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Abstract. First order optimality conditions for stationary pointwise state
constrained optimal control problems are considered. It is shown that the La-
grange multiplier associated with the pointwise inequality state constraint is
a regular Borel measure only, in general. In case of sufficiently smooth data
and under a regularity assumption on the active set, the Lagrange multiplier
can be decomposed into a regular L2-part concentrated on the active set and
a singular part, which is concentrated on the interface between the active and
the inactive set. In a second part of the paper numerical solution strategies
are reviewed. These methods fall into two classes: the first class which in-
cludes interior-point methods as well as active set strategies is purely finite
dimensional. The second class, however, admits an analysis in function space.
The latter methods typically rely on regularization. In this respect, Moreau-
Yosida-based and Lavrentiev-based techniques are discussed. The paper ends
by a numerical comparison of the presented solution algorithms.
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1. Introduction

State-constrained optimal control problems involving partial differential equa-
tions (PDEs) occur in many practical applications. For instance, in the control
of heat phenomena, where the underlying PDE is the well-known heat equation,
one might be interested in keeping the temperature, i.e., the state of the system,
within a given reference domain below a certain threshold value. If this requirement
cannot be fulfilled then unwanted phase-transitions might occur. In this context,
different control actions are conceivable. As an example, the control may be due
to the presence of a cooling device on the boundary or, in special cases, within the
domain. Or, in elasticity theory the displacement (state) within a (linear) elastic
medium is determined as the solution of the Navier-Lamé equations, where the
source term is a given body force. By controlling the body force or, alternatively
the boundary traction, one may be interested in steering the system toward some
desired state. This control-induced displacement, however, can be limited by the
presence of a rigid obstacle. Hence, again one has to cope with a pointwise state
constraint which, in this case, acts on the boundary (or parts thereof) of the elas-
tic medium. Besides the two applications mentioned above there are many more
instances as for instance in fluid dynamics or financial mathematics.

It was observed in, e.g., [C, CRZ] that the Lagrange multiplier associated to the
pointwise inequality state-constraint exists only as a measure, in general. This fact
has an impact on both, the analytical level when characterizing first order optimal-
ity of a stationary point of the optimal control problem and on the numerical level
when discretizing the problem. To be more specific, let us consider the following
model problem:

(P)





min J(y, u) =
1
2

∫

Ω

(y − z)2 dx +
α

2

∫

Ω

u2 dx ,

−∆y = u in Ω , y = 0 on ∂Ω ,

y ≤ ψ a.e. in Ω ,

(y, u) ∈ W × L2(Ω) ,

where W = H2(Ω) ∩H1
0 (Ω), Ω ⊂ Rd, d ≤ 3, is the underlying sufficiently smooth

and bounded domain, and α > 0. Further data regularity will be specified below.
We call y the state and u the control variable, respectively. The function ψ denotes
the bound constraint on the state, i.e., y ≤ ψ has to hold pointwise almost every-
where (a.e.) in Ω. Then the first order optimality condition of (P) involves the
complementarity system

(1.1) y ≤ ψ a.e. in Ω, 〈λ, ỹ − y〉C∗,C ≥ 0 for all ỹ ≤ ψ, ỹ ∈ W,

where λ represents the aforementioned Lagrange multiplier and W ⊂ C(Ω) is used.
Obviously, the poor multiplier regularity does not admit a pointwise representation
of the complementarity system, which is frequently crucial for numerical algorithms.

In fact, solution techniques and their (local) convergence behavior often hinge
on the multiplier regularity. Classical active set methods, for instance, require a
pointwise (almost everywhere) interpretation of λ for the active set estimation.
Here we refer to section 5 on numerical approaches for more details on this issue.
In that section we will also discuss regularization techniques which finally allow
such a pointwise interpretation of the Lagrange multipliers and the development
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of function space oriented active-set algorithms. Further, in the case of pointwise
constraints, techniques like the projected gradient methods will not work without
modification since the sum of the iteration variable and the gradient of the objective,
which coincides with the negative multiplier, is needed for the update. Since they
have different regularity properties this is not feasible in general. An analogous
comment applies for projected Newton techniques.

Recently it was found that semismooth Newton methods are highly efficient in
solving certain classes of constrained optimization problems in function space [CNQ,
HIK]. These methods rely on a pointwise almost everywhere interpretation of the
complementarity system involved in the first order optimality characterization and
smoothing properties of the control-to-adjoint-state mapping. For instance, in the
context of classes of control-constrained (rather than state-constrained) optimal
control problems of the type

(Pc)





min J(y, u) =
1
2

∫

Ω

(y − z)2 dx +
α

2

∫

Ω

u2 dx ,

−∆y = u in Ω , y = 0 on ∂Ω ,

u ≤ ψ a.e. in Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) ,

one has λ ∈ L2(Ω) and (1.1) is replaced by

(1.2) u ≤ ψ, λ ≥ 0, λ(u− ψ) = 0 a.e. in Ω.

Above u ∈ L2(Ω) denotes the optimal control variable. Then the pointwise inter-
pretation of the complementarity system allows to express (1.2) equivalently as

(1.3) λ−max (0, λ + c(u− ψ)) = 0,

for some arbitrarily fixed c > 0, and the smoothing of the control-to-adjoint-state
operator implies that for the choice c = α the mapping

θ : u 7→ λ(u) + c(u− ψ)

can be considered as θ : L2(Ω) → Lq(Ω) with q > 2. The norm gap between Lq(Ω)
and the space L2(Ω), in which the inequality (1.2) is posed, is crucial in proving
generalized differentiability of

u 7→ max(0, θ(u));

and in arguing well-definedness and locally superlinear convergence of the gener-
alized (semismooth) Newton method for solving the underlying nonsmooth first
order optimality system; see [HIK] for details. Again, the low multiplier regular-
ity in state-constrained problems prevents the pointwise interpretation and/or the
smoothing of the control-to-adjoint-state mapping. However, in our sections 3 and
5 we discuss a regularization technique which yields Lagrange multipliers in L2(Ω)
and which allows a function space analysis of semismooth Newton or, equivalently,
primal-dual active-set methods.

An approach for solving state constrained optimal control problems which does
not rely on the use of multipliers was introduced in [HR]. This method operates
with the interface (boundary) between the active set {y = ψ} and the inactive set
{y < ψ} as the optimization variable, and the constrained minimization problem is
transformed into a shape optimization problem. Since the interface allows a unique
identification of the inactive region, the multiplier itself is not an issue. While this
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technique is appealing due to its favorable analytical properties, the implementation
is rather technical.

In the next section we continue these notes by reviewing the first order optimality
theory for a state-constrained model problem of the type (P). We focus on the
case where the governing equation is strongly elliptic. It turns out that under
certain regularity assumptions on the active respectively inactive sets at the optimal
solution, the Lagrange multiplier pertinent to the pointwise inequality constraint
can be decomposed into a regular L2-part and a singular measure-valued part which
is concentrated on the boundary between the active and inactive sets. At the end of
section 2 we briefly compare the first order conditions of (P) and (Pc) with respect
to their analytical properties.

In the subsequent sections 3 and 4 we discuss a Moreau-Yosida-based regular-
ization technique for state-constrained problems. This regularization depends on a
scalar relaxation/regularization parameter which introduces a so-called primal-dual
path which consists of the family of optimal solutions of the regularized problems
together with the corresponding adjoint states and induced regular Lagrange mul-
tipliers. Further it induces a primal-dual path value-functional. We then study
regularity and differentiability properties of the path with respect to the relaxation
parameter. It turns out that under a strict complementarity assumption the value
functional of the regularized problems is twice continuously differentiable and ex-
hibits monotonicity properties. As a result good low-parametric models of the path
value-functional can be found based on the structure of the relaxation term. These
models are subsequently used for driving the path parameter to its limit, i.e., to
find a solution of the original (less regular) problem. This procedure has several
analytical as well as numerical benefits such as sufficiently regular subproblems for
which standard methods (like semismooth Newton algorithms) converge rapidly in
function space setting, a simple path-structure such that one can find good approxi-
mating models for the primal-dual path value functional, controlled path-parameter
updates based on model functions to avoid ill-conditioning, and wide applicability.

In section 5 we introduce two solution paradigms: one based on finite dimensional
methods and the other one allowing a function space analysis. In the context of
purely finite dimensional approaches we discuss primal-dual path-following interior-
point methods (see, e.g., [FGW, MTY, V2, Wr, Y]) and a primal-dual active-set
method [BHHK, BK3]. Both methods are considered to be extremely efficient on the
discrete level, but a function space theory is not available. As far as function space
related techniques are concerned we address an inexact path following concept based
on the Moreau-Yosida regularization addressed above. The development is due to
[HK2]. We also briefly mention a technique based on a Lavrentiev-regularization
[PTW, Tr] of the state-constrained problem.

Let us emphasize here that in the case of regular Lagrange multipliers (e.g., for
(Pc)) our work [BHHK, HIK] indicates that semismooth Newton and primal-dual
active set methods are superior to path-following strategies. This includes a wide
class of pointwise control constraints in the optimal control of partial differential
equations.

Finally we point out that these notes focus on the elliptic case. However, some
of the topics that we treat here were also considered for time dependent problems.
Here we only mention [CRZ, HH, RK] and the references therein.
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2. Problem Statement and Optimality Conditions

Unless specified otherwise these notes will focus on the problem

(P)





min J(y, u) =
1
2

∫

Ω

(y − z)2 dx +
α

2

∫

Ω

u2 dx ,

−∆y = u in Ω , y = 0 on ∂Ω ,

y ≤ ψ a.e. in Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) .

The results which we shall discuss for (P) hold equally well for the case when the
Laplacian is replaced by a strongly elliptic differential operator of second order, or
when the distributed control is replaced by Neumann boundary control.

Above Ω denotes a bounded domain in Rd, d ∈ { 1, 2, 3 }, with C1,1 boundary
∂Ω. It is assumed throughout that α > 0, z ∈ L2(Ω), ψ ∈ H2(Ω), and that ψ > 0
on ∂Ω. Note that for the control ũ = −∆ψ − 1 the corresponding state ỹ = y(ũ)
satisfies ỹ < ψ on Ω̄. This is a consequence of the maximum principle and the
assumption that ψ > 0 on ∂Ω. Hence (ỹ, ũ) is a feasible pair for (P).

Due to the regularity requirements on Ω every solution y to −∆y = u, y = 0
on ∂Ω, with u ∈ L2(Ω) , satisfies y ∈ W where W = H2(Ω) ∩ H1

0 (Ω). We recall
that W ⊂ C(Ω), the space of continuous function on Ω, if d ≤ 3. It is standard to
argue the existence of a unique solution (y∗, u∗) ∈ W × L2(Ω) to (P). Together
with J we also consider the reduced cost functional Ĵ : L2(Ω) → R defined by
Ĵ(u) = J(y(u), u). A first order optimality condition is given next. We denote by
M(Ω) the space of real regular Borel measures on Ω and recall that M(Ω) can be
identified with the dual of C(Ω).

Proposition 2.1. The pair (y∗, u∗) ∈ W×L2(Ω) is the solution to (P) if and only
if there exists p∗ ∈ L2(Ω) and λ∗ ∈M(Ω) such that

(2.1a) −∆y∗ = u∗ in Ω , y∗ = 0 on ∂Ω ,

(2.1b) (p∗,−∆y)Ω + 〈λ∗, y〉C∗, C = (z − y∗, y)Ω for all y ∈ W ,

(2.1c) 〈λ∗, y − y∗〉C∗, C ≤ 0 for all y ∈ C(Ω), y ≤ ψ ,

(2.1d) p∗ = α u∗,

(2.1e) y∗ ≤ ψ .

Moreover uniqueness of the pair (y∗, u∗) implies uniqueness of (p∗, λ∗).

We note that as a consequence of (2.1a) we have y∗ ∈ W and hence (2.1c) is
well-defined. Above (·, ·)Ω, below also written as (·, ·), denotes the L2(Ω)-inner
product on Ω and 〈·, ·〉C∗, C stands for the duality pairing between M(Ω) and C(Ω).
Proposition 2.1 can be verified with techniques developed in [BK1, C], for example.
For convenience of the reader we include a proof.

Proof. We require some notation. Let T : L2(Ω) → C(Ω) denote the operator which
assigns to u ∈ L2(Ω) the solution y(u) ∈ W ⊂ C(Ω) of −∆y = u with Dirichlet
boundary conditions. Further let

K = { y ∈ C(Ω) | y ≤ ψ }
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and IK : C(Ω) → R ∪ {+∞} be defined as

IK =
{

0 for y ∈ K
+∞ for y /∈ K .

Recall that an element λ ∈ M(Ω) is in the subdifferential ∂IK(y∗) of IK at y∗ if
and only if

y∗ ∈ K and 〈λ, y − y∗〉C∗, C ≤ 0 for all y ∈ K .

By properties of subdifferential calculus and due to the strict convexity of Ĵ and
the convexity of IK , (y∗, u∗) = (y(u∗), u∗) is a solution to (P) if and only if

(2.2) 0 ∈ ∂
(
Ĵ(u∗) + IK(T u∗)

)
.

We refer to [BP] for convex analysis results which are used in the following argu-
ments. Since Ĵ is defined on all of L2(Ω), the differential inclusion (2.2) is equivalent
to

0 ∈ ∂Ĵ(u∗) + T ∗∂IK(T u∗) .

This latter condition is equivalent to the existence of

(2.3) λ∗ ∈ ∂IK(T u∗)

such that

(2.4) 0 ∈ ∂Ĵ(u∗) + T ∗λ∗ .

Note that (2.4) can be expressed as

(2.5)
0 = (T u∗ − z, T (u− u∗)) + α (u∗ − ud, u− u∗) + (T ∗λ∗, u− u∗)

= (−p∗ + α(u∗ − ud), u− u∗)

for all u ∈ L2(Ω), where

(2.6) p∗ = −T ∗λ∗ + T ∗(z − T u∗) .

The equality y∗ = T u∗ and T u∗ ∈ K are equivalent to (2.1a), (2.1e), further (2.3),
(2.5) and (2.6) are equivalent to (2.1b),(2.1c),(2.1d) and (2.1e). This concludes the
proof. ¤

Under appropriate assumptions on the active set associated to the constraint
y ≤ ψ the structure of the Lagrange multiplier can further be analyzed. Under-
standing this structure is useful to interpret some of the difficulties that arise in
numerical realization of state constrained optimal control problems, and it is also
of independent interest. In particular it will follow that the Lagrange multiplier
is not in L2(Ω), in general. Concerning the regularity assumption on ψ we used
ψ ∈ H2(Ω) in the argument that (P) admits at least one feasible element. In the
following theorem we shall require additional regularity of ψ. But in the subsequent
sections it will suffice that ψ ∈ L2(Ω) and that (P) admits a feasible element. We
denote by

A = { x ∈ Ω | y∗(x) = ψ(x) } and I = Ω\A ,
6



the active and inactive sets corresponding to the solution (y∗, u∗).
We shall utilize the following assumption:

(A1)





A =
⋃̀

i=1

Ai,
◦
Ai = Ai,A ∩ ∂Ω = ∅,

Ai, i = 1, · · · , ` are pairwise disjoint ,
Ai is connected with C1,1 boundary for each i.

In the situation of (A1) we set Γ = ∂A and let nI and nA denote the outer normal
vectors to I and A.

Theorem 2.1. Assume ψ ∈ H4(Ω) and that (A1) holds. Then p∗ ∈ H1
0 (Ω),

p∗|A ∈ H2(
◦
A), and p∗|I ∈ H2(I). Moreover the pair (p∗, λ∗) of Proposition 2.1 is

characterized by

(2.7a) p∗ = −α∆ψ on A ,

(2.7b) −∆p∗ = −(y∗ − z) in I, p∗ = 0 on ∂Ω, p∗ = −α∆ψ on Γ ,

(2.7c) λ∗ = µ∗ + µ∗Γ with µ∗ ∈ L2(Ω) , µ∗Γ ∈ H1/2(Γ) ,

where

µ∗ =
{

0 on I
z − ψ − α(∆2ψ + ∆ud) on A and µ∗Γ = −

∂p∗|I
∂nI

+ α
∂(∆ψ + ud)

∂nA
with µ∗ ≥ 0 in Ω and µ∗Γ ≥ 0 on Γ.

Proof. On A =
◦
A we have y∗ = ψ and hence u∗ = −∆ψ. By (2.1d) it follows that

p∗ = −α∆ψ on A. Thus p∗|A ∈ H2(A). Equation (2.1b) further implies that

(2.8) λ∗ = z − ψ + ∆p∗ = z − ψ − α∆2ψ in
◦
A .

From equation (2.1c) one deduces that

(2.9) λ∗ = 0 on I ∪ ∂Ω .

Combining (2.8) and (2.9) it follows that λ∗ can be expressed as

λ∗ = µ∗ + µ∗Γ,

with µ∗ ∈ L2(Ω), given by the values of λ∗ in
◦
A and I, and µ∗Γ ∈M(Γ) is a measure

concentrated on Γ. Utilizing (2.1b) and the assumption that ∂Ω is C1,1 smooth,
one argues that p∗ is H2 in a neighborhood of ∂Ω and in particular that

(2.10) p∗ = 0 on ∂Ω.

Recall next that W 1,q′
0 (Ω) ⊂ C(Ω) for q′ > n and that W is dense in W 1,q′

0 (Ω). The
specific choice q′ = 4 is convenient for the purpose of this proof. It then follows
that the functional

y → (z − y∗, y)Ω − 〈λ∗, y〉C∗,C = (z − y∗, y)Ω − (µ∗, y)Ω − 〈µ∗Γ, y〉C∗(I),C(I)

can be extended uniquely as a continuous linear functional from W to W 1,q′
0 (Ω).

From (2.1b) we conclude that p∗ ∈ W 1,q
0 (Ω), where q denotes the conjugate of q′

(see [T], pg 46, 201). Moreover, again from (2.1b) we obtain that

(2.11) −∆p∗ = z − y∗ in I.
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Since (z− y∗)|I ∈ L2(I) we have ∆p∗|I ∈ L2(I) which, together with p∗ ∈ W 1,q(I),
implies that the generalized Green’s formula ([T], pg 100) is applicable in the cal-

culations below, with ∂u
∂nI

interpreted as element of
(
W

1
q ,q′(∂I)

)∗
. Let us denote

by p∗I and p∗A the restrictions of p∗ to I and
◦
A. We now characterize the boundary

condition of p∗ on Γ as well as the value for µ∗Γ. From (2.1b) we find for every
ϕ ∈ W,

(2.12) (p∗,−∆ϕ)Ω = (z − y∗ − µ∗, ϕ)Ω − 〈µ∗Γ, y〉C∗(Γ),C(Γ).

Utilizing Green’s formula on
◦
A and the generalized Green’s formula on I, as well

as (2.12) we find

(p∗,−∆ϕ)Ω = (p∗,−∆ϕ)I + (p∗,−∆ϕ)A

= (−∆p∗, ϕ)I + (−∆p∗, ϕ)A +
∫

Γ

∂p∗A
∂nA

ϕdγ + 〈 ∂p∗I
∂nI

, ϕ〉
W

1
q

,q′
(Γ)∗,W

1
q

,q′
(Γ)

−
∫

Γ

(p∗A − p∗I)
∂ϕ

∂nA
dγ = (z − y∗ − µ∗, ϕ)Ω − 〈µ∗Γ, ϕ〉C∗(Γ),C(Γ) .

Here we utilize the facts that H2(Ω) ⊂ H1,4(Ω) for n ≤ 3, p∗I |∂I ∈ L8/5(∂I), ([T],
pg. 70), and that ∂ϕ

∂n ∈ L4(∂Ω ∪ Γ), ([T], pg 72). From the above equality we
deduce that

(2.13) p∗A = p∗I on Γ.

Note that ∂I is C1,1 by (A1). Together with (2.11), (2.13), and the fact that
p∗ = −α∆ψ on Γ, standard regularity theory for elliptic equations implies that
p∗I ∈ H2(I). Consequently ∂p∗I

∂nI
∈ H1/2(∂I) and referring once again to the equality

above (2.13) we find

(2.14) µ∗Γ =
∂p∗A
∂nA

− ∂p∗I
∂nI

= − ∂p∗I
∂nI

+ α
∂ ∆ψ

∂nA
,

in H1/2(Γ). From (2.13) it follows that p∗ ∈ H1
0 (Ω). Finally µ∗ ≥ 0 a.e. in Ω and

µ∗Γ ≥ 0 a. e. on Γ due to (2.1c). ¤

In Theorem 2.1 information on the structure of the Lagrange multiplier is ob-
tained under the assumption that structural information on the active set is avail-
able. It would certainly be of interest to find conditions, e.g., on z and ψ such that
(A1) holds. In [BK2] the structure of the Lagrange multiplier is also discussed for
the case when the active set is a curve in Ω ⊂ R2.

For the sake of comparison we next consider the case of pointwise control con-
straints. In this situation the Lagrange multiplier associated to the inequality
constraint is L2(Ω) regular and the adjoint state possesses extra regularity, which
can be used for superlinear convergence of Newton’s method.

We treat the bilateral control constrained problem

(Pc)





min J(y, u) =
1
2

∫

Ω

(y − z)2 dx +
α

2

∫
u2 dx ,

−∆y = u in Ω , y = 0 on ∂Ω ,

ϕ ≤ u ≤ ψ a.e. in Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) ,
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where z ∈ L2(Ω), α > 0, and ϕ < ψ with ϕ, ψ ∈ L2(Ω). By well-known arguments
(Pc) admits a unique solution (y∗, u∗) ∈ W × L2(Ω). A first order optimality
condition is given next.

Theorem 2.2. The pair (y∗, u∗) ∈ W × L2(Ω) is the solution to (Pc) if and only
if there exists p∗ ∈ W and λ∗ ∈ L2(Ω) such that

(2.15a) −∆y∗ = u∗ in Ω, y∗ = 0 on ∂Ω

(2.15b) −∆p∗ = −(y∗ − z) in Ω, p∗ = 0 on ∂Ω

(2.15c) αu∗ + λ∗ = p∗ in Ω,

(2.15d) λ∗ ≥ 0 on Aψ = {u∗ = ψ}, λ∗ ≤ 0 on Aϕ = {u∗ = ϕ}

(2.15e) λ∗(u∗ − ψ)(u∗ − ϕ) = 0.

In (2.15d) the notation {u∗ = ψ} is an abbreviation for {x ∈ Ω : u∗(x) = ψ(x)}.
Note that (2.15d)-(2.15e) can equivalently be expressed as

(2.16) λ∗ = max(0, λ∗ + c(u∗ − ψ)) + min(0, λ∗ + c(u∗ − ϕ))

for any c > 0. Here the max- and min-operations are interpreted pointwise. In the
case of an unilateral constraint u ≤ ψ the terms involving ϕ in (2.15) and (2.16)
are simply dropped.

Proof. Let T : L2(Ω) → W denote the control to state operator u → y(u). Then
u∗ is a solution to (Pc) if and only if for the uniformly convex reduced functional Ĵ

(Ĵ ′(u∗), u− u∗) = (αu∗ + T ∗(T u∗ − z), u− u∗) ≥ 0, for all ϕ ≤ u ≤ ψ.

Setting p∗ = −T ∗(T u∗ − z), which is (2.15b), this is equivalent to

(2.17) (αu∗ − p∗, u− u∗) ≥ 0, for al ϕ ≤ u ≤ ψ.

Therefore

αu∗ = p∗ on I,

where I = Ω \ (Aψ ∪Aϕ). In particular (2.15c) holds on I. From (2.17) we further
deduce that

αu∗ − p∗ ≤ 0 on Aψ,

and hence, setting λ∗ = p∗ − αu∗ ≥ 0 on Aψ, we have

αu∗ + λ∗ = p∗ on Aψ.

Similarly p∗−αu∗ ≤ 0 on Aϕ and setting λ∗ = p∗−αu∗ ≤ 0 on Aϕ we have shown
(2.15c) - (2.15e). ¤

9



3. Regularization and its Path

As explained in section 2 the Lagrange multiplier associated to the state con-
strained y ≤ ψ is not L2(Ω) - regular in general, and the representation of the
complementarity condition as in (2.16) is therefore not possible. We shall see in
section 4 that the representation of the complementarity condition by means of a
properly chosen complementarity function is of paramount importance for an effi-
cient numerical realization of constrained optimal control problems. The choice of
the max ( and min) function has proven to be very efficient in computations.

We therefore introduce a family of regularized problems (Pγ) which asymptoti-
cally approximate (P), as γ → ∞. Due to its relation to the generalized Moreau-
Yosida regularization of the indicator function of the set {y ≤ ψ} (see, e.g., [BHHK])
we call (Pγ) the Moreau-Yosida-based regularization of (P). To control the size of
the regularization parameter, it will be convenient to consider the path associated
to (Pγ). This path consists of the solutions to (Pγ) considered as a function of γ.
Regularity properties of the path will be analyzed. For λ̄ ∈ L2(Ω) and γ ∈ R+ we
consider

(Pγ)





min J(y, u) + 1
2γ

∫
Ω
|(λ̄ + γ(y − ψ))+|2 dx =: J(y, u; γ),

−∆y = u in Ω , y = 0 on ∂Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) ,

where (·)+ = max(0, ·). The role of λ̄ will be addressed in section 4. Here we
consider λ̄ to be fixed and focus on (Pγ) as γ →∞. For every γ > 0 there exists a
unique solution (yγ , uγ) = (y(uγ), uγ) to (Pγ) which is characterized by the unique
solution to

(3.1)





−∆yγ = uγ in Ω , yγ = 0 on ∂Ω ,

−∆pγ + λγ = −(yγ − z) in Ω , pγ = 0 on ∂Ω ,

αuγ = pγ in Ω ,

λγ = (λ̄ + γ(yγ − ψ))+,

where (yγ , uγ , pγ , λγ) ∈ W × L2(Ω)×W × L2(Ω). We refer to

C = {(xγ , pγ , λγ) ∈ W × L2(Ω)× L2(Ω)×W∗ : γ ∈ (0,∞)}
as the primal-dual path associated to (Pγ). Here xγ = (yγ , uγ). For r ≥ 0 we
further set

Cr = {(xγ , pγ , λγ) ∈ W × L2(Ω)× L2(Ω)×W∗ : γ ∈ [r,∞)}.
Proposition 3.1. For every r > 0 the path Cr is bounded. Moreover (xγ , pγ , λγ) ⇀
(x∗, p∗, λ∗) in W × L2(Ω)× L2(Ω)×W∗ and xγ → x∗ in W × L2(Ω) as γ →∞.

If λ̄ = 0, then the path C0 is bounded inW×L2(Ω)×L2(Ω)×W∗ and limγ→0+(xγ , pγ , λγ) =
(x̃, p̃, 0), where x̃ is the solution to (P) without inequality constraint and p̃ is the
adjoint state.

The proof for this and the following proposition is given in [HK2].

Proposition 3.2. The primal-dual path Cr is globally Lipschitz continuous for
every r > 0, and γ 7→ λγ is locally Lipschitz continuous from (0,∞) to L2(Ω). If
λ̄ = 0 then C0 is globally Lipschitz continuous.
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Henceforth we set for γ > 0

Sγ = {x ∈ ω : λ̄(x) + γ(yγ − ψ)(x) > 0}
and

g(γ) = λ̄ + γ(yγ − ψ).

Since γ 7→ (xγ , pγ) is locally Lipschitz continuous from (0,∞) to W × L2(Ω) ×W
by Proposition 3.2 and (3.1),

(
1

γ̄ − γ
(xγ̄ − xγ),

1
γ̄ − γ

(pγ̄ − pγ)
)

admits an weak accumulation point (ẋ+
γ , ṗ+

γ ) in W ×L2(Ω)×W as γ̄ → γ. Conse-
quently

1
γ̄ − γ

(g(γ̄)− g(γ)) =
γ̄

γ̄ − γ
(yγ̄ − yγ) + (yγ − ψ)

has ġ(γ) = yγ − ψ + γẏ+
γ as strong accumulation point in H1(Ω).

Proposition 3.3. Let γ > 0 and set

S+
γ = Sγ ∪ {x : λ̄(x) + γ(yγ − ψ)(x) = 0 ∧ ġ(γ)(x) ≥ 0}.

Then (ẋγ , ṗγ) = (yγ , uγ , pγ) satisfies

(3.2)





−∆ẏγ = u̇γ in Ω , ẏγ = 0 on ∂Ω ,

−∆ṗγ = −ẏγ − (yγ − ψ + γẏγ)χS+
γ

in Ω , ṗγ = 0 on ∂Ω ,

αu̇γ = ṗγ in Ω .

Proof. The first and third equations follow from the corresponding equations in
(3.1). To obtain the second equation we first observe that

|g(γ̄)+(x)− g(γ)+(x)
γ̄ − γ

| ≤ |g(γ̄)(x)− g(γ)(x)
γ̄ − γ

| ,

and the right hand side is uniformly bounded in x ∈ Ω and γ̄ in a neighborhood of
γ. Hence by Lebesgue’s bounded convergence theorem

lim
γ̄→γ+

∫

Ω

|g(γ̄)+ − g(γ)+

γ̄ − γ
− ġ(γ)χS+

γ
| 2 dx = 0.

Using this fact and passing to the limit in the second and fourth equations of (3.1)
we obtain the second equation of (3.2). ¤

We now set
S0

γ = {x ∈ ω : λ̄(x) + γ(yγ − ψ)(x) = 0}.
Corollary 3.1. If meas(S0

γ) = 0, then γ 7→ (yγ , uγ , pγ) is differentiable from (0,∞)
to W×H1

0 (Ω)×H1
0 (Ω), and the derivative satisfies (3.2) with χS+

γ
replaced by χS0

γ
.

Proof. Let (δx, δp) = (δy, δu, δp) be the difference of two weak accumulation points
in W × L2(Ω)×W of

(
1

γ̄ − γ
(xγ̄ − xγ),

1
γ̄ − γ

(pγ̄ − pγ)
)
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as γ̄ → γ. By (3.2) we have
{ −∆δy = 1

αδp in Ω , δyγ = 0 on ∂Ω ,

−∆δp = −δy − γ δy χSγ
in Ω , δpγ = 0 on ∂Ω.

Taking the inner product with δp in the first and with δy in the second equation,
and subtracting we find

0 =
1
α
|δp|2L2(Ω) + |δy|2L2(Ω) + γ|χSγ

δy|2L2(Ω),

which implies that (δy, δu, δp) =0, and thus the weak accumulation point for γ̄ → γ
is unique. A similar argument holds for γ̄ → γ− and hence we need not differentiate
between right and left accumulation points. To verify strong differentiability of
γ → (xγ , pγ) from (0,∞) to W ×H1

0 (Ω) ×H1
0 (Ω) we note that the embedding of

W to H1
0 (Ω) is compact. Hence γ → pγ and γ → uγ are differentiable from (0,∞)

to H1
0 (Ω) and by (3.1) γ → yγ is differentiable from (0,∞) to W. ¤

4. The Value Function and its Models

In this section we focus on the optimal value functional associated to (Pγ).
We study its smoothness and monotonicity properties which will provide useful
information for tuning γ in an iterative numerical procedure. We shall also describe
approximations of V by low-parametric families of model functions.

Definition 4.1. The functional

γ 7→ V (γ) = J(xγ) +
1
2γ

∫

ω

|(λ̄ + γ(yγ − ψ))+|2dz

defined on (0,∞) is called the primal-dual-path value functional.

Proposition 4.1. The value functional V is differentiable with

V̇ (γ) = − 1
2γ2

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1
γ

∫

Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

The proofs of this and the following proposition are given in [HK2]. Concerning
the second derivative of V we have:

Proposition 4.2. Let ẏγ denote an accumulation point of 1
γ̄−γ (yγ̄ − yγ) as γ̄ → γ.

Then for any subsequence {γn} realizing this accumulation point

lim
γ̄n→γ

1
γ̄n − γ

(V̇ (γ̄n)− V̇ (γ)) =
1
γ3

∫

Ω

|(λ̄ + γ(yγ − ψ))+|2−

2
γ2

∫

Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)+(4.1)

1
γ

∫

Ω

(yγ − ψ)(yγ − ψ + γẏγ)X
S
+
γ

.

If meas(S◦γ) = 0, then γ → V (γ) is twice differentiable at γ and the second derivative
is given by the right hand side in (4.1) with χS+

γ
replaced by χSγ .
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4.1. Case λ̄ = 0. In this case

V̇ (γ) =
1
2

∫

Ω

|(yγ − ψ)+|2

and γ → V (γ) is increasing. By Proposition 3.1, moreover, V (0) equals the value
of the cost in (P) without the constraint y ≤ ψ and V (∞) is the value of the cost
in (P).

Note that unless the solution (ỹ, ũ) to (P) without state constraint already sat-
isfies ỹ ≤ ψ, we have

(4.2) V̇ (γ) =
1
2

∫

ω

|(yγ − ψ)+|2 > 0 for λ̄ = 0.

In fact, if V̇ (γ) = 0 for some γ > 0, then yγ ≤ ψ, i.e., yγ is feasible. Thus, λγ = 0
and, from (3.1), we find that (yγ , uγ , λγ) = (ỹ, ũ, 0) is the solution to (P) without
the state constraint, which was ruled out.

In what follows we use | · |L2 = | · |L2(Ω).

Proposition 4.3. The mapping γ → V̇ (γ) is monotonically decreasing.

Proof. For γ̄ > γ > 0 we have

J(yγ , uγ) +
γ

2
|(yγ − ψ)+|2L2 ≤ J(yγ̄ , uγ̄) +

γ

2
|(yγ̄ − ψ)+|2L2

≤ J(yγ̄ , uγ̄) +
γ̄

2
|(yγ̄ − ψ)+|2L2 ≤ J(yγ , uγ) +

γ̄

2
|(yγ − ψ)+|2L2

and hence

J(yγ , uγ)− J(yγ̄ , uγ̄) ≤ γ

2
(|(yγ̄ − ψ)+|2L2 − |(yγ − ψ)+|2L2)

and further

J(yγ̄ , uγ̄)− J(yγ , uγ) ≤ γ̄

2
(|(yγ − ψ)+|2L2 − |(yγ̄ − ψ)+|2L2)

which implies

0 ≤ γ̄ − γ

2
(|(yγ − ψ)+|2L2 − |(yγ̄ − ψ)+|2L2) = (γ̄ − γ)(V̇ (γ)− V̇ (γ̄)).

¤

Note that Proposition 4.3 implies that V̈ (γ) ≤ 0 whenever the second derivative
of V exists at γ. A class of functions which satisfies the above properties of V is
given by

(4.3) m(γ) = C1 − C2

(D + γ)r
,

with C1 ∈ R, C2 > 0, D > 0, r > 0. In fact, ṁ > 0, m̈ < 0, and m(0),
m(γ) for γ → ∞ are well defined. In our use of m for path following algorithms,
(C1, C2, D) will be treated differently from r. While r will be chosen as a fixed
number, (C1, C2, D) will be updated in an iterative procedure.
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4.2. Case λ̄ ≥ 0. In case there exist λ̄ ∈ L2(Ω) and γ > 0 such that

(4.4) λ̄ ≥ 0 and yγ ≤ ψ

we have V̇ (γ) ≤ 0 and, unless the solution (ỹ, ũ) to (P) without pointwise inequality
constraint satisfies ỹ ≤ ψ, we have V̇ (γ) < 0. In fact, if V̇ (γ) = 0, then

0 = V̇ (γ) ≤ − 1
2γ2

∫

ω

|(λ̄ + γ(yγ − ψ))+|2 ≤ 0,

and hence λγ = 0. Therefore (yγ , uγ , λγ) = (ỹ, ũ, 0) is the solution of (2.1), and
hence the solution (ỹ, ũ) to (P) without pointwise inequality constraint, which is
excluded.

Let us also observe that limγ→∞ V (γ) equal to the value of the objective of (P),
and limγ→0 V (γ) = ∞.

Proposition 4.4. Assume that meas(S◦γ) = 0 and that (4.4) holds. Then V̈ (γ) ≥ 0
for γ ≥ 0.

Proof. From (4.1) with S+
γ = Sγ we have

V̈ (γ) ≥ 1
γ

∫

Sγ

(yγ − ψ)2 +
∫

Sγ

(yγ − ψ)ẏγ .

Using (3.2) we deduce that

α|u̇γ |2 + |ẏγ |2 = −(yγ − ψ + γẏγ , χSγ ẏγ),

which implies that
γ|ẏγ |L2(Sγ) ≤ |yγ − ψ|L2(Sγ).

It follows that V̈ (γ) ≥ 0.
¤

A class of model functions, which satisfy the above properties of V is given by

(4.5) m(γ) = C1 − C2

(D + γ)r
+

B

γr
,

with C1 ∈ R, B ≥ C2 > 0, D > 0 and r ∈ (0, 1]. In fact, m(0) = ∞, limγ→∞m(γ) =
C1, ṁ(γ) < 0 and m̈(γ) > 0.

Remark 4.1. From (3.1) we find

|∇(yγ − ψ)+|2L2 = ( 1
αpγ − ψ, (yγ − ψ)+)

= − 1
α (λγ + yγ − z, (−∆)−1(yγ − ψ)+)− (ψ, (yγ − ψ)+) ≤ 0

provided that ψ ≥ 0 and (λ̄ + γ(yγ − ψ))+ + yγ − z ≥ 0. In this case yγ ≤ ψ and
(4.4) holds.

5. Numerical solution techniques

We continue our survey by addressing available solution strategies for state con-
strained optimal control problems. In what follows we focus on a review of numerical
algorithms for the efficient solution of the underlying problem class. Of course, the
discretization of the problems and its convergence analysis (including the proof of
optimal rates with respect to the mesh-size of dicretization) are further important
issues in numerical analysis and, in many cases, are the subject of ongoing research
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efforts. A comprehensive discussion of the latter issues is beyond the scope of this
review.

Concerning the development of solution algorithms, roughly two approaches are
conceivable. First, one may consider discretizing the problem and then applying
suitable algorithms from nonlinear programming. Conveniently, one can rely on the
available finite dimensional convergence analysis of the chosen method. However,
in many cases upon refining the mesh-size of discretization, one will experience an
increase of iterations until the successful termination of the algorithm. This mesh
dependence typically indicates a lack of function space properties of the selected
solution method. Therefore, in contrast to the first approach, one is interested in
developing algorithms in infinite dimensions and study their convergence behavior
analytically. In the case of a successful analysis in function space, one can hope for
a mesh independent convergence behavior of the algorithm.

5.1. Finite dimensional methods. We start by briefly reviewing some of the
finite dimensional approaches proposed in the literature and highlight their proper-
ties. These methods are considered to be efficient (i.e., locally at least superlinearly
convergent) for solving the discretized problem on a fixed mesh.

For this purpose we introduce the discretized version of (P). We proceed in gen-
eral terms with finite differences and finite element realizations in mind. Assume
first that Ω is endowed with a uniform grid Ωh with mesh-size h. Next let zh, yh, uh,
ψh ∈ RN be finite-dimensional approximations to z, y, u, and ψ, respectively. Fur-
ther let Lh ∈ RN×N stand for a symmetric positive-definite approximation to −∆
(including the homogenous Dirichlet boundary conditions). Then the discretized
control constrained problem is given by

(Ph)
{

minimize Jh(yh, uh)
subject to Lhyh = uh, yh ≤ ψh ,

where

(5.1) Jh(yh, uh) =
1
2
(yh − zh)>M1h(yh − zh) +

α

2
u>h M2huh

and M1h ∈ RN×N is positive-semidefinite and M2h ∈ RN×N is positive-definite.
The matrices M1h and M2h result from the numerical integration of the cost func-
tional J . For finite difference approximation with integration based on the trape-
zoidal rule, M1h and M2h are positive-definite diagonal matrices.

Concerning the matrices Lh, M1h, and M2h we henceforth utilize the following
assumption:

(A)





Lh is sparse banded, symmetric, and positive-definite,
M1h is sparse banded and positive-semidefinite,
M2h is sparse banded and positive-definite .

In a 2D-setting, for instance, we remark that the discretization of −∆ by the
well-known five-point star scheme implies that Lh is a symmetric positive-definite
banded M-matrix. Applying the trapezoidal rule for approximating J implies that
M1h and M2h are positive-definite and diagonal. In what follows, for convenience we
omit h for problem variables and keep it for problem data throughout this section.
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5.1.1. Primal-dual active set strategy. The first method which we outline here is,
as far as state constraints are concerned, a finite dimensional approach. It is based
on the following first order necessary and sufficient condition for (Ph):

Lhy = u,(5.2a)
Lhp + λ = M1h(zh − y),(5.2b)
αM2hu = p,(5.2c)

λ = max(0, λ + c(y − ψh)),(5.2d)

where c > 0 is an arbitrarily fixed real and the max-operation is understood com-
ponentwise. Note that (5.2d) is equivalent to the complementarity system

(5.3) λ ≥ 0, y ≤ ψh, λ>(y − ψh) = 0.

In order to derive the method, let (y∗, u∗, p∗, λ∗) denote the solution of (5.2). Fur-
ther we define the active and inactive sets at the optimal solution as

A∗ = {i ∈ {1, . . . , N} : y∗i = ψh,i},(5.4a)
I∗ = {i ∈ {1, . . . , N} : y∗i < ψh,i}.(5.4b)

Next we study the expression in the max-operation in (5.2d). We have

λ∗i + c(y∗i − ψh,i) ≥ 0 on A∗,(5.5a)
λ∗i + c(y∗i − ψh,i) < 0 on I∗.(5.5b)

Moreover, if strict complementarity holds true at the optimal solution, then

λ∗ + (ψh − y∗) > 0.

This yields

(5.6) λ∗i + c(y∗i − ψh,i) > 0 on A∗

instead of (5.5a). Now, given an estimate (yn−1, λn−1) of (y∗, λ∗) we use (5.5b) and
(5.6) as a prediction strategy of the correct active and inactive sets at the solution,
i.e., we define the corresponding set estimates by

An = {i ∈ {1, . . . , N} : λn−1,i + c(yn−1,i − ψh,i) > 0},(5.7a)
In = {i ∈ {1, . . . , N} : λn−1,i + c(yn−1,i − ψh,i) ≤ 0}.(5.7b)

This yields the following algorithm.

Primal-dual active-set strategy (PDAS).

(1) Initialization: choose y0, λ0, u0 ∈ RN , c > 0, and set n = 1.
(2) Determine the subset of active/inactive indices according to (5.7).
(3) If n ≥ 2 and An = An−1, then STOP; otherwise go to step 4.
(4) Find (yn, un, pn, λn) as the solution to

Lhyn = un,

Lhpn + λn + M1h(yn − zdh) = 0,

pn = αM2hun,

yn,i = ψh,i for i ∈ An, λn,i = 0 for i ∈ In.

(5) Set n = n + 1 and go to step 2.
We summarize some properties of PDAS:

• The iterates can be infeasible (both primal and dual variables).
• The algorithm does not rely on a globalization strategy.
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• For n > 1 the algorithm is independent of c.
• If the algorithm stops in step 3, then the exact solution of the discretized

problem is obtained.
• Utilizing yi = ψh,i for i ∈ An the primal system in step 4 need only be

solved for i ∈ In.
• If (ȳh, ūh) = argmin{Jh(yh, uh) : Ahyh = uh} satisfies ȳh ≤ ψh and A0 = ∅,

then PDAS computes the solution in one step.
• The algorithm has the property that from one iteration to the next many

coordinates of the discretized control or state vector can move from An−1

to In and vice versa. Numerically it turns out that changes from active
to inactive sets occur primarily along the boundary between active and
inactive sets. This is due to the fact that λ for PDAS is the discretization
of the measure λ∗ ∈ M(Ω) whose singular part is concentrated at the
boundary of the active set [BK2]. For control constrained problems the
algorithm behaves even more efficiently: from one iteration to the next it
makes changes form active to inactive not only near the boundary but also
in the interior of the currently active or inactive sets, typically resulting in
convergence within a few number of – mesh independent – steps; see [HU].

• The iterates yn are mostly feasible and the active sets An typically approx-
imate A∗ from outside. This approximation is typically monotone with
respect to the cardinality of the active set but non-monotone in the set-
wise sense.

• It turns out that PDAS is equivalent to a semismooth Newton method
in RN ; see the next section for a related issue in function space. Thus,
applying the semismooth Newton theory in RN developed in, e.g., [HIK]
one can prove a locally superlinear convergence of PDAS. A conditional
global convergence result can be found in [BK3].

• For control constrained optimal control problems (e.g., of the type (Pc) the
analogue of PDAS is again equivalent to a semismooth Newton method.
Moreover, it is shown in [HIK] that its function space version converges
locally at a superlinear rate.

5.1.2. Primal-dual path-following interior-point methods. The second method which
we outline here is a primal-dual path-following interior-point method based on a
predictor-corrector strategy; see [BG, BPR, LMS, Meh, MTY, V2, Wr, VY, Y, Z2]
and the references therein for details and related approaches. Due to the specific
structure of optimal control problems, our linear algebra takes care of the fact that
the vector of unknowns can be decomposed into the state variable yh and the control
variable uh. The interior-point algorithm described here is a (large neighborhood)
modification of the algorithm in [MTY]. See also [BPR], where the corresponding
convergence analysis can be found. It will be exemplarily presented for state con-
strained problems. However, adaptation to control constraints is straightforward.
An alternative, highly efficient predictor-corrector interior-point technique can be
found, e.g., in [LMS, Meh]. It is tailored to optimal control problems in [BHHK].

As there is no function space version of primal-dual path-following interior-point
methods for state constraints available up-to-date, our starting point is the dis-
cretized, finite-dimensional version (Ph) of (P). Introducing a vector of slack vari-
ables denoted by w ∈ RN in the inequality constraint in (Ph), we obtained the
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following modification:

(Pmod
h )





minimize Jh(y, u)
subject to Bhy − h2u = 0,

y + w = ψh,
w ≥ 0 ,

with Bh = h2Lh. Standard arguments yield the existence of an optimal solution of
(Pmod

h ), which is characterized by the following system equivalent to the first-order
Karush–Kuhn–Tucker conditions:

Bhw + h2u−Bhψh = 0,(5.8a)
w ≥ 0,(5.8b)

M1hw + Bhp− λ−M1h(ψh − zh) = 0,(5.8c)
αM2hu + h2p = 0,(5.8d)

λ ≥ 0,(5.8e)
ΛWe = 0 ,(5.8f)

where we use standard interior-point notation when writing Λ for the diagonal
N ×N -matrix diag(λ1, . . . , λN ) and similarly for W . Further, e denotes the vector
of all ones in RN .

The defining equations for a point on the primal-dual interior-point central path
are obtained by replacing the last equation (5.8f) in (5.8) by

(5.9) ΛWe = µe,

with µ being some positive scalar parameter. By similar arguments as before it can
be seen that the resulting (4N × 4N)-system admits a unique solution. Now, the
primal-dual central-path is the set

{(w, u, p, λ) ∈ R4N : (5.8a)− (5.8e) and (5.9) are satisfied for µ ≥ 0}.
Let us suppose that we have decided on a target value for µ, that (w, u, p, λ) ∈ R4N

satisfies w, λ > 0, and that (w + ∆w, . . . , λ + ∆λ) denotes the point on the primal-
dual central path corresponding to µ. Thus, we obtain the following system for the
increments (δw, . . . , δλ) (see [BHHK] for details):

(S(w, λ))




αM2h h2I
M1h Bh −I

h2I Bh

Λ W







δu
δw
δp
δλ


 =




β2

β1

α1

γ1


 ,

with
α1 = Bh(ψh − w)− h2u, β1 = M1h(ψh − zh − w)−Bhp + λ,
β2 = αM2hu− h2p, γ1 = µe−WΛe− δW δΛe .

In path-following methods it is typically required that the iterates stay within
a neighborhood of the central path. For this purpose, we introduce the (large)
neighborhood of the central path:

N (ν) = {(w, λ, µ) ∈ RN × RN × R+|νµe ≤ ΛWe ≤ ν−1µe} ,

where 0 < ν < 1 is a given constant. Typical values for ν are ν = 0.01 and
ν = 0.001. In our experiments [BHHK] these values give essentially the same re-
sults. It is well-known that small neighborhoods usually give better complexity
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estimates when compared to large neighborhood path-following methods. On the
other hand, the large neighborhood variants typically outperform the small neigh-
borhood methods on the numerical level.

Next we describe the primal-dual path-following predictor-corrector interior-
point algorithm (Mizuno-Todd-Ye-type). The subscript n denotes the iteration
level.

Primal-dual path-following interior-point method (PDIP).

(1) Initialization: Choose 0 < ν < 1 and (wo, λo, µo) > 0, with (wo, λo, µo) ∈
N (ν), a stopping tolerance εs > 0 and ef ∈ N. Set n := 0.

(2) Check stopping criteria: If max(resp, resd) ≤ εs, with

resp = h‖α1,n‖2 and resd = h‖(β1,n, β2,n)>‖2,
and fn = max{− log10[(Jn−φn)/(1+ |Jn|)], 0} ≥ ef , then STOP; otherwise
go to step 3.

(3) Corrector step δuc, δwc, δpc, δλc: Solve S(wn, λn) with right-hand side (0, 0, 0, µne−
WnΛne)>. Compute τc ∈ (0, 1] such that

((wn, λn) + τc(δwc, δλc), µn) ∈ N (ν) ,

and put

(un+ 1
2
, wn+ 1

2
, pn+ 1

2
, λn+ 1

2
) = (un, wn, pn, λn) + τc(δuc, δwc, δpc, δλc) .

(4) Predictor step δua, δwa, δpa, δλa: Solve S(wn+ 1
2
, λn+ 1

2
) with right-hand side

(β2,n, β1,n, α1,n,−δWcδΛce)>. Compute τa, the largest value in (0, 1) such
that ((wn+ 1

2
, λn+ 1

2
) + τa(δwa, δλa), (1 − τa)µn) ∈ N (ν). Put µn+1 = (1 −

τa)µn and

(un+1, wn+1, pn+1, λn+1) = (un+ 1
2
, wn+ 1

2
, pn+ 1

2
, λn+ 1

2
)

+τa(δua, δwa, δpa, δλa) .

Set n = n + 1, and go to step 2.
Let us briefly comment on the stopping criteria in step 2. The first two criteria

involving resp and resd check for smallness of the residuals of the state and the
adjoint equation, respectively. The third criterion fn ≥ ef checks the number of
digits of coincidence between the primal objective value Jn = Jh(yn, un) and the
dual objective value

φn = −Jn − p>n Bhzh − λ>n (zh − ψh).

Note that by standard duality theory the difference between the optimal primal
and dual objective values vanishes. The systems in step 3 and 4 are reduced in
advance by choosing specific pivots. This process results in

(5.10) (Λ + WM1h + αWLhM2hLh)∆w = rs ,

where rs ∈ RN denotes the appropriate right-hand side. Note that this system
could easily be symmetrized. Finally, due to (A) the key assumptions of [BPR] for
proving convergence and complexity results for Algorithm PDIP are satisfied.

Considering the continuous version of PDIP we note that µ acts as a regulariza-
tion parameter, if y is bounded away from the constraint ψ. There is no analog for
that in PDAS, see, however, algorithm PDASγ in the following subsection.
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5.2. Function space approaches. Next we discuss recent methods based on ap-
propriate regularization of the measure-valued Lagrange multiplier for state con-
strained problems. The techniques take into account the function space properties
of the underlying problems and therefore admit a function space analysis. In fact,
these methods respect the low Lagrange multiplier and adjoint regularity, and are
based on using a family of approximating problems whose Lagrange multipliers and
adjoints are more regular.

5.2.1. Inexact feasible and non-interior path-following. We start our discussion with
a recent path-following method which is based on the regularized state constrained
problem (Pγ); see [HK2]. For convenience we recall the regularized problem:

(Pγ)





min J(y, u) + 1
2γ

∫
Ω
|(λ̄ + γ(y − ψ))+|2 dx =: J(y, u; γ),

−∆y = u in Ω , y = 0 on ∂Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) ,

where J(y, u) = ‖y − z‖2L2(Ω) + (α/2)‖u‖2L2(Ω). The algorithm is composed of an
outer iteration for adapting the regularization/penalization parameter γ and an
inner iteration which (approximately) solves (Pγ) for fixed γ. To be more specific,
its inner loop utilizes a locally superlinearly convergent (in function space) algo-
rithm for solving the regularized path problem. The outer loop employs a γ-update
strategy based on our model functions (4.3), respectively (4.5).

The active set detection in the inner loop now serves the purpose of a decompo-
sition of the argument of the max-operator in the objective functional of (Pγ) into
a positive and a non-negative part, i.e., given some estimate yl−1 of yγ we set

Al := {x ∈ Ω : λ̄(x) + γ(yl−1(x)− ψ(x)) > 0},(5.11a)

I l := Ω \Al.(5.11b)

The role of λ̄ ≥ 0 in (5.11) is as in section 4. Here, in addition, we require that λ̄ ∈
Lp(Ω) with p > 2 sufficient large as it will be specified below. In order to motivate
the choice (5.11), now we establish a connection between (5.11) and generalizations
of Newton’s method. For this purpose observe first that y 7→ max(0, λ̄− γ(y − ψ))
is nondifferentiable on I0 := {x ∈ Ω : λ̄(x) + γ(y(x) − ψ(x)) = 0}. With the aim
of defining a generalized derivative of Fmax : Lp(Ω) → L2(Ω), with p > 2 and
Fmax(y) = max(0, y), we define the mapping Gmax ∈ L(Lp(Ω), L∞(Ω)) by

(5.12) Gmax(ω)(x) :=
{

0 if ω(x) ≤ 0,
1 if ω(x) > 0.

In [HIK] it was shown that max(0, ·) : Lp(Ω) → Lq(Ω) is Newton differentiable if
and only if 1 ≤ q < p ≤ +∞, i.e., it satisfies the following semismoothness property:

(5.13) ‖max(0, y + s)−max(0, y)−Gmax(y + s)s‖Lq = O(‖s‖Lp)

for ‖s‖Lp → 0. Hence, Fmax, as defined above, is Newton differentiable in the sense
of (5.13), and the operator Gmax serves as a particular generalized derivative. In
appendix A we recall the general definition of Newton differentiability.

20



Next we apply this calculus to the first order necessary and sufficient conditions
of (Pγ):

−∆y = u,(5.14a)
−∆p + (λ̄ + γ(y − ψ))+ = −Jy(y, u),(5.14b)

αu− p = 0.(5.14c)

Due to (5.14a) we have y = y(u) = (−∆)−1u, where (−∆)−1 denotes the solution
operator of −∆y = u on Ω, y ∈ H1

0 (Ω), for given u ∈ L2(Ω). Hence, (5.14) can be
condensed into

−α∆u + (λ̄ + γ((−∆)−1u− ψ))+ + (−∆)−1u = z.

Thus, solving (5.14) is equivalent to finding a root of F : L2(Ω) → L2(Ω),

(5.15) F (v) = αv + (−∆)−2v + (λ̄ + γ((−∆)−2v − ψ))+ − z.

In order to see the connection between (5.11) and a generalized (or semismooth)
Newton step based on (5.13) for F (v) = 0, let vl−1 ∈ L2(Ω) denote the current
iterate. Then the generalized derivative of F at vl−1 is given by

G(vl−1)s = αs + (−∆)−2s + γχA(vl−1)(−∆)−2s,

with
A(vl−1) = {x ∈ Ω : (λ̄ + γ((−∆)−2vl−1 − ψ))(x) > 0},

for s ∈ L2(Ω). For a short proof we only focus on the max-term in F since the rest
is linear. We set Fm(v) := (λ̄ + γ((−∆)−2v − ψ))+. Then

1
‖s‖L2

‖Fm(vl−1 + s)− Fm(vl−1)− γχA(vl−1+s)(−∆)−2s‖L2

≤ C

‖(−∆)−2s‖H1
0

‖Fmax(λ̄ + γ((−∆)−2(vl−1 + s)− ψ))

− Fmax(λ̄ + γ((−∆)−2vl−1 − ψ))

− γGmax(λ̄ + γ((−∆)−2(vl−1 + s)− ψ))(−∆)−2s‖L2

=
C

‖ŝ‖H1
0

‖Fmax(λ̄ + γ(v̂l−1 + ŝ− ψ))− Fmax(λ̄ + γ(v̂l−1 − ψ))

− γGmax(λ̄ + γ(v̂l−1 + ŝ− ψ))ŝ‖L2 ŝ

≤ C

‖ŝ‖Lp

‖Fmax(λ̄ + γ(v̂l−1 + ŝ− ψ))− Fmax(λ̄ + γ(v̂l−1 − ψ))

− γGmax(λ̄ + γ(v̂l−1 + ŝ− ψ))ŝ‖L2

= O(‖ŝ‖Lp),

where C > 0 is a constant independent of ŝ, v̂l−1 = (−∆)−2vl−1 ∈ H1
0 (Ω), ŝ =

(−∆)−2s ∈ H1
0 (Ω), H1

0 (Ω) ⊂ Lp(Ω) with p = ∞ for n ≤ 2 and p = 2n
n−2 > 2 for

n > 2, (5.13), the chain rule and the fact that λ̄− γψ is fixed in Lp(Ω). Note that
G : L2(Ω) → L2(Ω) satisfies

〈G(u)s, s〉 ≥ α‖s‖2L2 for all s ∈ L2(Ω).

Hence, G(·)−1 ∈ L(L2(Ω)) exists and is uniformly bounded.
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Given vl−1, the next iterate of Newton’s method is defined as the root of `(·; vl−1) :=
F (vl−1) + G(vl−1)(· − vl−1), i.e.,

`(vl; vl−1) = 0.

This yields

αvl + (−∆)−2vl + χA(vl−1)(λ̄ + γ((−∆)−2vl − ψ))− z = 0.

Setting ul := (−∆)−1vl, pl = αul and yl := (−∆)−1ul we obtain A(vl) = Al+1,
with the latter set according to (5.11a). We therefore conclude that the active set
strategy based on the selection rule (5.11) is equivalent to a semismooth Newton
for solving F (v) = 0 where the operator F is given by (5.15).

Inner iteration: An algorithm for solving (Pγ). Here we adopt the primal-dual
active set strategy as proposed in section 5.1.1. As it turned out in the previous
section, the method is equivalent to a semismooth Newton algorithm, and, using the
techniques in [HIK] (see appendix A for details), it can be shown that it converges
locally at a q-superlinear rate in function space.

Primal-Dual Active-set Strategy for (Pγ) – (PDASγ).

(i) Choose λ̄ ≥ 0 and x0 := (y0, u0) ∈ W × L2(Ω) =: X; set l = 0.
(ii) Determine the active and inactive sets

Al+1 := {x ∈ Ω : λ̄(x) + γ(yl(x)− ψ(x)) > 0},
I l+1 := Ω \Al+1.

(iii) Compute the solution xl+1 := (yl+1, ul+1) with associated adjoint state
pl+1 of

minimize 〈J ′(xl) +
1
2
〈J ′′(xl)(x− xl),x− xl〉X∗,X

+
1
2γ
‖(λ̄ + γ(y − ψ))+‖2L2(Al+1) over x ∈ X

subject to −∆y = u in L2(Ω).

(iv) Compute

λl+1 =
{

0 on I l+1,
λ̄ + γ(yl+1 − ψ) on Al+1,

set l = l + 1, and go to (ii).

The first order optimality system of the minimization problem in step (iii) is
given by

−∆yl+1 = ul+1 in L2(Ω),

J ′′(xl)xl+1 −∆pl+1 +
(
γ(yl+1 − ψ)χAl+1 , 0

)
=

− J ′(xl) + J ′′(xl)xl − (
λ̄χAl+1 , 0

)
in X∗.

Note that this system corresponds to a linearization of (5.14) at xl = (yl, ul).
Consequently, step (iii) is identical to the solution of the linear system within an
iteration of a semismooth Newton method for solving (5.14).
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Outer iteration: Inexact solutions and γ-update. Next we turn to the outer itera-
tion. First notice that for small γ there is no need for highly accurate solutions of
the regularized problem (Pγ), since we expect (yγ , uγ) to be only a coarse approxi-
mation of (y∗, u∗). Motivated by [HK1] we therefore propose a procedure requiring
approximate solutions of the path problem lying in some neighborhood of the path
only. For this purpose we introduce the residuals

rx(x) = ‖ −∆y − u‖L2 ,

rp(x, p, λ) = ‖J ′(x)−∆p + (λ, 0)‖X∗ ,

rλ(y, λ) = ‖λ− (λ̄ + γ(y − ψ))+‖W∗

and define the neighborhood

N (γ, r) =
{

(x, p, λ) ∈ Z : max{rx(x), rp(x, p, λ), rλ(y, λ)} ≤ τ

γr

}

with Z = X×H1
0 (Ω)×L2(Ω) for some fixed τ > 0 and r > 0. In our implementation

we typically choose r in accordance with our models (4.3) or (4.5). In the subsequent
algorithm, for fixed γ, we stop Algorithm PDASγ as soon as (xl, pl, λl) ∈ N (γ, r)
for the first time.

Once an approximate solution of (Pγ) is obtained we have to update γ. To this
end, we introduce the feasibility measure ρF and the complementarity measure ρC

as follows:

ρF (y) :=
∫

Ω

(y − ψ)+dx,

ρC(y) :=
∫

I(y)

(y − ψ)+dx +
∫

A(y)

(y − ψ)−dx,

where A(y) = {x ∈ Ω : λ̄(x) + γ(y(x) − ψ(x)) > 0}, I(y) = Ω \ A(y), and (·)− =
min(0, ·). Whenever y = yn+1 and γ = γn, we write An+1, In+1, and ρF

n+1, ρC
n+1.

For min(ρF
n+1, ρ

C
n+1) > 0 we obtain a candidate γ+

n+1 for γn+1 as

(5.16) γ+
n+1 = max

(
γn max

(
τ1,

ρF
n+1

ρC
n+1

)
,

1
max(ρF

n+1, ρ
C
n+1)q

)

with τ1 > 1 and q ≥ 1; otherwise we set γ+
n+1 = τ1γn. We include the quotient

ρF
n+1/ρC

n+1 in order to significantly increase γ whenever ρF
n+1 À ρC

n+1, i.e., when
the iterates primarily lack feasibility rather than complementarity. The choice
q > 1 induces certain growth rates for γ. Similar to [HK1] we also incorporate the
following safeguard based on our models (4.3) respectively (4.5): Unless γn+1 <
τ2γn, with τ2 > 1, we reduce γ+

n+1 until

(5.17) |tn(γn+1)−mn(γn+1)| ≤ τ3|J(xn+1; γn)− J(xn; γn−1)|
where 0 < τ3 < 1, tn(γ) = J(xn+1; γn) + ∂J(xn;γn)

∂γ (γ − γn), and mn denotes one of
the model functions according to (4.3) or (4.5) in iteration n. In other words, the
linearization of mn at γn+1 should not be farther away from mn than the distance
of the previous two objective values of the regularized problem. As soon as (5.17)
is satisfied we set γn+1 = γ+

n+1.
To determine the parameters in our model we use the actual approximate infor-

mation on the value functional and its derivative as well as the value function at
some reference point. In the sequel we only argue for the model (4.3). The case

23



(4.5) is treated similarly. Given γn in iteration n, for fixing Dn, C1,n, and C2,n in
the model mn(γ) we use the conditions

mn(γn) = J(xn; γn), ṁn(γn) =
∂J(xn; γn)

∂γ
(xn, γn), mn(γ̂) = J(x̂; γ̂),

where x̂ denotes an approximate solution of (Pγ) at a reference value γ = γ̂.
Now we are able to formulate our overall algorithm.

Inexact Path-Following Method (IPF).
(i) Initialized γ0 > 0, select r > 0, and set n := 0.
(ii) Compute (xn, pn, λn) ∈ N (γn, r).
(iii) Update γn by (5.16) with safeguard (5.17) to obtain γn+1.
(iv) Set n = n + 1, and go to (ii).

In step (ii) we use PDASγ for performing the inner iteration. The convergence of
Algorithm IPF follows immediately from the convergence of Algorithm PDASγ for
every fixed γ and the fact that γn+1 ≥ τ1γn with τ1 > 1 for all n, the property that
τ
γr

n
→ 0 for γn →∞ in the definition of the neighborhood, and from Proposition 3.1.

5.2.2. Lavrentiev regularization. Finally we mention another regularization tech-
nique which keeps the inequality constraint explicit rather than removing it via
the addition of (2γ)−1‖(λ̄ + γ(y − ψ))+‖2L2 to the objective function as done by
the Moreau-Yosida-based regularization. The Lavrentiev regularization technique,
which was first introduced in [Tr], replaces (P) by the regularized problem

(Pε)





min J(y, u) =
1
2

∫

Ω

(y − z)2 dx +
α

2

∫

Ω

u2 dx ,

−∆y = u in Ω , y = 0 on ∂Ω ,

εu + y ≤ ψ a.e. in Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω) ,

with ε > 0. Using a result in [Tr] it can be shown that the Lagrange multiplier
pertinent to the mixed control-state inequality constraint in (Pε) exists as a function
in L2(Ω). The corresponding first order optimality condition is given by

−∆y = u,(5.18a)

−∆p + y + λ = z,(5.18b)

αu− p + ελ = 0,(5.18c)

λ ≥ 0, εu + y ≤ ψ, λ(εu + y − ψ) = 0 a.e. in Ω,(5.18d)

with y, p ∈ H1
0 (Ω), u, λ ∈ L2(Ω).

Setting v = εu + y the problem (Pε) can be written as

(P̂ε)





min Ĵ(y, v) =
1
2

∫

Ω

(y − z)2 dx +
α

2ε2

∫

Ω

(v − y)2 dx ,

−∆y + ε−1y = ε−1v in Ω , y = 0 on ∂Ω ,

v ≤ ψ a.e. in Ω ,

(y, u) ∈ H1
0 (Ω)× L2(Ω)

which resembles the control constrained optimal control problem (Pc) in section 2.
For the numerical solution of (P̂ε) for fixed ε there are two possible approaches:
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• Path-following interior-point methods.
• Semismooth Newton or, equivalently, active-set methods.

Both techniques are developed and analyzed in function space below.

Short-step path-following interior-point method. This technique was pursued in
[PTW] where a function space version of a short-step primal path-following interior-
point method is analyzed in detail. Similar to the interior-point concept outlined in
section 5.1.2 the starting point of the algorithmic development is the µ-perturbed
optimality system

−∆y + ε−1y = ε−1v,(5.19a)

−∆p + ε−1p + (1 + αε−2)y = αε−2v + z,(5.19b)

αε−2(v − y)− ε−1p + λ = 0,(5.19c)

λ(ψ − v) = µ a.e. in Ω,(5.19d)

for λ > 0 a.e., ψ − v > 0 a.e. and µ > 0. This system can be reduced to

(5.20) F (w;µ) := D∗S∗(SDw − ẑ) + αD∗(Dw − ψ̂)− µ

w
= 0,

where S = ı(−∆)−1, with the embedding operator ı : H1
0 (Ω) → L2(Ω), and D =

(S+εI)−1. Further we use ẑ = SDψ−z and ψ̂ = Dψ. Note that (5.20) corresponds
to the µ-perturbed first order optimality system of

(5.21) min
1
2
|SDw − ẑ|2L2 +

α

2
|Dw − ψ̂|2L2 s.t. w ≥ 0 a.e. in Ω.

Given some strictly feasible estimate wn > 0 a.e. in Ω of w∗, the solution of (5.21),
and µn > 0, the next iterate is obtained by performing a Newton step

∂F (wn; µn)
∂w

δwn = −F (wn;µn)

and setting wn+1 = wn+δwn. Here some care in the choice of µn is required in order
to maintain strict feasibility of wn+1. Then µn+1 = σµn is set, with appropriate
σ ∈ (0, 1), and the cycle is repeated until some stopping rule is satisfied.

Recently, it was shown in [SW] that a control reduced variant of the above
method converges locally superlinearly in function space.

Semismooth Newton method. The second technique for solving (P̂ε) is due to [H],
where the functional analytic similarity between (Pc) and (P̂ε) is observed and
utilized in the algorithmic development. In fact, similar to the primal-dual active
set strategy as outlined in section 5.1.1, given some estimate (vn−1, λn−1) of (vε, λε),
the solution of (P̂ε), one may use

An = {x ∈ Ω : λn−1(x) + c(vn−1(x)− ψ(x)) > 0},(5.22a)
In = {x ∈ Ω : λn−1(x) + c(vn−1(x)− ψ(x)) ≤ 0}(5.22b)

as an active respectively inactive set prediction. This results in the following func-
tion space method.

Primal-dual active-set strategy (PDASε).

(1) Initialization: choose (y0, λ0, v0) ∈ H1
0 (Ω)×L2(Ω)×L2(Ω), c = α

ε2 , and set
n = 1.

(2) Determine the subset of active/inactive indices according to (5.22).
(3) If n ≥ 2 and An = An−1, then STOP; otherwise go to step 4.
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(4) Find (yn, vn, pn, λn) as the solution to

−∆yn + ε−1yn = ε−1vn,

−∆pn + ε−1pn + (1 + αε−2)yn = αε−2vn + z,

αε−2(vn − yn)− ε−1pn + λn = 0,

vn = ψ on An, λn = 0 on In.

(5) Set n = n + 1 and go to step 2.
Notice that in contrast to the short-step path-following interior-point method PDASε

requires no further regularization. In fact, we point out in this context that the
perturbation of the complementarity system in (5.19d) acts as a second regulariza-
tion.

The choice c = α/ε2 in step (1.) of the above algorithm is due to the fact that
PDASε is equivalent to a semismooth Newton method, which, for this particular
choice of c > 0, converges locally at a superlinear rate in function space. Moreover,
it can be shown that the method is mesh-independent. For more details we refer
to [H].

Approaching the limit ε → 0. Finally we point out that currently for the Lavrentiev-
regularization technique there is no rigorous path-following respectively homotopy
concept (compared to the feasible and non-interior inexact path-following method
of section 5.2.1) available for ε → 0.

6. Numerical results

In this section we present numerical results obtained by some of the methods
introduced in the previous section. Our test problems are all posed in 2D with
Ω = (0, 1)2. The Laplace-operator is discretized by the five-point finite difference
stencil on a uniform mesh of mesh-size h. For the discretization of the integrals
in the objective function we use the trapezoidal rule. As a starting point we use
y0 ≡ ψ, u0 = −∆y0, and p0 = αu0 for PDAS and IPF. In addition, for PDIP
we use w0 = λ0 ≡ 1 and µ0 = 1. The parameters in IPF had the values τ = 100,
τ1 = 10, τ2 = 1.01, τ3 = 0.99, r = 0.2, q = 1.25, and λ̄ ≡ 0. We stop the respective
algorithm as soon as the primal, dual and complementarity residual norms drop
below 0.1 h2, respectively.

Problem 1. We use the data α = 0.1, z(x1, x2) = 10(sin(2πx1)+x2) and ψ ≡ 0.01.
Figure 1 shows the optimal solution for h = 1/128.

In table 1 we compare PDAS, PDIP, and IPF against each other. Recall that
PDAS and PDIP are finite dimensional methods whereas IPF admits a function
space analysis. For IPF next to the total number of outer iterations we denote in
parenthesis the total number of inner iterations, i.e., iterations required by PDASγ

for the selected γ-sequence. From table 1 we see that IPF is superior to the two
finite dimensional methods. On the other hand, we observe that PDIP outperforms
PDAS. In table 2 we further quantify the difference between the algorithms with
respect to CPU-time. Rather than providing the elapsed CPU-times directly, we
report on the following CPU-ratios:

CPU-ratio(method) = CPU-time (method)/CPU-time(IPF).

While PDIP requires approximately twice as much CPU-time as IPF, the active-
set method PDAS deteriorates as h becomes small. This is due to the lack of
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Figure 1. Optimal state (left), optimal control (middle), and
optimal multiplier (right) for problem 1 with h = 1/128.

Mesh size h 1/16 1/32 1/64 1/128 1/256
PDAS 14 27 54 113 226
PDIP 13 15 17 20 19
IPF 7(11) 9(15) 9(14) 7(13) 8(15)

Table 1. Comparison of iteration numbers for different mesh-sizes
and methods.

Mesh size h 1/16 1/32 1/64 1/128 1/256
CPU-ratio(PDAS) 0.48 0.89 1.91 4.44 5.56
CPU-ratio(PDIP) 1.08 1.11 1.57 2.02 1.97

Table 2. Comparison of CPU-ratios for different mesh-sizes and methods.

function space properties of PDAS. For PDIP, on the other hand, our results
indicate that the method behaves essentially mesh independently. This could be
an indication that a rigorous function space analysis is possible.

Finally we report on the speed-up of the respective method when utilizing a
nested iteration concept. To be specific, we initialize the respective algorithm as
described above on the coarsest grid (h0 = 2−2), run the respective algorithm until
the residuals drop below 0.1 h2

0, then we interpolate the solution to the next finer
mesh with mesh-size hi = 0.5 hi−1 and use the interpolated coarse grid solution as
the initial guess on the fine mesh. This procedure is repeated until the finest mesh
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is reached (h = 2−8 in our case). Then we obtain the results displayed in table 3.
In the nested iteration case the average CPU-ratios are

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/128 1/256 total
PDAS 3 4 4 5 6 6 6 34
PDIP 3 2 4 4 5 6 7 31
IPF 4 3 3 4 5 5 5 29

Table 3. Problem 1. Comparison of iteration numbers for differ-
ent mesh-sizes and methods based on nested iteration.

CPU-ratio(PDAS) ≈ 0.8 and CPU-ratio(PDIP) ≈ 2.

These results, which are typical in our test runs also for other problems, suggest
that PDAS benefits significantly from the nested iteration concept. To appreciate
the efficiency of the nested approach, we can think of the iteration levels as discrete
regularization parameters. The relation between PDIP and IPF, on the other
hand, stays approximately the same. We point out that although PDAS requires
slightly more iterations than IPF it is still faster. This is due to the fact that
in every iteration of PDAS one has to solve a linear system only on the current
estimate of the inactive set at the solution. Hence, in the case where this estimate
is significantly smaller than the whole computational domain, the solution times
reduce remarkably.

For further numerical results comparing PDAS, PDIP and IPF we refer to
[HK2]. For the Lavrentiev-regularized problem considered in section 5.2.2, in [H]
one can find numerical results and comparisons obtained by a semismooth Newton
technique and the short-step path-following interior-point method, both outlined
in section 5.2.2 as well.

Finally, we provide a brief qualitative comparison of the Moreau-Yosida-based
regularization with the Lavrentiev approach. In Figure 2 we show value functionals
for both approaches. The graph on the left depicts the value functional for the
Lavrentiev-regularization for a given test problem. The plot in the middle shows
the Lavrentiev-based value functional for a slight modification of this problem.
The right plot shows the corresponding Moreau-Yosida path for λ̄ ≡ 0. We point
out that the qualitative behavior of the Moreau-Yosida path is independent of the
underlying problem. We conclude that the Moreau-Yosida-path induces a mono-
tonically increasing value functional, while the value functional for the Lavrentiev-
regularization exhibits a problem dependent, possibly non-monotone behavior. In
this respect, the Moreau-Yosida approach appears to be better suited for path-
following strategies than the Lavrentiev-based technique.

Concluding we can say that some type of regularization appears to be necessary
to solve state constrained problems efficiently in a nearly mesh-independent manner.
The primal dual active set strategy is especially simple to implement, its path
version has favorable geometric properties and combined with nested iteration it is
very efficient numerically.
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Example 1: Lavrentiev−path

1/ε 1/ε

Example 2: Lavrentiev−path Moreau−Yosida path

γ

Figure 2. Comparison of value functionals for the Lavrentiev reg-
ularization for two different problems (left and middle) and the
corresponding Moreau-Yosida regularization (in the case λ̄ ≡ 0;
right).

Appendix A. Newton differentiability and semismooth Newton
methods

We define the notion of a Newton differentiable function, a semismooth Newton
technique for solving the operator equation F (x) = 0 based on this differentiability
concept, and we address its local convergence properties. For details and further
discussions including proofs we refer to [HIK].

Let F : X → Y denote a mapping between the Banach spaces X and Y . The
associated norms are denoted by ‖ · ‖X and ‖ · ‖Y , respectively.

Definition A.1. The mapping F : D ⊂ X → Y is called Newton differentiable in
the open subset U ⊂ D if there exists a family of mappings G : U → L(X, Y ) such
that

(A) lim
h→0

1
‖h‖X

‖F (x + h)− F (x)−G(x + h)h‖Y = 0

for every x ∈ U .

A mapping F satisfying property (A) is also called semismooth.
Let F satisfy (A), and assume that G is invertible in U . Then, given xk ∈ U ,

the semismooth Newton step

(A.1) xk+1 = xk −G(xk)−1F (xk)

is well-defined. The following local convergence result holds true.

Theorem A.1. Suppose that x∗ satisfies F (x∗) = 0 and that F is Newton differ-
entiable in an open neighborhood U containing x∗ with Newton derivative G(x). If
G(x) is nonsingular for all x ∈ U and {‖G(x)−1‖ : x ∈ U} is bounded, then the
Newton iteration (A.1), with k = 0, 1, 2 . . ., converges superlinearly to x∗, provided
that ‖x0 − x∗‖ is sufficiently small.
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