with the chain rule

for Newton differentiable maps composed with Frechet differentiable maps, see, e.g.,
[13], Lemma 8.1 or [14], and B € L(L"(Q), C(Q)!) (hence B € L(L"(2), L"T2¢(Q)!))

implies that u — |Bu| is Newton differentiable from L"(2) to L™¢(Q) for some & > 0,
with a generalized derivative given by ¢(u). Newton differentiability of this mapping
also follows from [28], Theorem 5.2. The chain rule for two superimposed Newton
differentiable maps given in Proposition A.1 implies then that u — (|Bu| — )7 is

Newton differentiable from L"(€2) to L"(2) and hence

(3.10) 11=0 (bl @)

with © uniform with respect to u € U. It is straightforward to argue that
(3.11) =0 (|h|2r®) ,

with @ uniform in u € U. Combining (3.9)—(3.11) we have shown that

Ipy(u+h) —py(u) — Gp (uth)h| g =0 (|h|u(fz)) ;

as |h| ) — 0, with © uniform in u € U. Hence, p, is Newton differentiable in the
neighborhood U of u. d

Newton differentiability of F’, is established next.

THEOREM 3.1. Let (H2), (H3), (H5), and (H6) hold true. Then F. : L"(Q) —

L"(Q) is Newton differentiable in a neighborhood of every u € L™(€).
Proof. We consider the various constituents of F, separately. In terms of

Py(u) == py(u) — ESAT*J] (A7 Equ),
we have by (3.6)

. . Wt
Fy () = o — ua) — () + (B (1) + a(wa — §)) + (b5 () + @ (wa — )
Lemma 3.1 and (H5) for J; yield the Newton differentiability of
u — a(u —ug) — po(u) from L7(Q) to L"(Q),

in a neighborhood U (u) of w.
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We further have by Lemma 3.1 that
Py() +a(ua—¢) and py() +a(ua—¢)

are locally Lipschitz continuous and Newton differentiable from L"(Q) to L (Q), re-
spectively. Then the results of Appendix A yield the Newton differentiability of

(1) + alwa = @) + (b5 () + o (ua — @)
from L”(Q) to L"(£2) in a, possibly smaller neighborhood U (u) of u. Combining these
results proves the assertion. a

The structure of a particular generalized derivative associated with F, immedi-
ately follows from a combination of the previous results.

COROLLARY 3.1. Let the assumptions of Theorem 3.1 hold. Then a particular

generalized derivative of Fyy at w € L™(Q) is given by
G (u) = aid — G, (u) + Gy (1) + x(tta — 2))C. (1)
+ Guin (By (1) + o (ua — 9)) Gy, (u)
with
Gp,(u) = Gy, (u) — E5AT*J! (A Equ) A~ Eg.

3.2. Uniform boundedness of the inverse of the generalized derivative
in L2(Q). Next we study G ., in more detail. For a well-defined semismooth Newton
step, we need its nonsingularity on a particular subspace. Given an approximation
u® of Uy, in our context the semismooth Newton update step is defined as

(3.12) Gp, (uF) ok = —F, (u)

with 0% = u*+1 — u¥; compare (3.2) with = v and F = F,.
For our subsequent investigation we define the active and inactive sets

(3.13) Ak = {x € (py (") +a(ua— ) (x) > o} ,
(3.14) AF = {X e (py (uF) + o (ua —¢)) (x) < O},
(3.15) AR = AR U AR,

(3.16) TF =0\ A~

Further we introduce 7, the characteristic function of the inactive set Z¥, and the
extension-by-zero operators E gx, F 41, E qx, and Ez» with the properties E 4x xz= = 0
and Eze X716 = X7k- N

Corollary 3.1 and the structure of Gyax and Guin, respectively, yield that

GF, (uk) = aid —xz+Gp, (uk) .
Hence, from the restriction of (3.12) to A we find that
and similarly

(3.18) 55‘&» = EEMSZ =B (¢ - ”k) =P “feA’“'
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Hence, 55| 4x 1s obtained by a simple assignment of data according to the previous
iterate only. Therefore, it remains to study (3.12) on the inactive set, i.e.

(3.19) E3.Gr, (u¥) Epdl = - T+ (Fv (u*) + G, (u*) B 55IA’“)

as an equation in L2(ZF).
LEMMA 3.2. Let (H2), (H3), (H5), and (H6) hold and T C 2. Then the inverse
to the operator

E3Gp, (u)Er : L*(T) — L*(T),

with Gp, (u) = aid —xzGj, (u), exists and is bounded by L regardless of u € L"(Q)
as long as meas(Z) > 0 .
Proof. Note that we have

E;Gp, (u)Er = aidjz +7E;B*T(u)BEr + EE5AJ] (A" Equ) A~ 'EqEr
with
T(u) = Gmax(|Bu| = ¥)g(Bu)g(Bu) " + (|Bu| — )" Q(Bu).

From B € L(L™(Q), L™ (Q))NL(L" (), L7 (), by (H2), (H3), and (H6), we conclude
by interpolation that B € £L(L?(£2), L?(Q)). Moreover, T'(u) € L(L?*(£2)). Therefore

vE;B*T(u)BEzr € L*(Q) and E;E5A™*J} (A~ Equ) A™'EqEz € L*(9),

where we also use (H5). In conclusion, the operator EZGr (u)Er is an element of
L(L*(Z)). From the convexity of J we infer for arbitrary z € L"(Z) that

(3.20) ((ovidiz +E7EZ AT (A™'Equ) A~ ' EqEx) 2, z)LQ(I) > 0<Hz||2L2(I).

Turning to yE4B*T(u)BE7 we observe that T'(u) = 0 in {|Bu| — ¢ < 0} and
0 </|Bul —1<1in {|Bu| —% > 0}. Hence,

P 2
(T(w)w, ) 2.0 :/ <1——> w2 > 0
LA e g0y | Bul

for all w € L2(Q). From this and (3.20) we conclude that the inverse to E;Gr, (u)Ez :
L*(T) — L*(Z) is bounded by L. O

ProrosiTiON 3.1. If (H2), (H3), (H5), and (H6) hold, then the semismooth
Newton update step (3.12) is well-defined and 6% € L7 ().

Proof. Well-posedness of the Newton step with 6% € L?(Q) follows immediately
from (3.17), (3.18), and Lemma 3.2. Note that whenever Z¥ = (), then 6* is fully
determined by (3.17) and (3.18). An inspection of (3.17), (3.18), and (3.19), using
(H5) and the structure of E5GF, (u)Ez, moreover, shows that 6% € L"(Q). O

From Lemma 3.2 and the proof of Proposition 3.1 we conclude that E7GFE,

(u)Ezv = f is solvable in L"(Q) if f € L"(Q2). It is not clear, however, whether

(E5Gp, (u)Ez)~! is bounded as an operator in L(L™()) uniformly with respect to .
We are now prepared to consider (3.3) for G, specified in Corollary 3.1.
PROPOSITION 3.2. Let (H2), (H3), (H5), and (H6) hold. Then for each 4 €

L7(Q2) there exists a neighborhood U (@) C L™ () and a constant K such that

(3.21) HGFw (u < K for all uw € U(4).

)71||L(L2(§l))
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Proof. Let A and T denote disjoint subsets of Q such that AUZ = Q. Then observe
that every v € L*(2) can be uniquely decomposed in two components (Ejv, E%v).

For g € L*(Q) the equation
Gr,(u)jv=g

is equivalent to

Eyv=FE%g,
(3.22) { A A

(B3 G, (u)Ez) Eyv = Bz g — E3 G, (u)Ea E3 g.
In the proof of Lemma 3.2 we argued that

Gp, (u) €L (LQ(Q)) , for each u e L*(Q).

Slightly generalizing this argument shows that for each @ € L2(Q) there exists a
neighborhood U (%) and Cy such that

||GF7 (U)HL(LQ(Q)) < Cy for all w € U(4).

From (3.22) and Lemma 3.2 it follows that (3.21) holds with K = 1+1(1+C5). O

3.3. Local g-superlinear convergence of the semismooth Newton itera-
tion without and with a lifting step. For » = 2 we can deduce the following result
from the discussion at the beginning of section 3, Lemma 3.1, and Proposition 3.2.

THEOREM 3.2. If (H2), (H3), (H5), and (H6) hold, then the semismooth Newton
iteration (3.2) applied to F., given in (3.6) with generalized derivative G, given in
Corollary 3.1, is locally q-superlinearly convergent in L2(Q).

In case r > 2 the semismooth Newton algorithm is supplemented by a lifting step.

ALGORITHM 2 (semismooth Newton method with lifting).

(i) Choose u® € L"().
(ii) Solve for @**+! e L™(Q) :

Gr, (u) (1 — ) = ~F, (u").

(iii) Perform a lifting step:

W = = (ua gy~ (y + s~ @) (py (- g)))

where p, = p, (@*1).
The case with r» > 2 is addressed next.
THEOREM 3.3. If (H2), (H3), (H5), and (H6) hold, then the semismooth Newton
method with lifting step is locally q-superlinearly convergent in LT(Q).
Proof. Let U(uy) denote the neighborhood of . according to Theorem 3.1.
Proposition 3.2 implies the existence of a constant M and p > 0 such that

= H <M
H r, (W) L) ~

for all u € B,(uy,p). Here B,(uy,p) denotes the open ball with radius p and center

uy in L"(R2), with p sufficiently small such that B,(uy,p) C U(uy). We recall the
definition of p,(u):

(3.23) py(u) = =yB*(|Bu| = )" q(Bu) — E5A™"J; (A~ Equ) .
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A computation shows that v — (|v| — )" ¢(v) is globally Lipschitz continuous from
L"(Q)! to itself with Lipschitz constant 3. Since B € L(L"(Q),L>®(Q)) by (H3)
and B € L(L" (), L (Q)) by (H6), the Marcinkiewicz interpolation theorem then
implies that B € L(L*(Q), L"(2)). Moreover B* € L(L" (), L"(Q)) again as a conse-
quence of (H6), and hence the first summand in (3.23) is globally Lipschitz continuous
from L2(Q) to L"(Q). This together with (H5) shows that p.(u) is locally Lipschitz
continuous from L2(Q) to L"(Q). Let L denote the Lipschitz constant of p,(-) in
Bs(u, p M) C L*(€). Without loss of generality we assume that o < L M.

With L, M, and p specified, the lifting property of F’, implies the existence of a
constant 0 < p < p such that

o}
F,(uy +h) = Fy(uy) — Gp, (uy + h)h| ;- 7T2 -
|y (uy ) y(uy) F, (uy )bl Q) = 3L M |05 |h |L

for all [h|;. ) < p. Let ug be such that ug € Ba(uy, p) N By (uy, p), and proceeding
by induction, assume that u, € Ba(uy, p) N By (uy, p). Then

|uk+1 - u'Y|L2(Q) < HGFW (uk) H,C(LQ) |Q| T2
(3.24) | By (WF) = F(us) = G, (u) (u* = uy) Lm()
S?)LM u YL (Q) ‘u Uyl

and, in particular, Gg41 € Ba2(uy, p). We further investigate the implications of the
lifting step:

uFtt — Ury :é (pV (akﬂ) = pyl(uy) — (pv ( kﬂ) + auqg — @)Jr
+ (py (uy) + alua — @)" = (py (@) + alua — )
+ (py () +a (wa— ) ")

which implies that

3L | k+1

(325) ‘UkJrl u'y‘LT(Q ‘p’Y ( kJrl) p'V Uy |LT(Q Uy

L2(@)

Combining (3.24) and (3.25) implies that u**! € B, (u,,p). Thus the iteration is
well-defined. Moreover we find

L@ LM ‘F (u*) = Fy(u?) = Gp, (u¥) (u* - uv)|m(§2)

B [ )

k41

|u — Usy

|ub — uV'LT(Q)

which by (3.1) implies g-superlinear convergence. d

Remark 3.1. If we had a uniform estimate on ||Gg, (u*)~ 1||£ Lr(6y) then the
lifting step could be avoided. In fact, note that we are not using the full power of
the semismooth estimate (3.1) in (3.24), since we overestimate the L?-norm by the
L"-norm.

We note, however, that for each fixed u € L"() the operator G, (u) is contin-
uously invertible from L"(Q) to itself; see Proposition 3.1. Thus, if uy Gr, (ug) is
continuous for all sufficiently large k, then the desired uniform estimate G, (ux) ™' €
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L(L"(2)) holds. This continuity cannot be expected in general since G, (u) contains
the operator

T(u) = Gumax(|Bu| = ¥)a(Bu)a(Bu) " + (|Bul — )" Q(Bu);

see Lemma 3.2. If, however, the measure of the set {x : (|Bu*| — ¢)(x) > 0}, and
similarly for the max-term changes continuously with £, then the uniform bound on
the inverse holds and the lifting step can be avoided. In the numerical examples given
in the following section this behavior could be observed.

4. Numerics. Finally, we report on our numerical experience with Algorithm 1.
In our tests we are interested in solving (P,) with large ~, i.e., we aim at a rather
accurate approximation of the solution of (P). Algorithmically this is achieved by
preselecting a sequence v, = 10%, £ = 0,...,8, of y-values and solving (P) for ~e
with the solution of the problem corresponding to ,_; as the initial guess. For £ =0
we use u® = 0 as the initial guess. Such a continuation strategy with respect to « is
well-suited for producing initial guesses for the subsequent problem (P.) which satisfy
the locality assumption of Theorem 3.2, and it usually results in a small number of
semismooth Newton iterations until successful termination. We point out that more
sophisticated and automatic selection rules for (v,) may be used. For instance, one
may adapt the technique of [9] for zero-order state constraints without additional
constraints on the control.

In the numerical tests we throughout consider A = —A, Q=0= (0,1)2, and
Ji(y) = |ly — de%z(Q). Here we discuss results for the following two problems.

PROBLEM 1. The setting for this problem corresponds to Example 1. In this case
we have zero-order state constraints, i.e., G = id, with ¥(x1,x2) = 5E-3(1+0.25]0.5—
x1]). The lower and upper bounds for the control are ¢ = 0 and @(x1,22) = 0.1 +
| cos(2mz1)|, respectively. Moreover we set ug = 0, yq(x1, x2) = sin(2mwz1) exp(2x2)/6,
and o = 1E-2.

PROBLEM 2. The second example corresponds to first-order state constraints with
G =V and ¥ = 0.1. The pointwise bounds on the control are

o(r1,72) =

—0.5—|z1 — 0.5] — |2 — 0.5] if x1 > 0.5,
0 if £, < 0.5,

and @(x1,x2) = 0.1 + |cos(2mx1)|. The desired control ug, the desired state yq, and
a are as in Problem 1.

For the discretization of the respective problem we choose a regular mesh with
mesh size h. The discretization of A is based on the standard five-point stencil
and the one of G in Problem 2 uses symmetric differences. For each v-value the
algorithm is stopped as soon as |[Appn + YG} (|Gryn| — ¥r)* + Jip,(yn)| -1 and
llon — (o + (uan —bp) ™) — (un + a(ug,n —an)™)||2 drop below tol= 1E-8. Here we
use ||w||—1 = ||4; "w||2, and the subscript h refers to discretized quantities. Before
we commence with reporting on our numerical results, we briefly address step (ii)
of Algorithm 2. In our tests, the solution of the linear system is achieved by sparse
(Cholesky) factorization techniques. Alternatively, one may rely on iterative solvers
(such as preconditioned conjugate gradient methods) for the state and the adjoint
equation, respectively, as well as for the linear system in step (ii) of Algorithm 2.

In Figure 4.1 we display the state, control, and multiplier p; upon termination
of Algorithm 1 when solving the discrete version of Problem 1 for v = 1E8 and
h = 1/256. The active and inactive set structure with respect to the pointwise
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3 Optimal state y (h=1/256)

Optimal control u (h = 1/256)

Lagrange multiplier 1 (h = 1/256)

Fic. 4.1. Problem 1 (v = 1E8, h = 1/256). State yp, control up, and multiplier up upon
termination of Algorithm 1.

Active and inactive sets for u Active set for lyl<y Overlap of active sets
. 0.9 0.9)

0.8, 0]
' 0.7 0.7] '

Fi1G. 4.2. Problem 1 (v = 1E8, h = 1/256). Inactive set (white), active set for the lower bound
(gray), and for the upper bound (black) in the left plot. Approzimation of the active set for the
zero-order state constraint (black) in the middle plot. Overlap of active regions for control and state
constraints in the right plot.

constraints on wu, can be seen in the left plot of Figure 4.2. Here, the white region
corresponds to the inactive set, the gray region represents the active set for the lower
bound, and the black set is the active set with respect to the upper bound. The
graph in the middle shows the approximation of the active set for the zero-order
state constraint. On the right we show the overlapping region where the pointwise
state constraint and one of the bounds on the control are active simultaneously. In
Table 4.1 we display the iteration numbers upon successful termination of Algorithm 1
for various mesh sizes and for each ~y-value of our preselected sequence. We recall that
these figures are based on our y-continuation strategy.

Upon studying the above results for Problem 1, we first note that Algorithm 1
with ~y-continuation exhibits a mesh independent behavior. This can be seen from
the stable iteration counts along the columns of Table 4.1. Moreover, for fixed h the
number of iterations until termination is rather stable as well. This is due to the
excellent initial guesses produced by our ~y-continuation technique. In our tests we
also found that Algorithm 1 without the 7-continuation for solving (P.) for large
and with initial choice u% = 0 may fail to converge. Concerning the test example
under investigation, we note that the overlap of the active sets for the state and the
controls is rather special. In this case, the bound on the state and the control satisfy
the state equation in the region of overlapping active sets.

Next we report on our findings for Problem 2. In Figure 4.3 we show the state,
control, and multiplier p;, upon termination for v = 1E8 and h = 1/256. Figure 4.4
shows the active and inactive sets for the constraints on the control in the left plot
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TABLE 4.1
Problem 1. Number of iterations for various mesh sizes and ~y-values.

Iterations
h/y | 1EO0 [ 1EI | 1E2 | 1E3 | 1E4 | IE5 | 1E6 | 1E7 | IES
= 3 3 4 5 5 5 4 4 2
o3 3 3 4 6 5 5 5 4 4
555 3 3 5 6 5 5 5 5 4
= 4 3 5 6 6 6 5 5 5

Lagrange multiplier for pointwise constraint on u (h = 1/256)
x10°

Optimal state y (h = 1/256) Optimal control u (h = 1/256)

Fic. 4.3. Problem 2 (y = 1E8, h = 1/256). State yp, control up, and multiplier up upon
termination of Algorithm 1.

Active and inactive sets for u Active set for |V yl<i,

v
09 09|

02 04 06 08 02 04 06 08
X,-axis x,-axis

FiG. 4.4. Problem 2 (v = 1E8, h = 1/256). Inactive set (white), and active set for the lower
bound (gray) and for the upper bound (black) in the left plot. Approzimation of the active set for
the first-order state constraint (black) in the right plot.

and the approximation for the active set for the pointwise gradient-constraint on the
state on the right. As before, Table 4.2 provides the iteration numbers upon successful
termination for various mesh sizes and y-values.

Concerning the mesh independence and the stability of the iteration counts due
to the employed v-continuation scheme, the results of Table 4.2 support the same
conclusions as for Problem 1. Again, without the continuation technique Algorithm 1
may fail to converge for the simple initial guess u9 = 0. We observe that a stable
(with respect to h and 7) and a superlinear convergence behavior of the semismooth
Newton method is obtained without utilizing the lifting step.

Next we demonstrate the difference in regularity between A, of Problem 1 (see
Figure 4.5; left plot) and A5 of Problem 2 (see Figure 4.5; right plot). Note that
for visualization purposes we linearly interpolate the multiplier values at the grid
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TABLE 4.2
Problem 2. Number of iterations for various mesh sizes and ~y-values.

Iterations
h/y | 1EO0 [ 1EI | 1E2 | 1E3 | 1E4 | IE5 | 1E6 | 1E7 | IES
1
3 6 6 6 4 3 3 2 2 2
= 7 7 6 4 4 3 3 2 2
1
3 7 7 6 5 5 4 3 2 2
1
5 7 7 6 6 5 5 4 3 2

Approximate multiplier for [yl<y Approximate multiplier for |V y|<y

FIG. 4.5. v = 1E8, h = 1/256. Approxzimate multiplier A}, for Problem 1 (left) and )\j“’y n for
Problem 2 (right).

points. The approximate multiplier A, j reflects the structural result obtained in [2].
According to this result, under sufficient regularity the multiplier is L2-regular on
the active set, zero on the inactive set, and measure-valued on the boundary between
the active and inactive set. Such a structure can be observed by inspecting the left
plot of Figure 4.5. On the other hand, for pointwise state constraints of gradient-
type (first-order constraints) additional regularity on the active set appears not to
be available for the example under investigation. Indeed, A%, in the right plot of
Figure 4.5 exhibits low regularity in the interior of the (smooth) active set.

Finally we note that the rather small value for tol and the rather large values for
~ in our numerics reflect our interest of studying Algorithm 1 as a solver for a given
discrete problem. In view of the error in discretization, however, when solving (P)
by a sequence of approximating problems (P,) one would be interested in estimating
the overall error in terms of the discretization and the v-relaxation error, respectively.
Such a result would allow a y-choice such that both errors are balanced on a given
mesh. This kind of numerical analysis is important in its own right, but goes beyond
the scope of the present paper and is the subject of future research.

Appendix A. Auxiliary result. The following proposition establishes the New-
ton differentiability of a superposition of Newton differentiable maps.

PropoSITION A.1. Let f:Y — Z and g : X — Y be Newton differentiable in
open sets V and U, respectively, withU C X, g(U) CV C Y. Assume that g is locally
Lipschitz continuous and that there exists a Newton map G(-) of f which is bounded
on g(U). Then the superposition fog: X — Z is Newton differentiable in U with a
Newton map G5Gy.
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Proof. Let x € U and consider

|[f(g(z+h)) = flg(2)) = Grlg(z + h))Gy(z + h)hl 2
(A1) =|f(w+k) — f(w) — Gy(w+ k)k + Rz, h)|z,

where w = g(z), k = k(h) = g(z + h) — g(z) and R(z, h) = Gy(g(z + h))(g(z + h) —
9(z)) — G(g(z + h))Gg(z + h)h. Observe that

[R(z,h)|z = |G (g(x + 1) (g(z + h) — g(x) — Gg(x + h)h) |z
< Clg(x +h) = g(x) = Gg(z + h)hly = o(|hl|x)

as |h|x — 0 by Newton differentiability of g at 2. Further, owing to the local Lipschitz
continuity of g there exists a constant L > 0 such that |g(x + h) — g(x)|y < L|hlx
for all h sufficiently small. Hence, |k(h)|y = O(|h|x) as |h|x — 0. Now we continue
(A.1) by

[f(w+k) = flw) = Gp(w + k)k + Rz, h)| 2
<[f(w+k) = f(w) = Gy(w + k)k|z + o(|h|x)
=0(|kly) + o(|hlx) = o(|hlx)

as |h|x — 0, where we use the Newton differentiability of f at g(z). This proves the
assertion. O
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